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automation, robustness and accuracy in 

ecological inference forecasting of R×C tables 

Jose M. Pavı́a1 and Rafael Romero2 

Abstract  

This paper assesses the two current major alternatives for ecological inference, based 
on a multinomial-Dirichlet Bayesian model and on mathematical programming. Their 
performance is evaluated in a database made up of almost 2000 real datasets for which 
the actual cross-distributions are known. The analysis reveals both approaches as com-
plementarity, each one of them performing better in a different area of the simplex space, 
although with Bayesian solutions deteriorating when the amount of information is scarce. 
After offering some guidelines regarding the appropriate contexts for employing each 
one of the algorithms, we conclude with some ideas for exploiting their complementari-
ties. 
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1.  Introduction  

Ecological inference forecasting aims to estimate the inner-cells values of a set of re-
lated R×C contingency tables when only the margins are known. Ecological inference 
is a particular instance of cross-level inference. In ecological inference, the objective 
is to infer individual-level behavior from aggregate-level (i.e., ecological) data when 
individual-level data are not available. This outlines one of the more conspicuous and 
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long-standing problems of social sciences present in many disciplines, from marketing 
and epidemiology to sociology and political science, and encompassing geography, eco-
nomics and quantitative history (King, 1997; Petropoulos et al., 2022). In ecological 
inference, the problem arises because information is lost when aggregating across indi-
viduals, the fundamental challenge being that many different possible relationships at 
the individual level can produce the same observations at the aggregate level. 

Despite the dangers of cross-level inferences being widely acknowledged, arising 
from the so-called group or ecological fallacy (e.g., Allport, 1924; Robinson, 1950) 
and the Simpson paradox (e.g., Gehlke and Biehl, 1934; Simpson, 1951), the solu-
tions promised by this approach soon attracted the interest of researchers, mainly within 
the discipline of political science (Ogburn and Goltra, 1919; Gosnell and Gill, 1935). 
A particularly relevant instance of this problem arises when the focus is on estimat-
ing/forecasting the inner-cells values of a set of related R×C contingency tables when 
only the margins are known. For example, fnding out from the data available on a set 
of voting units (e.g., counties or precincts) how different people (grouped, for instance, 
according to their religion: Catholics, Protestants, Muslims, agnostics, ...) split their 
votes among different candidates, or estimating the vote transfers between two elec-
tions. Focusing on the second example, the objective is to ascertain the cross-tabulated 
distribution of votes in each unit and in the whole electoral space by just using the sets 
of votes recorded in the units in the two elections (the margins of the tables). 

The fundamental challenge of the ecological inference forecasting problem lies in 
the fact that there are a multitude of ways to determine the interior cell counts of a 
table with the same aggregated margins, and this indeterminacy cannot be solved col-
lecting data from more units (Manski, 2007; Greiner and Quinn, 2009; Forcina and Pel-
legrino, 2019). To disentangle this, a basic assumption of similarity (and, sometimes, 
the use of covariates) is routinely considered. The aim of this paper is to assess in terms 
of accuracy, robustness and simplicity, and also considering the features of computa-
tional burden, automation and data wrangling requirements, the two main alternatives 
for ecological inference forecasting available in the R packages eiPack (Lau, Moore 
and Kellermann, 2020) and lphom (Pavı́a and Romero, 2021). 

Klima et al. (2016) and Plescia and De Sio (2018), working independently and after 
analyzing the main methods developed up to that moment, conclude that the algorithm 
programmed in the ei.MD.bayes function of the eiPack package is the one that gen-
erates the best solutions. However, Romero et al. (2020) and Pavı́a and Romero (2022) 
have recently proposed three new algorithms (lphom, tslphom and nslphom), avail-
able in the lphom package (Pavı́a and Romero, 2021), whose performance seems to 
exceed, at least in certain circumstances, the estimates achieved with ei.MD.bayes. 
Romero et al. (2020) and Romero and Pavı́a (2021) report, when studying the vote trans-
fers between the frst and second rounds of the 2017 French presidential elections, that 
ei.MD.bayes produces unusable solutions when working with limited voting units. 

Specifcally, Romero and Pavı́a (2021) fnd when working with outcomes at the re-
gional level (13 voting units) and with outcomes at the department level (108 units) 
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that ei.MD.bayes generates solutions without socio-political sense. They obtain this 
result both when using the default options of ei.MD.bayes and when tuning the pa-
rameters of the function. Only when working with outcomes at the district level (577 
units), and after tuning the model parameters (incurring signifcant data analysis and 
computational costs), are they able to achieve satisfactory solutions. These fndings con-
trast, on the one hand, with the excellent solutions that ei.MD.bayes provides, using 
its default options, for the dataset (212 units) included in the eiPack package and with 
the conclusions reported in Klima et al. (2016) and Plescia and De Sio (2018) and, on 
the other hand, with the satisfactory solutions that are achieved, in a few seconds and 
without specifcation costs, using the default options of the lphom functions. There-
fore, a broad and systematic study of comparison is needed between the functions of 
both packages to determine the empirical strengths and weaknesses of each algorithm 
and the circumstances in which each of them will generate better estimates. 

Although a signifcant part of the studies of this nature use simulated datasets to 
assess the quality of the estimates (e.g., Ferree, 2004; Greiner and Quinn, 2010; Klima 
et al., 2016; Klein, 2019; Klima et al., 2019; Martı́n, 2020; Barreto et al, 2022) since the 
data of interest in real situations is usually unknown (indeed, this is the purpose of the 
different procedures), in this research we use real data for the assessments. This is in 
line with Plescia and De Sio (2018) and Pavı́a and Romero (2022) and is the approach 
recommended by Collingwood et al. (2016, p. 93), who “argue that real election data 
should be considered in a side-by-side comparison”. In particular, the performance of 
the different algorithms is evaluated by exploiting the data from a singular database made 
up of almost 500 elections for which the current cross-distribution of votes in the entire 
electoral space is known. This database includes all the elections analyzed in Plescia 
and De Sio (2018) and Pavı́a and Romero (2022). 

The assessment of the algorithms will not only focus on evaluating their accuracy in 
predicting the cross distributions but also on other considerations such as their data wran-
gling and specifcation requirements. On the one hand, the procedure implemented in 
ei.MD.bayes is a complex procedure, based on Markov chain Monte Carlo (MCMC) 
methods, that (i) demands the specifcation and tuning of a large number of parameters 
(among them, a priori distributions with their hyperparameters, the number of initial it-
erations to be discarded, the length of the chains or the jump between accepted values in 
each chain) and (ii) requires, before using the function, an intensive data pre-processing 
to guarantee the congruence between the marginal distributions of rows and columns of 
each table. On the other hand, the procedures implemented in lphom, based on mathe-
matical programming, can negotiate different scenarios in terms of (lack of) congruence 
between marginal distributions and only require, in the nslphom algorithm, specifca-
tion of the number of iterations. All these issues must be weighed up when choosing an 
algorithm to solve a problem. 

Given that in real situations the inner-cells of the contingency tables are generally 
unknown – at most, we can check the solutions for their plausibility but not the qual-
ity (accuracy) of the predictions – we also evaluate the robustness and sensitivity of the 
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different algorithms in either more stressful or simpler scenarios. Starting from the ob-
served database composed of 493 elections, we construct new sets of electoral results 
by aggregating voting units and/or voting options. This will allow the scenarios under 
analysis to be increased and the algorithms to be evaluated in new situations, where the 
problem is simplifed (with fewer cells in the transfer matrices) and/or with less data 
available (with fewer voting unit observations). In total, using real data at all times, we 
analyze the equivalent of 1972 elections. 

The rest of the document is structured as follows. The second section details the char-
acteristics of the methods implemented in both functions. The third section is dedicated 
to data. The fourth section compares and analyses the results attained after applying 
ei.MD.bayes, with different specifcations, and the lphom algorithms to the initial 
datasets corresponding to the 493 elections. The ffth section explores the robustness and 
sensitivity of the estimates in the new scenarios, created from the base data. Section 6 
reviews the analysis and, by pooling the results of all the datasets, looks at, among other 
issues, the features that affect the accuracy of the estimates in both approaches. Finally, 
Section 7 summarizes the fndings, states some recommendations and suggests direc-
tions for further research. This paper is complement with two fles with Supplementary 
Material. 

2.  The  methods  

In the ecological inference forecasting problem, the units of analysis are contingency 
tables with observed row and column marginals and the objective is to estimate the 
unobserved internal cells for each unit (and/or for the aggregation of all the tables). 
Mathematically, denoting by i = 1,2, ..., I the index for the units, j = 1,2, ...,R the index 
for the rows and k = 1,2, ...,C the index for the columns (where I, R and C represent, 
respectively, the number of units, rows and columns), the problem can be stated, as 
expressed in Table 1, as one of estimating the (red) values Njki ∀i, j,k, given their row and 
column aggregations: Nj.i = ∑k Njki and N.ki = ∑ j Njki (where N..i = ∑ jk Njki = ∑ j Nj.i = 
∑k N.ki). 

Table 1. A typical R×C unit in ecological inference. Red quantities are the unobserved counts. 

col1 ... colk ... colC 
row1 N11i ... N1ki ... N1Ci N1.i 

... ... ... ... ... ... ... 
row j Nj1i ... Njki ... NjCi Nj.i 

... ... ... ... ... ... ... 
rowR NR1i ... NRki ... NRCi NR.i 

N.1i ... N.ki ... N.Ci N..i 

Many algorithms for solving the ecological inference forecasting problem can be 
found in the literature. In this research, the estimates obtained from two procedures with 
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different philosophical and mathematical substrates are compared: on the one hand, the 
three algorithms implemented in the lphom package (Pavı́a and Romero, 2021) and, on 
the other hand, several specifcations of the procedure available in the ei.MD.bayes 
function of the eiPack package (Lau et al., 2020). The frst algorithms are based 
on mathematical programming, while the second procedure has its roots in Bayesian 
statistics. Other methods to solve this problem include the iterative version of the 2×2 
model proposed by King (see King, 1997; Imai, King and Lau, 2008; Collingwood et 
al., 2016; Choirat et al., 2017), the aggregated compound multinomial model proposed 
by Brown and Payne (1986) or the generalization of the Goodman regression method 
(see Goodman, 1953, 1959; Collingwood et al., 2016). 

