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Metamorphic basement and its Neoproterozoic to Cambrian cover exposed in the Sierra de Pie de Palo, a
basement block of the Sierras Pampeanas in Argentina, lie within the Cuyania terrane. Detrital zircon
analysis of the cover sequence which includes, in ascending order, the El Quemado, La Paz, El Desecho,
and Angacos Formations of the Caucete Group indicate a Laurentian origin for the Cuyania terrane. The
lower section represented by the El Quemado and La Paz Formations is interpreted as having an igneous
source related to a rift setting similar to that envisioned for the southern and eastern margins of Laurentia
at approximately 550 Ma. The younger strata of the El Desecho Formation are correlative with the Cerro
Totora Formation of the Precordillera, and both are products of rift sedimentation. Finally, the Angacos
Formation and the correlative La Laja Formation of the Precordillera were deposited on the passive mar-
gin developed on the Cuyania terrane. The maximum depositional ages for the Caucete Group include ca.
550 Ma for the El Quemado Formation and ca. 531 Ma for the El Desecho Formation. Four different sed-
iment sources areas were interpreted in the provenance analysis. The main source is crystalline basement
dominated by early Mesoproterozoic igneous rocks related to the Granite-Rhyolite province of central
and eastern Laurentia. Possible source areas for 1600 Ma metamorphic detrital zircons of the Caucete
Group include the Yavapai-Mazatzal province (ca. 1800–1600 Ma) of south-central to southwestern Laur-
entia. Younger Mesoproterozoic zircon is likely derived from Grenville-age medium- to high-grade meta-
morphic rocks and subordinate igneous rocks that form the basement of Cuyania as well as the southern
Grenville province of Laurentia itself. Finally, Neoproterozoic igneous zircon in the Caucete Group records
different magmatic pulses along the southern Laurentian margin during opening of Iapetus and break-up
of Rodinia. Northwestern Cuyania terrane includes a small basement component derived from the Gran-
ite-Rhyolite province of Laurentia, which was the source for detrital zircons found in the middle Cam-
brian passive margin sediments of Cuyania.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Resolving the primary paleogeographic origin of displaced terr-
anes remains problematic in most orogenic systems. Provenance
studies on sedimentary rocks based on the morphological and U/
Pb geochronological analysis of detrital zircons have proven useful
in some cases (Mueller et al., 1994; Murphy et al., 2004; Samson
et al., 2005). The technique provides estimates on the maximum
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depositional age and establishes characteristics of sediment source
areas including age and composition. Detrital zircon age data are
particularly useful in providing depositional age limits for unfossil-
iferous siliciclastic sedimentary sequences that have been meta-
morphosed and strongly deformed. In addition, detrital zircon
analysis may discriminate whether a sedimentary basin evolved
in an active or a passive margin setting (e.g., Cawood and Nemchin,
2001). Ultimately, the results of detrital analysis strengthen local
and regional stratigraphic correlations and lead to more robust
paleogeographic reconstructions (Fedo et al., 2003).

This contribution presents the results of a detrital zircon U/Pb
study directed at better constraining the origin of the Cuyania ter-
rane (Ramos et al., 1998), a composite terrane in northwestern
Argentina that includes the Precordillera (Ramos et al., 1986; Astini
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et al., 1995) and Pie de Palo (Ramos et al., 1998; Ramos, 2004) terr-
anes. Both are commonly interpreted as continental crustal frag-
ments allochthonous to the Gondwana margin and derived from
Laurentia during the early Paleozoic (e.g., Dalla Salda et al., 1992;
Thomas and Astini, 1996; Dalziel, 1997; Ramos et al., 1998).
There are however other competing models that propose a para-
autochthonous Gondwanan origin for the Cuyania terrane with
strike-slip displacement from the southern sector of Gondwana
to its present position during the early Paleozoic (Baldis et al.,
1989; Aceñolaza et al., 2002; Finney et al., 2005; Finney, 2007).

The Caucete Group (Borrello, 1969) is a cover sequence on Cuy-
ania (Ramos et al., 1998; Ramos, 2004) of probable late Neoprote-
rozoic–Early Cambrian age that is exposed on the western flank of
the Sierra de Pie de Palo (Fig. 1), within the Sierras Pampeanas of
northwestern Argentina. The sequence consists of unfossiliferous
siliciclastic and carbonate units strongly affected by deformation
and metamorphism during the Ordovician Famatinian orogeny
(Ramos et al., 1998). Detrital zircon data from the Caucete Group
and age-equivalent sequences in adjacent areas, in conjunction
with structural and stratigraphic analysis, allows us to define a
maximum depositional age for the units, evaluate the tectonic set-
ting of deposition, and compare with possible source areas along
the Laurentia and Gondwana margins. We report new data for
charting dynamic terrane dispersal after the break-up of the Rodi-
nia supercontinent (Fuck et al., 2008; Li et al., 2008) during the
Neoproterozoic–Cambrian transition.
Fig. 1. (a) General geology and stratigraphy of the Sierra de Pie de Palo (Ramos and Vujov
composite terrane (Precordillera and Pie de Palo terranes, Ramos et al., 1998). Ordovician
after Rapela et al. (2007).
2. Geotectonic framework

The Cuyania terrane likely formed during opening of the Iapetus
Ocean and break-up of Rodinia (Cawood et al., 2001; Mueller et al.,
2007). The major Gondwana cratons in South America
(i.e. Amazonian and Rio de la Plata) were amalgamated with the
eastern margin of Laurentia before the break-up of Rodinia (ca.
1000 Ma) through the Grenville orogenic belt (Hoffman, 1991).
The positions and the relative movements of these cratons after
the break-up of the supercontinent have been extensively discussed
(Cordani et al., 2003; Fuck et al., 2008; Li et al., 2008). Iapetus opened
between Laurentia and Gondwana in Neoproterozoic time. Conti-
nental rifting produced a number of different crustal fragments,
one of which could be the Cuyania terrane (Cawood et al., 2001).

Recognition of the Cuyania terrane as a distinct fragment along
the Gondwana margin is based on stratigraphic, biostratigraphic,
sedimentary, structural, isotopic, and paleomagnetic evidence.
Ramos et al. (1998) defined the Cuyania composite terrane to in-
clude Mesoproterozoic metamorphic rocks of Western Sierras
Pampeanas as depositional basement to the Cambrian–Ordovician
limestones of the Precordillera (Fig. 1). Thus, the composite terrane
comprises: (1) the Precordillera terrane as defined by Astini et al.
(1995); (2) the basement of the Ordovician limestones of the San
Rafael Block (Bordonaro et al., 1996), including the Cerro La Ven-
tana Formation (Cingolani et al., 2005); and (3) the basement of
the limestones and marbles of Las Matras Block (Cerros San Jorge
ich, 2000; Baldo et al., 2006; Naipauer, 2007). (b) Regional geologic map of Cuyania
magmatic arc and Pampean basement after Sato et al. (2004). Rio de la Plata craton
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and Rogazziano; Melchor et al., 1999) which is composed of tron-
dhjemitic–tonalitic Mesoproterozoic plutonic rocks (Sato et al.,
2000, 2004) (see Fig. 1b).

Several models for a Laurentian origin have been proposed for
the Precordillera terrane. Dalla Salda et al. (1992) originally sug-
gested that the Precordillera was part of a greater continental sliver
rifted from North American following the collision with South
America in the Ordovician. Astini and Benedetto (1993), Astini
et al. (1995) and Thomas and Astini (1996) argued that the Pre-
cordillera terrane specifically originated in the eastern Ouachita
embayment at the southern end of the Appalachian belt, rifted
from the Laurentian margin, drifted away as a microcontinent
across the Iapetus Ocean, and collided with the Gondwana margin
during the middle Ordovician. The Texas Plateau model (Dalziel,
1997), based on comparison with the Malvinas Plateau, leaves
the Precordillera terrane as a continental plateau that remained a
marginal piece of Laurentia until the middle Ordovician collision
of Gondwana and Laurentia. Subsequent rifting of Gondwana and
Laurentia in the late Ordovician detached the Precordillera from
Texas Plateau, leaving the terrane attached to Gondwana (Dalziel,
1997; Rapalini and Cingolani, 2004).

