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Missing data analysis and imputation via latent 
Gaussian Markov random felds 

Virgilio Gomez-Rubio´ 1, Michela Cameletti2 and Marta Blangiardo3 

Abstract 

This paper recasts the problem of missing values in the covariates of a regression model 
as a latent Gaussian Markov random feld (GMRF) model in a fully Bayesian framework. 
The proposed approach is based on the defnition of the covariate imputation sub-model 
as a latent effect with a GMRF structure. This formulation works for continuous covari-
ates but for categorical covariates a typical multiple imputation approach is employed. 
Both techniques can be easily combined for the case in which continuous and categor-
ical variables have missing values. The resulting Bayesian hierarchical model naturally 
fts within the integrated nested Laplace approximation (INLA) framework, which is used 
for model ftting. Hence, this work flls an important gap in the INLA methodology as 
it allows to treat models with missing values in the covariates. As in any other fully 
Bayesian framework, by relying on INLA for model ftting it is possible to formulate a 
joint model for the data, the imputed covariates and their missingness mechanism. In 
this way, it is possible to tackle the more general problem of assessing the missingness 
mechanism by conducting a sensitivity analysis on the different alternatives to model the 
non-observed covariates. Finally, the proposed approach is illustrated in two examples 
on modeling health risk factors and disease mapping. 
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1. Introduction 

Missing data is an important issue a researcher needs to deal with in any statistical analy-
sis; failing to properly account for it can result in a reduction of statistical power, or even 
in biased statistical inference. Consequently, countless methods have focused on how to 
deal with missing data (see, for example, ?Enders, 2010; van Buuren, 2012; Trivellore, 
2015; Little and Rubin, 2019). 

Missing data can occur for a number of reasons, as described in Little and Rubin 
(2019). Sometimes, the missingness mechanism is ignorable and inference can rely 
on the observed data alone, appropriately coupled with a suitable imputation or data 
augmentation model if needed. When the missingness mechanism is not ignorable, a 
joint approach is required to ft the analysis model, impute the missing values and assess 
the missingness mechanism. Under this scenario, it is recommended that a sensitivity 
analysis is carried out to assess the impact of the missingness mechanism on the model 
parameters estimates (Mason et al., 2012). 

The Bayesian paradigm has gained popularity for dealing with missing data, making 
no distinction between parameters and missing data which are considered as additional 
unknown parameters. For these reasons, and differently from other ad-hoc methods 
(Nakagawa, 2015), with a fully Bayesian approach it is possible to combine the analysis 
and imputation model in a joint estimation framework (Erler et al., 2016). For instance, 
Mason (2009) and Mason et al. (2012) developed a fully Bayesian missing imputation 
framework in order to adjust for several missing covariates in longitudinal or cross-
sectional studies; each of the missing covariates is assigned an imputation model, all 
jointly modelled with the analysis model. 

The approach we propose in this paper is based on recasting the imputation model to 
defne it as a latent Gaussian Markov random feld (GMRF, Rue and Held, 2005) which 
is part of a larger Bayesian hierarchical model. This fts naturally within the integrated 
nested Laplace approximation (INLA, Rue, Martino and Chopin, 2009) methodology, 
as an alternative to Markov chain Monte Carlo (MCMC, see, for example, Brooks et al., 
2011). This approach is suitable for continuous covariates and can be also extended to 
impute categorical variables. This makes model ftting with missing covariates possible 
in INLA, and our new approach flls an important gap, as INLA has always required that 
the data in the latent GMRF defning the model to be fully observed. Here we focus on 
the case of missing values in the covariates as INLA can easily ft models with missing 
values in the response variable, simply computing the corresponding posterior predictive 
distribution derived from the analysis model to be ft (see, for example, Gómez-Rubio, 
2020). 

A previous attempt to solve the issue of missing values in the covariates in the INLA 
framework can be found in Gómez-Rubio and Rue (2018). They adopt a Gaussian prior 
for the imputation of the missing values in the covariates and sample from the miss-
ing data posterior distribution through INLA within MCMC. A different approach is 
proposed in Chapter 8 of Blangiardo and Cameletti (2015), where a bivariate model 
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for spatially misaligned data is estimated by adopting the stochastic partial differential 
equations (SPDE) approach Lindgren, Rue and Lindstrom (2011). Covariate values are 
imputed (in new locations) by assuming a spatial Gaussian feld which is also included 
in the linear predictor of the response model. See also Barber et al. (2016); Forlani 
et al. (2020) for model examples on the use of spatial models for misalignment. Alter-
natively, Gómez-Rubio (2020) proposes a multiple imputation (MI) approach (Rubin, 
1987, 1996; Carpenter and Kenward, 2012): the covariates are imputed multiple times 
through resampling, so that N complete datasets are used in the analysis model. All the 
results are then combined to obtain the fnal estimates of the model parameters (see Ru-
bin, 1987, for details). The approach introduced here differs from previous approaches 
in that a joint framework is proposed, similarly to Mason et al. (2012). Through the 
joint model, the uncertainty about the imputation of the missing covariates propagates 
throughout the model so that it also refects on the model parameters estimates in the 
analysis. At the same time, information from the outcome in the analysis model feed-
backs on the imputation, making it unnecessary to include the outcome in the imputation 
model, as commonly done in the classic MI approach. This new approach fts naturally 
within the INLA framework, can be extended to consider different types of problems 
(i.e., not only spatial models) and can be easily ft with the associated R-INLA package 
for the R programming language (Gómez-Rubio, 2020). 

The paper is structured as follows. In Section 2 we review methods for missing 
values, while in Section 3 we introduce our novel method for missing values imputation. 
Section 4 presents a brief summary of the INLA approach to Bayesian inference and 
how our novel approach fts within this framework. Section 5 shows two examples for 
the application of our proposed method and Section 6 presents discussion points. 

2. Approaches to deal with missing data 

In their seminal book, Little and Rubin (2019) identify three possible mechanisms of 
missingness. If the probability of being missing is the same for all the observations, we 
can assume that the missing data distribution does not depend on any of the observed 
or missing variables. In this case the data are said to be missing completely at random 
(MCAR). If the distribution of the missing data depends on completely observed vari-
ables (i.e., observed for all the subjects) and it does not depend on the varibles with 
missing values, the data are called missing at random (MAR). An example of MAR is 
that women are less likely to answer questions related to their income than men, but this 
has nothing to do with the income itself. Finally, if neither MCAR or MAR holds, the 
missing not at random (MNAR) case occurs and the missing values distribution depends 
on both missing and observed variables. For instance, in a neurological questionnaire, a 
subject is less likely to answer questions related to the disease if this is severe. 

Under MCAR or MAR, the missing data mechanism is ignorable. As reported in 
Seaman and White (2013), this means that inferences obtained from a parametric model 
for the observed data alone are the same as inferences obtained from a joint model for 
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the data and missingness mechanism. On the contrary, if the data are MNAR the missing 
data mechanism is not ignorable and a model for the missingness mechanism is required. 
It is important to note that we cannot gather evidence from the data at hand about the 
missing data mechanism (MCAR, MNAR or MAR). On the basis of the knowledge 
regarding the data collection methods and the assumed relationship among the collected 
variables, it is possible only to make assumptions about the reasons for missing data, 
choose the best corresponding strategy for data analysis (Pigott, 2001) and conduct a 
sensitivity analysis on these assumptions (Mason et al., 2012). 

