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UNIÓN MATEMÁTICA ARGENTINA
Volumen 46, Número 1, 2005, Páginas 53–66

SOME OPERATOR INEQUALITIES FOR
UNITARILY INVARIANT NORMS∗†

CRISTINA CANO, IRENE MOSCONI‡AND DEMETRIO STOJANOFF§

Abstract. Let L(H) be the algebra of bounded operators on a complex

separable Hilbert space H. Let N be a unitarily invariant norm defined on a

norm ideal I ⊆ L(H). Given two positive invertible operators P, Q ∈ L(H)
and k ∈ (−2, 2], we show that N

`
PTQ−1 + P−1TQ + kT

´
≥ (2 + k)N(T ),

T ∈ I. This extends Zhang’s inequality for matrices. We prove that this

inequality is equivalent to two particular cases of itself, namely P = Q and
Q = P−1. We also characterize those numbers k such that the map Υ :

L(H)→ L(H) given by Υ(T ) = PTQ−1 +P−1TQ+kT is invertible, and we

estimate the induced norm of Υ−1 acting on the norm ideal I. We compute
sharp constants for the involved inequalities in several particular cases.

1. INTRODUCTION

Let H be a Hilbert space and denote by L(H) the algebra of bounded linear
operators on H. In 1990, Corach-Porta-Recht [6] show that, for every invertible
selfadjoint operator S ∈ L(H) and for every T ∈ L(H), it holds that∥∥STS−1 + S−1TS

∥∥ ≥ 2
∥∥T∥∥. (1)

Several authors have proved generalizations and alternative proofs of inequality
(1). For example, Bhatia and Davis [3], Kittaneh (in two different ways, see [11]
and [12]), and Andruchow, Corach and Stojanoff [2]. On the other hand, in 1993,
Livshits and Ong [14] studied the invertibility of the map T 7−→ STS−1 + S−1TS
for not necessarily selfadjoint S ∈ L(H). In 2001, Seddik, [15] proved that, for
S ∈ L(H) invertible and positive, T ∈ L(H), and k = 0, 1, 2,∥∥kT + STS−1 + S−1TS

∥∥ ≥ (k + 2)
∥∥T∥∥. (2)

In 1999 Zhan [18] showed that, given two positive invertible matrices P,Q ∈
Mn(C), T ∈ Mn(C), and k ∈ (−2, 2], then

9PTQ−1 + P−1TQ + kT9 ≥ (2 + k) 9 T9, (3)

for every unitarily invariant norm 9 · 9 on Mn(C).
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54 CRISTINA CANO, IRENE MOSCONI AND DEMETRIO STOJANOFF

In this paper we work with unitarily invariant norms defined in some ideal I of
L(H) (see Remark 2.1 or Simon’s book [17]). We show that, for every unitarily
invariant norm 9·9, the following inequalities are equivalent, for every k ∈ (−2, 2]:

9PTQ−1 + P−1TQ + kT9 ≥ (2 + k) 9 T 9 for P, Q ∈ Gl(H)+, T ∈ I . (4)

9STS + S−1TS−1 + kT9 ≥ (2 + k) 9 T 9 for S ∈ Gl(H)+, T ∈ I . (5)
9kT + STS−1 + S−1TS9 ≥ (k + 2) 9 T 9 for S ∈ Gl(H)+, T ∈ I . (6)

We give a proof of inequality (6), using a technical result about unitarily invariant
norms, which allows us to obtain a reduction to the matricial case. In this case, we
use a result of Bhatia and Parthasarathy [4], and some properties of the Hadamard
product of matrices. This result was previously proved for k = 0 in [2], for not
necessarily positive S, P and Q. We study the operators associated to the three
mentioned inequalities, and their restriction as operators on the norm ideal I. We
compute their spectra and, in some cases, their reduced minimum moduli (also
called conorms). The rest of the paper deals with the estimation of sharp constants
for inequality (5), with respect to the usual norm of L(H). We get the optimal
constant, if one restricts to operators T ∈ L(H)+. Using the notion of Hadamard
index for positive matrices, studied in [7], we compute, for a fixed S ∈ Gl(H)+,
the constant

M(S, k) = max{C ≥ 0 : ‖STS +S−1TS−1 +kT‖ ≥ C‖T‖ for every T ∈ L(H)+},
for k ≥ 0 (see Proposition 5.6). Finally, we give some partial results for T ∈
Mn(C), in lower dimensions, showing numerical estimates of sharp constants. For
n = 2, 3 and 4, we characterize the best intervals Jn such that the inequality (6)
holds in Mn(C) for every k ∈ Jn .
In section 2, we fix several notations and state some preliminary results. We
expose with some detail the theory of unitarily invariant norms defined on norm
ideals of L(H), proving some technical results in this area. In section 3, we show
the equivalence of the mentioned inequalities and we give the proof of (6). In
section 4, we study the associated operators. In section 5, we describe the theory
of Hadamard index, and we use it to obtain a description of the constant M(S, k).
In section 6 we study the case of matrices of lower dimensions.

We wish to acknowledge Prof. G. Corach who shared with us fruitful discussions
concerning these matters.

