CATALIZADORES PARA BIORREFINERÍAS: PRODUCTOS DE C3 A PARTIR DE LA HIDROGENÓLISIS DE GLICEROL

Martinez Valentina, Gatti Martin N., Sosa Alexis, Pizzio Luis. R., Pompeo Francisco*

Departamento de Ingeniería Química, Facultad de Ingeniería, UNLP. Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA) - Laboratorio Calle 50 Nº 184, 1900, La Plata, Argentina.

*e mail: francisco.pompeo@ing.unlp.edu.ar

Introducción

Desde hace ya algunos años, la sociedad se ha concientizado acerca del impacto medioambiental que genera la utilización de recursos fósiles para la obtención de fuente de energía y productos destinados a la industria química. De esta manera, se ha fomentado la búsqueda de fuentes alternativas que permitan reemplazar, en parte, la actual dependencia con las fuentes no renovables. En particular, desde hace ya más de quince años, el biodiesel ha experimentado el mayor crecimiento a nivel mundial, sumándose como un eslabón más a la cadena de valor agregado del complejo agroindustrial nacional a partir del 2007, ubicando a la Argentina como el quinto productor mundial con tecnología a gran escala que lo posiciona entre los más eficientes del mundo [1]. Por cada 10 kg de biodiesel producido, se genera como subproducto 1 kg de glicerol crudo con una pureza que varía en el rango de 55-90 %, debido a la presencia de restos de triglicéridos, alcohol, jabones y catalizador, entre otros [2]. El glicerol es un polialcohol C3, con tres grupos hidroxilo y propiedades fisicoquímicas interesantes que permiten su aplicación en diferentes industrias. Debido a su amplia disponibilidad y bajo costo, la búsqueda de nuevas alternativas para la transformación del glicerol resulta muy atractiva [3]. La funcionalidad química de la molécula de glicerol lo convierte en una molécula plataforma para la obtención de productos químicos y biocombustibles. De todos los procesos posibles, la hidrogenólisis catalítica resulta una alternativa interesante debido al alto contenido de oxígeno en la molécula de glicerol (O/C = 1). En este sentido, la ruptura de enlaces C-O del glicerol conduce a la formación de glicoles, como el 1,2-propilenglicol (1,2-PG) y el 1,3-propilenglicol (1,3-PG), y alcoholes C3 como 1propanol (1-POH), 2-propanol (2-POH), aunque también puede ocurrir la ruptura de enlaces C-C que permite generar otros alcoholes de bajo peso molecular como etanol (EtOH) y metanol (MeOH).

De todos ellos, los glicoles (1,2-PG y 1,3-PG) y los propanoles (1-POH y 2-POH) son los más valiosos. La obtención de cualquiera de ellos requiere de catalizadores bifuncionales capaz de deshidratar el glicerol a los intermediarios adecuados y una fase metálica que propicie la hidrogenación de dichos intermediarios para la formación de los productos finales.

El objetivo de este trabajo es evaluar catalizadores de Ni y Pt en la reacción de hidrogenólisis de glicerol para la obtención de productos C3 en fase líquida, utilizando un soporte a base de sílice modificado por inclusión de ácido tungstofosfórico.

Experimental

Preparación del soporte SiO₂

El soporte de sílice (SiO₂) se preparó mediante el método sol-gel utilizando ortosilicato de tetraetilo (TEOS, Sigma-Aldrich) como alcóxido precursor y el copolímero tribloque P123 (PEO₂₀PPO₇₀PEO₂₀, Sigma-Aldrich) como plantilla mesoporosa. En primer lugar, se disolvieron 4 g de P123 en 103 ml de solución acuosa de HCl 2 N y 30 g de agua destilada en un matraz cónico. La suspensión se agitó a 60 °C y, cuando la solución se volvió homogénea, se incorporaron 19,8 ml de TEOS. La mezcla de reacción se agitó a 90 °C durante 44 h. El

sólido formado se filtró y se lavó con agua destilada. La plantilla P123 se eliminó por tratamiento térmico a 500 °C durante 2 h.