Additional models for a para-autochthonous origin of the Pre-
cordillera were proposed initially by Aceñolaza and Toselli
(1988) and Baldis et al. (1989). These authors suggested that the
terrane has migrated from the southern margin of Gondwana by
strike-slip displacement. This model was primarily based on struc-
tural and stratigraphic analysis (Aceñolaza et al., 2002), but has re-
cently been supported by interpretation of detrital zircon data
from the Cuyania terrane (Finney et al., 2003, 2005).
3. Geology and stratigraphy of the study area

The Sierra de Pie de Palo is one of the westernmost fault-
bounded igneous-metamorphic complexes of the Sierras Pampe-
anas which includes uplifts in the broken Andean foreland of
western and central Argentina that have formed in response to
the Andean orogeny (Jordan et al., 1983; Ramos et al., 2002). The
range lies between the Tulum and Bermejo valleys in the San Juan
province (Fig. 1) and is largely underlain by medium to high-grade
metamorphic basement referred to as the Pie de Palo Complex (Ra-
mos and Vujovich, 2000). Low-grade metamorphic rocks of the Dif-
unta Correa Metasedimentary Sequence (Baldo et al., 1998) and
Caucete Group (Borrello, 1969) are exposed near major faults along
the southwestern flank of the range (Fig. 2). Intrusive granite
bodies and pegmatites are present in restricted areas throughout
the range.
3.1. Pie de Palo Complex

As originally defined, the Pie de Palo Complex includes a suite of
schist, marble, migmatite, gneiss, leucogranite, and mafic to ultra-
mafic metaigneous rocks (Fig. 1; Stappenbeck, 1910; Schiller,
1912; Stieglitz, 1914; Dalla Salda and Varela, 1982, 1984; Ramos
and Vujovich, 2000). The units can be subdivided into several
northeast-trending fault-bounded units (Fig. 1a). The structurally
lowest unit consists of mafic and ultramafic metamorphic rocks
on the western side of the range (Vujovich and Kay, 1998). In the
northeastern portion of the range, crystalline marbles are structur-
ally intercalated with biotite-garnet-rich gneisses and amphibo-
lites (Ramos and Vujovich, 2000).

A Mesoproterozoic age for the Pie de Palo Complex was origi-
nally assigned on the basis of a 1060 ± 20 Ma 207Pb/206Pb age from
discordant U/Pb analyses on zircon from gneisses in the central
area of the mountain belt (McDonough et al., 1993). This age is
consistent with Rb/Sr whole-rock isochron ages on metamorphic
and igneous rocks in the central portion of the range (Varela and
Dalla Salda, 1993; Pankhurst and Rapela, 1998). More recent stud-
ies have yielded older igneous ages of ca. 1204 Ma, 1174 ± 43 Ma,
and ca. 1169 Ma for gabbroic pegmatite, leucogabbro/diorite, and
calc-alkaline tonalite/granodiorite sills, respectively (Vujovich
et al., 2004). A garnet-bearing two-mica granitoid (El Tigre Granit-
oid) emplaced in the Pie de Palo Complex gave U/Pb zircon
(SHRIMP) age of 1104.8 ± 4.8 Ma (Morata et al., 2008).
3.2. Difunta Correa Metasedimentary Sequence

The Difunta Correa sequence includes amphibolite-facies Ca-
pelitic schist, quartzite, meta-arkose, marble, and para-amphibo-
lite exposed along the southern and eastern margins of the Sierra
de Pie de Palo (Baldo et al., 1998). U/Pb SHRIMP analyses on detri-
tal zircons from intercalated para-amphibolites indicate a maxi-
mum depositional age of 625 Ma (Rapela et al., 2005). Isotopic
studies of 87Sr/86Sr, C and O on carbonate units suggest a Neopro-
terozoic depositional age for the sequence (ca. 720–580 Ma; Galin-
do et al., 2004). Older detrital zircon ages range from 1032 to
1224 Ma and rim analyses record metamorphic overgrowths at
460 Ma (Casquet et al., 2001). Mylonitic orthogneiss within the Dif-
unta Correa Metasedimentary Sequence in the southwestern por-
tion of the range (Fig. 1a) is geochemically similar to intraplate
A-type magmatism and gives a U/Pb SHRIMP crystallization age
on zircon of 774 ± 6 Ma (Baldo et al., 2006).
3.3. Caucete Group

The Caucete Group includes low-grade calcareous units and
quartzite on the western side of the Sierra de Pie de Palo (Borrello,
1963, 1969) that are in fault contact with the metamorphic base-
ment (Fig. 3a and b; Schiller, 1912). The section is composed of
the El Quemado, La Paz, El Desecho and Angacos Formations
(Fig. 2; Borrello, 1969; modified by Vujovich, 2003). Two main
components are recognized in the Caucete Group: one of silicilastic
composition (El Quemado and La Paz Formations); the other of car-
bonate composition (El Desecho and Angacos Formations). The lat-
ter two formations have been correlated with basal Cambrian units
of the eastern Precordillera succession (e.g. Cerro Totora and La
Laja Formations, van Staal et al., 2002). However, the origin of
the El Quemado and La Paz Formations and the correlation with
the unmetamorphosed Precordillera stratigraphy is more difficult.
Penetrative deformation and greenschist facies metamorphism
(Ramos and Vujovich, 2000) of the Caucete Group has obscured
the original stratigraphic relationships of the sequence. Structural
relationships suggest that the El Quemado Formation was imbri-
cated with the Pie de Palo Complex and both were subsequently
emplaced westwards on top of the calcareous El Desecho and
Angacos Formations of the Caucete Group (van Staal et al., 2002).

The depositional age of the sequence is unclear due to a lack of
diagnostic fossils, uncertain stratigraphic relationships, and
penetrative deformation. A lower Paleozoic age was first assigned
based on correlation with units of the Precordillera (Schiller,
1912; Groeber, 1948). The Caucete Group has been specifically cor-
related with Late Cambrian and Early Ordovician limestone units of
the Precordillera on the basis of carbon and oxygen isotopic studies
(Linares et al., 1982; Abbruzzi, 1994; Sial et al., 2001). More re-
cently, Galindo et al. (2004) considered the Caucete Group equiva-
lent to the Precordilleran Cambrian carbonate platform based on
87Sr/86Sr, d13C and dO data. Naipauer et al. (2005a) established a
possible Early to Middle Cambrian age (ca. 510 Ma) for the Angacos
Formation and correlated it with the lower members of La Laja For-
mation in the Precordillera. Finally, possible ichnofossils described
by Bordonaro et al. (1992) may indicate equivalence with the



Fig. 2. Stratigraphic relationships and detrital zircon sample horizons of Grenville basement and Neoproterozoic and Cambrian metasedimentary units on the western flank
of the Sierra de Pie de Palo, based on Vujovich (2003), Baldo et al. (1998, 2006) and Vujovich et al. (2004). The units and rock types of the Caucete Group are described in
Naipauer (2007).
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Neoproterozoic–Lower Cambrian Puncoviscana Formation in
northwestern Argentina.
4. Analytical techniques