2. PRELIMINARIES

Let H be a separable Hilbert space, and L(H) be the algebra of bounded linear
operators on H. We denote L0(H) the ideal of compact operators, Gl (H) the
group of invertible operators, L(H)h the set of hermitian operators, L(H)+ the
set of positive definite operators, U(H) the unitary group, and Gl(H)+ the set of
invertible positive definite operators.
Given an operator A ∈ L(H), R(A) denotes the range of A, kerA the nullspace of
A, σ(A) the spectrum of A, A∗ the adjoint of A, |A| = (A∗A)1/2 the modulus of
A, ρ(A) the spectral radius of A, and ‖A‖ the spectral norm of A. Given a closed
subspace S of H, we denote by PS the orthogonal projection onto S.
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When dim H = n < ∞, we shall identify H with Cn, L(H) with Mn(C), and
we use the following notations: H(n) for L(H)h, Mn(C)+ for L(H)+, U(n) for
U(H), and Gl (n) for Gl (H). A norm 9 · 9 in Mn(C) is called unitarily invariant
if 9UAV 9 = 9A9 for every A ∈ Mn(C) and U, V ∈ U(n).

Remark 2.1. The notion of unitarily invariant norms can be defined also for
operators on Hilbert spaces. We give some basic definitions (see Simon’s book [17]):
Let A ∈ L0(H). Then also |A| ∈ L0(H). We denote by s(A) = (sk(A))k∈N , the
sequence of eigenvalues of |A|, taken in non increasing order and with multiplicity.
If dim R(A) = n < ∞, we take sk(A) = 0 for k > n. The numbers sk(A) are called
the singular values of A.
Denote by C0 the set of complex sequences which converge to zero. Consider
CF ⊆ C0 the set of sequences with finite non zero entries. For a ∈ C0 , denote
|a| = (|an|)n∈N ∈ C0 . A gauge symmetric function (or symmetric norm) is a map
g : CF → R which satisfy the following properties:

• g is a norm on CF ,
• g(a) = g(|a|) for every a ∈ CF , and
• g is invariant under permutations.

We say that g is normalized if g(e1) = 1. For a ∈ C0 , define

g(a) = sup
n∈N

g (a1, . . . , an, 0, . . . ) ∈ R ∪ {+∞} .

A unitarily invariant norm in L0(H) is a map 9 ·9 : L0(H) → R+ ∪{∞} given by
9A9 = g(s(A)), A ∈ L0(H), where g is a symmetric norm. The set

I = Ig = {A ∈ L0(H) : 9A9 < ∞}

is a selfadjoint ideal of L(H), called the norm ideal associated to 9 · 9. Then
(I,9 · 9) is a Banach space, and the following properties hold:

1. If B ∈ I, then 9B9 = 9B∗9, and 9AB9 ≤ ‖A‖ 9 B9 for every A ∈ L(H).
2. If A ∈ L(H) has finite rank, then A ∈ I, because s(A) ∈ CF .
3. If dim R(A) = 1, then 9A9 = s1(A)g(e1) = g(e1)‖A‖.
4. Given A ∈ L0(H) and B ∈ I such that

‖A‖(k) :=
k∑

j=1

sj(A) ≤
k∑

j=1

sj(B) = ‖B‖(k) for every k ∈ N,

then A ∈ I and 9A9 ≤ 9B9.
5. For every ε > 0 and T ∈ I, there exists a finite rank operator S such that

9T − S9 < ε.

Some well known examples of unitarily invariant norms are the Schatten p-norms
9A9p = tr(|A|p)1/p, for 1 ≤ p ≤ ∞, and the Ky-Fan norms ‖ · ‖(k) , k ∈ N. The
usual norm, which coincides with ‖ · ‖(1) and 9 · 9∞ when restricted to L0(H), is
also unitarily invariant. 4

Proposition 2.2. Let N be an unitarily invariant norm on an ideal I ⊆ L(H).
Let {PF }F∈F be a increasing net of projections in L(H)+ which converges strongly
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to the identity (i.e., PF x −−−→
F∈F

x for every x ∈ H). Then

PF T
N−−−→

F∈F
T and PF TPF

N−−−→
F∈F

T for every T ∈ I .

Proof. By Remark 2.1, for every ε > 0, there exists a finite rank operator S such
that N(T −S) < ε. For every A ∈ I and every projection P ∈ L(H), it holds that
N(PAP ) ≤ N(PA) ≤ N(A). In particular, N(PF (T−S)PF ) ≤ N(PF (T−S) ) < ε
for every F ∈ F. Hence, we can assume that dim R(T ) = n < ∞. Given F ∈ F,
denote QF = I − PF . Since N( QF TQF ) ≤ N(QF T ) and

T − PF TPF = QF T + TQF −QF TQF , F ∈ F,

it suffices to prove that N(T − PF T ) = N(QF T ) −−−→
F∈F

0. Fix x ∈ H. Note that

‖(T ∗QF T )x‖ ≤ ‖T‖ ‖QF (Tx)‖ −−−→
F∈F

0. Therefore

‖(T ∗QF T )1/2x‖2 = 〈(T ∗QF T )x, x〉 ≤ ‖(T ∗QF T )x‖ ‖x‖ −−−→
F∈F

0 .

This implies that (T ∗QF T )1/2 = |QF T | SOT−−−→
F∈F

0, and all these operators act on

the fixed finite dimensional subspace kerT⊥, where the convergence of operators
in every norm (included N) is equivalent to the SOT (or strong) convergence. �

Remark 2.3. Let 9 · 9 be a unitarily invariant norm defined on a norm ideal
I ⊆ L(H). The space L(H ⊕H) can be identified with the algebra of block 2× 2
matrices with entries in L(H), denoted by L(H)2×2. Denote by I2 the ideal of
L(H⊕H) associated with the same norm 9 ·9 (i.e., by using the same symmetric
norm g). Then, the following properties hold:

1. Let A ∈ L0(H), and define A1 ∈ L0(H⊕H) as any of the following matrices

A1 =
(

0 A
0 0

)
or

(
0 0
0 A

)
.