Despite the different foundations of the various procedures, they all rely on the same 
information sources and basic assumptions to obtain their estimates. All of them exclu-
sively use the information contained in the margins of the tables and assume a hypothesis 
of similar behavior between different units to overcome the problems of identifability 
and indeterminacy. In particular, lphom assumes small distances across units among 

ip jk and also with p jk and ei.MD.bayes considers that, conditional on the row, j, 
iall the p jk of the different units are realizations of a common probability distribution, 
iwhere p = Njki/Nj.i and p jk = ∑i Njki/∑i Nj.i are, respectively, the (unknown) unitjk 

and global cell fractions. Both procedures also impose (explicitly lphom and implicitly 
ei.MD.bayes) the restrictions that are derived from the available information. The 

iunit cell fractions, p jk, that both approximations estimate must be compatible with the 
marginals of each unit and of the set of tables. 

2.1.  The  model  in  ei.MD.bayes  

The procedure implemented in the ei.MD.bayes function uses a method based on 
a hierarchical Multinomial-Dirichlet model initially proposed for 2×2 tables by King, 
Rosen and Tanner (1999) and later generalized for R×C tables by Rosen et al. (2001). 
Specifcally, denoting the row marginal and the column marginal fractions of unit i by, 
respectively, Xji = Nj.i/N..i and Tki = N.ki/N..i, the hierarchical Multinomial-Dirichlet 
model, without covariates, proposed by Rosen et al. (2001) assumes, for the frst level of 
the hierarchy, that the vector of column marginal counts in unit i follows a Multinomial 
distribution of the form: 

R R R 
i i i(N.1i, ...,N.ki, ...,N.Ci) ∼ Multinomial(N..i, ∑ p j1Xji, ..., ∑ p jkXji, ..., ∑ p jCXji) 

j=1 j=1 j=1 

and, for the second level of the hierarchy, that the vector of cell fractions for row j 
( j = 1, . . . ,R) in unit i (i = 1, . . . , I) follows a Dirichlet distribution with C parameters, 
constant across units: 

i i i(p j1, . . . , p jk, . . . , p jC) ∼ Dirichlet(α j1, . . . ,α jk, . . . ,α jC) 
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where the prior on each α jk is assumed to be: 

α jk ∼ Gamma(λ1,λ2) 

The frst level of the hierarchy introduces the information of the margins by modelling, 
conditional on the observed row totals, the observed column totals as multinomial distri-
butions independent across units. The second level of the hierarchy enables the borrow-
ing of strength across the estimates of the (unobserved) row-cell proportions/fractions of 
different units by modelling them as Dirichlet distributions independent across rows and 
conditional independent across units. The third level of the hierarchy considers a fairly 
non-informative distribution for the Dirichlet parameters. The hierarchical model not 
only increases effciency (decreases variation) of the estimates by borrowing statistical 
strength across units, but it also makes it possible to obtain estimates of the unobserved 

iquantities p jk. 
This hierarchical Bayesian model is ft by ei.MD.bayes using a Metropolis-

within-Gibbs algorithm (Robert and Casella, 2004). Conducting an analysis employ-
ing this model involves two steps: frst, calibrating priors and tuning parameters used 
for Metropolis-Hastings sampling and, second, generating proper MCMC draws. This 
requires analysts highly trained in Bayesian statistics since, in addition to the need to 
tune a large number of parameters, assessing convergence of MCMC chains tends to be 
diffcult is this setting (Rosen et al., 2001; Lau, Moore, and Kellermann, 2007): some-
times the scarce information available in the margins of the tables (i.e., regarding pi 

jk 
bounds) can lead to extremely slow mixing of MCMC chains. Furthermore, when the 
number of units is scarce and all the margins of the unit tables are suffciently populated, 
some substantive knowledge of the phenomenon under study is also required to properly 
customize prior hyperparameters. As Wakefeld (2004) notes, the inherent problems of 
identifability and indeterminacy that characterizes ecological inference is likely to lead 
to solutions sensitive to the choice of prior so, as Lau et al. (2007, p. 46) recommend, 
“[u]sers should experiment with different assumptions about the prior distribution of the 
upper-level parameters in order to gauge the robustness of their inference”. It is also 
necessary to properly set issues such as the length of the burn-in period, the thinning 
parameter and the total length of the chains. It is essential to generate enough iterations 
for the Markov Chain to converge, as only if a convergence occurs can the samples from 
a Markov Chain be used in a Monte Carlo integration. 

2.2. The model in lphom 

The methods included in lphom, acronym for “Linear Program model based on the 
iHOMogeneity hypothesis”, estimate the p jk by solving two sequential linear programs 

that, conforming to the observed marginal counts, minimizes the L1 distance of the cell 
fractions across units. The nslphom algorithm (Pavı́a and Romero, 2022) is an iterative 
procedure that yields the lphom and the tslphom solutions as by-products. In its 
simplest specifcation, nslphom uses equations (1) to (15) to attain its solution. In its 
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step zero, the algorithm solves the basic lphom system (Romero et al., 2020) defned 
by equations (1) to (5). 

p jk ≥ 0 for j = 1, . . . ,R, k = 1, . . . ,C (1) 
C 

∑ p jk = 1 for j = 1, . . . ,R (2) 
k=1 ˜ ° 

R I I 

∑ ∑ Nj·i p jk = ∑ N·ki for k = 1, . . . ,C (3) 
j=1 i=1 i=1 

R 

eik = N·ki − ∑ Nj·i p jk for k = 1, . . . ,C, i = 1, . . . , I (4) 
j=1 

minimize ∑ |eik| (5) 
i,k 

˛ ˝ ˛ ˝ 
This step zero produces an initial solution matrix P̂ 0 = 0 p̂ jk of the matrix, P = p jk , of 
global cell fractions that is used to start the iterative process that characterizes nslphom. 
In the next steps, for l = 1, ...,ns (where ns is the number of steps), the algorithm gen-

ierates estimates of the unit cell fractions, p jk, and the global cell fractions, p jk, by re-
cursively updating the l p̂ jk estimates and solving the two sequential systems defned by 
expressions (6) to (13). 

ip jk ≥ 0 for j = 1, . . . ,R, k = 1, . . . ,C, i = 1, . . . , I (6) 
C 

i∑ p jk = 1 for j = 1, . . . ,R, i = 1, . . . , I (7) 
k=1 

R 
i∑ Nj·i p jk = N·ki for k = 1, . . . ,C, i = 1, . . . , I (8) 

j=1 

ε i i 
jk = (l−1 p̂ jk − p jk)Nj·i for j = 1, . . . ,R, k = 1, . . . ,C, i = 1, . . . , I (9) 

minimize Z = ∑ |ε i
jk| for i = 1, . . . , I (10) 

j,k 

Z = ∑ |ε i
jk| for i = 1, . . . , I (11) 

j,k 

ip jk = (l−1 p̂ jk +δ jk
i ) for j = 1, . . . ,R, k = 1, . . . ,C, i = 1, . . . , I (12) 

minimize ∑ |δ jk
i | for i = 1, . . . , I (13) 

j,k 
iwhere l p̂ jk is computed by equation (14) using the l-step solutions p̂ jk(l) attained after 

solving equations (6)-(13). 

I I 

l p̂ jk = ∑ p̂i
jk(l)Nj.i/∑ Nj·i for j = 1, . . . ,R, k = 1, . . . ,C (14) 

i=1 i=1 
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During the iterative process, the statistic defned by equation (15), which measures the 
aggregate distance to homogeneity of the recursive solutions, is also computed. This 
statistic is utilized to determine the nslphom solution, which corresponds to the itera-
tion l∗ minimizing (15) . 

0.5 ∑ 
i jk 

HETl = 100 · 
ip̂ jk(l)Nj·i − l p̂ jkNj·i 

∑Nj·i 
i j 

(15) 

Once the iterative process has fnished, we have three solutions: the lphom solution, 
which corresponds to the step zero solution, the tslphom solution, which corresponds 
to the solution attained in step one and, fnally, the solution corresponding to step l∗ , 
which is the nslphom solution. Note that the lphom solution only provides estimates 
for the inner-cells of the global table. The above algorithm is quite automatic with only 
one parameter to tune: the number of steps, ns. According to Pavı́a and Romero (2022), 
the minimum of equation (15) is usually reached after very few steps. Indeed, the default 
option of the nslphom function considers only ten steps. 

3. The data 

Given the secret nature of voting, internal cell counts of global and unit tables are mostly 
unobserved. Sometimes, however, they are available, as when voters cast ballots with 
several votes in the same ballot and they are counted and published jointly. This is 
(partially) the case of the New Zealand general elections since 2002 and of the 2007 
Scottish Parliamentary election, where a mixed-member election system is employed. 
In these elections, voters cast two independent votes – one for a list (usually a party 
list) and another for a local candidate – and the electoral authorities publish/published 
party-candidate cross-tabulations at district level and marginal results at polling sta-
tion level. This provides a unique opportunity to assess algorithms by comparing ac-
tual observed global cross-tables with forecasted ecological tables. In each district, the 
ei.MD.bayes and nslphom functions can be run to forecast the internal cell counts 
(or fractions) of the district table using as inputs the marginal results at polling station 
level, to afterwards compare forecasts and actual observed values. 

Specifcally, we collected 493 datasets composed of marginal polling stations’ re-
sults and party-candidate cross tables corresponding to the same number of elections 
(districts): 420 datasets came from the 2002, 2005, 2008, 2011, 2014 and 2017 New 
Zealand general elections and 73 datasets from the 2007 Scottish Parliament election. In 
the case of New Zealand, the raw fles of the cross-distributions of votes at district level 
(with parties by rows and candidates by columns) and of the marginal distributions of 
votes at polling station level were downloaded from the offcial web page of the elec-
toral commission of New Zealand (www.electionresults.org.nz). In the case of Scotland, 
the authors gained access to the data via personal communication with Carolina Plescia, 

www.electionresults.org.nz
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who had downloaded the raw fles from the Scotland Electoral Offce website in 2011. 
The Scottish data are no longer available on that site. 