The simplest and most popular ad-hoc method to deal with missing information con-
sists in replacing the missing data with a plausible value, such as the mean or median cal-
culated over the observed cases (or the mode if the variable is categorical) or to perform 
a complete cases analysis (i.e., removing the observations with one or more missing val-
ues). However, while the frst method has the potential of distorting the data distribution 
and of underestimating their variability, the second one has the major drawback of reduc-
ing the power of the study (as the dataset for the analysis will have a reduced size) and of 
producing biased estimates if the MCAR assumption is not valid. To overcome this issue, 
inverse probability weighting was developed, based on the idea of assigning different 
weights to the different complete cases based on specifc characteristics which are rele-
vant for the missing data; in two reviews Carpenter, Kenward and Vansteelandt (2006) 
and Seaman and White (2013) showed advantages and drawbacks of the approach. 

In the last three decades model-based methods have been preferred to account for 
missing data in the case of an ignorable missing data mechanism; see, for instance, the 
papers by Little 1992, Little and Rubin 2019 and Schafer and Graham 2002. Regression 
mean imputation is the simplest of the model-based methods, where the variable with 
missing data is predicted based on a regression model which includes the other variables 
as regressors. To overcome the issue of unreasonable lack of uncertainty for the imputed 
values, stochastic regression imputation was proposed to generate imputed values adding 
some random noise (Nakagawa, 2015). 

A well established and increasingly popular model-based approach to dealing with 
missing data occurring in more than one variable is MI proposed by Rubin (1987, 1996). 
Through Monte Carlo simulation, it produces several versions of the complete dataset 
which only differ in the imputed missing values. Then, for each complete dataset the 
estimates of interest are computed by ftting the analysis model (also called substantive 
model) and the results are pooled together into a fnal estimate which takes into account 
the uncertainty of the imputed data. The imputation of the missing values can be done 
using mainly two strategies (van Buuren, 2012): i) joint modeling, when missing values 
are imputed by sampling from a multivariate model ftted to the data, for which usually 
a multivariate Gaussian is used (?Mason et al., 2012); ii) fully conditional specifcation 
(also known as multiple imputation using chained equations, MICE (van Buuren and 
Groothuis-Oudshoorn, 2011)), when conditional univariate distributions are used to im-
pute the missing values iteratively through a variable-by-variable approach (see White, 
Royston and Wood 2011 for a thorough review of this method). 
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2.1. Bayesian inference 

Bayesian inference provides a suitable framework for dealing with missing data, as it 
treats missing data similarly to model parameters, making no distinction between them. 
For these reasons and differently from other methods, with a fully Bayesian approach, it 
is possible to include the analysis model, imputation model and missingness mechanism 
model in a joint estimation framework (Erler et al., 2016). 

Let D denote the complete set of data, which will include the response variable and 
the covariates. It is assumed that D = (Dobs,Dmis), where Dobs denotes the observed 
values while Dmis refers to the missing values. Moreover, let M be the missing data 
indicator variable, i.e., a vector or matrix with the same length or dimension as D with 
values equal to 1 if the corresponding values of D is missing (and 0 otherwise). 

Following the selection model approach (Nakagawa, 2015), the joint distribution of 
D, M , the model parameters θD and the parameters in the missingness model θM can 
be expressed as 

π(D,M ,θD,θM) = π(D,θD)π(M | D,θM)π(θM) = 
= π(M | D,θM)π(D | θD)π(θD)π(θM). 

This formulation assumes that parameters θD and θM are distinct and with independent 
priors and that the distribution of D (given θD) does not depend on the parameters of the 
missingness model θM. Note that term π(M | D,θM) represents the missingness model 
and π(D | θD) the likelihood of the data. 

Following this, π(M | Dobs,Dmis,θM) depends on a set of parameters θM, and mod-
els the missing data mechanism for the three cases introduced above (Little and Rubin, 
2019): 

MCAR, if the distribution does not depend on any of the fully or partially observed 
variables, i.e., π(M | Dobs,Dmis,θM) = π(M | θM). 

MAR, if the distribution depends only on fully observed variables, which means that 
π(M | Dobs,Dmis,θM) = π(M | Dobs,θM). This implies that, given the observed 
data, the missingness mechanism does not depend on the unobserved data. 

MNAR, if the distribution π(M | Dobs,Dmis,θM) depends on fully and partially ob-
served variables. 

If the data are MCAR or MAR and the parameters θM are distinct of the parameters 
of the data generating process, θD, and with independent priors, then the missing data 
mechanism is ignorable and π(M | Dobs,Dmis,θM) can be omitted (Seaman and White, 
2013). On the contrary if the data are MNAR, the missing data mechanism is not ignor-
able and a model for missingness is required (i.e., a logistic model) and has to be jointly 
estimated with the main model, that will include an imputation model for the missing 
values. 
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Note that it is not possible to tell from the data at hand whether the missing obser-
vations are MCAR, MNAR or MAR and at the same time it is not trivial to specify a 
model of missingness. In this case, a sensitivity analysis needs to be carried out to as-
sess the impact of different scenarios for the missing data on the estimates of the model 
parameters (Carpenter, Kenward and White, 2007; Mason et al., 2012). 

2.2. Missing data in the response variable 

Let now D = (y,x) be the set of data including the response y and the covariates x. 
If it is assumed that the covariates are fully observed and that the response variable y 
contains missing values, i.e., the response variable y can be split into observed values, 
yobs, and unobserved values, ymis. Hence, Dobs = (yobs,x) and Dmis = (ymis). In this 
case likelihood π(Dobs,Dmis | θD) corresponds to the distribution of π(yobs,ymis | x,θy), 
with θy the hyperparameters in the likelihood. 

If we assume that the missing data mechanism is ignorable, the imputation of the 
missing data values ymis is simply done through the posterior predictive distribution 
π(ymis | yobs,x). In general, we will have the observation model by defning an appro-
priate distribution for the likelihood. In addition, the mean of observation i, φi ,will be 
linked to a linear predictor ηi on the covariates and other effects using an appropriate 
link function g(·), i.e., 

P L 
g(φi) = ηi = β0 + ∑ βpxpi +∑ fl(uli). (1) 

p=1 l=1 

Here, β0 is an intercept, {βp}P
p=1 the coeffcients of the P covariates available {xp}P 

p=1 
and { fl(·)}L

l=1 represents L different non-linear effects on covariates {ul}L
l=1 (which are 

also part of the observed data Dobs now). 
If the data are MNAR, a missing mechanism model π(M | y,x,θM) is required in 

addition to the previous model, e.g., 

Mi | pi ∼ Bernoulli(pi) 
R 

logit(pi) = γ0 + ∑ γrxri + δ yi (2) 
r=1 

where θM = [γ1,γ1 · · ·γR δ ]T and Mi is a missingness indicator for yi. In addition, an 
imputation model for the missing values will be required. Furthermore, δ is a coeffcient 
that measures the effect of the response variable on the missingness mechanism. 