Detrital zircons were separated from seven samples of siliciclas-
tic rocks in the Caucete Group for U/Pb analysis. Heavy mineral
fractions from approximately 5 kg samples were concentrated
and separated into 100, 150 and 250 lm size fractions by standard
crushing, elutriation, heavy liquid, and magnetic susceptibility
techniques at the Centro de Investigaciones Geológicas laborato-
ries of the Universidad Nacional de La Plata (UNLP). Detrital zircon
fractions of roughly 200 grains were randomly handpicked in alco-
hol under a binocular microscope, mounted in epoxy along with
known standards, and polished to expose grain centers for
cathodoluminescence (CL) imaging and U/Pb analysis.
U/Pb analyses were performed by laser ablation inductively cou-
pled plasma mass spectrometry (LA-ICP-MS) using a New Wave UP-
213 (213 nm, Nd:YAG) laser system coupled to a ThermoFinnigan
Element 2 ICP-MS instrument housed at Washington State Univer-
sity (USA) following procedure outlined by Chang et al. (2006). The
laser operated with a fluency of 10–11 J/cm2 and a frequency of
10 Hz, with a 30 lm diameter ablation spot. Signals were collected
for 36 s in 300 sweeps with a counting efficiency of 86% per analy-
sis. Blanks were measured before each analysis for blank correction.
Standards with ages of 564 Ma (Dickinson and Gehrels, 2003) and
1099 Ma (FC1; Paces and Miller, 1993) were analyzed after 5–10
unknown minerals to correct for mass bias and fractionation of U
and Pb. Laser induced time dependent elemental fractionation,
was corrected using the regression line method (Sylvester and
Ghaderi, 1997; Horn et al., 2000; Kosler et al., 2002). Data reduction
was completed with an in-house program at Washington State



Fig. 3. Photographs of outcrops of the western flank of the Sierra Pie de Palo, (a) Pie de Palo Complex (A) in tectonic contact along the Las Pirquitas thrust with the El
Quemado Formation (B), (b) Pie de Palo Complex (A) structurally overlain by the El Quemado Formation (B) in the Quebrada de las Burras area. White areas in A are ultramafic
rocks (serpentine and schist), (c) and (d) El Quemado Formation composed of strongly folded, interbedded quartz-feldspathic metasandstone and green quartzite, (e) and (f)
outcrops of La Paz Formation (green colors) interbedded with the El Quemado Formation in the Lomas Bayas area. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

310 M. Naipauer et al. / Journal of South American Earth Sciences 29 (2010) 306–326
University (Chang et al., 2006). For cumulative probability plots was
used the program of Ludwig (1999). Tera-Wasserburg and cumula-
tive probability plots were constructed using analyses within 20%
of concordance and reporting 207Pb/206Pb ages for analyses
>1000 Ma (Dickinson and Gehrels, 2003).

5. Stratigraphic units of the basement cover sequence

5.1. El Quemado Formation

The El Quemado Formation includes siliciclastic units exposed
on the western flank of Sierra de Pie de Palo that were originally
referred to as the Cuarcita El Quemado (Borrello, 1963, 1969).
The section is composed of quartz and feldspar-rich metasand-
stones, quartz–mica schists, black quartz sandstones, and their
cataclastic equivalents. The section is well exposed from the Queb-
rada Agua del Conejo to the north (Ramos and Vujovich, 2000) to
the Quebrada La Petaca to the south where the siliciclastic metase-
diments are replaced by calcareous rocks. The original thickness of
units within the section is unknown due to the high degree of fold-
ing and faulting imposed on the sequence (see also Figs. 3c and d).

Metasandstone units are dominantly green and yellow, fine- to
medium-grained with individual feldspar grains up to a few milli-
metres in diameter, and consist of quartz, feldspar, muscovite and



M. Naipauer et al. / Journal of South American Earth Sciences 29 (2010) 306–326 311
lesser biotite. Minor disseminated opaques such as pyrite are com-
mon in cm-thick, yellowish, very fine-grained quartz arenites
(Fig. 3d). A secondary fine lamination common in most units
formed by deformation and mylonitic recrystallization (Fig. 4a
and b). The protolith is interpreted to be an immature sandstone
based on the high mica and feldspar content.

5.2. La Paz Formation

The La Paz Formation consists of variably mylonitized quartz
and mica schist composed of muscovite, garnet and albite (Vujo-
vich, 2003).The best outcrops are located between the Quebrada
La Paz and Quebrada Las Pirquitas, and are widespread to the north
Fig. 4. Photomicrographs of the major textures from different units of the Caucete Gro
domains of grain-size (transmitted light, crossed nicols); (b) foliation defined by musco
inclusions in albite porphyroblasts, matrix composed of quartz and muscovite (transmi
Desecho Formation: (e) mosaic of quartz and carbonate, (Zrn) detrital zircon grain and
quartz and carbonate showing grain-size variation. Scale bar is approximately 0.5 mm i
of the range in the area of Lomas Bayas. Between the Quebrada El
Molle and the Quebrada El Quemado, strata of the La Paz Forma-
tion are intercalated with metasandstone layers of the El Quemado
Formation, suggesting a transitional contact between both units. A
maximum structural thickness of 250 m for the La Paz Formation is
observed in the El Quemado area. Individual beds vary from a few
centimetres to 3 m in thickness. The unit is commonly dark in col-
or, with greenish and greyish tones dominant (Fig. 3e and f). The
grain-size ranges from very fine to medium, with albite porphyro-
clasts reaching 2 mm (Fig. 4c and d).

The La Paz Formation differs from the El Quemado Formation
mainly in the presence of garnet, albite, epidote, and phyllosilicates
in the mica schists. A protolith of interlayered volcanogenic pelite
up. El Quemado Formation: (a) polygonal texture in quartz with two well-marked
vite and alternating with quartz-rich bands. La Paz Formation: (c) euhedral garnet
tted light, parallel nicols), (d) same photomicrograph taken with crossed nicols. El
(Ap) apatite grain, also rounded (crossed nicols). Angacos Formation: (f) mosaic of
n all photos. Mineral abbreviations after Kretz (1983).
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and fine sandstone has been inferred based on the mineralogical
characteristics and presence of small, clear prismatic zircons
(Van Staal et al., 2002; Vujovich, 2003).

5.3. El Desecho Formation

The El Desecho Formation was originally described as the Pun-
tilla Blanca Formation (van Staal et al., 2002), but later referred to
as the El Desecho Formation (Vujovich, 2003), due to the fact that
former name was used by Borrello (1969) for another unit of the
Fig. 5. Outcrop photographs of the El Desecho and Angacos Formations, Sierra Pie de
dolomitic marbles interbedded with gray calcareous schists; note the folding; (b) in
alternating limestone and calcareous schists of the Angacos Formation, Quebrada El Ga
calcareous metasandstones (A) interbedded with calcareous marbles (B), El Desecho For
limestone, Quebrada El Gato; (g) siliciclastic rocks interbedded in the limestone of the An
in this figure legend, the reader is referred to the web version of this article.)
Caucete Group. The unit includes carbonates and dolomitic rocks,
marbles, calcareous schist, metapelites, calcareous metasand-
stones and subordinate metaconglomerates. The thickness is
variable, ranging from a few meters to 40 m in the Quebrada El
Desecho. The formation varies from red, yellow, to black and green
in color (Fig 5a and b), and is a useful marker horizon that helps
define structures. Fine- to medium-grained quartzite and calcare-
ous metasandstone exposed in the area of La Olla, between the
Quebradas La Cruz and Pecan reaches several meters in thickness
and was selected for the provenance study (Figs. 4e and 5e).
Palo; (a) El Desecho Formation in the La Olla area, red and white calcareous and
terbedded metapelites and reddish dolomitic marble, El Desecho Formation; (c)
to; (d) carbonates rhythmites of calcite and dolomite, Quebrada Las Pirquitas; (e)

mation; (f) Angacos Formation, light- and dark-colored quartzites interbedded with
gacos Formation, Quebrada La Lichona. (For interpretation of the references to color
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Metaconglomerate, with rounded boulders ranging in size from 5
to 30 cm in diameter are exposed on the southwestern side of
the Lomas Bayas. The clasts are mainly granitic and occur in a cal-
careous matrix.