Then s(A1) = s(A), 9A19 = 9A9, and A1 ∈ I2 if and only if A ∈ I.
2. Under the mentioned identification, I2 = I 2×2. 4

Given A = [aij ], B = [bij ] ∈ Mn(C) denote by A ◦ B the Hadamard product
[aijbij ]. Every A ∈ Mn(C) defines a linear map ΦA : Mn(C) → Mn(C) given by

ΦA(B) = A ◦B , B ∈ Mn(C). (7)

Given a norm 9 · 9 on Mn(C), it induces a norm of the linear map ΦA by means
of

9ΦA9 = max {9A ◦X9 : X ∈ Mn(C) , 9X9 ≤ 1 } . (8)

The following result collects two classical results of Schur about Hadamard (or
Schur) products of positive matrices (see [16]), and a generalization of the second
one for unitarily invariant norms, proved by Ando in [1, Proposition 7.7] .

Proposition 2.4 (Schur). Let A ∈ Mn(C)+ and B ∈ Mn(C). Then
1. If B ∈ Mn(C)+ then also A ◦B ∈ Mn(C)+.
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2. Denote by dA = max {Aii : 1 ≤ i ≤ n}. Then

9A ◦B9 ≤ dA 9 B 9 and 9 ΦA9 = dA , (9)

for every unitarily invariant norm 9 · 9 on Mn(C). �

3. EQUIVALENT INEQUALITIES

Theorem 3.1. Let k ∈ R and 9 · 9 be an unitarily invariant norm on an ideal
I ⊆ L(H). Then the following inequalities are equivalent:

1. 9PTQ−1+P−1TQ+kT9 ≥ (k+2)9T9, for every T ∈ I and P,Q ∈ Gl(H)+.
2. 9STS−1 + S−1TS + kT9 ≥ (k + 2) 9 T9, for every T ∈ I and S ∈ Gl(H)+.
3. 9STS + S−1TS−1 + kT9 ≥ (k + 2) 9 T9, for every T ∈ I and S ∈ Gl(H)+.

Proof. It is clear that 1 implies 2 and 3. Suppose that 2 holds. Consider the space
L(H ⊕H) ∼= L(H)2×2. For P,Q ∈ Gl(H)+ and T ∈ I, define the operators

S1 =
[

P 0
0 Q

]
and T1 =

[
0 T
0 0

]
∈ I2 .

Then

S1T1S
−1
1 + S−1

1 T1S1 + kT1 =
[

0 PTQ−1 + P−1TQ + kT
0 0

]
.

Therefore, as 9S1AS−1
1 + S−1

1 AS1 + kA9 ≥ (k + 2) 9 A9 for every A ∈ I2, then

9PTQ−1 + P−1TQ + kT9 ≥ (2 + k) 9 T9 , T ∈ I.

This shows 2 → 1. The same arguments using S1 =
[

P 0
0 Q−1

]
show 3 → 1.

Remark 3.2. As said in the Introduction, the inequality 2 of Theorem 3.1 was
proved, for the usual norm, by Corach-Porta-Recht in [6] with k = 0 (and S not
necessarily positive), and by Ameur Seddik in [15] with k = 1, 2. The inequality 1
of Theorem 3.1 was proved, in the finite dimensional case, by X. Zhan in [18], for
k ∈ (−2, 2]. In the rest of this section, we give a proof of inequality 2 of Theorem
3.1 for k ∈ (−2, 2] in the general setting.

Lemma 3.3. Let n ∈ N, λ = (λ1, . . . , λn) ∈ Rn
+ and k ∈ (−2, 2]. Let Cn(k, λ) ∈

Mn(C) be given by

Cn(k, λ)ij =
λiλj

kλiλj + λ2
i + λ2

j

, 1 ≤ i, j ≤ n .

Then Cn(k, λ) ∈ Mn(C)+ for every n ∈ N.

Proof. Note that Cn(k, λ)ij = (λiλ
−1
j +λ−1

i λj +k)−1. These numbers are well de-
fined because x+x−1 ≥ 2 for every x ∈ R+ and k > −2. Bhatia and Parthasarathy
[4] proved that, for −2 < k ∈ R and λ ∈ Rn

+, the matrix Zn(k, λ) ∈ Mn(C) with
entries

Zn(k, λ)ij =
1

kλiλj + λ2
i + λ2

j

, 1 ≤ i, j ≤ n, (10)

satisfies Zn(k, λ) ∈ Mn(C)+ for every n ∈ N and λ ∈ Rn
+ if and only if k ∈ (−2, 2] .
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On the other hand, if λ ∈ Rn
+, then the matrix L = λλ∗ = (λiλj)1≤i,j≤n ∈

Mn(C)+ . By Propposition 2.4, Cn(k, λ) = Zn(k, λ) ◦ L ∈ Mn(C)+ for every
k ∈ (−2, 2].

Theorem 3.4. Let S ∈ Gl(H)+ and k ∈ (−2, 2]. Then, for every unitarily
invariant norm 9 · 9 on an ideal I ⊆ L(H), and for every T ∈ I,

9kT + STS−1 + S−1TS9 ≥ (k + 2) 9 T 9 .