However, in this work we will assume that there are no missing observations in the 
response or that the missingness mechanism is ignorable, which means that posterior 
inference is based on the predictive distribution. 

2.3. Missing data in the covariates 

We now consider the case when Dobs = (y,xobs) and Dmis = (xmis), with xobs the ob-
served values of the covariates and xmis the missing ones. Henceforth, the likelihood 
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π(Dobs,Dmis | θD) can be written as 

π(y,xobs,xmis | θD) = π(y | xobs,xmis,θy)π(xobs,xmis | θx) 

assuming that θD = [θT θT]T is the vector of conditionally independent parameters. The y x 
distribution π(xobs,xmis | θx) represents the joint distribution of observed and missing 
covariates and it includes the imputation model. For example, the joint distribution 
can be a multivariate normal distribution (taking into consideration correlation between 
covariates) for continuous covariates, or a discrete distribution if the covariate is cate-
gorical. 

In general, we will have the observation model with a linear predictor as in Equa-
tion (1) together with the imputation model and the missingness model (described in 
Section 3) as in Equation (2) but only if the missing data are MNAR. 

3. Imputation of continuous missing covariates 

Differently from Section 2, let z = [zobs 
T zmis 

T]T denote now the complete set of values 
of a covariate, which will typically be a column vector. The response values y will 
be written separately where needed. This is done for simplicity, so that the imputation 
of a single covariate with missing observations will be considered now. However, this 
approach can be easily extended to consider the imputation of missing values in several 
continuous covariates using a multivariate model. 

∗ ∗ ∗ T ∗ T]TLet z be a latent effect that is split in two parts, i.e., z = [z z . The main obs mis 
∗idea is to defne latent effect z as a GMRF with mean µ ∗(θI) and precision Q∗(θI) 

∗ ∗ so that zobs is as close as possible to the actual values zobs and so that zmis is obtained 
using a particular imputation model for zmis that depends on observed covariates zobs 
and some parameters θI . 

∗To guarantee that the distribution of zobs is taken to be as close as possible to the 
∗observed covariate data zobs, the mean of zobs is set equal to zobs and its associated sub-

block in Q∗(θI) equal to a diagonal matrix with high values (e.g., 1010) in the diagonal. 
∗In this way, the values of zobs are centered at observed values zobs and have a negligible 

∗variation about these observed values. Regarding the distribution of zmis (with mean 
µc and precision Qc), it will be based on an imputation model on observed covariates 

∗ ∗ zobs and parameters θI . Finally, we will also assume that zobs and zmis are independent 
∗because the marginal distribution of zmis will include all dependence of the missing 

values on the observed data zobs. 
Consequently, the joint distribution of z ∗ is given by �� � � �� 

zobs 1010I 0 
z ∗ | θI ∼ Normal , , (3)

µc 0 Qc 

∗where I represents the identity matrix. The distribution of z will be used later when 
defning the imputation model for the missing values as a latent effect for R-INLA in 
Section 4. 
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3.1. Imputation latent effect 

To derive the distribution for the imputation model, π(zmis | zobs,θI), a multivariate 
Normal distribution is assumed for the joint distribution of the complete set of covariates 
z: �� � � �� 

µobs Qobs,obs Qobs,mis z | θI ∼ Normal , = Normal(µ,Q) , (4)
µmis Qmis,obs Qmis,mis 

where both the mean and the precision matrix can depend on θI . It follows that the 
imputation model is defned by the following conditional distribution (Rue and Held, 
2005): 

zmis | zobs,θI ∼ Normal(µc,Qc) 

where µc = µmis − Q−1 = Qmis,mis.mis,misQmis,obs (zobs − µobs) and Qc Note that µc and 
Qc are necessary to defne the distribution of the new latent effect given in Equation (3). 

∗As stated above, the distribution of zmis will play the role of the imputation model of 
the missing values. This imputation model will, in practice, be a sub-model in a larger 
model that will be defned using the conditional distribution of the missing values zmis 

given the observed data zobs and hyperparameters θI . Note that in this sub-model zobs 
can be regarded as the data while zmis and θI are the parameters to estimate. Because this 
sub-model will be included as part of a fully Bayesian larger model, posterior inference 
on zmis and θI will be based on all observed data in the model (i.e., response variable 
and observed covariates) so that there is feedback from other parts of the model to make 
inference on zmis and θI . 

Considering only the data and parameters in the sub-model, the way in which the 
imputation sub-model is defned relies on the distribution of zmis given zobs. This can be 
written as Z Z 

π(zmis | zobs) = π(zmis,θI | zobs)dθI = π(zmis | zobs,θI)π(θI | zobs)dθI. 
ΘI ΘI 

where ΘI is the parametric space of θI . 
Here, π(zmis | zobs,θI) is the conditional distribution of the missing values given the 

observed data and the hyperparameters of the imputation model introduced above. Also, 
note that π(θI | zobs) can be regarded as the distribution of the hyperparameters in the 
imputation sub-model given the observed data. Note that this distribution is estimated 
only from the observed data zobs, so it can be regarded as an informative prior for θI . 
Moreover, it can be rewritten as 

π(θI | zobs) ∝ π(zobs | θI)π(θI) 

where π(zobs | θI) is obtained by integrating zmis out in the distribution of z, that is, R
π(zobs | θI) = π(zobs,zmis | θI)dzmis. Finally, the hyperparameters θI are typically 
modelled as exchangeable a priori. 

Next, two particular examples of imputation with a typical linear regression and a 
spatial model (useful when the covariate is spatially correlated) are described. It is worth 
noting that the principles presented below can be extended to a wide range of models, 
including longitudinal data, time series and other smooth terms. 
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3.2. Imputation with a linear regression model 

The frst imputation model that we describe is based on the linear regression model. We 
assume that the mean of the multivariate Normal distribution in Equation (4) is defned, 
considering the n observations, as Xβ. Here, X is a matrix of P fully observed co-
variates (columnwise) with associated coeffcient vector β = [β0 · · ·βP]

T . To match the 
structure of z = [zobs 

T zmis 
T]T , matrix X can be rewritten as a block matrix as � � 

XobsX = 
Xmis 

Under the linear regression model, we assume that the mean of z depends on a 
linear combination of the fully observed covariates, i.e., µ = E(z) = Xβ. By adopting 
the block notation, we thus assume that the joint distribution of Equation (4) is given by �� � � �� 

Xobsβ τIobs 0 
z | θI ∼ Normal , ,

Xmisβ 0 τImis 

where τ is the precision hyperparameter and Iobs and Imis are identity matrices whose 
dimensions depend on the number of missing and observed data in z. In this case the 
vector of hyperparameters is given by θI = [βT 

τ]T . Note that, given θI , observations are 
assumed independent of each other, which simplifes the model. 

Following the approach presented in Section 3.1, we obtain that the conditional dis-
tribution of zmis | zobs,θI (i.e., the imputation model) has the following mean and preci-
sion: 

µc = Xmisβ, Qc = τImis, 

As stated above, note that β and τ are informed by π(β,τ | zobs), which is propor-
tional to π(zobs | β,τ)π(β,τ). Note that π(zobs | β,τ) can be easily derived from the 
multivariate normal distribution of z above and that it will also be a multivariate normal 
distribution with mean Xobsβ and precision τIobs. 