Preparación de los soportes modificados SiO₂-TPA(x)

A partir de SiO₂ se prepararon soportes modificados con ácido tungstofosfórico (TPA), incorporando dicho heteropoliácido durante la síntesis de la sílice. Para una síntesis típica, se agitaron P123, HCl y H₂O en un matraz cónico, como se ha descrito previamente. La masa necesaria de TPA se disolvió en una solución de agua-etanol al 50% (v/v). La solución de TPA se añadió, junto con TEOS, a la mezcla de P123, HCl y H₂O, y se agitó a 90 °C durante 44 h. El sólido formado se filtró, se lavó con agua destilada y se calcinó a 500 °C durante 2 h. Los soportes obtenidos se denominaron SiO₂-TPA(x), siendo x el contenido porcentual de TPA incorporado (20, 30 o 40 %p/p).

Preparación de los catalizadores Ni/SiO₂-TPA(x) y Pt/SiO₂-TPA(x)

Los catalizadores fueron preparados por el método de impregnación a humedad incipiente utilizando acetato de níquel (Ni(CH₃COO)₂) y ácido hexacloroplatínico (H₂PtCl₆), de forma de alcanzar un 5 %p/p y 2%p/p de contenido de Ni y Pt en los catalizadores finales. Para impregnar los soportes se utilizó agua destilada como solvente.

Una vez impregnados, los catalizadores fueron secados a 105 °C durante 12 h y activados. Los catalizadores de Ni fueron activados por reducción directa en flujo de H₂ (50 ml min⁻¹) a 500 °C durante 90 min. Los catalizadores de Pt fueron previamente calcinados en mufla a 300 °C durante 90 min y luego reducidos en flujo de H₂ (50 ml min⁻¹) a 300 °C durante 90 min.

Caracterización de soportes y catalizadores

Los materiales sintetizados fueron caracterizados por adsorción-desorción de N₂ (BET), titulación potenciométrica, difracción de rayos X (DRX), espectroscopía RMN de ³¹P y espectroscopía FT-IR. El contenido de TPA en los soportes calcinados se estimó como la diferencia entre la cantidad de W en la solución de TPA (solución original) y la cantidad de W remanente en el agua destilada utilizada para lavar los sólidos filtrados. El contenido de W se determinó por espectrometría de absorción atómica utilizando el espectrofotómetro IL457 (Instrumentation Laboratory Inc).

Ensayos de reacción

Para evaluar la actividad catalítica se realizó el test de reacción de hidrogenólisis de glicerol en fase líquida en un reactor discontinuo (Bergohf BR 100). Se utilizó glicerol de grado analítico (99,99 % p/p de pureza, Cicarelli) en solución acuosa al 5 y 30 %p/p. El volumen de solución utilizado en cada ensayo fue de 4 ml y la masa de catalizador empleada de 200 mg. Los catalizadores de Ni se ensayaron a 220 °C mientras que los catalizadores de Pt se ensayaron a 200 °C para obtener valores comparables de actividad catalítica. En todos los casos la presión inicial de hidrógeno fue de 2 MPa. Para el análisis y cuantificación de productos gaseosos se utilizó un cromatógrafo Shimadzu GC-8A equipado con un detector de conductividad térmica (TCD), con una columna Hayesep D 100-120. Para el análisis y cuantificación de productos líquidos se utilizó un cromatógrafo Shimadzu GCMS-QP5050A equipado con una columna capilar 19091S-001 HP PONA 50 m y con detectores FID y MS. La conversión de glicerol [X (%)] se determinó de acuerdo con la Ecuación 1.

$$X (\%) = \frac{\text{moles de glicerol consumidos}}{\text{moles de glicerol iniciales}} . 100 \%$$
(1)

La selectividad [S (%)] a productos líquidos se determinó de acuerdo con la Ecuación 2.

$$S (\%) = \frac{\text{moles de carbono en el producto de interés}}{\text{moles de carbono totales de productos}} . 100 \%$$
(2)

El balance de carbono [C (%)] fue calculado empleando la Ecuación 3.

$$C (\%) = \frac{\text{moles totales de carbono en productos}}{3 \text{ moles de glicerol iniciales}} \cdot 100 \%$$
(3)

La precisión de los valores medidos se encuentra dentro del 5%, y todos los experimentos pueden ser reproducidos con un error relativo menor al 10%.

