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Marisa Baré2,10, Rafael Marcos-GrageraID
9,11, Marı́a Vernet-Tomas12, Maria Sala1,2,3,

Xavier Castells1,2,3, on behalf of the BELE and IRIS Study Groups¶

1 IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain, 2 Research Network on Health

Services in Chronic Diseases (REDISSEC), Barcelona, Spain, 3 Servei d’Epidemiologia i Avaluació, Hospital
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Abstract

Background

Several studies have proposed personalized strategies based on women’s individual breast can-

cer risk to improve the effectiveness of breast cancer screening. We designed and internally vali-

dated an individualized risk prediction model for women eligible for mammography screening.

Methods

Retrospective cohort study of 121,969 women aged 50 to 69 years, screened at the long-

standing population-based screening program in Spain between 1995 and 2015 and fol-

lowed up until 2017. We used partly conditional Cox proportional hazards regression to esti-

mate the adjusted hazard ratios (aHR) and individual risks for age, family history of breast

cancer, previous benign breast disease, and previous mammographic features. We inter-

nally validated our model with the expected-to-observed ratio and the area under the

receiver operating characteristic curve.

Results

During a mean follow-up of 7.5 years, 2,058 women were diagnosed with breast cancer. All

three risk factors were strongly associated with breast cancer risk, with the highest risk
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being found among women with family history of breast cancer (aHR: 1.67), a proliferative

benign breast disease (aHR: 3.02) and previous calcifications (aHR: 2.52). The model was

well calibrated overall (expected-to-observed ratio ranging from 0.99 at 2 years to 1.02 at 20

years) but slightly overestimated the risk in women with proliferative benign breast disease.

The area under the receiver operating characteristic curve ranged from 58.7% to 64.7%,

depending of the time horizon selected.

Conclusions

We developed a risk prediction model to estimate the short- and long-term risk of breast

cancer in women eligible for mammography screening using information routinely reported

at screening participation. The model could help to guiding individualized screening strate-

gies aimed at improving the risk-benefit balance of mammography screening programs.

Introduction

There is ongoing debate on the benefits and harms of breast cancer screening [1–3]. To

improve this balance, current evidence supports personalized screening [4,5]. Modeling stud-

ies have shown that modifying the screening interval, screening modality, or age range of the

target population based on women’s individual risk yielded greater benefit than conventional

standard strategies [5–7]. Several risk models have been designed to estimate women’s individ-

ual breast cancer risk based on their personal characteristics [8–15]. However, most of these

models have not been specifically developed to estimate the risk of women targeted for breast

cancer screening in order to offer them personalized strategies.

A recent consensus statement of the European Conference on Personalized Early Detection

and Prevention of Breast Cancer (ENVISION) [16] stated the need to develop breast cancer

risk prediction models based on data from large screening cohorts and including risk factors

easily obtainable at screening participation, such previous mammographic features and prior

benign breast disease.

To date, only one model has specifically aimed to predict women’s individual risk looking

to personalize breast cancer screening strategies [17]. Although highly valuable, the model was

based on short-term risk estimates and did not account for relevant characteristics of prospec-

tive studies such as internal time-dependent covariates. This model only estimates the two-

year risk, which could lead to bias as one of the aims proposed in breast cancer screening

personalization is to see which women are at a lower risk in order to extend their screening

period to three or four years. Therefore, if new breast cancer risk models are developed with

the aim of analyzing the possibilities offered by personalized screening strategies, it would be

interesting to estimate the biennial risk of each woman, in other words, to obtain estimators

not only at 2 years, but also every two years (2, 4, 6, 8. . . up to 20 years, which is the total time

a woman is screened). This will help to better understand the different possibilities of screen-

ing strategies and will allow to observe the differences in the validation of the model estimators

for the different time horizons. There is therefore a need for breast cancer risk prediction mod-

els, with risk estimates in the short- and long-term, and based on data from large screening

cohorts. These new risk models should include a limited and feasible number of variables for

the proposed objective, for example, detailed information on the type of previous benign
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breast disease or previous mammographic characteristics, which existing risk models tend not

to use.

We aimed to design and validate an individualized risk prediction model to estimate the

biennial risk of breast cancer in women eligible for mammography screening by using data

from the long-standing population-based screening program in Spain.

Materials and methods

Setting and study population

Breast cancer screening in Spain started in 1990 in a single setting and expanded until it

became nationwide in 2006. This program follows the recommendations of the European

Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis [18]. Women

aged 50 to 69 years are invited to biennial screening mammography by written letter. Screen-

ing mammograms are interpreted according to the Breast Imaging Reporting and Data System

(BI-RADS) scale by trained breast radiologists [19]. Women with an abnormal mammo-

graphic feature are recalled for further assessments to confirm or rule out malignancy.