Proof. We follow the same steps as in [6]. By the spectral theorem, we can suppose
that σ(S) is finite, since S can be approximated in norm by operators Sn such
that each σ(Sn) is finite. We can suppose also that dim H < ∞, by choosing an
adequate net of finite rank projections {PF }F∈F which converges strongly to the
identity and replacing S, T by PF SPF , PF TPF . Indeed, the net may be chosen
in such a way that SPF = PF S and σ(PF SPF ) = σ(S) for every F ∈ F. Note
that, by Proposition 2.2, 9PF APF 9 converges to 9A9 for every A ∈ I.
We can suppose that S is diagonal by a unitary change of basis in Cn. Take
S = diag (λ1, λ2, ..., λn). Then k T + STS−1 + S−1TS = Bn(k, λ) ◦ T , where

Bn(k, λ)ij =
(

k +
λi

λj
+

λj

λi

)
=

(
k λiλj + λ2

i + λ2
j

λiλj

)
, 1 ≤ i, j ≤ n. (11)

Since x + x−1 ≥ 2 for every x ∈ R, x > 0, it follows that, if k ∈ (−2,+∞),
then Bn(k, λ)ij > 0 for every 1 ≤ i, j ≤ n. Consider the matrix Cn(k, λ) given
by Cn(k, λ)ij = Bn(k, λ)−1

ij . Hence, in order to prove inequality (6) for every
T ∈ Mn(C), it suffices to show that 9Cn(k, λ)◦A9 ≤ (k+2)−19A9 for A ∈ Mn(C)
and k ∈ (−2, 2]. By Lemma 3.3, Cn(k, λ) ∈ Mn(C)+ for every k ∈ (−2, 2]. Finally,
note that Cn(k, λ)ii = (k +2)−1, 1 ≤ i ≤ n. Therefore, inequality (6) holds by Eq.
(9) in Proposition 2.4.

As a consequence of this result and Theorem 3.1, we get an infinite dimensional
version, for every unitarily invariant norm, of Zhang inequality:

Corollary 3.5. Let P,Q ∈ Gl(H)+ and k ∈ (−2, 2]. Then, for every unitarily
invariant norm 9 · 9 on an ideal I ⊆ L(H), and for every T ∈ I,

9PTQ−1 + P−1TQ + kT9 ≥ (2 + k) 9 T 9 .

Corollary 3.6. Let S ∈ Gl(H)+ and k ∈ (−2, 2]. Then, for every unitarily
invariant norm 9 · 9 on an ideal I ⊆ L(H), and for every T ∈ I,

9STS + S−1TS−1 + kT9 ≥ (2 + k) 9 T 9 .

4. THE ASSOCIATED OPERATORS

In this section we study the operators associated with the inequalities proved in
the previous section. Given P,Q ∈ Gl(H)+ and k ∈ R, we consider the bounded
operator ΥP,Q,k : L(H) → L(H) associated with inequality (4):

ΥP,Q,k(T ) = PTQ−1 + P−1TQ + kT , T ∈ L(H) . (12)
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Hence, for every unitarily invariant norm 9 · 9 defined on an ideal I ⊆ L(H),
inequality (4) means that 9ΥP,Q,k(T )9 ≥ (2 + k) 9 T9 for T ∈ I, −2 < k ≤ 2.
Given S ∈ L(H)+ and k ∈ R, define the operators ΦS,k : L(H) → L(H) and
ΨS,k : L(H) → L(H) associated with inequalities (6) and (5): ΦS,k = ΥS,S,k and
ΨS,k = ΥS,S−1,k . In this section we characterize, for fixed P,Q ∈ Gl(H)+, those
k ∈ R such that ΥP,Q,k is invertible. In some cases we estimate, for a given norm
on some ideal of L(H), the induced norms of their inverses.

Remark 4.1. Let u, v ∈ H. Denote by u ⊗ v ∈ L(H) the operator given by
u ⊗ v(z) = 〈z, v〉u, z ∈ H. It is clear that R(u ⊗ v) = span {u}. Hence u ⊗ v ∈ I

for every norm ideal induced by a unitarily invariant norm 9 · 9. The following
properties are easy to see:

1. 9u⊗ v9 = ‖u⊗ v‖ = ‖u‖ ‖v‖.
2. The map (u, v) 7→ u⊗ v is sesqui linear.
3. If T ∈ L(H), then T (u⊗ v) = (Tu)⊗ v and (u⊗ v)T = u⊗ (T ∗v). 4

Proposition 4.2. Let P,Q ∈ Gl(H)+. Denote by ΥP,Q = ΥP,Q,0 . Then

σ(ΥP,Q) = {λµ−1 + λ−1µ : λ ∈ σ (P ) , µ ∈ σ(Q)} .

Moreover, ΥP,Q has the same spectrum, if it is considered as acting on any norm
ideal I associated with a unitarily invariant norm.

Proof. Fix the norm ideal I and consider the restriction ΥP,Q : I → I. Let AP,Q :
I → I be given by AP,Q(T ) = PTQ−1, T ∈ I. Note that ΥP,Q = AP,Q + A−1

P,Q.
Therefore, by the known properties of the Riesz functional calculus for operators on
Banach spaces (in this case, the Banach space is I and the map is f(z) = z +z−1),
it suffices to show that σ(AP,Q) = {λµ−1 : λ ∈ σ (P ) , µ ∈ σ(Q)}.
Given C ∈ L(H), denote by LC : I → I (resp. RC) the operator given by
LC(T ) = CT (resp. RC(T ) = TC), T ∈ I. By Remark 2.1, these operators
are bounded. If C ∈ Gl (H), then LC−1 = (LC)−1, and similarly for RC . Hence
σ(LC) ⊆ σ(C) and σ(RC) ⊆ σ(C). Note that AP,Q = LP RQ−1 = RQ−1LP .
Therefore