Resultados y discusión

Caracterización de soportes y catalizadores

Los resultados de las propiedades texturales y fisicoquímicas de los soportes se muestran en la Tabla 1.

Sonorto	BET			Titulación potenciométrica	
Soporte	S _{BET} (m ² g ⁻¹) ^a	S _{micro} (m ² g ⁻¹) ^b	d _p (nm) ^c	Ei (mV) ^d	NS (mmol n-butilamina g ⁻¹) ^e
SiO ₂	836	414	4.7	23	0.29
SiO ₂ -TPA (20)	542	310	4.5	692	0.46
SiO ₂ -TPA (30)	454	271	4.2	764	0.50
SiO ₂ -TPA (40)	314	199	4.7	812	0.62

 Tabla 1. Propiedades texturales y fisicoquímicas de los soportes.

^a Superficie específica ^b Superficie específica de microporos ^c Diámetro de poro promedio ^d Potencial inicial ^e Número total de sitios ácidos.

Las isotermas de adsorción-desorción de N₂ de SiO₂ y los soportes modificados (no mostradas aquí) son del tipo IV con lazos de histéresis de H2, típicos de los materiales mesoporosos [4]. La Tabla 1 muestra que la superficie específica (S_{BET}) de los soportes modificados disminuye con respecto al soporte SiO₂, debido a la incorporación del TPA en la matriz de sílice. Además, se observa una disminución en la relación de superficies específica S_{BET}/S_{micro} , lo cual puede deberse a una disminución del nivel de reticulación cuando aumenta la concentración del heteropoliácido. Un comportamiento similar fue reportado en la literatura para la superficie específica de TiO₂ mesoporoso obtenido mediante el proceso sol-gel [5,6].

Con respecto a las propiedades ácidas, los resultados de titulación potenciométrica indican que el soporte de SiO₂ presenta sitios ácidos fuertes (0 < Ei < 100 mV), mientras que los soportes modificados con TPA presentan sitios ácidos muy fuertes (Ei > 100 mV). Además, a medida que aumenta el contenido de TPA también aumenta la fuerza ácida de los sitios y el número de sitios ácidos superficiales en los soportes modificados.

Los resultados de DRX de todos los soportes (no presentados aquí) mostraron una señal amplia para valores de 20 entre 15 y 30°, característica de la sílice amorfa. Para los soportes de SiO₂-TPA los patrones de difracción no presentaron ninguna de las señales características del TPA ($H_3PW_{12}O_{40}$) ni de sus distintas formas hidratadas [7]. Esto sugiere que el heteropoliácido se encuentra bien disperso en la matriz de sílice o presente como una fase no cristalina.

El espectro RMN de ³¹P para el TPA (H₃PW₁₂O₄₀.6H₂O) (no presentado aquí) muestra un pico a -15,5 ppm con un hombro (-15,3 ppm) que se asignan a los aniones de Keggin [PW₁₂O₄₀]³⁻ (que interactúa con especies H⁺(H₂O)₂) y [H_{3-X}PW₁₂O₄₀]^{X-}, respectivamente [8,9]. La incorporación y la interacción de las moléculas de TPA con la estructura de sílice producen el desplazamiento a valores de campo menores de las señales de ³¹P. El desplazamiento

observado (-15,3 ppm), comparado con el del TPA, se debe a la interacción electrostática entre los aniones de Keggin [H_{3-X}PW₁₂O₄₀]^{X-} y los grupos ≡Si-OH₂⁺ presentes en los soportes SiO₂-TPA. El contenido de TPA no influyó en la posición ni en el ancho de la línea.