Women without a breast cancer diagnosis are invited again for routine screening at 2 years.

Overall, breast cancer screening in Spain has a recall rate of 43.0, a detection rate of 4.0, and an

interval cancer rate of 1.1 per 1,000 mammographic examinations [20]. The positive predictive

value is 9.8% for recalls and 38.9% for recalls involving invasive procedures. Overall, 16.8% of

all screen-detected cancers are ductal carcinoma in situ (DCIS). More details of breast cancer

screening in Spain are described elsewhere [21].

We analyzed data from two centers forming part of the Spanish breast cancer screening

program in the Metropolitan Area of Barcelona. These centers routinely gather information

on family history of breast cancer, previous benign breast disease (BBD), and previous mam-

mographic features. The centers collect information on screening mammography examina-

tions, recalls, further assessments, and diagnostic results in their defined catchment areas. The

cohort included all 123,251 women screened at least once between 1995 and 2015 and fol-

lowed-up until December 2017. We excluded 758 women diagnosed with breast cancer at the

first screen, 210 women with missing information on family history, 213 women with missing

information on previous BBD, and 101 women with missing information for both family his-

tory and previous BBD. The study population for the analysis consisted of 121,969 women

who underwent 437,540 screening mammograms during the study period.

Definition of study variables

Information on family history and history of prior breast biopsies was self-reported and col-

lected from face-to-face interviews conducted by trained professionals at the time of mam-

mography screening. This information was consistently collected over the 20 years study

period. A family history of breast cancer was defined as having at least one first-degree relative

with a history of breast cancer.

Breast biopsy results were classified by a community pathologist at each center using

SNOMED codes [22]. Pathological diagnoses were grouped following the benign breast disease

classification proposed by Dupont and Page [23–25] into non-proliferative and proliferative

disease. Proliferative lesions with and without atypia were combined into a single category due

to the small number of subsequent breast cancer cases among those with a proliferative lesion

with atypia. If women reported having had a biopsy before the start of the screening but no

pathology results were available, the biopsy was classified as having a prior biopsy, unknown

diagnosis.
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A community radiologist routinely reported on mammographic features found at mam-

mography screening interpretation. We classified as mammographic features any mass, calcifi-

cation, asymmetry or architectural distortion reported by radiologists at mammographic

interpretation. Findings were assigned to the category of multiple mammographic features if

more than one of the previous mammographic features had been reported simultaneously at

screening interpretation.

We included both invasive breast cancers and DCIS for the analysis.

Model design

We built the risk prediction model using a random sample of 60% of the study population

(estimation subcohort). The remaining 40% was used for an internal validation (validation

subcohort).

We estimated the age-adjusted hazard ratios (aHR) and the 95% confidence intervals (95%CI)

for the breast cancer incidence for each category of family history, previous BBD, and previous

mammographic features with the estimation subcohort. Age was included in the model as a con-

tinuous variable. We used partly conditional Cox proportional hazards regression, an extension of

the standard Cox model, to incorporate changes in these risk factors over time. Robust standard

errors were used to estimate 95% confidence intervals using the Huber sandwich estimator [26].

If a woman has had a diagnosis of cancer, she will contribute women-years at risk from the date

of her first mammogram to the diagnosis of cancer. Since we can identify all interval cancers, a

woman who has not had a diagnosis of cancer at the end of her follow-up will contribute women-

years at risk from the first mammogram to the last mammogram plus 2 years of follow-up.

We tested whether family history, previous BBD, and previous mammographic features

interacted among themselves or with age. The interaction terms were not significant and were

therefore not included in the model. The proportional hazards assumption was assessed by

plotting the log-minus-log of the survivor function against log time for each predictor variable.

The proportional hazards assumption appeared to be reasonable for all predictors.

Model validation

We calculated the absolute breast cancer risk estimates for each 2-year interval over the

20-year lifespan covered by screening (ages 50 to 69 years) for each individual in the validation

subcohort. As proposed by Zheng and Heagerty, we used a general hazard function to predict

the absolute risk of breast cancer diagnosis based on length of follow-up, prediction time, and

women’s risk profile [27].