Finally, priors must be set on the hyperparameters. For simplicity, each of the el-
ements in β is assigned a Normal distribution with zero mean and small precision. 
Parameter τ has a vague prior (e.g., a Gamma distribution with small precision). All 
hyperparameters are independent a priori, so that π(θI) = π(τ)ΠP

i=0π(βi). Note that 
other priors could be easily considered here. 

3.3. Imputation with a spatial model 

When the covariate to be imputed is spatially correlated we can assume a conditional 
autoregressive (CAR) specifcation (Held and Rue, 2010) so that the mean is µ = α = 
[α · · ·α]T and the precision is Q = τ(I −ρW ). Here, α is the intercept of the linear pre-
dictor, ρ is a spatial autocorrelation parameter, and W is an adjacency matrix, defning 
the sets of neighbours. This is often scaled dividing it by its largest eigenvalue as this 
will allow us to take ρ in the (0,1) interval. Note that W can be rewritten as a block 
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matrix with four sub-matrices according to missing and observed values, as done with 
Q in Equation (4). The vector of hyperparameters is now given by θI = [τ ρ α

T]T . 
Adopting block notation, under the CAR specifcation for imputation the following 

joint distribution is assumed for z = [zobs 
T zmis 

T]T : �� � � �� 
αobs τ(Iobs − ρWobs,obs) −τρWobs,mis z | θI ∼ Normal , . 
αmis −τρWmis,obs τ(Imis − ρWmis,mis) 

It then follows that the conditional distribution of zmis | zobs,θI (i.e., the imputation 
model) is characterised by the following mean and precision matrix: 

µc = αmis − (Imis − ρWmis,mis)
−1(−ρWmis,obs)(zobs − αobs) 

Qc = τ (Imis − ρWmis,mis) 

Again, τ , ρ and α are informed by π(τ,ρ,α | zobs), which is proportional to the product 
π(zobs | τ,ρ,α)π(τ,ρ,α). As in the previous case, π(zobs | τ,ρ,α) can be easily derived 
from the multivariate normal distribution of z above and that it will also be a multivariate 
normal distribution with mean αobs and precision τ(Iobs − ρWobs,obs). 

Finally, α is given a Gaussian prior with zero mean and small precision, τ is assigned 
a vague prior (e.g., a Gamma distribution with a small precision), while logit(ρ) is as-
signed a Gaussian prior with zero mean and small precision (see, for example, Gómez-
Rubio, 2020, Chapter 5, for details on why this parameterisation is used). 

3.4. Extension to the imputation of categorical missing covariates 

The imputation of the missing values in categorical variables does not ft into the GMRF 
framework described in Section 3 as these variables are defned in a discrete space. For 
this reason, a different approach will be considered for defning the imputation model 
π(zmis | zobs,θI) and for estimating the model. In particular, as imputation model we will 
consider a multinomial likelihood which can be ft with INLA by using the multinomial-
Poisson transformation (Baker, 1994). 

Note that in this case the procedure is similar to the multiple imputation approach: 
the imputation model is specifed where the categorical variables with missing values are 
considered as the response variables, so that the predictive distribution of the missing ob-
servations can be computed. Similarly to the case of missing data in the response, values 
are sampled to fll the missing values in the covariates. Then, the analysis model is run by 
using the imputed covariates as completely known. This procedure is repeated by simu-
lating several samples and estimating the corresponding models; fnally, all the resulting 
models are pooled by using Bayesian model averaging (Gómez-Rubio and Rue, 2018). 
Note that this approach does not produce feedback in the estimation of the parameters of 
the imputation model as in the joint approach, given that it is done in two-stages rather 
than jointly. For this reason, and similarly to the classical MI, the outcome y should be 
included in the imputation model. Alternatively, INLA within MCMC can be used to ft 
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the joint model using a fully Bayesian approach (see the example in Gómez-Rubio and 
Rue, 2018). 

Inference on the model parameters when multiple imputation of a categorical covari-
ate can be summarised as follows. Considering the generic parameter θk we can write 
its posterior marginal distribution as: 

π(θk | zobs,y)= ∑ π(θk,zmis | zobs,y)= ∑ π(θk | zobs,zmis,y)π(zmis | zobs,y). 
zmis∈Θmis zmis∈Θmis 

Here, Θmis represents the parametric space of the missing values of the categorical co-
variate, which in a Bayesian framework are considered to be random variables. 

(l)Given L samples {zmis}l
L 
=1 from π(zmis | zobs,y), the previous marginal can be ap-

proximated as 
L1 (l)

π(θk | zobs,y) ≃ 
L ∑ π(θk | zobs,zmis,y), 

l=1 

(l)where π(θk | zobs,zmis,y) is the marginal of θk obtained from ftting the original model 
(l)with the observed data and the imputed covariate zmis. 

Note that when continuous covariates with missing values are also present both ap-
proaches can be combined. For example, an imputation model can be combined for the 
continuous covariate which is part of the joint model that is ft to every simulated dataset 
where only the missing values of the categorical covariate are flled in. Furthermore, 
a missingness model for the categorical variables can be incorporated into the model 
similarly to the one used for the continuous variables. 

4. The Integrated Nested Laplace Approximation approach (INLA) 

The approach presented in the previous sections can be implemented using a number of 
methods for Bayesian inference. However, it overcomes a major limitation in the INLA 
method as, at present, it cannot cope with missing values in covariates. An introduction 
to the INLA method and the computational details is presented here; then we focus on 
how to implement our proposed framework. 

INLA (Rue et al., 2017; Martino and Riebler, 2019; Gómez-Rubio, 2020) is a deter-
ministic approach for Bayesian inference. It is designed for the class of latent Gaussian 
Markov random feld models, where the distribution of the response yi (observed for the 
i-th unit) is assumed to belong to a distribution family (usually part of the exponential 
family). This is often characterized by a parameter φi (i.e., the mean of yi) defned as a 
function of a structured additive predictor ηi through a link function such that g(φi) = ηi 

(e.g. the logarithm function is used for Poisson data). The linear predictor is defned as 
in equation (1). 

Regarding the tems in the linear predictor, recall that β0 is the intercept, coeffcients 
β = [β1 · · ·βP]

T quantify the (linear) effect of some covariates x = {xp}P
p=1 on the re-
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� 
sponse, and f = f (1)(·), . . . , f (L)(·) is a set of functions defned in terms of some 
covariates u = {ul}L 

l=1. 
Through functions f (·) it is possible to include in the model random effects (perhaps 

indexed in space and time), smooth and non-linear effects of the covariates. For this 
reason, the class of latent GMRF models can accommodate a wide range of models, from 
standard generalized linear models (GLM) to generalized linear mixed models (GLMM), 
including data for time series, lattice data, point pattern and geostatistical data. 

As stated, the set of latent effects χ = {η,β0,β,f} is a latent GMRF in the model, 
which depends on some hyperparameters θ2. Moreover, observations are assumed to be 
independent given the latent effects χ and the likelihood hyperparameters denoted by 
θ1. For convenience, in the following the vector of hyperparameters wil be denoted as 
θ = [θ1 

T θ2 
T]T . 