5.4. Angacos Formation

The Angacos Formation (Caliza Angacos: Borrello, 1969) is
composed of penetratively deformed limestone, calcareous schist
and marble. The main outcrops are located in the Quebradas El
Gato and La Petaca but extend to the south where Dalla Salda
and Varela (1984) mentioned that calcareous schists and marbles
are up to 200 m thick in the Quebrada Ancha de la Punilla. Grey
to black, fine-grained schists and calcareous schists are found at
the base (Fig. 5c) and massive marbles occur at the top of the
Angacos Formation (Ramos and Vujovich, 2000). The mineralogy
ranges from calcite to dolomite (Fig. 5f and g). In the southwest-
ern area in the Quebradas El Gato, La Petaca and La Lichona the
rocks show laminations from 2 to 30 mm thick (Fig. 5d) that cor-
respond with the separation of calcite- from dolomite-rich layers.
Under the microscope, quartz and organic layers are recognized
(Fig. 6). These primary structures were interpreted as rhythmites
by Naipauer et al. (2005c) within a sedimentary sequence of
alternating carbonates and calcareous sandstone (Ramos and
Vujovich, 2000).
6. Zircon description and U–Pb data

Seven detrital zircon samples from the Caucete Group were
analyzed for external morphology and geochronology. Three sam-
ples from the El Quemado Formation correspond to quartz–mica
metasandstone (QLPcz1) and quartzo-feldspathic metasandstone
(QLPcz2) from the Quebrada La Petaca, and quartz–mica meta-
sandstone (QPir3) from Quebrada Las Pirquitas (Figs. 7 and 8).
Sample M4 was collected from quartz–mica metasandstone layer
interleaved in the La Paz Formation between Quebradas El Molle
and El Quemado (Fig. 8). In addition, detrital zircons were ana-
lyzed from a metasandstone Qtz-Alb-Ms-Grt (sample M5) from
Quebrada Las Pirquitas (Fig. 8). Calcareous metasandstone from
the El Desecho Formation (sample M8) was collected from the
La Olla area (Fig. 5). A sample of calcareous metasandstones
(QLli1) in the Angacos Formation was taken south of Sierra de
Pie de Palo in Quebrada La Lichona (not shown in Figs. 7 and
8). The location and description of the samples is presented in
Table 1.

6.1. Zircon morphology analysis

Morphological analysis of zircon grains was conducted under
binocular and scanning electron microscopes. Four different popu-
lations were identified based on color, size, shape, habit, and elon-
gation; the presence of internal cores, fractures, and inclusions was
also recorded. Representative grains from the main morphological
groups are shown in Fig. 9. The main groups include:

(i) Subrounded to idiomorphic, 100–150 lm zircons with
aspect ratios of approximately 3:1 and numerous inclusions.

(ii) Subrounded to idiomorphic, 150 lm zircons with aspect
ratios of approximately 4:1, intracrystalline fractures and
numerous inclusions.

(iii) Prismatic, 150 and 250 lm zircons with aspect ratios >5:1
and abundant inclusions.

(iv) Small (<100 lm dark-colored, rounded zircons with many
inclusions and aspect ratios of <2:1).
6.2. Detrital zircon U–Pb geochronology

6.2.1. El Quemado Formation
A total of 121 zircons from sample QLPcz1 were analyzed, but

results from 57 grains were rejected due to discordance of >20%.
Concordant zircon ages define four main intervals: 1169–
1040 Ma (36%), 1289–1187 Ma (31%), 1350–1300 Ma (22%) and
1434–1391 Ma (8%) (Fig. 10a). There are two single ages at
506 Ma and 1540 Ma. Zircon grains that produce the main peak
at ca. 1150 Ma are long prismatic crystals with oscillatory zoning
typical of plutonic and/or volcanic rocks. The peak at ca. 1220 Ma
corresponds to zircons with rounded shapes and complex meta-
morphic textures. Peaks at ca. 1310 Ma and 1400 Ma are from zir-
cons with oscillatory zoning characteristic of magmatic origin
(Fig. 10a).

Zircon from sample QLPcz2 provided 135 analyses, 36 of which
were rejected due to discordance. The remaining 99 grains define
three dominant age ranges of 697–532 Ma (peak at ca. 550 Ma;
12%), 1228–1042 Ma (peak at ca. 1110 Ma; 43%), and 1492–
1273 Ma (peak at ca. 1360 Ma; 40%). Two grains give ages of ca.
1553 Ma and 1697 Ma (Fig. 10b). The youngest zircon group de-
fines two peaks at ca. 550 Ma represented by 7% of the population
(568–532 Ma) and ca. 640 Ma defined by 5% of the population
(697–590 Ma) (Fig. 10b). The younger grains are typically large
prismatic to moderately rounded crystals with fine oscillatory zon-
ing (Fig. 10b) characteristic of a magmatic origin. The peak at ca.
1110 Ma is represented by two groups: oscillatory zoned prismatic
grains of probable volcanic origin that yield an age of ca. 1090 Ma
and round grains of probable metamorphic origin with complex
internal textures defined by variable luminescence, recrystallized
rims, and ages as old as ca. 1200 Ma. The peak at ca. 1360 Ma is
characterized by large prismatic zircons with oscillatory zoning
of magmatic origin (Fig. 10b).

Sample QPir3 was collected from the same unit as the previous
sample. Of the total 125 detrital zircons analyzed, 16 were rejected
due to discordance. Concordant zircons define three major inter-
vals: 1166–1070 Ma (46%), 1262–1188 Ma (40%), 1340–1274 Ma
(11%) and 1476–1439 Ma (3%) with the most representative peaks
at ca. 1070 and 1120 Ma (Fig. 10c). In addition, there are elongate
prismatic grains with igneous zoning textures suggestive of volca-
nic sources define a peak at ca. 1070 Ma. The remaining grains
from this sample display metamorphic textures. Subequant pris-
matic grains with metamorphic textures give peaks at ca.
1220 Ma and 1250 Ma (Fig. 10c). An older peak at ca. 1340 Ma is
defined by metamorphic zircons and a few oscillatory zoned crys-
tals of probable magmatic origin (Fig. 10c). Single zircon ages ap-
pear at ca. 1476 Ma, 1464 Ma, and 1439 Ma.

6.2.2. La Paz Formation
The zircon grains analyzed in the M4 sample were 125; 13

grains of discordant age (more than 20%) were rejected. The 112
grains with concordant age (<20%) fall in three main age brackets:
977–1166 Ma (77%), 1275–1171 Ma (15%), and 1490–1303 Ma
(7%) (Fig. 11a). The dominant peaks at ca. 1040, 1070 and
1145 Ma (Fig. 11a) are defined by round zircons of probable meta-
morphic origin and subordinate prismatic grains with magmatic
textures that give ages of ca. 1040 Ma (Fig. 11a). Small prismatic,
idiomorphic to subidiomorphic, oscillatory zoned igneous grains
define the main peak at 1145 Ma as well. Zircons with ages be-
tween 1171 Ma and 1275 Ma are of probable metamorphic
origin (Fig. 11a) whereas a peak at ca. 1360 Ma is defined by mag-
matic zircons (Fig. 11a). A small grain yielded a single age of
1925 Ma.