We conducted an internal validation of the model to evaluate its predictive performance by

assessing its calibration and discrimination. To assess calibration, we calculated the ratio

between the expected breast cancer rate in the validation subcohort versus the observed rate in

the estimation subcohort. To account for censoring, the observed rate was estimated using the

Kaplan-Meier estimator. The expected breast cancer rate was calculated as the average of the

risk estimates in the validation subcohort. The expected breast cancer rate in a specific risk

group was calculated as the average of the risk estimates for each woman in that risk group of

the validation subcohort. The expected-to-observed (E/O) ratio assessed whether the number

of women predicted to develop breast cancer from the model matched the actual number of

breast cancers diagnosed in the validation subcohort. An E/O ratio of 1.0 indicates perfect cali-

bration. We calculated the E/O ratio 95% confidence intervals (95% CI) using the formula of

the standardized mortality ratio proposed by Breslow and Day [28]. The discriminatory accu-

racy of our model was assessed by estimating the area under the receiving operating character-

istic curve (AUC) for each 2-year interval based on the predicted risks for each woman and
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whether she developed breast cancer during the time interval or not [29]. The predicted risks

were calculated using the model coefficient estimates at the baseline mammogram for those

women in the validation cohort who have been followed for a time greater than or equal to the

time horizon being estimated. The AUC measured the ability of the model to discriminate

between women who will develop breast cancer from those who will not. We calculated the

95% CI using the approach proposed by Hanley and McNeil [30].

Statistical tests were two-sided and all p-values <0.05 were considered statistically signifi-

cant. All analyses were performed using the statistical software R version 3.4.3 (Development

Core Team, 2014).

The study was approved by the Clinical Research Ethics Committee of Hospital del Mar

Medical Research Institute (2015/6189/I). The review boards of the institutions providing data

granted approval for data analyses. This is an entirely registry-based study that used anon-

ymized retrospective data and hence there was no requirement for written informed consent.

The authors declare that they have no conflicts of interest.

Results

During a mean follow-up of 7.52 years, breast cancer was diagnosed in 2,058 out of the

121,969 women in the study population. The mean follow-up was shorter in women with a

breast cancer diagnosis than in those without (5.8 years vs 7.6 years, p-value < 0.05). Women

with breast cancer were more likely to have a family history of breast cancer (18.32% vs

13.86%), biopsies with unknown diagnosis (23.76% vs 21.72%), non-proliferative and prolifer-

ative BBD (5.59% vs 3.20%, and 1.60% vs 0.45%, respectively), masses (20.51% vs 18.12%), and

calcifications (6.85% vs 2.71%) (Table 1).

Breast cancer was strongly associated with previous benign breast disease, with the highest

risk being found among women with a proliferative BBD (aHR, 3.02; 95% CI: 1.75, 5.21) com-

pared with those without a BBD (Table 2). Family history was also associated with breast can-

cer (aHR, 1.67; 95% CI: 1.41, 1.98). Among women with previous mammographic features,

the highest risks were found in calcifications (aHR, 2.52; 95% CI: 1.93, 3.29) and architectural

distortions (aHR, 2.07; 95% CI: 1.27, 3.38).

Overall calibration of the model was accurate across all 2-year time horizons. The E/O ratio

ranged from 0.99 at 2 years to 1.02 at 20 years and was never significantly different than 1

(Table 3). The AUC was lowest at the 4-year risk estimate (AUC, 58.7%; 95%CI: 55.9%-61.5%)

and highest at the 18-year risk estimate (AUC, 64.7%; 95%CI: 62.5%-66.9%) and were signifi-

cantly higher than 50% for all the time horizons.

Estimates for the 10-year time horizon showed that the model slightly overestimated breast

cancer rates in women with masses (E/O ratio, 1.18; 95%CI: 1.02–1.37) and in women aged

55–59 years (E/O ratio, 1.15; 95%CI: (1.03–1.29) (Table 4). The model also underestimated

breast cancer rates in women aged 50–54 years (E/O ratio, 0.83; 95%CI: 0.75–0.94). Because of

the small number of breast cancer cases, calibration was overestimated among women with

proliferative BBD (E/O ratio, 1.85; 95%CI: 1.00–3.40).

Distribution of the absolute cumulative risk estimates at 2-, 10- and 20-year time horizons

are shown in Fig 1. The 10-year risk was between 1.5% and 2% in 60% of the women and was

higher than 2% in 35%. The 20-year risk was lower than 3% in only 4% of the women, between

5% and 7% in 17% of the women, and was higher than 7% in approximately 9% of the women.

Discussion

We used individual-level data from a large cohort of women regularly screened in Spain to

design and validate a risk prediction model to estimate the biennial risk of breast cancer in
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Table 1. Baseline characteristics of the study population.