σ(AP,Q) ⊆ σ(LP )σ(RQ−1) ⊆ {λµ−1 : λ ∈ σ (P ) , µ ∈ σ(Q)}.
Given λ ∈ σ(P ), µ ∈ σ(Q) and ε > 0, let x, y ∈ H be unit vectors such that
‖Px − λx‖ < ε and ‖Q−1y − µy‖ < ε. Such vectors exist because P − λI and
Q−1 − µ−1I are selfadjoint operators. Consider the rank one operator x ⊗ y ∈ I.
Then, by Remark 4.1, AP,Q(x⊗ y) = Px⊗ (Q−1)∗y = Px⊗Q−1y . Hence

9(AP,Q − λµ−1 IdI) x⊗ y9 = 9Px⊗Q−1y − λx⊗ µ−1y9
≤ 9(Px− λx)⊗Q−1y 9 + 9 λx⊗ (Q−1y − µ−1y)9
= ‖Px− λx‖ ‖Q−1y‖+ ‖λx‖ ‖Q−1y − µ−1y‖
< (‖Q−1y‖+ ‖λx‖) ε ≤ (‖Q−1‖+ ‖P‖) ε .

Therefore λµ−1 ∈ σ(AP,Q), because 9x ⊗ y9 = ‖x‖ ‖y‖ = 1. This shows that
σ(AP,Q) = {λµ−1 : λ ∈ σ(P ), µ ∈ σ(Q)}, and the proof is complete.

Corollary 4.3. Let S ∈ Gl(H)+ and k ∈ C. Then ΥP,Q,k is invertible if and only
if −k /∈ {λµ−1 + λ−1µ : λ ∈ σ (P ) , µ ∈ σ(Q)}.
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Proof. Just note that ΥP,Q,k = ΥP,Q + k IdI. Then apply Proposition 4.2.

Remark 4.4. Let 9 · 9 be a unitarily invariant norm defined on a norm ideal
I ⊆ L(H). By Remark 2.1, 9AB9 ≤ ‖A‖ 9 B9 for A ∈ L(H) and B ∈ I. Given
a linear operator Υ : I → I, we denote by 9Υ9 the induced norm:

9Υ9 = sup{9Υ(T )9 : T ∈ I,9T9 = 1} .

By a standard ε/2 argument and using the continuity of “taking inverse”, one can
show that, for k ∈ (−2, 2] fixed, the map Gl(H)+×Gl(H)+ 3 (P,Q) 7→ 9Υ−1

P,Q,k9
is continuous. 4

Proposition 4.5. Let P,Q ∈ Gl(H)+ and k ∈ (−2, 2]. Let 9 · 9 be a unitarily
invariant norm defined on a norm ideal I ⊆ L(H). Then 9Υ−1

P,Q,k9 ≤ (k + 2)−1.
Moreover, if σ(P ) ∩ σ (Q) 6= ∅, then 9Υ−1

P,Q,k9 = (k + 2)−1.

Proof. The inequality follows from Corollary 3.5. Suppose that λ ∈ σ(P ) ∩ σ (Q)
is an eigenvalue for both P and Q. Let x, y ∈ H be unit vectors such that Px = λx
and Qy = λy. Consider x ⊗ y ∈ I. Then, since Q = Q∗ and λ ∈ R, it is easy
to see that ΥP,Q,k(x ⊗ y) = (2 + k) (x ⊗ y). Hence, 9Υ−1

S,k9 = (k + 2)−1 in this
case. An easy consequence of spectral theory is that every S ∈ Gl(H)+ such that
λ ∈ σ(S) can be arbitrarily approximated by positive invertible operators such
that λ is a isolated point of their spectra, hence an eigenvalue. Applying this,
jointly for P and Q, for some λ ∈ σ (P ) ∩ σ (Q), and using the fact that the map
(P,Q) 7→ 9Υ−1

P,Q,k9 is continuous, the proof is completed.

Corollary 4.6. Let S ∈ Gl(H)+ and k ∈ (−2, 2]. Let 9·9 be a unitarily invariant
norm defined on a norm ideal I ⊆ L(H). Then 9Φ−1

S,k9 = (k+2)−1. If there exists
λ ∈ σ(S) such that also λ−1 ∈ σ(S), then also 9Ψ−1

S,k9 = (k + 2)−1.

Proof. The first case follows applying Proposition 4.5 with P = Q = S. Note that
the hypothesis σ(P )∩σ(Q) 6= ∅ becomes obvious. For the second, take P = S and
Q = S−1. Note that σ

(
S−1

)
= {λ−1 : λ ∈ σ (S)}.

Remark 4.7. The Forbenius norm 9A92
2 = tr A∗A works on the ideal of Hilbert

Schmit operators, which is a Hilbert space with this norm. In this case, the
operator ΥP,Q,k defined in Eq. (12) is positive, so that 9Υ−1

P,Q,k92 = ρ(Υ−1
P,Q,k).

Therefore, Proposition 4.2 gives the sharp constant for inequality (4) for this norm.
Observe that 9Υ−1

P,Q,k92 = (k + 2)−1 if and only if σ(P ) ∩ σ (Q) 6= ∅. 4

5. SHARP CONSTANTS AND HADAMARD INDEX

Preliminary results. In this subsection, we shall give a brief exposition of the
definitions and results of the theory of Hadamard index, which we shall use in the
rest of the section. All the results are taken from [7].

Denote by p = (1, . . . , 1) ∈ Rn and P = pp∗ ∈ Mn(C)+, the matrix with all its
entries equal to 1. Given A ∈ Mn(C)+ and N a norm on Mn(C), we define the
N -index of A by

I(N,A) = max{λ ≥ 0 : N(A ◦B) ≥ λN(B) ∀ B ∈ P (n)}
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and the minimal index of A by

I(A) = max { λ ≥ 0 : A ◦B ≥ λB ∀ B ∈ Mn(C)+ }
= max { λ ≥ 0 : A− λP ≥ 0 } .