Before using the data, every election-district dataset is checked for internal consis-
tency and pre-processed in order to guarantee that the accounting equalities ∑ j Nj·i = 
∑k N·ki (for i = 1, ..., I) and ∑i Nj·i = ∑k Njk· and ∑i N·ki = ∑ j Njk· (for j = 1, ...,R and 
k = 1, ...,C) hold in each dataset for, respectively, each polling station (voting unit) and 
the whole district, where Njk· (= ∑i Njki) are the internal cell counts (observed in these 
datasets) of the district tables. 

In the case of the New Zealand datasets, we have removed: (i) the rows with all 
their values being zero or non-available in the parties’ and candidates’ fles; and (ii) the 
row corresponding to the polling unit identifed as “Votes allowed for party only” in the 
parties’ fles and, equally, the corresponding column (“Party vote only”) in the cross-
distribution fles. The second group of deletions was performed because the voting unit 
“Votes allowed for party only” has no equivalent in the candidates’ fles. In addition 
to these general pre-processing tasks, we merged the voting units identifed as “Voting 
places where less than 6 votes were taken” (row 100) and “Ordinary votes before polling 
day” (row 101) in the party and candidate fles of the 43rd district (Rangitikei) of the 
2014 election. We did this to solve a mismatch between both fles as the values in their 
100th and 101st rows were, respectively, 3 and 2 and 8465 and 8466. 

Finally, before starting any analysis and as is common practice when forecasting 
real tables (e.g., Klima et al., 2016; Plescia and De Sio, 2018; Klein, 2019; Pavı́a and 
Aybar, 2020; Pavı́a and Romero, 2022), we merged very small electoral options. In each 
dataset, those parties or candidates which individually did not reach at least 3% of the 
election-district vote were grouped in the option ‘Others’. Hereinafter, we call this set of 
datasets the reference database. Table 2 offers some summary statistics of this database, 
with more details available in Pavı́a (2022). 

As can be seen in Table 2, we have some variety in terms of the features in the 
datasets collected. In particular, looking at the last two columns of Table 2, we see that 
our database also presents an interesting diversity in terms of voters’ distribution among 
cells within rows. And this despite our cross-tables coming from ticket-splitting in con-
current elections, where more cell fractions close to one (zero) are routinely recorded 
than in other contexts, such as in demographic voting. This, undoubtedly, enriches the 
analyses by allowing the algorithms to be evaluated in different contexts. Indeed, accord-
ing to Park, Hanmer and Biggers (2014), gauging the accuracy of ecological inference 
procedures across different contexts adds robustness to the conclusions, particularly for 
studying what happens when the across-unit variance varies and/or when the number of 
units is small. 

According to Wakefeld (2004), smaller areas are preferable (i.e., voting units with 
a small number of voters) because it reduces the possibility of ecological bias and, like-
wise, it is also better to have very little within-area variability among row proportions 
because this leads to accurate estimates of fractions. Nevertheless, Romero and Pavı́a 
(2021) advocate studying the behavior of both algorithms when the number of units ob-



 

  

      

      

      

      

      

      

      

       

 

     

      

   

160 

3 

Data wrangling, computational burden, automation, robustness and accuracy... 

Table 2. Summary of some features of the datasets used to evaluate the algorithms. 

Average number of 
Country Year Elections voting units voters by units1 parties candidates large p jk % voters in 

(datasets) (min-max) (min-max) (min-max) (min-max) fractions2 large p jk 

NZ 2002 69 83.2(30−651) 554.6(24.5−1075.5) 7.0(5−8) 5.7(5−8) 1.2(0−2) 36.0(0.0−65.3) 
NZ 2005 69 81.8(29−698) 634.5(28.3−1194.0) 5.2(4−7) 4.5(3−6) 1.4(0−2) 50.5(0.0−77.0) 
SCO 2007 73 70.2(22−103) 411.6(346.3−547.1) 6.0(5−8) 5.9(5−8) 2.6(0−4) 59.1(0.0−80.5) 
NZ 2008 70 84.1(32−686) 614.6(28.7−1094.8) 5.4(4−6) 4.4(3−6) 1.7(0−3) 52.5(0.0−80.7) 
NZ 2011 70 85.7(32−644) 555.0(27.2−1068.0) 5.6(4−7) 4.7(4−6) 1.4(0−2) 49.7(0.0−73.5) 
NZ 2014 71 81.2(31−620) 617.0(32.6−1124.2) 5.9(5−7) 4.7(3−6) 1.5(0−3) 49.9(0.0−73.9) 
NZ 2017 71 101.9(41−705) 487.7(33.2−1012.7) 5.2(4−7) 4.8(3−6) 1.3(0−2) 47.3(0.0−77.9) 

Total − 493 84.0(22−705) 552.2(24.5−1194.0) 5.8(4−8) 4.9(3−8) 1.6(0−4) 49.4(0.0−80.7) 

Source: compiled by the authors using data from the New Zealand (NZ) electoral commission and the Scotland (SCO) 
Electoral Offce. 

1 These averages correspond to averages of averages. First, the average number of voters per voting unit ∑i N..i/I is 
computed for each dataset and then the average of these averages is calculated for each year. 

2 A p jk is considered a large fraction when it is higher than 0.80. 
3 The percentage of voters located in cells with large fractions, p jk(> 0.80), in each election/dataset is computed as 

100∑( j,k)∈L Njk./∑i N..i, where L = {( j,k) : p jk > 0.80}. 

served is small, since this reduces the costs of data wrangling and would help to answer 
the question of whether they could be used immediately after an election, a time when 
the results are usually available at a high level of aggregation, for a small number of 
units. Thus, in order to increase the number of analysis scenarios, we build new datasets 
by merging voting units and/or voting options (parties and candidates). On the one hand, 
reducing the number of units adds diffculty to the problem, by reducing the amount of 
information available. On the other hand, reducing the number of voting options sim-
plifes the problem, by decreasing the number of unknowns. In general, both operations 
contract the across-unit variance. 

We derive three new datasets from each baseline dataset by (i) reducing the number 
of voting units, (ii) reducing the number of cells in the tables (the number of parties 
and candidates), and (iii) reducing both the number of units and the number of cells. 
More specifcally, the initial number of units of each dataset is reduced by randomly 
grouping the units into a random number of groups, uniformly selected between 10 and 
20, and merging them. The number of parties and candidates is reduced by adding to 
either the row or column voting option Others, respectively, the votes of those parties or 
candidates that did not reach a minimum of 20% of the votes. The random merging of 
units in scenarios (i) and (iii) have been performed in an independent fashion in order to 
induce more variability in the constructed database. After all these operations, we are 
ready to analyze real data equivalent to the 1972 elections. 

4. An initial comparison of procedures 

This section, focused on accuracy, assesses the solutions achieved after applying 
ei.MD.bayes (with different specifcations), lphom, tslphom and nslphom to the 
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reference database of the 493 datasets that made up our collected data before perform-
ing the processes of merging of units and/or cells described in the last paragraph of the 
previous section. As a rule, and starting point, we have considered the default options 
of the functions, given that these are usually the specifcations most utilized by users. 
These simplify their decision-making processes, reduce their operational costs and favor 
automation. In the case of ei.MD.bayes, we consider three different specifcations, 
which we label as ei_default, ei_auto, and ei_manual. 

The ei_default solutions correspond to the use of ei.MD.bayes with default 
options. A solution based on MCMC, however, requires convergence to the equilibrium 
distribution of the Markov chains to be reliable. Unfortunately, this is not attained as a 
rule with our data when ei.MD.bayes is employed with default options. The argu-
ments of the function, therefore, have to be tuned to generate convergent chains. The 
eiPack package also includes a function, tuneMD, with “an adaptive algorithm to 
generate tuning parameters for the MCMC algorithm implemented in ei.MD.bayes” 
(Lau et al., 2020). So, as a second specifcation for ei.MD.bayes, we implement a 
two-step strategy in which frstly tuneMD is employed with default options to after-
wards apply ei.MD.bayes with its tune.list argument equal to the output gener-
ated by tuneMD. This does not solve the lack of convergence, however. This should not 
come as a surprise since, as the ei.MD.bayes help fle advises: most problems will 
require a much larger thinning interval and a longer burn-in period than default. 

At this point, it is clear that what is necessary is to manually customize the argu-
ments of the ei.MD.bayes function. Unfortunately, trying to customize 493 sce-
narios is impractical and extremely time-consuming. An analyst needs to test several 
specifcations for each election, plotting each of their outputs and diagnosing their con-
vergence (Roy, 2020). Hence, as an intermediate, operative approach, we look for a 
specifcation that could work well in general. After picking at random three datasets of 
each block (year) of elections, we fnd that a two-step strategy in which frstly tuneMD 
is employed with arguments ntunes = 10 and totaldraws = 100000 and sec-
ondly ei.MD.bayes is employed with arguments sample = 1000, thin = 100, 
burnin = 100000 and tune.list equal to the output generated by tuneMD 
reaches the convergence in all twenty-seven elections selected. We use this specifcation 
to model all the datasets. This guarantees that convergence is reached in the twenty-
seven datasets checked and also, with really high probability, in the rest of datasets. We 
label the solutions attained by ei.MD.bayes using this specifcation ei_manual. 

Once each algorithm is run, we gauge accuracies of solutions using as discrepancy 
measures the statistics EI and WPE, given by equations (16) and (17). These statistics 
account for the distances between the forecasted and observed matrices at the district 
level of, respectively, counts and proportions. The assessments of errors at the local 
level are unfeasible in this case as internal cell values of local units are not available in 
the collected datasets. 

0.5∑ jk |Njk· − N̂ jk·|
EI = 100 · (16)

∑ jk Njk· 
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∑ jk Njk· |p jk − p̂ jk|
WPE = 100 · (17)

∑ jk Njk· 

The EI (error index) statistic is a classical measure of discrepancy (e.g., Thomsen, 1987; 
Klima et al., 2016; Romero et al., 2020) that quantifes the distance between matrices of 
counts. In our case, it accounts for the percentage of votes wrongly assigned, i.e., the 
minimum number of votes that should be moved among cells of the forecasted matrix 
to accomplish a perfect ft. Multiplication by 0.5 is done to prevent counting every 
incorrectly allocated vote twice. This coeffcient varies between 0, when the actual and 
the forecasted matrices coincide, and 100, when no single vote is correctly assigned. The 
WPE statistic (proposed in Pavı́a and Romero, 2022) measures the weighted average 
distance between the actual p jk and the estimated p̂ jk proportions, using as weights the 
corresponding actual counts. This statistic ponders more the discrepancies associated 
with the most relevant proportions and also ranges between 0, when P and P̂ match, and 
100, when no vote is correctly assigned. EI and WPE are closely correlated. 