In sample M5, 130 detrital zircons were analyzed and 29 dis-
carded. Concordant ages define five intervals: 1062–961 Ma
(29%), 1118–1070 Ma (23%), 1171–1121 Ma (22%), 1257–1191 Ma



Fig. 6. Rhythmites from the Angacos Formation composed of cyclic alternating limestone and dolostone laminae. Thin sections were prepared with alizarine-red to
distinguish calcite from dolomite and terrigenous material. (a) Rhythmites made up of alternating dolosiltites (light colors) and calcarenites (red). Carbonates are fine-grained
and terrigenous materials are absent, San Ceferino area. (b) Cyclic laminae of dolosiltites and calcarenites and fine-grained calcarenites. Note detrital quartz and pyrite. Caliza
Angacos, Estancia El Altillo area. (c) Rhythmites composed of dolosiltites and calcisiltites. Dolosiltite-layers are very fine-grained, dark, a product of higher organic matter
content. Note foliation cross-cutting the original lamination, Quebrada Piedras Pintadas. Cal: calcite, Dol: dolomite, O.M.: organic matter, Qtz: quartz. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Geologic map with sample locations in southwestern Sierra de Pie de Palo, El Quemado and El Desecho Formations. See explanation of the units in Fig. 8. Qda.:
‘‘Quebrada” (from Van Staal et al., unpublished map). Location in Fig. 1.
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(15%) and 1276–1357 (7%) (Fig. 11b). The younger group is domi-
nated by metamorphic zircons. However, prismatic oscillatory
zoned zircons that define a peak at ca. 1035 Ma are likely of volcanic
origin (Fig. 11b). Peaks at ca. 1080 Ma, 1135 Ma and 1220 Ma are
formed by rounded and subrounded zircon grains, mostly of
metamorphic origin. Finally, peaks at ca. 1300, 1360 and 1470 Ma
are defined by large oscillatory zoned grains of igneous origin
(Fig. 11b).
6.2.3. El Desecho Formation
A total of 118 zircon grains were analyzed from sample M8 and

16 were rejected due to discordance. The age produce six age inter-
vals: 531–617 Ma (3%), 1186–1054 Ma (44%), 1293–1203 Ma
(19%), 1460–1326 Ma (25%) 1527–1493 Ma (3%) and 1677–
1574 Ma (7%) (Fig. 12a). The peak at ca. 550 Ma is defined by
prismatic, subrounded oscillatory zoned grains with of probable
igneous origin (Fig. 12a). The largest peak at ca. 1120 Ma is due



Fig. 8. Geologic map with sample locations of the La Paz and El Quemado Formations, central-western Sierra de Pie de Palo (from Van Staal et al., unpublished map). Location
in Fig. 1.

Table 1
Location, major mineral composition and field classification of the analyzed samples,
Caucete Group, Sierra de Pie de Palo, Argentina.

Sample location Major mineral composition Rock type

El Quemado Formation
QLPcz1 La Petaca Creek Qtz, Ms, Kfs, Plag,

Zrn, Mo, Op
Meta-sandstone
Qtz-Ms

QLPcz2 La Petaca Creek Qtz, Kfs, Plag, Ms,
Zrn, Mo, Op

Meta-sandstone
Qtz-Kfs-Ms

QPir3 Las Pirquitas Creek Qtz, Ms, Kfs, Plag,
Zrn, Mo, Op

Meta-sandstone
Qtz-Ms

La Paz Formation
M4 La Paz Creek Qtz, Plag, Ms, Zrn,

Mo, Op
Meta-sandstone
Qtz-Ms

M 5 La Paz Creek Qtz, Plag, Ms, Grt,
Zrn, Mo, Op

Meta-sandstone
Qtz-Alb-Ms-Grt

El Desecho Formation
M 8 La Olla area Qtz, Ca, Kfs, Plag, Zrn,

Mo, Op
Meta-calcareous
sandstone

Angacos Formation
QLli 1 La Lichona Creek Qtz, Kfs, Ca, Zrn,

Mo, Op
Meta-calcareous
sandstone
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to subrounded prismatic grains interpreted to be of metamorphic
origin. Grains that yield a minor peak at ca. 1070 Ma are sub-
rounded elongate prismatic grains with oscillatory zoning indicat-
ing magmatic origin (Fig. 12a). The peaks at ca. 1240 Ma and
1380 Ma are defined prismatic oscillatory zoned igneous zircons.
Finally, the peaks at ca. 1450 Ma and 1600 Ma consist of low lumi-
nescence grains of probable metamorphic origin (Fig. 12a).

6.2.4. Angacos Formation
Sample QLli1 provided 142 analyses, 33 of which are discor-

dant. The remaining 109 concordant analyses are distributed in
two major intervals: 1148–1050 Ma (peak at ca. 1114 Ma, 35%)
and 1471–1313 Ma (dominant peaks at ca. 1373 Ma, 1400 Ma
and 1450 Ma; 58%). Isolated ages are present in the interval 1312
to 1149 Ma (7%) as well as in the Paleoproterozoic (Fig. 12b).
Grains contributing to the peak at ca. 1114 Ma have complex inter-
nal textures characteristic of a metamorphic origin, but some
grains with igneous textures are observed (Fig. 12b). The main
peak at ca. 1373 Ma is defined by zircons with igneous textures
with a minor proportion of grains displaying complex textures of
probable metamorphic origin (Fig. 12b).
7. Discussion

7.1. Principal populations and age components

The morphological and CL analysis of detrital zircons allowed
definition of two populations composed of zircon grains with pris-
matic habit, oscillatory zoning, cores and inclusions but with dif-
ferent sizes. These features indicate a source area dominated by
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terms of length-to-width ratios; zircon grain classification of Pupin (1980).
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plutonic igneous rocks. Moreover, the presence of zircons with
long prismatic habit indicates a probable third source with input
from volcanic rocks. Finally, a population of rounded zircons with
complex internal zoning probably indicates origin from metasedi-
mentary rocks that were products of various sedimentary cycles.
These variations taken together with U/Pb (LA-ICP-MS) age deter-
minations were used to characterize the main sources of sediment
input for the Caucete Group.

Two Mesoproterozoic sources were identified (Table 2). The
oldest source with early Mesoproterozoic ages (ca. 1450–
1300 Ma) includes plutonic and volcanic rocks. A second source
has metamorphic and subordinate igneous rocks of late Mesopro-
terozoic age (1300–1000 Ma; Grenvillian). Other subordinate zir-
cons with Neoproterozoic and Paleoproterozoic ages indicate
different sources.

The early Mesoproterozoic source furnished igneous zircons
with three main frequency peaks: ca. 1370, 1360 and 1310 Ma.
These zircons are present in all of the samples analyzed from the
Caucete Group. It is the second dominant group in the El Quemado
Formation, representing from 11% to 40% of the total population.
In contrast, these ages are subordinate in the La Paz Formation with
peaks at ca. 1360 Ma (7%). The ca. 1380 Ma peak in the El Desecho
Formation represents 25% of the total population, whereas the dom-
inant ca. 1373 Ma peak in the Angacos Formation is defined by 58%
of the analyzed grains. This difference is interpreted to reflect a ma-
jor change in source area for Caucete Group sediments (see Table 2).

The late Mesoproterozoic metamorphic zircons are distributed
in a range between 1293 and 997 Ma. This group is the most statis-
tically significant in both the El Quemado Formation with 43–86%
of the population (Table 2) and the La Paz Formation (89–92%).
This observation indicates that metamorphic basement of late
Mesoproterozoic age was a constant source area during deposition
of the La Paz and El Quemado Formations. The Mesoproterozoic
‘‘Grenvillian” population is represented by 63% of the grains from
the El Desecho Formation and decreases to 42% in the Angacos For-
mation. This trend indicates that the Mesoproterozoic source area
decreases in importance in the upper units of the Caucete Group.