The index relative to the spectral norm on Mn(C) will be denoted by I(sp,A),
and the index relative to the 2-norm ‖B‖2

2
= tr B∗B, B ∈ Mn(C), is denoted by

I2(A).

Proposition 5.1. Let A ∈ Mn(C)+. Then I(A) 6= 0 if and only if p ∈ R(A). �

If A =
(

a b
b̄ c

)
∈ P2, then

0 6= I(sp,A) = I(A) ⇔ b ∈ R and 0 ≤ b ≤ min{a, c} 6= 0. (13)

Theorem 5.2. Let A ∈ Mn(C)+ with nonnegative entries such that all Aii 6= 0.
Then the following conditions are equivalent:

1. There exist u ∈ Rn with nonnegative entries such that Au = p .
2. I(sp,A) = I(A). �

Theorem 5.3. Let B ∈ Mn(C)+ such that bij ≥ 0 for all i, j. Then there exists a
subset J0 of In = {1, 2, . . . , n} such that I(sp,B) = I(sp,BJ0) = I(BJ0). Therefore
I(sp,B) = min{ I(sp,BJ) : J ⊆ In and I(sp,BJ) = I(BJ) }. �

Let x = (λ1, . . . , λn)∗ ∈ Rn
+, L = {λ1, . . . , λn} and k ∈ R. We consider

Λx =
(
λiλj +

1
λiλj

)
ij
∈ Mn(C)+ and

En(x, k) =
(
λiλj +

1
λiλj

+ k
)

ij
= Λx + kP ∈ Mn(C)+. (14)

Proposition 5.4. Let x = (λ1, . . . , λn)∗ ∈ Rn
+, L = {λ1, . . . , λn}. Consider the

matrix Λx defined before. Then I(Λx) 6= 0 if and only #L ≤ 2. More precisely,

1. If L = {λ1} (i.e. #L = 1), then Λx = (λ2
1 + λ−2

1 ) P and I(Λx) = λ2
1 + λ−2

1 .
2. If #L > 1, then the image of Λx is the subspace generated by the vectors

x = (λ1, . . . , λn) and y = (λ−1
1 , . . . , λ−1

n ).
3. If #L = 2, say L = {λ, µ}, denote Λ0 = Λ{λ,µ} ∈ M2(C)+. Then

I(Λx) =
(λ + µ)2

1 + λ2µ2
= I(Λ0), (15)

4. If #L > 2 then I(Λx) = 0, because p /∈ span {x, y}. �

Sharp constants for positive operators. In the rest of this section, we shall
use the results above in order to get the sharp constants for inequality (5), if we
consider only positive operators T .

Remark 5.5. Proposition 5.4 says that, in most cases (i.e. #L > 2), I(Λx) = 0.
On the other hand, in order to apply index theory for the matrix En(x, k) =
Λx + kP , we need that En(x, k) ∈ Mn(C)+. Since Λx + kP ≥ 0 if and only if
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k ≥ −I(Λx) (by the definition of the minimal index), we can only consider the
case k ≥ 0, in general. In this case, it is easy to check that

I(En(x, k)) = I(Λx) + k . (16)

Hence, applying Proposition 5.4, we get formulas for I(En(x, k)) in any case. 4

We shall compute I(sp,En(x, k)) using Theorem 5.3. Hence, we shall use the
principal minors of En(x, k), which are matrices of the same type. Let J ⊆
{1, 2, . . . , n}, LJ = {λj : j ∈ J} and pJ , xJ ∈ RJ the induced vectors. Then

En(x, k)J = E|J|(xJ , k) = (Λx)J + kPJ = ΛxJ
+ kPJ .

Claim: If #LJ > 2 then, I(sp,En(x, k)J) 6= I(En(x, k)J).

Indeed, by Proposition 5.4, I(ΛxJ
) = 0, because pJ /∈ R(ΛxJ

). Note that every
u ∈ En(x, k)−1

J {pJ} must satisfy ΛxJ
u = 0, because R(PJ) = span (pJ). By

Proposition 5.4, ker(ΛxJ
) = R(ΛxJ

)⊥ = {xJ , yJ}⊥, where y = (λ−1
1 , . . . , λ−1

n ).
As all entries of xJ are strictly positive, if u ≥ 0 and 〈u, xJ〉 = 0, then u = 0.
Therefore, the Claim follows from Theorem 5.2.

Hence, if I(sp,En(x, k)J) = I(En(x, k)J), then #LJ ≤ 2. If #LJ = 2, let i1, i2 ∈ J
such that λi1 6= λi2 . By Theorem 5.2 there exists a vector 0 ≤ u ∈ RJ such
that En(x, k)J u = pJ . Let z1 =

∑
{uk : k ∈ J and λk = λi1} ≥ 0 and z2 =∑

{uj : j ∈ J, and λj = λi2} ≥ 0. Easy computations show that, if we denote
E0 = E2({λi1 , λi2}, k) = En(x, k){i1,i2}, then E0(z1, z2) = (1, 1) and, by Theorem
5.2, I(E0) = I(sp,E0). Moreover, by equations (15) and (16),

I(sp,En(x, k)J) = I(En(x, k)J) =
(λi1 + λi2)

2

1 + λ2
i1

λ2
i2

+ k = I(E0) = I(sp,E0).