Table 3 synthesizes the discrepancies, measured using the EI and WPE statistics, be-
tween the actual matrices and the solutions attained after applying lphom, tslphom, 
nslphom and ei.MD.bayes (with the three specifcations detailed above) to the 
datasets of the reference database. The table presents, by group of elections, average 
fgures of EI and WPE values as well as average computation times (lower panel). The 
upper panel of the table also offers some summary statistics of the corresponding group 
of elections. The elections are naturally grouped by country and year. Ultimately, all 
the elections of each group are related since they were held simultaneously, sharing the 
same general political context. The last column summarizes the results corresponding to 
the whole database. 

Figures 1 and 2 display the same information shown in the EI and WPE panels of 
Table 3, but graphically. Interested readers can also consult Figure S1 of the supplemen-
tary material which displays graphically the averages times of computation (in seconds) 
required to reach the solutions. Several initial fndings emerge analyzing Figures 1 and 
2 and the numbers in Table 3. First, all the methods yield solutions superior to a random 
assignment. Second, as expected, the ei_default and ei_auto solutions are by far 
the least accurate, given their lack of convergence. They are, nevertheless, superior to 
a random assignment. This may seem surprising at frst glance, however, despite their 
failure to converge, they already include the information available in the margins of the 
tables; an issue that limits the set of possible solutions. Third, within the lphom fam-
ily, nslphom is the one that is most accurate. This confrms the conclusions reached 
in Pavı́a and Romero (2022). Fourth, both ei_manual and nslphom solutions stand 
out for being the most accurate, being indeed fairly good considering the magnitude of 
error that, according to Klima et al. (2016), is usual in these kind of problems. Fifth, the 
ei_auto and ei_manual specifcations require much more time than the rest of the 
procedures to reach their solutions. 
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Table 3. Summary of the performance of the algorithms in the original datasets. 

Country Year NZ 2002 NZ 2005 SCO 2007 NZ 2008 NZ 2011 NZ 2014 NZ 2017 NZ + SCO 
# of Elections N = 69 N = 69 N = 73 N = 70 N = 70 N = 71 N = 71 N = 493 
Avg. # of units I = 83.2 I= 81.8 I= 70.2 I= 84.1 I= 85.7 I= 81.2 I= 101.9 I= 84.0 
Avg. # of cells RC= 39.5 RC= 23.8 RC= 35.2 RC = 23.4 RC= 26.2 RC= 27.9 RC= 24.8 RC= 28.7

Average of EI mesasures 
ei default 22.75 27.69 48.33 31.19 29.26 32.40 34.38 32.42 
ei auto 25.20 28.96 46.85 30.89 30.17 33.18 33.93 32.85 
ei manual 10.75 8.53 23.09 8.34 7.68 7.88 6.93 10.52 
nslphom 12.79 9.68 8.86 9.11 9.46 9.69 8.91 9.77 
tslphom 14.80 11.09 11.00 10.88 11.50 11.66 10.91 11.68 
lphom 16.88 12.29 12.92 12.22 12.99 12.95 12.20 13.20 

Average of WPE mesasures 
ei default 16.29 21.70 41.55 25.26 23.30 26.32 28.11 26.20 
ei auto 18.44 22.70 40.46 25.04 23.94 26.78 27.67 26.54 
ei manual 6.30 5.61 18.47 5.86 4.88 4.86 4.54 7.28 
nslphom 7.90 6.09 4.80 6.09 6.26 6.55 5.67 6.18 
tslphom 9.42 7.52 6.72 7.90 8.05 8.15 7.46 7.89 
lphom 10.82 8.46 8.07 8.89 9.13 9.04 8.39 8.96 

Average of computational burden (in secs) 
ei default 2.08 1.23 1.33 1.14 1.55 1.48 1.52 1.48 
ei auto 958.57 573.53 603.36 531.03 724.65 692.13 722.93 690.06 
ei manual 1150.58 687.37 765.20 636.40 864.02 827.75 853.43 825.70 
nslphom 5.41 5.32 5.88 5.85 5.61 5.28 6.80 5.74 
tslphom 0.92 0.85 0.81 0.87 0.87 0.81 0.97 0.88 
lphom 0.56 0.64 0.25 0.52 0.64 0.60 0.64 0.55 

Source: compiled by the authors after applying the function ei.MD.bayes of the R package eiPack (Lau et al., 
2020) with different specifcations and the functions lphom, tslphom and nslphom of the R package lphom (Pavı́a 
and Romero, 2021) to the offcial data from the New Zealand electoral commission and the Scotland Electoral Offce 
described in Section 3. The outcomes labelled as ei_default, ei_auto and ei_manual have been attained after 
using ei.MD.bayes with, respectively, (i) default options, (ii) the output of the function tuneMD (with default options) 
as tune.list argument and default options for the rest of its arguments and (iii) sample = 1000, thin = 100, 
burnin = 100000 and the output of function tuneMD with ntunes = 10 and totaldraws = 100000 as 
tune.list argument. The computations have been performed on a desktop computer with a CPU processor Intel® 

Core TM i7-4930K (6 cores) 3.40GHz and 32GB of RAM. 

Looking at the outcomes of Table 3 in more detail reveals further fndings. Sixth, as 
a rule, the performance of all methods worsen when either the number of cells grows or 
when the number of units decreases, but it seems that the accuracy of the ei.MD.bayes-
based solutions suffer signifcantly more than the lphom-based solutions when the num-
ber of units decreases. Seventh, it seems that most of the time ei_manual produces 
slightly better solutions than nslphom, but with nslphom being more robust. Indeed, 
nslphom beats ei_manual after pooling all the elections. This, however, is a conse-
quence of the poor performance of ei_manual in some Scottish datasets (see Figure 
S8 in the Supplementary Material) due to a lack of convergence, which in this case can 
be solved working with larger chains. We investigate these results further in the sections 
that follow. 
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Figure 1. Graphical representation of average values of EI error measures grouped by elec-
tion and algorithm in the reference database. Individual solutions have been attained with 
the function ei.MD.bayes of the R package eiPack (Lau et al., 2020) using three differ-
ent specifcations and the functions lphom, tslphom and nslphom of the R package lphom 
(Pavı́a and Romero, 2021) with default options. Details of the specifcations used when applying 
ei.MD.bayes can be consulted at the bottom of Table 3. 

From the above list of fndings, we can gain some interesting insights. Firstly, the 
solutions reached using the default options of ei.MD.bayes are, as a rule, scarcely 
accurate. Despite the advantages users may fnd in employing functions with default 
options without more inquiries, this should be avoided in the case of ei.MD.bayes. 
Secondly, the default solutions of ei.MD.bayes can be signifcantly improved with 
some extra work by tuning all its parameters. Thirdly, the functions of the lphom pack-
age produce highly competitive solutions in an automatic way. Finally, the lphom-based 
solutions are, at least in these examples, reached in very few seconds. 

5. Sensitivity and robustness. The effects of reducing the number 
of units and/or cells 

The previous section evaluates ei.MD.bayes and nslphom in a set of scenarios 
where the relationship between the amount of information available (number of units) 
and the complexity of the problem (number of cells in the matrix) is considered ade-
quate. On average, there are 2.95 voting units for each parameter to estimate when, 
according to Plescia and De Sio (2018, p. 673), “the literature specifes a criterion of 
at least two [sub]units per coeffcient” for a proper forecasting of district level fractions. 
Although the average number of cells that we have had to estimate per election is high 
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Figure 2. Graphical representation of average values of WPE error measures grouped by elec-
tion and algorithm in the reference database. Individual solutions have been attained with the 
function ei.MD.bayes of the R package eiPack (Lau et al., 2020) using three different 
specifcations and the functions lphom, tslphom and nslphom of the R package lphom 
(Pavı́a and Romero, 2021) with default options. Details of the specifcations used when applying 
ei.MD.bayes can be consulted at the bottom of Table 3. 

(28.4), so is the average number of voting units available (84), with a range that varies 
between a minimum of 22 and a maximum of 705, although with only 6 and 36 elections 
above 600 units and 200 units, respectively. Under these conditions, we get, on average, 
predictions of a high and similar quality, both using the ei_manual specifcation of 
ei.MD.bayes and the default options of nslphom. In this section, we study how the 
different algorithms respond when adding to the problem, by reducing the number of 
units, and/or through its simplifcation, by reducing the number of unknowns. 

It is important to understand the sensitivity and robustness of the estimates when 
using a decreased number of units because, frstly, there are situations where obtaining 
more disaggregated data may be limited or even impossible (for example, in historical 
elections) and, secondly, because, depending on its costs in terms of accuracy, it is an 
option worth considering as decreasing the number of units can lead to a drastic reduc-
tion in the expenses of obtaining and handling data. It is also relevant to study how the 
methods behave when the number of unknowns is reduced, focusing on just the main 
cells. After all, the analyst, on occasions, is not interested in an overall vision of the 
matrix but rather in certain relevant fractions/transfers. 

To answer the previous research questions, we use the three new databases derived, 
as stated in Section 3, from the reference database. Note that we have created three 
additional databases, each one also composed of 493 datasets, by just (i) grouping units 
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in each dataset, (ii) reducing (by aggregation) the number of cells to estimate in each 
dataset, and (iii) merging both, units and cells, in each dataset. In this section, we frst 
analyze the impact of reducing the number of units, then we study the effect of reducing 
the number of cells and, fnally, we examine the joint effect of both operations. 

5.1. Effects of reducing the number of units 

As in Table 3, Table S1 in the supplementary material summarizes the discrepancies 
measured using the EI and WPE statistics between the real matrices and the solutions at-
tained after applying ei.MD.bayes (with the three specifcations considered), lphom, 
tslphom and nslphom to the datasets obtained by randomly merging the observed 
units. Figure 3 and Figures S2 and S3 in the supplementary material present graphically 
the information of the different panels of Table S1. Given that the general picture drawn 
by EI and WPE measures is quite similar, the graphical representations corresponding 
to the WPE measures from Table S1, and the equivalent analysis in next two subsec-
tions are presented only in the supplementary material in order not to overburden this 
presentation. 