No breast cancer (n = 119,911) Breast cancer (n = 2,058) p-value

Mean follow- up 7.6 years 5.8 years <0.001

Age (years)

50–54 63,507 (52.96%) 1,149 (55.83%) 0.010

55–59 25,738 (21.46%) 542 (26.34%) <0.001

60–64 22,796 (19.01%) 325 (15.79%) <0.001

65–69 7,870 (6.56%) 42 (2.04%) <0.001

Family history of breast cancer

No 103,296 (86.14%) 1,681 (81.68%) <0.001

Yes 16,615 (13.86%) 377 (18.32%) <0.001

Benign breast disease

None 89,500 (74.64%) 1,421 (69.05%) <0.001

Prior biopsy, unknown diagnosis 26,042 (21.72%) 489 (23.76%) 0.028

Non-proliferative 3,832 (3.20%) 115 (5.59%) <0.001

Proliferative 537 (0.45%) 33 (1.60%) <0.001

Mammographic features

None 86,326 (71.99%) 1,283 (62.34%) <0.001

Mass 21,728 (18.12%) 422 (20.51%) <0.001

Calcifications 3,246 (2.71%) 141 (6.85%) <0.001

Asymmetry 3,371 (2.81%) 56 (2.72%) 0.858

Architectural distortion 1,249 (1.04%) 29 (1.41%) 0.129

Multiple features 3,991 (3.33%) 127 (6.17%) <0.001

Differences in mean of follow-up were tested by Mann–Whitney U test.

Differences in qualitative variables were tested by two-sided test of equality for column proportions (z-test). Tests adjusted for all pairwise comparisons within each

tumor characteristic using the Bonferroni correction.

https://doi.org/10.1371/journal.pone.0248930.t001

Table 2. Partly conditional Cox proportional hazards model results showing the hazard ratios of the risk factors

on breast cancer.

Women-years Breast cancer cases aHR� (95%CI)

Family history of breast cancer

No 471,552 976 Ref.

Yes 79,471 227 1.67 (1.41–1.98)

Benign breast disease

No 408,883 832 Ref.

Prior biopsy, unknown diagnosis 118,010 286 1.36 (1.16–1.59)

Non-proliferative 21,123 67 1.41 (1.02–1.94)

Proliferative 3,007 18 3.02 (1.75–5.21)

Mammographic features

No 380,314 752 Ref.

Mass 110,597 239 1.32 (1.11–1.57)

Calcifications 17,160 81 2.52 (1.93–3.29)

Asymmetry 17,526 38 1.66 (1.16–2.39)

Architectural distortion 6,287 20 2.07 (1.27–3.38)

Multiple features 19,140 73 1.86 (1.43–2.43)

aHR: Adjusted Hazard Ratio. 95%CI: 95% Confidence Interval.

�Model adjusted by age, family history, previous benign breast disease and previous mammographic features.

https://doi.org/10.1371/journal.pone.0248930.t002
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women aged 50 to 69 years eligible for mammography screening. We tested a model that uses

only variables easily obtainable at screening participation. The model showed very good cali-

bration but only modest discrimination.

Our model calculates the risk of breast cancer for each 2-year time horizon during a wom-

an’s screening lifespan. Until now, the 5-year risk estimate has been the standard since the

BCRAT model used a 5-year risk time horizon for decision making about chemoprevention.

The BCRAT model was the basis for enrolment into the two major US prevention trials

Table 3. E/O ratio and area under the ROC curve of the model for each time horizon.

Observed events E/O ratio (CI95%) AUC

2-year risk 188 0.99 (0.86–1.14) 63.0 (59.1–66.9)

4-year risk 455 1.01 (0.92–1.11) 58.7 (55.9–61.5)

6-year risk 685 1.00 (0.92–1.07) 59.5 (57.2–61.8)

8-year risk 853 1.02 (0.95–1.09) 61.0 (58.9–63.0)

10-year risk 1,000 1.01 (0.95–1.08) 60.9 (59.0–62.8)

12-year risk 1,092 1.03 (0.97–1.09) 60.5 (58.6–62.4)

14-year risk 1,165 1.01 (0.96–1.07) 62.4 (60.5–64.3)

16-year risk 1,195 1.00 (0.95–1.06) 64.3 (62.4–66.3)

18-year risk 1,201 1.01 (0.96–1.07) 64.7 (62.5–66.9)

20-year risk 1,203 1.02 (0.97–1.08) 63.8 (61.3–66.3)

E/O: Expected observed. 95%CI: 95% Confidence Interval.

https://doi.org/10.1371/journal.pone.0248930.t003

Table 4. Calibration of the 10-year estimates from the model in risk factor subgroups.