A different Mesoproterozoic source is represented by a popula-
tion of volcanic zircons with ages between ca. 1070 and 1030 Ma.
This ‘‘Grenvillian” population is abundant in the La Paz Formation,
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as well as the El Quemado and El Desecho Formations. Magmatism
in the source region of the Neoproterozoic igneous grains was
probably contemporaneous with, or slightly older than, deposition
of the Caucete Group.

7.2. Maximum depositional age

Detrital zircon data can provide limits on the maximum deposi-
tional age of sedimentary rocks as long as the data set is represen-
tative and statistically robust and there is sufficient knowledge of
the geological setting and possible source regions (Andersen,
2005). This approach is complicated in metasedimentary rocks
such as the Caucete Group due to the potential presence of meta-
morphic overgrowths of grains.

The youngest zircons in the El Quemado Formation exhibit a
range of 238U/206Pb ages between ca. 492 and 506 Ma. These ages
are problematic because they are close to the 490–450 Ma interval,
the time of the Famatinian orogeny. Similar ages obtained in the
Sierra de Pie de Palo have been interpreted as results of the Fama-
tinian orogenic event (Ramos et al., 1998; Casquet et al., 2001;
Vujovich et al., 2004). Accordingly, the dominant peak of
207Pb/206Pb ages at ca. 550 Ma defined by 10% of total zircon grains
analyzed from sample QLPcz2 is interpreted as the best estimate of
the maximum depositional age of El Quemado Formation. This age
may in fact be too young due to possible Pb loss due to Famatinian
metamorphism. Several early Cambrian (ca. 531 Ma) zircons are
present in the El Desecho Formation as well. By comparison with
the ca. 550 population of the El Quemado Formation, a similar max-
imum age of deposition is interpreted for the El Desecho Formation.

7.3. Source regions

The detrital zircon results allow comparison of the Caucete
Group sedimentary rocks with possible sources areas in either
Gondwana or Laurentia. The detrital ages can also be compared
with ages derived from basement areas of the Cuyania composite
terrane, as well as sedimentary and metasedimentary rocks ex-
posed in neighbouring areas that are similar in age to the Caucete
Group.

7.3.1. Gondwanan sources
Mesoproterozoic detrital ages of the Caucete Group can be com-

pared with Gondwana basement ages, especially those of the Ama-
zonian craton. Ages between ca. 1450 and 1300 Ma are widely
represented in the geochronological province of Rondonia – San
Ignacio in the southwestern Amazonian craton, where gneisses,
migmatites and granulites ca. 1550 to 1300 Ma are exposed
(Tassinari et al., 2000). Moreover, ages of the ‘‘Grenvillian” zircons
of the Caucete Group are comparable to those of the Sunsás belt,
located in the southwestern Amazonian craton (Tassinari et al.,
2000; Santos et al., 2008). Thus Gondwana is a possible source
for Mesoproterozoic zircons of the Caucete Group.

However, significant differences exist between the Caucete
Group and the Neoproterozoic–Cambrian metasedimentary rocks
on the Gondwana margin. Gondwanan units in northern and cen-
tral Argentina such as the Puncoviscana Formation and other units
in the Sierras Pampeanas are characterized by an absence of ca.
1450–1300 Ma detrital zircon ages (see Rapela et al., 1998; Sims
et al., 1998; Schwartz and Gromet, 2004; Adams et al., 2006; Escay-
ola et al., 2007; Collo et al., 2009). Similarly, grains of this age are
not common in the Neoproterozoic–lower Paleozoic cover of the
Rio de la Plata craton either (Rapela et al., 2007; Gaucher et al.,
2008). Thus, the Gondwana margin is not a likely source region
for the Caucete Group.

7.3.2. Laurentian sources
There are numerous potential source areas in Laurentia for

detrital zircons of the Caucete Group. In particular, we examine
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sources close to Ouachita embayment: Yavapai and Mazatzal prov-
inces (south-central to southwestern Laurentia), Granite-Rhyolite
province (central and southern Laurentia), and the Grenville prov-
ince exposed in the southern Appalachian region (eastern Ouachita
Basin) and Llano Uplift-Van Horn-Franklin Mountain areas in the
western Ouachita Basin.

Sources for older grains are wide spread in Laurentia. Paleopro-
terozoic metamorphic detrital zircons of the Caucete Group are
compatible with the ca. 1800–1600 Ma Yavapai-Mazatzal province
of south-central to southwestern Laurentia. Paleoproterozoic detri-
tal ages observed in the Cambrian Cerro Totora Formation from the
Precordillera have been attributed to a Laurentian source as well
(Thomas et al., 2004). Early Mesoproterozoic ages from plutonic
and volcanic detrital zircons of the Caucete Group coincide with
the ages of the Granite-Rhyolite province in southern and central
Laurentia (Muehlberger et al., 1967; Van Schmus et al., 1987).

The Provenance of late Mesoproterozoic or ‘‘Grenvilian” detrital
zircons in the Caucete Group is straight forward since Grenvillian
basement is well documented along the southern Laurentian mar-
gin. The Llano Uplift (central Texas) and Van Horn-Franklin Moun-
tain region (west Texas) contain exposures with ages of ca.
1320–1000 Ma (Roback, 1996; Mosher, 1998). Zircons with ca.
1300 Ma of the El Quemado, La Paz and El Desecho Formation are
consistent with ca. 1330–1270 Ma magmatic rocks in the Llano Up-
lift (Roback, 1996). Igneous zircon ages ca. 1115, 1070 and 1030 Ma
of the Caucete Group are compatible with ca. 1135–1070 Ma gran-
ite plutons in central Texas (Walker, 1992; Reed et al., 1995). The
most representative outcrops of the southern Appalachian base-
ment are in the Blue Ridge province. The ca. 1220–1160 Ma Caucete
Group detrital zircon ages are comparable to the ca. 1190 Ma Gren-
villian basement exposures in the southern Appalachians (Carrigan
et al., 2003). Igneous zircon ages of ca. 1115, 1070 and 1030 Ma are
compatible with the southern Appalachian basement as well (Bick-
ford et al., 2000; Carrigan et al., 2003; Tollo et al., 2006).

Finally, the Neoproterozoic igneous zircons found in the El
Quemado Formation (ca. 630–550 Ma) are interpreted to reflect
magmatic activity in the source area. Rifting occurred along the
southern and eastern Laurentian margins in Neoproterozoic to
Cambrian times, in response to the opening of Iapetus and leading
to terrane separation (Cawood et al., 2001; Tollo et al., 2004). The
Neoproterozoic zircons from the El Quemado Formation are inter-
preted to have been derived source areas affected by rift-related
magmatic activity at ca. 620–550 Ma. The ca. 531 Ma zircon ages
of the El Desecho Formation may relate to a final magmatic stage
(ca. 540–535 Ma) associated with the rift of the Cuyania terrane
(Cawood et al., 2001).
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Table 2
Major detrital zircon age population defined for the Caucete Group, Sierra de Pie de Palo, Argentina.