Comparing the results of Tables 3 and S1 (Figures 1 and 3) it can be seen that, as 
expected, the accuracy of the solutions deteriorates as a consequence of the drastic re-
duction in the number of units. The impact, however, is not homogeneous in all methods. 
Reducing the number of units changes the order of preference between the algorithms. 
The solution associated with the ei_manual of ei.MD.bayes is the one that suf-
fers the most. The mean error of this approximation is multiplied by more than two: 
ei_manual goes from having the lowest mean values for EI and WPE in almost all 
the election blocks to registering, in all cases, values clearly higher than those of all 
the solutions of the lphom family. Within this subset of solutions, however, the order 
is maintained, with the nslphom solutions clearly dominating those of tslphom and 
lphom, and this despite the fact that their relative deterioration within the subgroup is 
higher, with a mean increase in the error of 36%. 

These fndings are in line with Romero et al. (2020) and Romero and Pavı́a (2021) 
who, based on the study of the French presidential elections of 2017, noted that ei. 
MD.bayes suffers signifcantly when the number of units is reduced. Along the same 
lines, despite our best efforts, we have not found any general tuning of the parame-
ters for ei.MD.bayes that works well with so few units. For example, the accu-
racy of the estimates does not improve even after multiplying the length of the MCMC 
chains by ten (with the confguration sample = 10000, thin = 100 and burnin 
= 1000000). This is in contrast to the results of nlsphom which, with its default op-
tions, continues to generate fairly accurate solutions even in these scenarios. In light of 
these results, we can say that the ei.MD.bayes-based solutions are quite sensitive to 
the number of available units, quickly reducing their performance as soon as the number 
of units decreases and that, on the contrary, the lphom-based solutions are more robust. 
In terms of computing time, all solutions are achieved in fewer seconds. 
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Figure 3. Graphical representation of average values of EI error measures grouped by elec-
tion and algorithm in the scenarios attained after randomly merging polling units as described 
in Section 3. Individual solutions have been attained with the function ei.MD.bayes of the R 
package eiPack (Lau et al., 2020) using three different specifcations and the functions lphom, 
tslphom and nslphom of the R package lphom (Pavı́a and Romero, 2021) with default op-
tions. Details of the specifcations used when applying ei.MD.bayes can be consulted at the 
bottom of Table 3. 

A possible explanation for the relatively worse performance of ei.MD.bayes in 
these split-ticket scenarios comes from the diffculties that its underlying (two-step) al-
gorithm would fnd to move suffciently, with so few units, the a priori row-cell fractions 
implied by the default values for the hyperparameters. With default options, the expected 
values for α jk are constant by row and the expected row-cell fractions constant at 1/C; 
when vote transfer matrices are characterized by having a relative large number of inter-
nal cell probabilities close to zero or one, larger than in other settings such as in racial 
voting applications. According to this explanation, ei.MD.bayes should suffer less in 
situations with fewer extreme fractions and/or with a lesser proportion of voters in cells 
with high p jk. The likelihood of this explanation grows when (i) one relates the average 
accuracies attained in Scottish and NZ elections and their relative numbers of rows with 
a p jk close to one (higher than 0.80) – 44.1% of rows in Scotland tables and 24.3% of 
rows in NZ tables have a proportion close to one – or after (ii) observing no impact in 
the accuracy of ei.MD.bayes solutions when the number of units in the senc dataset 
available in the eiPack package is reduced. In the senc dataset only 26% of voters 
are located in cells where p jk > 0.80. It should be noted that with this dataset of racial 
voting nslphom neither suffers a decrease of accuracy after a reduction in the number 
of units. 
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5.2. Effects of reducing the number of cells 

Table S2 in the supplementary material measures, using EI and WPE, the accuracy 
of the solutions achieved after running ei.MD.bayes (with the three specifcations 
considered), lphom, tslphom and nslphom in the datasets obtained by aggregating 
in Others the election options not surpassing 20% of the vote. Figure 4 and Figures S3 
and S4 in the supplementary material depict graphically the information of the different 
panels of the table. 

Figure 4. Graphical representation of average values of EI error measures grouped by election 
and algorithm in the scenarios attained after merging in Others the election options not surpass-
ing 20% of the vote. Individual solutions have been attained with the function ei.MD.bayes 
of the R package eiPack (Lau et al., 2020) using three different specifcations and the functions 
lphom, tslphom and nslphom of the R package lphom (Pavı́a and Romero, 2021) with de-
fault options. Details of the specifcations used when applying ei.MD.bayes can be consulted 
at the bottom of Table 3. 

Comparing the results of Tables 3 and S2 (Figures 1 and 4), it can be seen that, as 
expected, the accuracy of the solutions improves as a consequence of the reduction in 
the number of unknowns (number of cells in the transfer matrices). The general situation 
with respect to the baseline scenario does not change substantially. The ei_default 
and ei_auto specifcations still do not converge, despite the reduction of unknowns, 
and continue to be the ones with the worst performance, while ei_manual and 
nslphom are the ones with the best fgures, with lphom and tslphom generating 
highly competitive solutions. Particularly noteworthy is the fact that now the solutions 
for the Scottish elections with the specifcation ei_manual from ei.MD.bayes are 
signifcantly improved, as now all of them reach convergence. This fact means that in 
aggregate terms ei_manual is the one that most reduces its joint mean error in these 
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scenarios (the mean of EI goes from 10.52 to 8.22, a reduction of almost 22%). How-
ever, taking the Scottish results out of the equation, among the two main algorithms 
(ei_manual and nslphom), nslphom is revealed as the one that benefts most from 
the simplifcation of the problem. On average, it happens to be the most accurate in 
fve of the seven election groups, when in the reference database it was only the most 
accurate in one of the election groups. The relative increase of rows in the target tables 
with a cell where p jk > 0.80 plays, as previously discussed, against ei.MD.bayes 
as a consequence of the a priori row-cell fractions implied by the default priors for the 
hyperparameters. In terms of computing times, logically, costs are reduced. 

5.3. Interaction effects. Effects of reducing both the number of units and 
cells 

In subsection 5.1, we studied the effect of having fewer units and we found that solu-
tions based on ei.MD.bayes suffer markedly when the number of units decreases. In 
subsection 5.2, we analyzed the impact of working with problems with fewer unknowns 
and we found that all algorithms improved their performance. In this subsection, we 
study what happens when both situations occur simultaneously. Table S3 in the sup-
plementary material presents, using EI and WPE, the accuracy of the solutions reached 
with ei.MD.bayes (with the three specifcations considered), lphom, tslphom and 
nslphom in the datasets obtained after reducing the number of cells and units, as stated 
in Section 3. Figure 5 and Figures S5 and S6 in the supplementary material show graph-
ically the information of the different panels of Table S3. 

Comparing the results of Tables 3 and S1 to S3, and the corresponding graphical 
representations (Figures 1 to 5), it can be seen that in this scenario the accuracies of the 
solutions generated by the different algorithms are at some intermediate point between 
the accuracies of the solutions obtained in the analyzed scenarios in subsections 5.1 
and 5.2. The relative impact of both types of reductions (of data and of unknowns), 
however, is not homogeneous in all algorithms, at least for these datasets and with the 
reductions in the number of units and cells implemented. In the case of solutions based 
on ei.MD.bayes, we see that reducing the number of units has much more impact 
than reducing the number of cells, while in the case of solutions based on lphom the 
opposite relationship is observed, with the decrease in the number of unknowns having 
more relative importance. These results confrm and reinforce the conclusions reached 
in the previous subsections: ei.MD.bayes inferences are very sensitive to the data-
unknowns relationship, deteriorating notably when the level of detail of the information 
is reduced, while nslphom is very robust, being more insensitive to a decrease in the 
amount of available data. In all cases, computing times very clearly drop. 

6. A comparison of ei manual and nslphom solutions 

From the analyses carried out in sections 4 and 5, we can affrm that the ei_manual 
and nslphom algorithms are clearly the ones that provide, within each methodology 



 

  

  
 

  
 

  
  

 

NZ 2002 NZ 200s 11 sea 2007 11 NZ 200s 

40 

~ :~ lll111 ll1111 1 ••• 111111 
Q) ~-~~-~~-~~-~ 

~ NZ2011 I NZ2014 11 NZ2017 11 NZ+SCO I 

e 40 

ill :~ ll1 ••• ll1 •• 1 ll1■11 ll1■11 
method 

170 Data wrangling, computational burden, automation, robustness and accuracy... 

Figure 5. Graphical representation of average values of EI error measures grouped by elec-
tion and algorithm in the scenarios attained after merging in Others the election options not 
surpassing 20% of the vote and randomly merging polling units as described in Section 3. Indi-
vidual solutions have been attained with the function ei.MD.bayes of the R package eiPack 
(Lau et al., 2020) using three different specifcations and the functions lphom, tslphom and 
nslphom of the R package lphom (Pavı́a and Romero, 2021) with default options. Details of 
the specifcations used when applying ei.MD.bayes can be consulted at the bottom of Table 3. 

(model statistical approach and mathematical programming), the most accurate solutions 
in our databases. The behavior of both sets of solutions, however, is not homogeneous, 
presenting important variations among datasets within and between algorithms. In fact, 
as can be seen in Figure 6, which displays graphically a summary of the average values 
of EI and WPE in each database for the ei_manual and nslphom solutions, although 
ei_manual and nslphom present (on average) predictions of equivalent quality when 
the number of available units is large enough, both start to differ clearly when the amount 
of available data decreases, with the ei_manual solutions deteriorating faster. In this 
section, we look at the analysis in more detail. Focusing exclusively on these two proce-
dures, we investigate, on the one hand, the factors that infuence their global accuracies 
and their differences in accuracy and, on the other hand, the characteristics of the es-
timates obtained by both algorithms for the fractions p jk. The insights extracted from 
these latter analyses might open a way forward for exploring how to improve a forecast 
by combining solutions. 