Therefore, in order to compute I(sp,En(x, k)) using Theorem 5.3, we have to
consider only the diagonal entries of En(x, k) and some of its principal minors of
size 2× 2. If λi 6= λj and E0 = En(x, k){i,j} then, by equations (13) and (16),

I(E0) = I(sp,E0) ⇐⇒ I(sp,Λ{λi,λj}) = I(Λ{λi,λj})

⇐⇒ λiλj + 1
λiλj

≤ min{λ2
i + 1

λ2
i

, λ2
j + 1

λ2
j
}.

Easy computations show that, if λi < λj , this is equivalent to λ2
i ≤ 1

λiλj
≤ λ2

j ,
which implies that λi < 1 < λj . So, by Theorem 5.3,

I(sp,En(x, k)) = min{M1,M2} (17)

where M1 = mini λ2
i + λ−2

i + k = mini En(x, k)ii and

M2 = min
{ (λi + λj)2

1 + λ2
i λ

2
j

+ k : λi < 1 < λj and λ2
i ≤

1
λiλj

≤ λ2
j

}
.

Now we can characterize the sharp constant for inequality (5), if we consider only
positive operators T .
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Proposition 5.6. Given S ∈ Gl(H)+ and k ≥ 0, denote by M(S, k) the greatest
number such that ‖kT + STS + S−1TS−1‖ ≥ M(S, k)‖T‖ for every T ∈ L(H)+.
Then M(S, k) = min

{
M1(S, k),M2(S, k)

}
, where M1(S, k) = minλ∈ σ(S) λ2 +

λ−2 + k and

M2(S, k) = inf
{

(λ + µ)2

1 + λ2µ2
+ k : λ, µ ∈ σ(S), λ < µ and λ2 ≤ 1

λµ
≤ µ2

}
.

In particular, if ‖S‖ ≤ 1, then M(S, k) = ‖S‖2 + ‖S‖−2 + k.

Proof. We shall use the same steps as in the proof of Theorem 3.4 (and [6]). By the
spectral theorem, we can suppose that σ(S) is finite, since S can be approximated
in norm by operators Sn ∈ Gl(H)+ such that σ(Sn) is a finite subset of σ(S),
σ(Sn) ⊂ σ(Sn+1) for all n ∈ N and ∪n∈Nσ(Sn) is dense in σ(S). So M(Sn, k) (and
Mi(Sn, k), i = 1, 2) converge to M(S, k) (resp. Mi(S, k), i = 1, 2).
We can also suppose that dim H < ∞, by choosing an adequate net of finite
rank projections {PF }F∈F which converges strongly to the identity and replacing
S, T by PF SPF , PF TPF . Indeed, the net may be chosen in such a way that
SPF = PF S and σ(PF SPF ) = σ(S) for all F ∈ F. Note that for every A ∈ L(H),
‖PF APF ‖ converges to ‖A‖.
Finally, we can suppose that S is diagonal by a unitary change of basis in Cn.
In this case, if λ1, . . . , λn are the eigenvalues of S (with multiplicity) and x =
(λ1, . . . , λn), then STS + S−1TS−1 + kT = En(x, k) ◦ T . Note that all our reduc-
tions (unitary equivalences and compressions) preserve the fact that T ≥ 0. Now
the statement follows from formula (17). If ‖S‖ ≤ 1 then M(S) = M1(S), since
M2(S) is the infimum of the empty set. Note that M1(S) is attained at λ = ‖S‖,
because the map f(x) = x + x−1 is decreasing on (0, 1].

6. NUMERICAL RESULTS

Let S ∈ Gl (n)+ and k ∈ (−2,+∞). Denote by

Nn(S, k) = max
{

c ≥ 0 : ‖kT + STS + S−1TS−1‖ ≥ c‖T‖, T ∈ Mn(C)
}

.

Corollary 3.6 says that, if k ≤ 2, then Nn(S, k) ≥ k + 2 for every S ∈ Gl (n)+.
On the other hand, Corollary 4.6 says that, if there exists λ ∈ σ (S) ∩ σ

(
S−1

)
,

then Nn(S, k) = k + 2. In this section we search conditions for S which assure
that Nn(S, k) = minλ∈ σ(S) λ2 + λ−2 + k . As in the proof of Theorem 3.4, we can
assume that S = diag (λ) for some λ = (λ1, λ2, ..., λn) ∈ Rn

>0. In this case, we
have that k T +STS +S−1TS−1 = En(λ, k) ◦T , where En(λ, k) ∈ Mn(C)+ is the
matrix defined in Eq. (14). Consider the matrix G ∈ Mn(C)h with entries

gij = (en(λ, k)ij)−1 =
1

k + λiλj + λ−1
i λ−1

j

=
λiλj

1 + kλiλj + λ2
i λ

2
j

, (18)

1 ≤ i, j ≤ n . Then, for T ∈ Mn(C), T = G ◦ (T + STS−1 + S−1TS) . Denote by
ΦG : Mn(C) → Mn(C) the map given by ΦG(B) = G ◦ B, for B ∈ Mn(C). We
conclude that Nn(S, k)−1 = ‖ΦG‖.
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Remark 6.1. There exists an extensive bibliography concerning methods for com-
puting the norm of a Hadamard multiplier like ΦG. The oldest result in this di-
rection is Schur Theorem (Proposition 2.4) for the positive case. We have applied
this result in the proof of Theorem 3.4, but it is not useful in this case, because
G /∈ Mn(C)+. The most general result is 1983’s Haagerup theorem [10], which
gives a complete characterization, but it is not effective. There exist also several
fast algorithms (see, for example, [9]) which allow to make numerical experimenta-
tion for this problem. For example, we have observed that the behavior of the map
R 3 t 7−→ Nn(tS, k), for any fixed S, is chaotic. But, as a great number of examples
suggest, it seems that Nn(tS, k) = (2+k)−1 if and only if tσ (S)∩ t−1σ

(
S−1

)
6= ∅.