Stratigraphic
formation

Sample
number

Major zircon age populations (Ma) Neoproterozoic-
Cambrian grains

Mesoproterozoic grains

(1.0–1.3 Ga) (%) (1.3–1.45 Ga) (%)

El Quemado QLPcz1 1169–1040 (36%), 1289–1187 (31%), 1350–1300 (22%) and
1434–1391 (8%)

<2 67 30

QLPcz2 697–532 (12%), 1228–1042 (43%) and 1492–1273 (40%) 12 43 40
QPir3 1166–1070 (46%), 1262–1188 (40%), 1340–1274 (11%) and

1476–1439 (3%)
86 11

La Paz M4 977–1166 (77%), 1275–1171 (15%) and 1490–1303 (7%) 92 7
M5 1062–961 (29%), 1118–1070 (23%),

1171–1121 (22%), 1257–1191 (15%) and 1276–1357 (7%) 89 7

El Desecho M8 531–617 (3%), 1186–1054 (44%), 1293–1203 (19%),
1460–1326 (25%), 1527–1493 (3%) and 1677–1574 (7%) 3 63 25

Angacos QLli1 1148–1050(35%), 1312–1149 Ma (7%) and 1471–1313(58%) 42 58
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7.3.3. Cuyania basement source
The igneous zircon populations with ages of ca. 1115 Ma,

1070 Ma and 1030 Ma in the Caucete Group, are broadly similar
to those of the Mesoproterozoic Cuyania basement (1060 ±
20 Ma, McDonough et al., 1993; 1021 ± 12 Ma, Rb/Sr isochron,
Pankhurst and Rapela, 1998; 1105 Ma, U/Pb SHRIMP age, Morata
et al., 2008). Caucete Group detrital zircon ages of ca. 1220 and
1150 Ma clearly match ages in the crystalline basement as well
(Vujovich et al., 2004).

The U/Pb detrital zircon peaks at ca. 1160–1150 Ma and 1080–
1050 Ma in the Neoproterozoic Difunta Correa Unit (Vujovich et al.,
2004) are equivalent to peaks observed in the Caucete Group (ca.



320 M. Naipauer et al. / Journal of South American Earth Sciences 29 (2010) 306–326
1150 Ma, 1070 Ma and 1030 Ma). Zircon ages between 1100 and
1050 Ma from a para-amphibolite within the Difunta Correa Unit
(Rapela et al., 2005) are similar to those in the Caucete Group as
well. Finally, ca. 1220 Ma Caucete Group zircon ages match the
age of the Las Matras pluton (1244 ± 42 Ma, Sato et al., 2004) and
are similar to orthogneiss ages from the San Rafael block
(1205 ± 1 and 1204 ± 2 Ma, Thomas et al., 2000) and other granitic
rocks of the Cerro La Ventana Formation (1214.7 ± 6.5 Ma, Cingo-
lani et al., 2005).

Mesoproterozoic ages are observed in the northern Cuyania ter-
rane. The Juchi Orthogneiss of the Sierra de Umango gives an age of
1108 ± 13 Ma (Varela et al., 2003). Granitic mylonites and ultra-
mylonites in the Jagüé area are similar in age (1118 ± 17 Ma, Mar-
tina et al., 2005). These crystallization ages are consistent with the
ca. 1115 Ma igneous zircons in the Caucete Group. Moreover, detri-
tal igneous zircon ages of ca. 1100–1080 Ma (Casquet et al., 2008)
and metamorphic zircon ages of ca. 1220 Ma (Casquet et al., 2006)
observed in the Sierra de Maz are similar to detrital zircon ages
from the Caucete Group.

Crustal xenoliths in Miocene subvolcanic rocks in the Argentine
Precordillera (Leveratto, 1968) show the existence of metamorphic
basement beneath the Cambro–Ordovician carbonate platform.
Kay et al. (1996) compared the Pb isotope signature from those
xenoliths of the Cuyania basement with rocks of Sierra Pie de Palo
and of the Llano Uplift (Texas) in Laurentia. The felsic and mafic
xenoliths yielded U/Pb zircon ages about 1099 ± 3, 1102 ± 6,
1096 ± 3 Ma (Kay et al., 1996) comparable with ages between
1115 and 1070 Ma found in the Caucete Group and in the Grenvil-
lian rocks of Texas.

In summary, detrital zircon ages from the Caucete Group are
consistent with ages observed in Laurentia. Mesoproterozoic and
older Laurentian sources are well represented in the Yavapai-
Mazatzal province, Granite-Rhyolite province, and Grenville prov-
ince. Neoproterozoic to Cambrian source regions include areas
along the southern and eastern Laurentian margin affected by
rift-related magmatic activity. The Laurentian basement of Cuyania
itself may have contributed detritus as well (e.g. Sierra de Pie de
Palo, Precordilleran basement, and Sierras de Umango and Maz).
8. Stratigraphic relationships and depositional associations

Deposition of the Caucete Group occurred from the late Neopro-
terozoic to early Cambrian (ca. 550–515 Ma) as constrained by U/
Pb detrital zircon ages reported herein and by previous isotopic
studies (Galindo et al., 2004; Naipauer et al., 2005a,b) (Fig. 13).
Field relationships, petrographic and geochronologic data show
different sedimentary protoliths and tectonic settings for the
metasedimentary rocks of the Caucete Group.

The El Quemado Formation is attributed to a rift setting on the
basis of the sedimentary protolith and the igneous zircon source
that is close in age to the time of deposition. A similar tectonic set-
ting has been proposed for the southern and eastern margins of
Laurentia at approximately 550 Ma. The La Paz Formation, consist-
ing of volcanogenic pelites interbedded with fine sandstones, was
deposited in a more distal environment than that of the El Quem-
ado Formation. A similar tectonic setting is inferred for the La Paz
Formation on the basis of the interbedded and transitional bound-
ary between the two units (Fig. 13). The El Desecho Formation is a
heterogeneous sequence of pelites, calcareous and dolomitic mar-
bles, calcareous sandstone, and subordinate conglomerates. This
unit was correlated with the Cerro Totora Formation of the Pre-
cordillera and both are interpreted to reflect rift sedimentation
(Fig. 13). Finally, the more homogeneous sedimentary protolith
of Angacos Formation, composed mainly of limestone and marbles,
is similar to the La Laja Formation (El Estero and Soldano Mem-
bers) of the Precordillera (Fig. 13). The tectonic setting of sedimen-
tation for these rocks inferred as a passive margin developed on the
Cuyania terrane.

Accordingly, two events of rift-stage sedimentation are distin-
guished. The first is defined by the maximum depositional age of
the El Quemado Formation (ca. 550 Ma) which interfingers with
the La Paz Formation. The second stage is represented by the El
Desecho Formation with a maximum depositional age of ca.
531 Ma. The late Mesoproterozoic (Grenvillian) detrital zircons in
the El Quemado, La Paz and El Desecho Formations were probably
derived from a nearby positive feature such as a rift bulge. Older
detrital components were likely sourced by more distal areas in
the interior of the Laurentia craton such as the Granite-Rhyolite
province and Yavapai-Mazatzal area.

The Angacos Formation is interpreted as a platform carbonate
sequence developed at ca. 520 and 515 Ma on the passive margin
of the Cuyania terrane (Fig. 13). The provenance pattern for this
unit is different from those for the El Quemado, La Paz and El Des-
echo Formations. Neoproterozoic–Cambrian zircons are absent and
late Mesoproterozoic zircon ages are subordinate, indicating that
these sources were partially covered by the carbonate platform.
The most important sediment source was the Granite-Rhyolite
province (Fig. 13). The Angacos Formation is interpreted to have
developed upon Grenvillian basement and older units of the Cauc-
ete Group, only receiving more distally derived detrital
components.
9. Tectonic model for the rift – passive margin transition

The tectonic evolution of Cuyania composite terrane that is
most widely accepted initiates with rifting from the Ouachita
embayment of Laurentia in the early Cambrian, development of a
passive margin in latest early Cambrian to lower Ordovician, and
collision with the Gondwana margin in the middle – late Ordovi-
cian (e.g., Astini et al., 1995; Thomas and Astini, 1996; Ramos,
2004). Rift sedimentation in the Precordillera region is only re-
corded by the Cerro Totora Formation (Astini and Vaccari, 1996);
strontium data from this unit are consistent with continental rif-
ting during early Cambrian (Thomas et al., 2001). The transition
from the synrift deposition of the Cerro Totora Formation to the
passive margin deposition is documented by the late Early Cam-
brian Los Hornos and La Laja Formations (Astini et al., 1996).