Specifcally, after analyzing the distributions of EI and WPE values obtained by both 
procedures in the entire set of datasets, we investigate the relationship between the accu-
racies obtained and some of the main characteristics associated with each dataset. With 
this, we aim to determine what the relative impact of each feature is and to understand 
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Figure 6. Graphical representation of global average values of EI and WPE error measures 
grouped by database for ei manual and nslphom. Individual solutions have been attained 
with the function nslphom of the R package lphom (Pavı́a and Romero, 2021) with default op-
tions and the function ei.MD.bayes of the R package eiPack (Lau et al., 2020) with customized 
options. Details of the specifcation used when applying ei.MD.bayes can be consulted at the 
bottom of Table 3. 

under what circumstances each of the methods could work better. This study, focused 
on the analysis of global accuracies, is complemented by a more detailed look at the 
cells of the matrices. The second subsection of this section is dedicated to analyzing the 
quality and properties of the estimates of the fractions p jk that are obtained with both 
procedures. The analysis is relevant because, according to some authors (e.g., Upton, 
1978; Johnston and Hay, 1983), the methods based on mathematical programming have 
a tendency to predict extreme fractions; the opposite bias attributed by Romero and Pavı́a 
(2021) to ei.MD.bayes. In the last subsection, we take advantage of these insights to 
propose a simple rule that can be used to improve forecasts in certain circumstances. 

6.1. Factors impacting on the accuracy of the procedures 

Figure 6 suggests the existence of important differences in terms of accuracy in the solu-
tions generated by ei_manual and nslphom and that these depend on the character-
istics of the electoral processes under study. Figure 7, where the distributions obtained 
for EI and WPE with both procedures are plotted in the 1972 datasets analyzed, clearly 
shows the existing variability in the solutions reached by each method and between meth-
ods (in Table S4 of the supplementary material the interested reader can consult a statis-
tical summary of both distributions). For example, focusing on EI (the conclusions for 
WPE would be very similar, see Table S4), we observe that the errors associated with 
nslphom are, on average, more than 4 points lower than those of ei_manual. An-
other interesting observation is that ei_manual errors are signifcantly more dispersed 
than those obtained by nslphom, with respective standard deviations of 10.8 and 4.6. 
Both results confrm a fact already discussed above: nslphom is in this database not 
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only somewhat better on average but it is also more robust. In fact, although the distance 
between the medians is much lower than that observed for the means, just 0.76, it con-
tinues to be statistically signifcant, with a p-value smaller than 0.000001 in the sign test 
for paired data. 

Figure 7. Histograms of the distributions of the error measures (EI left panel and WPE 
right panel) linked to the solutions attained after running nslphom with default options and 
ei.MD.bayes with the ei manual specifcation (see the bottom of Table 3 for details) in the 
1972 datasets analysed in this research (see Section 3 for details). 

Figure 7 (and Table S4) clearly show that there is a high variability in the accuracies 
of the results obtained, so it is worth asking what the factors are that would explain, at 
least in part, the high variability observed within and between methods. Using multiple 
regression models with EI and WPE as response variables, in this subsection we study 
the impact that some of the main variables that characterize the scenarios considered 
have on accuracy. Given the great diversity we have (part of which can be seen in Table 
2), we consider this analysis will give us general results regarding the behavior of the 
two methods rather than about idiosyncrasies of the particular data analyzed, although 
this cannot be completely discarded. 

In addition to variables already considered throughout this paper related to the amount 
of information available, I, or the complexity associated with the problem, JK, other fac-
tors, such as the variability or the degree of dependence presented by the data, have also 
been proposed in the literature as determinants of the quality of the estimates. Table 4 
details the variables considered. Table S5 in the supplementary material presents a sta-
tistical summary of the values obtained for the nine variables introduced in Table 4 in 
the 1972 datasets analyzed, and Table S6 offers the corresponding correlation matrix. A 
high correlation (0.86) can be seen between both measures of across unit variances on 
the patterns of votes, var.Part and var.Cand, with the correlation between std.Part and 
std.Cand also being high (0.62). In any case, given the large sample size, we do not 
expect this to pose a problem in interpreting the models obtained. 
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Table 4. Features considered in the models. 

Variable Description 

Number of units. Indicator of the quantity of information. 

JK J × K, number of cells in the matrix. Indicator of the complexity of the problem. 

JKratio Quotient J/K. This captures the impact of the asymmetric role played by the two 
dimensions of the transfer matrix. The algorithms estimate the parameters of J 
(multinomial) distributions, each one of dimension K − 1. 

HET Actual heterogeneity index. This measures the degree of non-compliance of the 
homogeneity hypothesis: HET = 50(∑ki |∑ j Nj·i p jk − N·ki|/∑i j Nj·i. Although this 
coeffcient cannot be computed in regular applications (as the transfer matrix is 
unknown), it may be estimated. 

Chi2 Standardized χ2-Pearson statistic of independence of the global matrix of counts. 
This measures the degree of dependence between the row and column categories: 
Chi2 = ∑ jk(Njk· − N·k·Nj··)2/[(J − 1)(K − 1) ∑ jk(N·k·Nj··)]. Although this 
coeffcient cannot be computed in regular applications, it may be estimated. 

var.Part Compositional total variance (Pawlowsky-Glahn, Egozcue and 
Tolosana-Delgado, 2015) of the marginal row distributions in the I units. 
This measures to what extent party vote supports are different across units: 
(2J)−1 

∑
J 
j, j′ Var({log(Nj·i/(Nj′·i)}i). 

var.Cand Compositional total variance of the marginal column distributions in the I units. 
This measures to what extent candidacies vote supports are different across units: 
(2J)−1 

∑
K 
k,k′ Var({log(N·ki/(N·k′i)}i). 

std.Part Standard deviation of the distribution of percentages of votes to parties in the 
whole electoral space. Indicator of the degree of vote concentration/variability 
among parties: sd({Nj··/N···} j) 

std.Cand Standard deviation of the distribution of percentages of votes to candidacies 
in the whole electoral space. Indicator of the degree of vote concentration/variability 
among candidacies: sd({N·k·/N···}k) 

Source: compiled by the authors. 

In order to facilitate the interpretation of the parameters of the ftted models, all the 
explanatory variables have been standardized, to zero mean and standard deviation 1. In 
this way, the relative importance of each variable can be directly assessed as it is propor-
tional to the value estimated for its coeffcient in the regression model. Approximately, 
this value multiplied by four quantifes the expected variation in the response variable 
due to the fuctuation in the sample of the variable considered. Table 5 shows the coef-
fcients of the ftted models. Tables S7 to S12 in the supplementary material show the 
obtained models in more detail. 
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Table 5. Impact of different electoral features on ecological inference solutions’ accuracy. 

Response variable: EI Response variable: W PE 
Variable nslphom ei_manual difference nslphom ei_manual difference 

Constant 10.2110∗∗∗ 14.5998∗∗∗ 4.3888∗∗∗ 7.2631∗∗∗ 11.3220∗∗∗ 4.0589∗∗∗ 

−1.2926∗∗∗ −1.9574∗∗∗ −0.6648∗∗ −0.9977∗∗∗ −1.5012∗∗∗ −0.5035∗∗ 

∗JK 1.5147∗∗∗ 2.9153∗∗∗ 1.40066 −0.6129∗∗ −0.0235 0.5894 

JKratio 0.7677∗∗ 0.6548 −0.1129 1.5018∗∗∗ 2.0344∗∗∗ 0.5326 

HET 2.4321∗∗∗ 0.9372∗∗∗ −1.4949∗∗∗ 1.7783∗∗∗ 0.1746 −1.6037∗∗∗ 

Chi2 −0.7034∗∗∗ −1.2736∗∗∗ −0.5702∗ −0.1495 −0.6517∗∗ −0.5022∗ 

var.Part 0.4160∗ −3.0448∗∗∗ −2.6288∗∗∗ −0.2221 −2.6846∗∗∗ −2.4625∗∗∗ 

var.Cand −1.8088∗∗∗ −1.1346∗∗ 0.6742 −1.2098∗∗∗ −0.2001 1.0097∗∗ 

std.Part 0.4046∗∗∗ −1.8130∗∗∗ −2.2176∗∗∗ 0.2740∗∗∗ −1.8953∗∗∗ −2.1693∗∗∗ 

std.Cand −0.6001∗∗∗ −2.5661∗∗∗ −1.9660∗∗∗ −0.3760∗∗∗ −2.1921∗∗∗ −1.8160∗∗∗ 

Adjusted R2(%) 42.48 30.97 21.44 28.76 26.52 21.65 

Std resid. error 3.49 8.97 9.29 2.89 8.16 8.43 

Source: compiled by the authors. All the predictor variables were standardized before ftting the models to make comparisons of 

coeffcients easier. ∗∗∗ , p-value < 0.01; ∗∗ , p-value < 0.05; ∗ , p-value < 0.10. More details of the ftted models can be consulted in 

Tables S7 to S12 in the supplementary material. 

A total of six models were adjusted in order to identify the variables that impact on 

the quality of predictions (see Table 5). For each discrepancy measure (EI and WPE) 

and also for their differences, we adjusted a model to the errors obtained with each of 

the algorithms (nslphom and ei_manual). We now focus on analyzing the results 

obtained for the models using EI as the response variable, since the interpretations with 

WPE are similar. 

Of the nine variables considered and taking as reference a p-value smaller than 0.01, 

seven would be selected when analyzing the errors that nslphom makes (see the frst 

column of estimates in Table 5). All variables, except JKratio and var.Part, show a sta-

tistically signifcant impact (p-value < 0.01). Together these variables explain 42% of 

the observed variability. The complexity of the problem (JK), its heterogeneity (HET ) 
and the variability across units of the target marginal distributions (var.Cand) are re-

vealed as the variables with the greatest effect. Specifcally, as expected, the error grows 

as the complexity of the problem increases and there is greater heterogeneity. Likewise, 

the errors decrease when there is greater variability in the marginal target distributions. 

Along with these variables, the amount of information available (I), the standard devi-

ations of the global distributions of parties and candidates (std.Part and std.Cand) and 

the degree of dependency (Chi2) between parties and candidates are also signifcant. 

Of these variables, the amount of information is the one that has the greatest impact, 

and with the expected sign. The error grows as the amount of information available 

decreases. 