The outputs of Bayesian inference with INLA are the marginal posterior distributions 
for each element of the latent effects and hyperparameters vector denoted by p(χ• | y) 
and p(θ• | y), respectively. INLA provides deterministically accurate approximations to 
these distributions in a short computing time by using the Laplace approximation and 
numerical integration. 

Each latent GMRF model can be rewritten hierarchically with three levels: 

1. The model for the observed data y = [y1 · · ·yn]
T (i.e., the likelihood) defned as a 

function of some parameters χ and hyperparameters θ: 

y | χ,θ ∼ π(y | χ,θ) = ∏ π(yi | χi,θ). 
i∈{1,...,n} 

2. The model for the latent effects χ: 

χ | θ ∼ Normal(0,Q(θ)) 

where Q(θ) is a sparse precision matrix given the GMRF assumption. 

3. The model for the complete vector of hyperparameters: π(θ). As usually hyper-
parameters are assumed to be independent a priori, π(θ) will be defned as the 
product of different univariate prior distributions. 

Given all these models and components the joint posterior distribution of the random 
effects and the hyperparameters is given by 

π(χ,θ | y) ∝ π(y | χ,θ)π(χ | θ)π(θ). 

As stated above, INLA computes the posterior marginals of the hyperparameters 
and latent effects using that representation by means of numerical integration and the 
Laplace approximation (see Rue et al., 2009, for details). 
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4.1. Computational details 

The INLA approach is implemented through an R package named R-INLA, which is 
available from the INLA website (http://www.r-inla.org/home). The model to be ft is 
defned by setting a formula with all the additive latent effects in the model, which 
includes fxed and random effects. The R-INLA package includes a good number of 
implemented latent effects but others can be implemented as well (see, for example 
Gómez-Rubio, 2020). Note that by default, when R-INLA fnds missing values in the 
covariates (which have the value NA in R) they are replaced by zeros so that the effect of 
the covariate does not affect the linear prediction of that subject. However, this is an issue 
that could result in biased estimates of the coeffcients of the covariates. This is described 
in the R-INLA list of frequently asked questions (FAQ) in the package website. If the 
missing value is found in the response variable, the predictive distribution is computed. 

Generic latent effects can be implemented by defning their structure as a latent 
GMRF. This means defning the mean, precision, hyperparameters and the priors of 
the hyperparameters. These are known as rgeneric latent effects in R-INLA (see, for 
example Gómez-Rubio, 2020, Chapter 11). Once a new latent effect is defned, it can be 
easily incorporated as any other additive effect in the model formula. 

For the new latent effects described in this paper and defned in Equation (3) we have 
to specify the mean µc and precision Qc of the block of the missing values. Remember 
that the block of the observed covariates is simply there to make those values of the latent 
effect to be as close as possible to the observed values and that it does not depend on any 
hyperparameter or other data. Furthermore, the role of the prior on the hyperparameters 
of the imputation model θI is now taken by distribution π(θI | zobs). Hence, the actual 
prior used in the latent effects is taken as 

π(θI | zobs) ∝ π(zobs | θI)π(θI) 

and the normalizing constant is ignored as it is not needed. In a standard implementation 
of a latent effect, the prior of θI would be a typical distribution density that depends 
on a set of fxed hyperparameters, but now the prior of θI is made of the product of 
the two terms above. For this reason, it can be regarded as an informative prior as it is 
essentially estimated from a model ft to zobs. This is what will allow the latent effect 
to produce good estimates of the missing values (if the imputation model is correct). In 
general, there is no way to assess this, but the more covariates used in the imputation 
model the better (see Gelman and Hill, 2007, Chapter 25). The actual prior of the model 
hyperparameters is π(θI) and this can take different forms depending on the number 
and type of hyperparameters in the model. Usually, this will be split into the product of 
several univariate prior distributions. 

Note also that R-INLA works with unbounded hyperparameters, so that the param-
eters in θI may need to be transformed when the latent effect is defned. This may also 
require to include additional terms in the prior (see, for example Gómez-Rubio, 2020, 
Chapter 11). A typical example is to use internally the log-precision instead of the pre-
cision. 

http://www.r-inla.org/home
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Once the imputation latent effect is included in the model formula, it will be part of 
the joint latent effect χ and incorporated into the Bayesian model, so that a full Bayesian 
approach is used to estimate all the model parameters. 

As stated in previous sections, a missingness model can be included (in addition to 
an imputation one) for the case in which missingness is MAR or MNAR. Including a 
missingness model requires defning a model with two likelihoods: one for the main 
model and a binomial model for the missingness indicator variables. Note that under 
MCAR and MAR both models are independent, hence the latter is not needed; however, 
under MNAR it is necessary to explicitly include it and to make it dependent on the 
variables with imputed values. Hence, there will be feedback between both models that 
may affect the imputation process and the estimation of the other model parameters. 

Full details about how to ft these models in R are provided in the associated R 
code (see Section 5 below). A new MIINLA R package which implements the approach 
proposed here and that can be easily used together with the R-INLA package is available 
at https://github.com/becarioprecario/MIINLA. 

5. Examples 

In this section we develop two examples to show how the imputation method proposed 
above can be used with INLA under MCAR, MAR and MNAR. The frst example shows 
a typical regression model in biostatistics with real missing data. This is useful to show 
how a typical multiple linear regression can be used for multiple imputation. The second 
one is based on spatially correlated data to assess the performance of our proposal on 
a simulated study in which a spatially correlated covariate is missing. Note that the 
aim is not to provide a comprehensive analysis of the dataset with missing values but to 
illustrate the methods described in this paper. 

All models have been ft with INLA and its associated R package R-INLA. The R 
code to reproduce the examples described here is available from a GitHub repository at 
https://github.com/becarioprecario/MIINLA paper. 

5.1. Imputation using linear models 

The nhanes2 dataset (?) in the mice R package (van Buuren and Groothuis-Oudshoorn, 
2011) records data on 25 participants in the National Health and Nutrition Examination 
Survey (NHANES). Variables in the dataset include body mass index, cholesterol level, 
age group and hypertensive status. The dataset presents missing observations in body 
mass index, hypertensive status and cholesterol level. 

We will use this dataset to build a model to explain cholesterol level on age group 
and body mass index, where this is imputed. The imputation model will be based on 
a linear regression on the age group. There are three age groups 20-39, 40-59 and 60+ 
years, and the frst group will be set as the reference level. 

It is worth noting that having missing values in the response variable (i.e., cholesterol 
level) is not a problem as the predictive distribution can be easily computed with INLA. 

https://github.com/becarioprecario/MIINLA
https://github.com/becarioprecario/MIINLA_paper
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Hence, the output from ftting this model will include the posterior distribution of the 
imputed values as well as the predictive distribution for the missing responses. 

The analysis model is the following: 

40−59 60+choli = β0 + β1agei + β2agei + β3bmii + εi, i = 1, . . . ,25 

40−59where choli refers to the cholesterol level, bmii to the body mass index, age andi 
60+age are indicator variables of age for groups 40-59 and 60+, respectively, and εi is ai 

Gaussian error term with zero mean and precision τ . 
Note that the missing values of bmii are obtained from the imputation model based 

40−59 60+on linear regression discussed above using as predictors variables age and age .i i 
The imputation model is specifed as 

40−59 60+bmii = βI0 + βI1age + βI2age i i + εIi, i ∈ I. 