La Figura 1 muestra los espectros FT-IR del TPA y de los soportes SiO₂ y SiO₂-TPA. El espectro FT-IR de la muestra SiO₂ muestra las bandas típicas de la sílice (Tabla 2) y no muestra ninguna de la plantilla P123. Para los soportes SiO₂-TPA (30) y SiO₂-TPA (40) los espectros FT-IR revelan la presencia de las bandas P-O_a, W=O_d y W-O_b-W del TPA (Tabla 2) que se solapan con las del soporte [7]. Este efecto se hace más claro cuando se incorpora un mayor contenido de TPA al soporte [10,11] y confirma la presencia del anión [PW₁₂O₄₀]³⁻.

Número de onda (cm⁻¹)

Figura 1. Espectros FT-IR de (a) TPA (b) SiO₂ (c) SiO₂-TPA (30) (d) SiO₂-TPA (40).

Señal	Banda (cm ⁻¹)	Modos de vibración
1	3700-3200	Estiramiento del grupo -OH
2	1650	Vibración angular del H ₂ O
3	1220–1076	Estiramiento asimétrico del grupo siloxano
4	965	Estiramiento del grupo Si-OH
5	800	Estiramiento del grupo Si–O–Si
6	470	Flexión del grupo O–Si–O
7	1081	Vibraciones del estiramiento P–O _a
8	982	Vibraciones del estiramiento W=Od
9	888	Vibraciones del estiramiento W–O _b –W
10	793	Vibraciones del estiramiento W–Oc–W
11	524	Vibraciones de la flexión O _a -P-O _a

Tabla 2. Bandas características FT-IR de SiO2 y TPA.

Ensayos de reacción

Las Figuras 2 (a) y (b) muestran los resultados de conversión para los catalizadores de Ni y Pt. Es posible observar en todos los casos que la conversión de glicerol a productos líquidos es mucho mayor que la conversión a productos gaseosos, y se incrementa a medida que aumenta el contenido de TPA en los catalizadores. Estos resultados estarían indicando que la conversión es función del número de sitios ácidos superficiales, el que se incrementa cuanto mayor es el contenido de TPA en los soportes modificados. Las máximas conversiones se obtienen empleando los catalizadores Ni/SiO₂-TPA (40) y Pt/SiO₂-TPA (40).

Figura 2. Conversión total, a productos líquidos y a gases para **(a)** Catalizadores Ni/SiO₂-TPA (x) **(b)** Catalizadores Pt/SiO₂-TPA (x).

Las Figura 3 (a) y (b) muestran la selectividad a productos líquidos para el mismo conjunto de catalizadores.

Figura 3. Selectividad a productos líquidos para (a) Catalizadores Ni/SiO₂-TPA (x) (b) Catalizadores Pt/SiO_2 -TPA (x).

Los productos líquidos identificados y cuantificados fueron: de C1: metanol (MeOH), de C2: etanol (EtOH) y etilenglicol (EG), de C3: acetona (AcO), acetol (AcOH), 1-propanol (1-POH), 1,2-propilenglicol (1,2-PG) y 1,3-propilenglicol (1,3-PG). En todos los casos el balance de carbono fue del orden del 98%.

Para los catalizadores de Ni (Figura 3a) el principal producto de reacción es 1,2-PG con valores de selectividad entre 64-68 % dependiendo del contenido de TPA. Para estos catalizadores se observa un descenso en la selectividad a productos C2 con un incremento en la selectividad a productos C3 a medida que aumenta el contenido de TPA en los catalizadores. Para contenidos de TPA en el rango 0-30% la selectividad a 1,3-PG aumenta hasta alcanzar un máximo del 16% cuando el contenido de TPA es del 30%, y luego

disminuye, acompañada por un aumento en la selectividad a 1-POH para el catalizador con 40% de TPA.

En el caso de los catalizadores de Pt (Figura 3b) los principales productos son 1,2-PG, 1-POH y 1,3-PG. La selectividad a 1,3-PG alcanza el máximo valor (45 %) para el catalizador de Pt/SiO₂ sin el agregado de TPA. A medida que aumenta el contenido de TPA, se observa un descenso en la selectividad a glicoles acompañado de un aumento en la selectividad a 1-POH. Cuando el contenido de TPA alcanza un 40% se maximiza la producción de 1-POH.