The next column offers the adjusted model when analyzing the errors associated 

with the predictions obtained with ei_manual. On this occasion, the model has less 

explanatory power. However, the same variables identifed in the previous model are 

maintained, and with the same signs. Using 0.01 as cutoff for signifcance, the main 
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change lies in the inclusion of the variable var.Part, which measures the variability in the 
marginal distributions of origin. This result is in line with Wakefeld (2004), who also 
in a Bayesian framework states that having smaller within-area variability among row 
proportions leads to more accurate estimates of fractions. As a rule, it can be seen that 
in both models the error grows with the complexity of the problem, when the amount of 
information available decreases or when there is more heterogeneity (i.e., there is more 
variability between units in the transfer matrices), while the error decreases when there 
is a greater variety in the data (variance across units) and when there is a greater relation-
ship between the options of the rows and columns. All these variables had already been 
identifed, in one way or another, as determinants for the quality of the estimates (e.g., 
King, 1997; Park et al., 2014; Klima et al., 2016; Plescia and De Sio, 2018). The relative 
importance of each of them, however, varies for both methods. It is worth highlighting 
the fact that the variable var.Part which measures the diversity in the marginal distri-
butions of origin, previously identifed as a key in the (Bayesian) ecological inference 
literature, does not appear as a determinant for nslphom, where it is subsumed by the 
variable var.Cand which measures the diversity in the marginal target distributions. 

In comparative terms, and focusing now on the analysis of the differences (see third 
column of estimates in Table 5), we can see that although the impact of the amount 
of information available (I) and of the variability across units in the target distributions 
(var.Cand) affects both methods in a similar way, other variables such as heterogene-
ity or complexity of the problem do not. The nslphom algorithm is more sensitive to 
non-fulflment of the homogeneity hypothesis on which it is based, while, in contrast, 
the ei_manual suffers more when the complexity of the problem increases. Likewise, 
although both methods depend on the variability between the marginal distributions of 
the territorial units (note that if var.Cand or var.Part were null, neither of them would be 
able to reach a solution), ei_manual has a greater dependence on var.Part, the vari-
ability across units between the row marginal distributions. The rest of the variables also 
have a greater impact on the quality of the ei_manual estimates; their estimates im-
prove relatively when there are more differences in sizes between origin and destination 
options and a greater degree of dependence between them. 

Finally, in order to study the possible non-linearity of the effects of the different 
variables, we also estimate new models in which we consider, in addition to the variables 
detailed in Table 4, their squares as predictors. The results of these new models, available 
in Tables S13 to S15 of the supplementary material, reveal the existence of signifcant 
quadratic effects for almost all the variables considered; the signs of the curvatures being 
contrary to those observed for the corresponding linear effect. The conclusion from this 
is that the estimated effects on EI of an increase in value of the different explanatory 
variables are especially acute for low values, but diminish as the values increase. 

6.2. An analysis of the errors in the estimation of pjk 

Once the global adjustments of the matrix forecasts have been analyzed in depth, we 
focus on the individual cell estimates. In the reference set of 493 elections, a total of 
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14158 proportions, p jk, were estimated. The results associated with the datasets obtained 
by random merging of units and/or election options are not considered in this analysis 
since the collapses do not modify the actual p jk values. The left and middle panels of 
Figure 8 show the histograms, real and estimated, for ei_manual and nslphom of the 
14158 p jk coeffcients. The histograms are found to be slightly bimodal, with a marked 
accumulation of frequencies in the low values, a continuous decrease as the value of p jk 
increases and a slight rebound for the highest values. 

Figure 8. Histograms of the distributions of ei manual (left panel) and nslphom (centre 
panel) estimates for p jk and stylized relationships between mean absolute errors of estimates 
and actual values (right panel). To make the comparisons easier, left and centre panels also offer 
the actual distributions of the p jk proportions. The displayed ei manual and nslphom esti-
mates correspond to the solutions attained after applying ei.MD.bayes using the ei manual 
specifcation and nslphom with default options to the 493 datasets of the reference database. 
The curve relationships of the right panel have been obtained after ftting the absolute value er-
rors of the forecasts, |p jk − p̂ jk|, as a quadratic function of the p jk proportions. 

These forms are a logical consequence of the fact that in split-ticket electoral con-
texts there are usually close links between the column and row options (in our examples, 
between parties and candidates), which give rise to the presence of values close to 1 in 
some rows of the probability matrix (see Table 2), chiefy in the party-rows of the leader 
candidates. A value close to 1 in a row necessarily implies C− 1 values close to 0 in that 
same row. As can be seen in the histograms (see Figure 8), there are numerous values 
close to 0 and a smaller but relevant number of values relatively close to 1, with still a 
relevant presence of intermediate values. Intermediate values tend to be more abundant, 
however, in demographic voting. 

The left and center panels of Figure 8 show that the biases attributed in the literature 
(Upton, 1978; Johnston and Hay, 1983; Romero and Pavı́a, 2021) to methods based 
on mathematical programming and ei.MD.bayes are manifested in our application: 
nslphom tends to estimate a higher percentage of extreme values and ei.MD.bayes 
to underestimate them. This fact is also refected in a bias analysis. Table 6 shows the 
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mean values of the errors of both procedures in the estimation of the p jk, differentiated 

according to the fact that whether the real values are less than 0.20, greater than 0.80 

or intermediate between both limits. On average, the biases are signifcantly higher for 

the ei_manual than for nslphom (see third and fourth columns of Table 6), with a 

different behavior in both procedures. While nslphom tends to overestimate high p jk 

values and underestimate low values, ei_manual tends to overestimate low values and 

underestimate high values. 

Table 6. Average biases and mean absolute errors (MAE) grouped by intervals of p jk. 

Number of Average bias (×100) Average MAE (×100) 

Range observations nslphom ei_manual nslphom ei_manual 

0.0 ≤ p jk < 0.2 9407 −0.46 4.04 4.27 5.42 

0.2 ≤ p jk < 0.8 3973 0.64 −6.85 15.27 11.29 

0.8 ≤ p jk ≤ 1.0 778 2.37 −13.90 4.29 17.78 

Source: compiled by the authors. 

The problem with calculating mean biases is that they do not refect the true magni-

tude of the errors, as they include individual biases with opposite signs in their calcula-

tion. To correct this issue, the last two columns of Table 6 provide the mean values of the 

errors in absolute values. From these data it is clear that nslphom is somewhat more 

precise than ei_manual when estimating low values of p jk, less precise when estimat-

ing intermediate values and, above all, much more precise when estimating high values. 

This is clearly a consequence of their default underlying algorithms: nslphom takes as 

seed the lphom solution which tends to favor extreme points of the convex hull of the 

region of feasible solutions defned by the constraints, whereas ei.MD.bayes starts, at 

the very bottom level of the hierarchy, by stating a symmetric distribution that assumes 

no prior differences between the fractions in each row. To more clearly visualize the 

situation, the absolute errors obtained by both procedures are adjusted as a function of 

p jk using a quadratic model. The results of the adjustments are given in the right panel 

of Figure 8, with their equations available in Tables S16 and S17 of the supplementary 

material. 

Figure 8 (right panel) shows that, as a rule, the estimation errors of nslphom are 

lower than those of ei_manual for values of p jk which are lower than 0.10 and higher 

than 0.65. However, their errors are higher, on average, for intermediate values. The 

average superiority of nslphom over ei_manual in the analyzed examples is partially 

supported, therefore, by the fact that extreme values tend to be frequent in electoral 

studies of vote transfer. At the cost of automation, therefore, the analyst could reduce the 

expected bias committed by ei.MD.bayes using priors that place higher probabilities 

on larger fractions for the cells corresponding to intersections of options naturally related 

among the row and column categories, such as the party and the candidate of the party 

in ticket-splitting analysis or the same party in voter transition problems. In a mirror 

fashion, the analyst could also reduce the expected bias committed by nslphom in 
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intermediate fractions by adding new constraints in the model for them. Constraints 
that reduce their initial space of feasible values from the whole [0,1] interval to some 
meaningful subinterval. The latter may be considered as reasonable in demographic 
voting studies. 

6.3. Can estimates be improved by combining nslphom and ei manual so-
lutions? 

The previous analyses give clues as to when ei_manual and nslphom will generate 
good solutions and also demonstrate that both methods show complementary biases in 
the estimates of the p jk. This knowledge could be used to improve, on average, the 
predictions obtained using either of the two methods separately. 

On the one hand, we now know that the solutions generated by ei.MD.bayes 
without customizing priors are, as a rule, not reliable when the number of observations 
is very low. On the other hand, the results suggest that nslphom generates robust 
solutions in a variety of situations. Both results would lead us to clearly recommend 
nslphom when the number of units for which information is available is low and, 
in general, when it is diffcult to achieve convergence in the MCMC chains on which 
ei.MD.bayes is based. 

In the above analyses, we have also learned the effect different characteristics of the 
analyzed scenario have on the aggregated errors, and have also verifed that the errors and 
biases committed by ei_manual and nslphom are complementary. This last insight 
could be used to improve, combining both solutions, the individual predictions obtained 
by each method. We consider that the solutions of nslphom could always enter the 
equation and that the solutions of ei.MD.bayes should not enter if we cannot guaran-
tee convergence in the MCMC chains associated with their solutions. Table 7 offers the 
result of combining (with the same weights) the solutions achieved with ei_manual 
and nslphom in the reference database. As can be seen, the combined solutions are, on 
average, more accurate than the individual solutions. The exception is the solutions that 
are achieved for Scotland, where the combined solutions are worse than those obtained 
with nslphom. 

A detailed analysis of the solutions achieved for Scotland reveals, as shown in Fig-
ure S8 of the supplementary material, that the distribution of errors for the solutions 
achieved with ei_manual presents two populations. This is because the algorithm 
included in ei.MD.bayes only achieves, with the ei_manual specifcation, con-
vergence in about half of the elections. In these scenarios, when ei.MD.bayes does 
not reach convergence, the analyst must decide between two alternatives: consider only 
the nslphom solution or manually tune ei.MD.bayes in each of the elections until 
the convergence of the chains can be guaranteed. This second alternative plays against 
automation and is quite time-consuming, being almost prohibitive when the number of 
elections to analyze is very high. 