Note that these cases are exactly those considered in Corollary 4.6. 4

Cowen and others [8] and [9] proved the following result for hermitian matrices:

Theorem 6.2. Let B = (bij) ∈ Mn(C)h such that 0 < b11 = max
1≤j≤n

bjj . Suppose

that B has rank two, or that B has one positive eigenvalue and n− 1 non positive
eigenvalues. Then the following conditions are equivalent:

1. ‖ΦB‖ = b11.
2. If 1 < j ≤ n and J = {1, j}, then ‖ΦBJ

‖ = b11.
3. For 1 ≤ k ≤ n, it holds that b2

11 + b11bkk − 2|b1k|2 ≥ 0. �

Suppose that λ = (λ1, λ2, ..., λn) ∈ Rn
>0 satisfies 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn > 0 or

1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. Since that map f(t) = t + t−1 is increasing on (1,+∞)
and it is decreasing on (0, 1), it follows that the matrix G of Eq. (18) satisfies
0 < g11 = max

1≤j≤n
gjj . This suggests that we could apply Theorem 6.2 for our

problem. Unfortunately, for n > 2, G has rank greater than two, and it can have
more that one positive eigenvalue. We prove the following result:

Proposition 6.3. Let S ∈ Gl (2)+. Suppose that S ≤ I, or I ≤S. Then

Nn(S, 0) = min
λ∈ σ(S)

λ2 + λ−2 .

Proof. Suppose that σ (S) = {λ1, λ2} with 1 ≤ λ1 ≤ λ2 or 1 ≥ λ1 ≥ λ2 > 0.
Let G ∈ M2(C) as in equation (18), for k = 0. Then det(G) 6= 0 . Hence, since
g11 ≥ g22, can apply Theorem 6.2. Then, in order to prove that g11 = ‖ΦG‖ =
Nn(S, 0)−1, it suffices to verify the inequality C = g2

11 + g11g22 − 2g2
12 ≥ 0 . Note

that

C = (
λ2

1

λ4
1 + 1

)2 +
λ2

1

(λ4
1 + 1)

λ2
2

(λ4
2 + 1)

− 2(
λ2λ1

λ1λ2 + 1
)2

=
λ2

1(λ2 − λ1)(λ1 + λ2)(−1 + λ2
1λ

2
2 + 2λ6

1λ
2
2 − 2λ4

2 − λ4
1λ

4
2 + λ6

1λ
6
2)

(λ4
1 + 1)2(λ4

2 + 1)(1 + λ2
1λ

2
2)2

.

Straightforward computations with 1 ≤ λ1 ≤ λ2 show that C > 0, since the
polynomial P (λ1, λ2) = −1 + λ2

1λ
2
2 + 2λ6

1λ
2
2− 2λ4

2−λ4
1λ

4
2 + λ6

1λ
6
2 > 0 in this case.

A similar analysis shows that still C > 0 for 1 ≥ λ1 ≥ λ2 > 0. The result follows
by applying Theorem 6.2.
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It was proved by Kwong (see [13]) that, if λ ∈ Rn
+, then the matrix Zn(k, λ) ∈

Mn(C) defined in Eq. (10), is positive semidefinite in the following cases: n = 2
and k ∈ (−2,∞), n = 3 and k ∈ (−2, 8), and n = 4 and k ∈ (−2, 4) . Therefore,
by the proof of Theorem 3.4, inequality (6) holds in Mn(C) in these cases, for
every unitarily invariant norm. Note that the proof Theorem 3.1 does not give
similar estimates for the inequalities (4) and (5), because one needs to duplicate
dimensions.
A numerical approach suggests that these intervals are optimal, both for the pos-
itivity of the matrix Bn(k, λ), defined in Eq. (11), and for inequality (6). In the
case of M3(C), if −2 < k ∈ R and λ = (λ1, λ2, λ3) ∈ R3

>0 then, using symbolic
computation with the software Mathematica, one obtains a kind of “proof” of the
fact that detB3(k, λ) ≥ 0 for every λ ∈ R3

>0 if and only if −2 < k ≤ 8. The 2× 2
principal sub matrices of B3(k, λ) have the form B2(k, (λi, λj) ), and they live in
M2(C)+ for every k > −2. Therefore,

B3(k, λ) ∈ M3(C)+ for every λ ∈ R3
>0 ⇐⇒ −2 < k ≤ 8.

Likewise, for the 4× 4 matrix case, it suffices to study det B4(k, λ), for λ ∈ R4
>0,

and one obtains similar results.

Denote by kn the maximum number k ∈ R such that inequality (6) holds in Mn(C)
for the spectral norm. By the preceding comments, and the proof of Theorem 3.4,

k2 = +∞, k3 ≥ 8, k4 ≥ 4, and kn ≥ 2 for n ≥ 5.

Computer experimentation using the softwares Mathematica and Matlab suggests
that, also in this case, k3 = 8, k4 = 4, and kn = 2, for n ≥ 5. In other words,
inequality (6) holds for Mn(C) in the same intervals as it holds that Bn(k, λ) ∈
Mn(C)+ for every λ ∈ Rn

>0 .
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FaEA-UNC,
Neuquén, Argentina.

imosconi@uncoma.edu.ar

Demetrio Stojanoff
Depto. de Matemática,
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