Here, I represents the set of indices of the observations with missing values of body 
mass index. Parameters βI0, βI1, βI2 represent the intercept and the covariate coeffcients 
used in the imputation model, and εIi is a Gaussian error with zero mean and precision 
τI . Note that all the parameters in the imputation model are mainly informed from the 
observed values of the body mass index and age, and their prior distributions. Because 
the imputation model is part of the joint model there is also feedback from all the other 
parts of the model when estimating the imputation model parameters and the imputed 
values of body mass index. 

A logistic regression is used for the missingness mechanism of bmii under MAR or 
MNAR. For MAR we assumed an intercept plus the covariate of age group, while for 
MNAR we assumed an intercept plus the covariate of bmii (that includes the imputed 
values). For simplicity, the model with both covariates can be represented as 

Mi ∼ Bernoulli(pi), i = 1 . . . ,25 
40−59 60+logit(pi) = γ0 + γ1agei + γ2agei + δ bmii (5) 

where Mi is a missingness indicator for bmii (0 for observed and 1 for missing). 
Finaly, the priors for the coeffcients of the fxed effects are independent Normal dis-

tributions with zero mean and precision 0.001. For the precision parameters, a Gamma 
with parameters 0.01 and 0.01 is used to provide a vague prior. All parameters are con-
sidered to be independent a priori. 

Note that the model for analysis and the imputation model are the same for the three 
missingness scenarios (i.e., MCAR, MAR and MNAR). However, the missingness mod-
els differ to include different terms to accomodate the different missingness mechanisms; 
see Table 1 to assess which terms are included in each missingness model. 
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Table 1. Posterior mean (and standard deviation) of the parameters from the joint models in the 
nhanes2 dataset. 

Model Parameter 
Missingness mechanism in the model 
MCAR MAR MNAR 

Analysis 

β0 

β1 

β2 

β3 

τ 

-4.084 (1.209) 
1.145 (0.421) 
1.866 (0.541) 
0.111 (0.049) 
2.219 (0.786) 

-4.233 (0.816) 
1.154 (0.398) 
1.879 (0.501) 
0.145 (0.044) 
2.568 (1.312) 

-4.864 (1.247) 
1.229 (0.447) 
1.940 (0.580) 
0.156 (0.044) 
2.620 (1.169) 

Imputation 

βI0 

βI1 

βI2 

τI 

31.195 (1.569) 
-5.902 (1.985) 
-7.395 (1.733) 
0.058 (0.027) 

30.046 (1.515) 
-5.204 (2.316) 
-5.561 (2.372) 
0.073 (0.023) 

30.401 (1.296) 
-4.711 (1.742) 
-6.153 (2.126) 
0.096 (0.030) 

Missingness 
γ0 

γ1 

γ2 

δ 

– 
– 
– 
– 

-0.337 (0.585) 
1.879 (0.501) 

-0.377 (1.044) 
– 

-4.633 (4.892) 
– 
– 

0.092 (0.167) 

Table 1 also shows the different estimates for all the models considered. Regarding 
the Gaussian analysis model, it seems that all three covariates included in the model 
play a signifcant role when explaining cholesterol level. In addition, point estimates are 
very similar across different missingness mechanisms. In the imputation model, we also 
observe that point estimates are very similar across missingness mechanisms. Age also 
plays an important role when imputing the missing values of body mass index. Finally, 
the different models for the missingness mechanism are not directly comparable. 

Under MAR, age40−59 helps to explain why some values of body mass index are 
missing, while under MNAR the missing values do not appear to depend on their actual 
values as the estimate of δ is close to zero. We have not included age under MNAR in the 
missingness sub-model because this covariate is already used when imputing the missing 
values of body mass index, which is included in the linear predictor of the missingness 
model. 

Cholesterol level seems to increase with age. In addition, the imputation models 
point to that body mass index seems to decrease with age. Although this is counterintu-
itive, we believe that is due to the general pattern observed in the dataset, which contains 
data on 25 people and only 13 of them have a complete record (i.e., all the values for all 
the covariates have been observed so that there are no missing values in the covariates). 

As a fnal remark, it is worth noting that ftting these models took a few seconds. 
Hence, the sensitivity analysis could include other models than the ones presented here. 
See, for example, Mason et al. (2012) for a general discussion and alternative models for 
the sensitivity analysis. Larger datasets may take longer to run, but INLA will be able to 
ft these models faster than typical MCMC algorithms. 
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5.1.1. Imputation of categorical covariates with missing values 

As we have mentioned in the description, this dataset includes an indicator of hyper-
tensive status of the subjects. This categorical covariate also contains several missing 
values. To illustrate how missing values in continuous and categorical covariates can be 
handled at the same time we ft a model in which body mass index and hypertensive sta-
tus are included. The imputation of body mass index will be done within the joint model 
as previously described, but the imputation of hypertension will be done using a multiple 
imputation approach; this means that an imputation model will be ft for hypertension, 
values of hypertensive status sampled from this model and used to fll the gaps in the 
original dataset. This will provide a number of complete datasets to which the analysis 
model will be ft; then the results will be pooled to obtain fnal estimates using Bayesian 
model averaging with equal weights Gómez-Rubio, Bivand and Rue (2020). 

The analysis model becomes: 

40−59 60+choli = β0 + β1agei + β2agei + β3bmii + β4hypi + εi, i = 1, . . . ,25. 

For simplicity, the missingness mechanism will not be assessed now. This implies 
assuming MCAR, but we have already seen that the model estimates will be close to 
model ft under MAR and MNAR for the case of body mass index. 

The imputation model for hypertensive status (hypi) will be a multinomial model 
ft using the multinomial-Poisson transformation (Baker, 1994). This will provide esti-
mates of the posterior probabilities of being hypertensive given the age group, which will 
be used to impute the missing values according to the age group of the patient. These 
posterior probabilities are shown in Table 2. Note that in this particular case a logistic re-
gression would have been enough, but we have preferred to use the multinomial-Poisson 
transformation because it is a more general approach for the case of more than two cat-
egories. 

Table 2. Posterior probabilities of being hypertensive for the different age groups. 

Age group 
Hypertensive 20-39 40-59 60+ 

Yes 1.00 0.66 0.49 
No 0.00 0.34 0.51 

We have drawn 100 samples to fll in the missing values of the hypertensive status, 
so that 100 different completed datasets have been used to ft the model. The resulting 
models have been pooled to obtained the posterior marginals of the model parameters 
using Bayesian model averaging with equal weights (Gómez-Rubio et al., 2020). These 
are shown in Table 3. 
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Table 3. Estimates of the model parameters using multiple imputation on body mass index and 
hypertensive status. 

Analysis model 

Parameter Estimate 

β0 -4.981 (1.166) 
β1 1.208 (0.518) 
β2 1.985 (0.635) 
β3 0.134 (0.072) 
β4 0.027 (0.566) 
τ 1.965 (0.994) 

Imputation model for bmii 
βI0 29.612 (1.474) 
βI1 -3.899 (2.114) 
βI2 -6.116 (2.337) 
τI 0.092 (0.034) 

As expected, the estimates of the coeffcients of age are close to the ones in the pre-
vious models. The coeffcient of hypertensive status is close to zero, which indicates no 
association between cholesterol level and hypertensive status. Furthermore, the impu-
tation model for body mass index based on a linear regression on age provides similar 
estimates to the imputation models ft previously and with similar effects of age on body 
mass index. 