The Scottish results therefore raise an important question about when we can com-
bine the solutions of ei.MD.bayes and nslphom. The obvious answer would be: 
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Table 7. Summary of the performance of the solutions attained in the reference database by 
averaging nslphom and ei manual solutions. 

Country Year NZ 2002 NZ 2005 SCO 2007 NZ 2008 NZ 2011 NZ 2014 NZ 2017 NZ + SCO 
# of Elections N = 69 N = 69 N = 73 N = 70 N = 70 N = 71 N = 71 N = 493 
Avg. # of units I = 83.2 I= 81.8 I= 70.2 I= 84.1 I= 85.7 I= 81.2 I= 101.9 I= 84.0 
Avg. # of cells RC= 39.5 RC= 23.8 RC= 35.2 RC = 23.4 RC= 26.2 RC= 27.9 RC= 24.8 RC= 28.7 

ei manual 10.75 8.53 
Average of EI mesasures 
23.09 8.34 7.68 7.88 6.93 10.52 

nslphom 
combined 

12.79 
9.39 

9.68 
7.90 

8.86 
14.09 

9.11 
7.44 

9.46 
7.12 

9.69 
7.05 

8.91 
6.87 

9.77 
8.58 

ei manual 6.30 5.61 
Average of WPE mesasures 

18.47 5.86 4.88 4.86 4.54 7.28 
nslphom 
combined 

7.90 
5.76 

6.09 
5.23 

4.80 
10.22 

6.09 
5.16 

6.26 
4.71 

6.55 
4.49 

5.67 
4.50 

6.18 
5.75 

Source: compiled by the authors after applying the function nslphom of the R package lphom (Pavı́a and Romero, 
2021) with default options and the function ei.MD.bayes of the R package eiPack (Lau et al., 2020) with argu-
ments sample = 1000, thin = 100, burnin = 100000 and the output of function tuneMD with ntunes = 
10 and totaldraws = 100000 as tune.list argument to the offcial data from the New Zealand electoral com-
mission and the Scotland Electoral Offce described in Section 3. Combined solutions have been obtained as arithmetic 
means of the ei_manual and nslphom solutions. 

when we have reached convergence with ei.MD.bayes. This brings us back to the 
starting point: we have to check convergence (a process not easily automatable) and, 
if this is not achieved, we have to continue testing specifcations, with their enormous 
associated labor and computational costs. To break this cycle, it would be interesting to 
study if there is a way to use the robust nslphom solution to determine ‘automatically’ 
when the solution reached by ei.MD.bayes is reliable. 

7. Discussion and concluding remarks 

The problem of forecasting the inner-cells counts of a contingency table just knowing 
its row and column aggregates outlines a relevant problem in many settings, including 
economics, epidemiology and marketing, being sociology and political science where 
it has aroused more interest. Social scientists, politicians and the media, among other 
agents, are very interested in mapping the transitions in preferences of voters between 
elections and in knowing how different social groups vote. Surveys are sometimes used 
to answer these questions. However, they are not always available (as in historical or 
local elections) and, more importantly, they are not especially reliable in estimating the 
coeffcients p jk. Polls present signifcant weaknesses in terms of both precision and 
accuracy (see, e.g., Miller, 1972; King, 1997; Klima et al., 2016; Dassonneville and 
Hooghe, 2017; Plescia and De Sio, 2018; Romero et al., 2020). Hence, a number of 
algorithms have been suggested in the literature to estimate from observed aggregate 

idata the fractions p jk and p jk. Because aggregate data are readily available, the issue is 
to ascertain the performance of the different algorithms. 
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Several papers have focused on studying theoretically under which circumstances 
the forecasts obtained would be reliable and how the basic models can be modifed un-
der specifc circumstances (see, e.g., Firebaugh, 1978; Gelman et al., 2001; Greiner and 
Quinn, 2009; Forcina and Pellegrino, 2019). The aim of this paper has been to assess, 
from an empirical perspective, the accuracy and effciency, among other issues, of the 
two more powerful methods currently available for forecasting R×C ecological tables: 
on the one hand, the ecological Bayesian approach programmed in the ei.MD.bayes 
function of the eiPack R-package (Lau et al., 2020) and, on the other hand, the mathe-
matical programming algorithms available in the lphom R-package (Pavı́a and Romero, 
2021). 

In this study, we have started from a singular database made up of almost 500 elec-
tions, where we have the gold standard for comparison: the real p jk values, a quite 
unusual issue (Pavı́a, 2022). From this baseline database, we have created new scenar-
ios of analysis to evaluate how the different algorithms behave in either more stress-
ful or simpler situations. The results show that to obtain satisfactory solutions with 
ei.MD.bayes it is absolutely essential to properly tune its arguments. It is necessary 
to guarantee convergence in the MCMC chains on which the algorithm implemented in 
ei.MD.bayes is based in order to obtain reliable solutions. This requires adequately 
qualifed analysts and is accompanied by signifcant time costs in terms of workforce 
and computational skills. In contrast, the lphom functions, especially the nslphom 
function, are capable of producing accurate results in seconds with their default options, 
which also makes it robust to claims of hacking. In any case, when ei.MD.bayes 
is properly tuned and convergence is reached (although, sometimes this is more diff-
cult, such as when the amount of information available is scarce) its solutions tend to be 
slightly more accurate than those of nslphom. 

In terms of robustness, it is obtained that while ei.MD.bayes solutions are much 
more sensitive to the different characteristics of the dataset used, nslphom generates 
satisfactory solutions in a signifcantly greater range of scenarios. The inferences of 
ei.MD.bayes with default priors are very sensitive to the data-unknowns relationship, 
deteriorating notably when the number of units is reduced and, more intensively, when 
the proportion of rows with extreme fractions grows, while nslphom is more robust, 
being quite insensitive to a decrease in the amount of available data. 

The fact that ei.MD.bayes malfunctions with few units without proper customiza-
tion and that nslphom generates satisfactory solutions even under those circumstances 
makes lphom-based approaches also preferable in terms of data wrangling. In fact, the 
costs of obtaining and pre-processing data are generally very relevant in actual ecologi-
cal inference applications and they grow with the number of units. The ei.MD.bayes 
function also requires that ∑k Nj.i = ∑ j N.ki be verifed for all units, ∀i, which does not 
always occur naturally, it being necessary therefore to apply some data pre-processing 
strategies to guarantee the equalities (Klima et al., 2016). The functions in lphom, 
on the other hand, are capable of handling various scenarios with discrepancies in the 
previous accounting equalities (Pavı́a, 2023). 
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In view of all the previous considerations, our recommendation would be to use 
nslphom as a reference algorithm and to also use ei.MD.bayes when we are able to 
guarantee the convergence of the MCMC chains in the solution provided. In this case, it 
would even be a good idea to combine both solutions since the biases committed by both 
functions in the estimation of the coeffcients p jk are complementary. While nslphom 
tends to overestimate high p jk values and underestimate low values, ei_manual tends 
to overestimate low values and underestimate high values. This result prompts us to 
tackle a new line of research to fnd ways to determine the weights with which the solu-
tions of both functions should be combined to obtain more accurate joint solutions. 

We have seen that the accuracy of the solutions achieved by both procedures depends 
on a set of variables that can be calculated a priori, from the observed data. For example, 
the nslphom algorithm is more sensitive to non-compliance with the homogeneity hy-
pothesis, while ei_manual suffers more when the number of units decreases or when 
the complexity of the problem increases. It would be interesting to study if this insight 
could be used, when the convergence of the MCMC chains is guaranteed, to determine 
an optimal weight structure that maximizes the quality (accuracy) of an estimate based 
on a weighted mean. 

Considering the previous idea further, and taking into account that, on the one hand, 
one of the main weaknesses of the approach implemented in ei.MD.bayes lies in the 
fact that its arguments need to be correctly tuned and, on the other hand, that nslphom 
usually produces reasonable solutions, although slightly worse than ei.MD.bayes so-
lutions when this is properly tuned and converges, another line of research worth explor-
ing would be to study whether the use of ei.MD.bayes could be automated by defn-
ing the priors of its Bayesian specifcation using the solution reached with nslphom. 
The outputs of nslphom could be employed to generate (overdispersed) priors for the 
ei.MD.bayes hyperparameters, including the possibility of using them to produce 

iproper starting values for the α jk and p jk, which can be declared to ei.MD.bayes 
through its start.alphas and start.betas arguments. 

The idea would be to study if this strategy would allow better solutions to be reached 
combining the strengths of both approaches in another way without paying the price of 
automation. Another advantage of this approach would be that it allows a more natu-
ral way of measuring the uncertainty of the estimates. Measures of uncertainty always 
relevant, that in some contexts, such as in US voting rights litigation, are extremely im-
portant. This approach, however, will not come without drawbacks. Using the nslphom 
output to defne the ei.MD.bayes priors would not produce an authentic Bayesian es-
timate, since in this scenario the priors to be used by ei.MD.bayes would have been 
generated from the same data that it is going to employ to update them. In this case, this 
two-step strategy could be exclusively observed as an optimization method, but not as 
a proper Bayesian approach. Even though, using nslphom output to generate starting 
values for the MCMC chains does make sense, since it should lead to more effcient 
convergence and better tuning parameters. 
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In our discussion we have placed certain emphasis on automation (after all, we are 
dealing with a large number of elections) which is particularly relevant, for instance, in 
election night analysis. Nevertheless, depending on the context and the ultimate use of 
the estimates, making inferences beyond flling in the unobserved inner cells of the ta-
bles can be more than necessary (for example, in voting rights litigation or in academic 
studies), and this is more easily accomplished using a full statistical model than a mathe-
matical programming algorithm. Because aggregation involves the loss of information at 
the individual level, any single approach to ecological inference requires some assump-
tions, with the success of the effort partially depending on these. Hence, in our view, it 
pays for the analyst to have a variety of methods that can be used depending on the pur-
pose of the analysis and the logistic, human-resources and time constraints, and also for 
exploring the data. When different models lead to qualitatively similar conclusions, one 
can consider the results robust to the different sets of assumptions. But, when various 
models yield different conclusions, the analyst should, conditional on the ultimate aim of 
the estimates and/or the circumstances, examine the impact of the different assumptions 
on the conclusions or make her/his decisions with the aid of this and other comparative 
studies. 
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