The detrital zircon record of the Caucete Group is generally con-
sistent with the classical rift and passive margin stages of Cuyania
terrane. However, the El Quemado and La Paz Formations record
older stages of rifting not observed elsewhere in the Precordillera
region. This observation indicates initial separation of Cuyania
much earlier in the end of the Neoproterozoic (ca. 575–550 Ma),
a view consistent with the age of rift-related magmatism in the
western Precordillera (Davis et al., 2000). Also, the detrital zircons
have demonstrated that the Cuyania basement have a portion of
the Granite-Rhyolite province in the northern sector (Fig. 4).

The major stages that were distinguished in the tectonic–strati-
graphic evolution in the Caucete Group were as following.
9.1. Rift stage I (ca. 550 Ma)

Initial rifting in the Ouachita embayment (Fig. 15a) likely
started during a second extensional pulse between 620 and
550 Ma along the Laurentia margin (Tollo et al., 2004) that resulted
in opening of Iapetus and separation of Laurentia from Gondwana
at ca. 570 Ma (Cawood et al., 2001). Deposition of the Caucete
Group within the Ouachita basin is inferred to start prior to final
separation of Cuyania from Laurentia. The northern portion of
the Cuyania terrane is interpreted to be part of the Granite-Rhyo-
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lite province (Thomas et al., 2000). The El Quemado and La Paz For-
mations reflect synrift sedimentation at ca. 545 Ma (Fig. 15b), prior
to deposition of the Cerro Totora Formation. Provenance ages dem-
onstrate a clear connection between the early sediments of the
Caucete Group and the southern Laurentian margin (e.g., Granite-
Rhyolite and Grenville provinces). The presence of igneous detrital
zircons with ages close to 550 Ma allows the interpretation of rift-
related magmatic rocks in the source area (Fig. 15b).

9.2. Rift stage II (ca. 531 Ma)

The southern Cuyania terrane is inferred to largely be underlain
by Grenvillian basement (Fig. 16, see location of B–B0 in Fig. 14).
The second sedimentary stage of the Caucete Group is recorded
by synrift deposits of the El Desecho Formation with a maximum
depositional age of ca. 531 Ma. This unit probably developed dur-
ing transition to a thermal subsidence stage. El Desecho Formation
is correlative with the synrift deposits of Cerro Totora Formation
exposed in the northern Precordillera (Astini et al., 1995)
(Fig. 16a), but the units accumulated in different depocentres as
indicated by the differences in their detrital zircon signature.

U/Pb detrital zircon ages of ca. 1600, 1380, 1240, 1120, 1070
and 550 Ma from the El Desecho Formation are similar to those
from the El Quemado Formation. Thus the basin configuration
and source areas are interpreted to be similar and both record con-
tinued connection with Laurentia. Consistent with this hypothesis,



Fig. 14. Sketch map showing crustal provinces of Laurentia (after Van Schmus et al., 1996; Thomas et al., 2004) and the paleoposition of Cuyania in relation to potential
source regions for Caucete Group sediments. A–A0 and B–B0 mark location of cross sections in Figs. 15 and 16. FM: Franklin Mountains; LlU: Llano Uplift; VH: Van Horn
Mountains.
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detrital zircons from the Cerro Totora Formation define
populations of ca. 1490–1300 Ma and ca. 1890–1640 Ma that are
characteristic of the Laurentian craton interior (Thomas et al.,
2004).
9.3. Passive margin stage (ca. 520 Ma)

The initial separation of the Cuyania terrane and generation of a
passive margin occurred at approximately 520 Ma (Fig. 16b). The



Fig. 16. Diagrams of the early Paleozoic evolution of the Cuyania terrane. Sedimentary basins have been exaggerated in thickness. (a) Sketch profile for late rift stage
characterized by synrift sedimentation (El Desecho and Cerro Totora Formations); upper- and lower-plate rift margins after Thomas and Astini (1999). (b) Cuyania passive
margin stage at ca. 520 Ma, characterized by carbonate platform deposits (Angacos and La Laja Formations). Note that basement is composed of Grenvillian components in the
southern section.
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Angacos Formation was deposited during a third stage in Caucete
Group sedimentation. The unit is comparable in age and deposi-
tional setting to the limestones of the Los Hornos and La Laja For-
mations of the Precordillera (Fig. 16b). The occurrence of
siliciclastic interbeds in the carbonates indicates a proximal up-
lifted area in the Cuyania terrane. In addition, lower members of
the La Laja Formation contain many quartz sandstone interbeds
(Pereyra, 1987; Finney et al., 2005). These siliciclastic interlayers
reflect deposition in a basin near an exhumed basement area
(Gómez and Astini, 2006).

The zircon population at ca. 1118 Ma from the Angacos Forma-
tion shows that Grenvillian basement of Cuyania was partially ex-
posed at the time of deposition. However, this source was
subordinate to the early Mesoproterozoic (ca. 1450–1300 Ma)
source area. The Grenvillian basement was partially overlapped
by deposits of the El Quemado, La Paz and El Desecho-Cerro Totora
Formations, and by subsequent passive margin sediments. Detrital
zircons with ages around 1360 Ma are dominant in the early to
middle Cambrian units of the Angacos Formation. Thomas et al.
(2000), suggest that the northwest corner of the Precordillera con-
sists of a small portion of the Granite-Rhyolite province, as shown
in the sections of northern Cuyania (Figs. 14 and 15b). This alterna-
tive is supported by data from basement clasts in conglomerate
olistoliths in the western Precordillera, where zircon ages of ca.
1370 ± 2 and 1367 ± 5 Ma (Thomas et al., 2000) are similar to the
ages from the Angacos Formation. Regardless of the basement cor-
relations, deposition of the Angacos Formation likely records the
post-rift phase as Cuyania started to drift through the Iapetus (Tho-
mas and Astini, 1996). Since middle Cambrian to lower Ordovician
ophiolitic rocks are not observed in Laurentia or Cuyania terrane
(Dalziel, 1997; Keller, 1999), the presence of oceanic crust in the
western sector of the Cuyania terrane is queried in Fig. 16b during
the middle Cambrian to lower Ordovician. Nevertheless, the Anga-
cos Formation and coeval units of the Precordillera were likely re-
moved from Laurentian detrital sources.
10. Conclusions

Provenance analysis of detrital zircons from the Caucete Group
supports the hypothesis that these metasedimentary rocks are par-
tial equivalents to lower Paleozoic strata of the Precordillera and
that the Cuyania terrane was an allochthonous Laurentian-derived
microcontinent that collided against to Gondwana. The maximum
depositional ages for the Caucete Group are ca. 550 Ma for the El
Quemado Formation and ca. 531 Ma for El Desecho Formation.
The El Quemado and La Paz Formations define an early rift stage
and lack depositional equivalents in the Precordillera. A second
pulse of rifting is represented by the El Desecho Formation and
its correlative, the Cerro Totora Formation in the Precordillera.
Limestones at the top of the Angacos Formation and correlative
fossiliferous Los Hornos and La Laja Formations of the Precordillera
suggest evolution toward a carbonate-dominated passive margin
by latest early to middle Cambrian time. Detrital zircon in early -
middle Cambrian passive margin stage sediments of Cuyania that
were apparently derived from Laurentian source terranes indicate
that Cuyania basement includes portions of both the Laurentian
Granite-Rhyolite and Grenville provinces.
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