5.2. Simulation study: imputation of correlated data 

The second example that we present is a simulation study based on the North Carolina 
Sudden Infant Death Syndrome (SIDS) dataset. It records several variables, which in-
clude the number of sudden infant deaths per county in the period 1974-78 (Oi), the total 
number of births (Ni), as well as the number of non-white births (NWi). The expected 
number of cases in each county (Ei) can be obtained using internal standardization, so 
that the standardized mortality ratio (SMR) can be computed as Oi/Ei. Furthermore, sev-
eral authors (see, for example, Cressie, 2015) have described the strong spatial pattern in 
the data, in the relative risk (estimated using the SMR, for example) and its correlation 
with the proportion of non-white births. 

The model of interest to be ft is simply a Poisson regression, as follows: 

Oi ∼ Po(µi); µi = Eiθi, i = 1, . . . ,100, 

log(θi) = β0 + β1 nwpi. 

Here, covariate nwpi is the logit of the proportion of non-white births (NWi), so that 
it is not bounded, that has been re-centered and re-scaled. This derived covariate has still 
a strong spatial pattern and a high correlation with the SMR. 
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Figure 1 shows the SMR for the period 1974-78 and the transformed proportion of 
non-white births (nwpi). The SMR shows some areas of high risk and a strong correla-
tion with the proportion of non-white births. Hence, this covariate can be useful when 
building models to explain the spatial variation of SIDS in North Carolina. 

The simulation study will remove 5%, 10%, 15%, 30% and 50% of the covariate val-
ues (i.e., proportion of non-white births) using MCAR and MNAR mechanisms. Note 
that MAR can be regarded as an extension to MCAR that considers other observed co-
variates in the linear predictor of the logistic regression in the imputation model. Al-
though MAR may seem more reasonable, it is simply a matter of including other covari-
ates in the linear predictor of the missingness model so it is computationally feasible but 
it adds little to the comparison. This is why we have not considered it. 
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Figure 1. Standardized mortality ratio (SMR, top) and proportion of non-white births (bottom) 
in North Carolina in the period 1974-78. 

The missing observations will be nested across the fve scenarios, i.e., the observa-
tions removed in the 10% scenario will also be removed in the 15% scenario and so on. 
Furthermore, the probability of being missing under the MNAR mechanism pi is 

logit(pi) = αM +5xi 
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Figure 2. Missing observations (in grey) of the proportion of non-white births. 

where αM is set as the logit of 0.5 and xi represents the value of the covariate with 
missing values. 

This simulation is intended to compare mild to severe missingness under fve differ-
ent scenarios for MCAR and MNAR. Models will be ft assuming MCAR and MNAR 
missingness, so that we ft 20 models in total. Under MCAR, we only ft the analysis and 
imputation model. Under MNAR, in addition we will assess whether the joint approach 
including the missingness mechanism is able to capture the type of missingness. 

Figure 2 shows the missing values of the proportion of non-white births for three of 
the scenarios considered in this simulation study. As it can be seen, when the percentage 
of missing values is 50% under MNAR missing values concentrate in the counties with 
high values of the covariate. 

In addition, the imputation model proposed is based on the conditional autoregres-
sive specifcation presented in Section 3.3, so that imputation is included within the main 
model. This imputation model will have the following parameters: τ is the precision of 
the CAR specifcation, ρ the spatial autocorrelation and α the mean value of the covari-
ates. 

Finally, a logistic regression on the missingness variable Mi (0 for observed and 1 
for missing) is used to model the missingness mechanism (under MNAR): 

Mi ∼ Bernoulli(pi); i = 1, . . . ,100 

logit(pi) = γ0 + γ1nwpi 

(6) 
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Note that the imputed values appear both in the Poisson regression and the sub-model 
on the missingness mechanism. Non-zero values of γ1 indicate that the probability of 
being missing depends on the actual values. 

Table 4 summarises the models ft to the data under MCAR. Here, an imputation 
sub-model for the covariate has been included but not a joint model for the missingness 
as under MCAR it is not necessary. In general, there are not large differences between 
the different models ft to the datasets regarding percentage of missing values and type 
of actual missingness. However, these differences become larger as the proportion of 
missing values increases, which was to be expected. These differences are noticeable 
for the case of 50% of missing values both under MCAR and MNAR. 

The estimates of the imputation models are quite similar as well, across missing-
ness type in the data and proportion of missing values. However, some differences are 
observed for 30% and 50% of missing values. In particular, the estimates of α differ. 

Table 5 summarises the (joint) models ft to the data considering a MNAR scenario. 
This includes the model ft to the complete dataset, and the binomial sub-model in the 
joint model to assess the missingness mechanism. First of all, the posterior distribution 
of γ1 helps to determine the missingness mechanism. Its posterior estimate is very close 
to zero under MCAR, while it is above zero under MNAR (but for the case of 5% of 
missing values). It is worth stating that it is possible to assess this now because these are 
simulated data and the true missingness mechanism is known. 

Regarding the imputation model, the estimates are very similar across scenarios. 
Finally, the estimates of the parameters in the Poisson model are in general very close to 
the model ft to the full dataset. 

It is worth noting that under MNAR with 50% of missing observations the point 
estimates of the parameters in the Poisson sub-model show the largest departure from 
the model ft to the full dataset. This is probably due to the fact that the imputation 
model is not able to fully recover the values of the covariates as missing values tend to 
have high values and there is not enough information in the observed values as to recover 
this pattern. 

To sum up, imputation models behave as expected and provide a good performance 
in all cases. Most importantly, the joint model is able to identify between MCAR and 
MNAR situations as well as imputing the covariates and ft the model of interest to the 
data. Again, this is possible now because the missingness mechanism is known but in 
real applications we would propose different models and conduct a sensitivity analysis. 

When the models ft under MCAR (Table 4) and under MNAR (Table 5) are com-
pared, it should be mentioned that when data under MCAR are analysed both models 
produce very similar results because the missingness mechanism is, in fact, independent 
of the observed data. For the analysis of the data simulated under MNAR, differences can 
be observed because now the missingness mechanism depends on the covariate (includ-
ing the imputed data) and the estimates of the parameters in the imputation sub-model 
are different. 
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Table 4. Posterior mean (and standard deviation) of the model parameters under MCAR. 