Conclusiones

En este trabajo se evaluaron catalizadores de Ni y Pt en la reacción de hidrogenólisis de glicerol para la obtención de productos C3 en fase líquida, utilizando un soporte a base de sílice modificado por inclusión de un heteropoliácido.

Los resultados de caracterización revelan que el soporte de SiO₂ sintetizado por sol-gel presenta una estructura amorfa, característica de la sílice, con una porosidad típica de materiales mesoporosos y sitios ácidos fuertes. La modificación de este soporte por inclusión de ácido tungstofosfórico (TPA) genera aniones de Keegin del tipo $[PW_{12}O_{40}]^{3-}$ y $[H_{3-}XPW_{12}O_{40}]^{X-}$ que interactúan con los grupos \equiv Si-OH₂⁺ presentes en el soporte de SiO₂. A mayor contenido de TPA en los soportes modificados, la fuerza ácida y el número de sitios ácidos superficiales aumenta.

Los resultados de actividad muestran que los catalizadores de Ni/SiO₂-TPA(x) son selectivos a 1,2-PG y su actividad aumenta con el contenido de TPA, sugiriendo una relación directa entre la conversión y el número de sitios ácidos superficiales. El mismo efecto se observa para los catalizadores de Pt/SiO2-TPA(x), no obstante, la selectividad a productos líquidos es diferente. Para el catalizador sin presencia de TPA, es posible obtener selectivamente 1,3-PG. A medida que aumenta el contenido de TPA se produce una disminución en la selectividad a glicoles y un aumento en la selectividad a 1-POH. Para un contenido de TPA del 40%, el catalizador resulta selectivo a 1-POH. Estos resultados indican que la reacción de hidrogenólisis es sensible a la estructura de los catalizadores de Ni y Pt y modificando el contenido de TPA sería posible obtener selectivamente cualquiera de los tres productos C3.

Agradecimientos

Agradecemos la financiación recibida a CONICET (PIP 0065) y Proyecto UNLP (I-248). Martin N. Gatti agradece el Subsidio recibido de Jóvenes Investigadores otorgado por UNLP en 2019.

Referencias

[1] C. L. Bianchi, P. Canton, N. Dimitratos, F. Porta, L. Prati. Catalysis Today 102-103 (2005) 203-212.

[2] L. C. Meher, D. V. Sagar, S. N. Naik, Renew. Sustain. Energy Rev. 10 (2006) 248-268.

[3] M. Anitha, S. K. Kamarudin, N. T. Kofli. Chemical Engineering Journal 295 (2016) 119-130.
 [4] [K.S.W. Sing. Pure Appl. Chem. 57 (1985) 603–619.

[5] N. Phonthammachai, T. Chairassameewong, E. Gulari, A.M. Jamieson, S. Wongkasemjit. Microporous Mesoporous Mater. 66 (2003) 261–271.

[6] K. M. S. Khalil, T. Baird, M.I. Zaki, A.A. El-Samahy, A.M. Awad. Colloids Surf. A Physicochem. Eng. Asp. 132 (1998) 31-44.

[7] M.N. Gorsd, M.N. Blanco, L.R. Pizzio. Mater. Chem. Phys. 171 (2016) 281–289.

[8] F. Lefebvre. J. Chem. Soc. Chem. Commun., 10 (1992), pp. 756-757.
 [9] R. Massart, R. Contant, J. Fruchart, J. Ciabrini, M. Fournier. Inorg. Chem., 16 (1977), pp. 2916-2921

[10] A. A. Sosa, V. Palermo, P. Langer, R. Luque, G. P. Romanelli, L. R. Pizzio. Molecular Catalysis 517 (2022) 112046

[11] A. A. Sosa, G. P. Romanelli, L. R. Pizzio. Revista Colombiana de Quimica 49 (2) (2020) 37-43.