Model under MCAR 
Poisson Imputation Missingness 

Missingness % missing τ ρ αβ0 β1 γ0 γ1 

– 0 -0.141 (0.046) 0.524 (0.068) – – – – – 
MCAR 5 -0.126 (0.047) 0.518 (0.068) 2.129 (0.305) 0.977 (0.022) -0.211 (0.162) – – 
MCAR 10 -0.114 (0.047) 0.496 (0.069) 2.076 (0.301) 0.976 (0.024) -0.215 (0.165) – – 
MCAR 15 -0.120 (0.048) 0.504 (0.067) 1.915 (0.294) 0.973 (0.027) -0.234 (0.175) – – 
MCAR 30 -0.099 (0.049) 0.507 (0.065) 1.776 (0.295) 0.960 (0.039) -0.175 (0.183) – – 
MCAR 50 -0.077 (0.051) 0.518 (0.070) 2.461 (0.481) 0.957 (0.044) 0.034 (0.169) – – 
MNAR 5 -0.131 (0.045) 0.506 (0.067) 2.040 (0.292) 0.977 (0.022) -0.236 (0.166) – – 
MNAR 10 -0.138 (0.048) 0.506 (0.068) 1.991 (0.288) 0.976 (0.023) -0.220 (0.167) – – 
MNAR 15 -0.110 (0.048) 0.495 (0.068) 1.966 (0.289) 0.976 (0.024) -0.238 (0.170) – – 
MNAR 30 -0.105 (0.050) 0.453 (0.070) 1.827 (0.291) 0.975 (0.025) -0.342 (0.189) – – 
MNAR 50 -0.064 (0.055) 0.419 (0.061) 1.421 (0.279) 0.964 (0.037) -0.423 (0.226) – – 

Table 5. Posterior mean (and standard deviation) of the model parameters under MNAR. 

Model under MNAR 
Poisson Imputation Missingness 

Missingness % missing β0 β1 τ ρ α γ0 γ1 

– 0 -0.141 (0.046) 0.524 (0.068) – – – – – 

MCAR 5 -0.121 (0.047) 0.512 (0.068) 2.120 (0.305) 0.977 (0.022) -0.217 (0.163) -3.218 (0.565) -0.514 (0.465) 
MCAR 10 -0.111 (0.048) 0.494 (0.069) 2.073 (0.301) 0.975 (0.024) -0.216 (0.165) -2.271 (0.349) -0.074 (0.392) 
MCAR 15 -0.127 (0.049) 0.505 (0.067) 1.903 (0.293) 0.972 (0.027) -0.218 (0.176) -1.821 (0.309) 0.359 (0.396) 
MCAR 30 -0.110 (0.050) 0.507 (0.065) 1.768 (0.294) 0.960 (0.039) -0.141 (0.187) -0.896 (0.232) 0.339 (0.309) 
MCAR 50 -0.079 (0.054) 0.518 (0.070) 2.458 (0.480) 0.956 (0.044) 0.040 (0.176) -0.014 (0.203) 0.038 (0.307) 

MNAR 5 -0.132 (0.045) 0.502 (0.068) 2.046 (0.293) 0.976 (0.023) -0.236 (0.165) -3.286 (0.720) 0.810 (0.795) 
MNAR 10 -0.153 (0.049) 0.486 (0.071) 1.964 (0.287) 0.977 (0.022) -0.225 (0.170) -2.947 (0.849) 1.661 (0.828) 
MNAR 15 -0.133 (0.049) 0.481 (0.069) 1.928 (0.287) 0.977 (0.023) -0.227 (0.173) -2.225 (0.529) 1.306 (0.592) 
MNAR 30 -0.152 (0.052) 0.423 (0.069) 1.688 (0.285) 0.976 (0.024) -0.190 (0.200) -1.385 (0.450) 1.477 (0.492) 
MNAR 50 -0.172 (0.060) 0.380 (0.060) 1.230 (0.266) 0.969 (0.032) -0.093 (0.253) -0.303 (0.351) 1.576 (0.434) 

Finally, we have included the posterior distributions of some imputed values of the 
covariate in Figure 3. In particular, we have considered the dataset with 50% missing 
values under MNAR and taken nine counties with missing values that have missing val-
ues also in the simulated data under MCAR. This produces a set of counties with a wide 
variety in the posterior marginals of the imputed values. The posterior marginals shown 
are for the imputation model under MCAR in Table 4 (dashed line) and the imputation 
model under MNAR in Table 5 (dotted line). The vertical solid line shows the actual 
value of the missing covariate. Furthermore, we have kept the same axes scale in all 
plots so that differences are appreciated better. 

In general, both marginals are close in all cases. Under MNAR (dotted lines), the 
posterior mode seems to be closer to the actual value for most of the counties in the plot. 
This should not be surprising as this is the actual missingness mechanism in the data. 

As the counties considered here are also present in the case in which the missing-
ness mechanims is MCAR, it could be possible to check what happens between models 
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that assumed MCAR and MNAR when the actual missingness is MCAR. In this case, 
the posterior marginals of the missing values (assuming MCAR and MNAR) look the 
same for each county because accounting for the missingness model does not affect the 
model estimates. This shows that handling imputation of missing values with INLA is 
an interesting way to conduct sensitivity analysis. 

Figure 3. Posterior marginal distributions of some of the imputed values for missingness of 50% 
under MNAR. The lines represent the actual value (solid vertical line), the posterior marginal 
from the MCAR model (dashed line) and the posterior marginal from the MNAR model (dotted 
line). The value between parenthesis corresponds to the proportion of missing values in the 
neighbour counties. 
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6. Discussion 

This paper shows how the general problem of dealing with missing observations in the 
covariates and performing multiple imputation under different missingness mechanisms 
can be recast within the framework of latent Gaussian Markov random feld models. This 
has the main advantage that models expressed as latent GMRFs can be ft through INLA, 
making inference fast. Furthermore, this flls an important gap in the INLA methodology 
as now models with missing values in the covariates can be easily ft. 

Imputation models for the covariates can also take many different forms when de-
fned as GMRFs. In this work we have only considered a linear regression model and 
spatially correlated model for imputation, but other similar imputation models could be 
easily developed. For example, these could tackle missing observations in longitudinal 
data or time series. Furthermore, the methods proposed can be extended to consider im-
putation of more than one covariate at the same time by relying on multivariate Gaussian 
models. 

The implementation of the multiple imputation models take the form of new latent 
effects for the R-INLA package and they are available within the MIINLA package 
for the R programming language. These new latent effects have been developed using 
the rgeneric framework for latent effects development within the R-INLA package. 
Nonetheless, this approach could be implemented in any other software packages for 
Bayesian inference. 

Although we have focused on imputation of continuous covariates, missing values 
in categorical covariates can also be handled. However, as stated in the paper, this case 
does not ft within the paradigm of latent GMRF models easily. However, INLA can be 
used to propose an imputation model for the missing categorical data and to ft the model 
of interest to these imputed datasets. The ftted models can then be combined to account 
for the uncertainty of the imputed values in the estimation of the model parameters using 
Bayesian model averaging. 

When the missing values of the categorical covariates index a latent effect the im-
putation of missing values becomes more complex. This is the case, for example, when 
random effects are estimated for different groups in the data using multilevel models. 
However, this scenario could also be handled using the multiple imputation methods 
described in this paper. 

In addition to handling and imputing missing values, this new framework allows us 
to consider the missingness mechanism using a joint model ft within the INLA method-
ology. Hence, the analysis of data with missing observations can now be completely 
carried out within the INLA framework. 

Sensitivity analysis on the missingness mechanism, required when it is not ignorable, 
can beneft from the the computational speed of the INLA method. First of all, models 
are ft faster than with typical MCMC methods, which helps to defne the scenarios to 
test. Secondly, more scenarios can be tested as the time required to ft the models is 
reduced. 
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