Observed events E/O ratio (95%CI)

Overall 1,000 1.01 (0.95–1.08)

Family history

No 824 1.00 (0.93–1.07)

Yes 176 1.10 (0.95–1.28)

Benign breast disease

No 709 1.02 (0.95–1.10)

Prior biopsy, unknown diagnosis 238 1.02 (0.90–1.16)

Non-proliferative 43 1.17 (0.87–1.57)

Proliferative 10 1.85 (1.00–3.40)

Mammographic features

No 661 1.03 (0.96–1.11)

Mass 175 1.18 (1.02–1.37)

Calcifications 60 1.07 (0.83–1.38)

Asymmetry 29 1.14 (0.79–1.63)

Architectural distortion 15 1.05 (0.63–1.73)

Multiple features 60 0.90 (0.70–1.16)

Age (years)

50–54 296 0.83 (0.75–0.94)

55–59 296 1.15 (1.03–1.29)

60–64 278 0.96 (0.85–1.08)

65–69 130 1.02 (0.86–1.21)

E/O: Expected observed. 95%CI: 95% Confidence Interval.

https://doi.org/10.1371/journal.pone.0248930.t004
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Fig 1. Distribution of the absolute cumulative risk estimates.

https://doi.org/10.1371/journal.pone.0248930.g001
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[31,32]. However, as stated in the statements of the last European Conference on Risk-Strati-

fied Prevention and Early Detection of Breast Cancer, there is a need for risk models specifi-

cally designed for women eligible for breast cancer screening, based on data from large

screening cohorts [16].

A previous model was designed to estimate the risk of breast cancer in women eligible for

mammography screening [17]. The model used the Karma cohort from Sweden and included

information on mammographic features. That study focused solely on estimating the short-

term risk of breast cancer over the next mammographic examination. In addition, it used a

case-control design to establish risk factors, which may bias the estimates of the short-term

association with breast cancer risk. Our model adds to the breast cancer risk prediction models

currently available and can be used to help guide personalized screening strategies by employ-

ing information easily obtained at screening participation. Additional useful information from

our model is estimation of a woman’s risk for breast cancer at 2-yearly intervals.

Our model was further developed by adding the effect of mammographic features, such as

masses, calcifications, asymmetries, and architectural distortions. Previous studies have shown

that mammographic features increase the subsequent risk of breast cancer [33]. In our model,

the strongest influence on risk was conferred by calcifications. The biology behind calcifica-

tions is not well established. It has been suggested that mammary cells may acquire some mes-

enchymal characteristics, being able to contribute to the production of breast calcifications as

a sign of carcinogenic transformation [34].

The role of BBD as a risk factor for breast cancer is well established [9,33,35]. However, its

inclusion in breast cancer risk prediction models is rare, mainly because available information

on BBD in large cohorts of women is uncommon. Only one previous risk model included dif-

ferent estimates for the different categories of the Dupont and Page BBD pathological classifi-

cation [23–25]. The Breast Cancer Surveillance Consortium model was updated to include

BBD, which led to only minimal improvement in discrimination [9]. This lack of significant

improvement could be due to the absence of pathology results for most women who reported

breast biopsies prior to their first screening round, as was also the case in our study. However,

the addition of BBD to the model markedly increased the proportion of women identified as

being at high risk for invasive breast cancer.

We assessed the internal validity of the model by means of its calibration and discrimina-

tory accuracy. To perform internal validation we split our cohort in two sets, the estimation

subcohort, to perform the analysis and development of the model and the validation subco-

hort, to perform the internal validation of the model. This technique known as split validation

is common for this type of models [9] but cross validation or bootstrapping could also have

been performed [36,37]. The model showed accurate calibration, neither overestimating nor

underestimating the overall risk through the different years. In Table 4 we saw the calibration

of the 10-year estimates from the model in risk factor subgroups. We also performed the E/O

ratio estimates in risk factor subgroups for each one of the time horizons proposed. We only

showed the 10-year estimates since showing all of them could be confusing. We showed the

10-year estimates since they have a good balance between the number of events observed (in

the first time horizons some subcategories have a low number of observed events was lower)

and the number of people observed (in the last time horizons we have some lost to follow–up,

as the mean time of follow-up is 7.5 years). Nonetheless, the E/O ratio was overestimated for

women with a proliferative BBD, due to the small number of cases among this subgroup.

The model showed modest discrimination with a maximum AUC of 64.7%. Discriminatory

accuracy in breast cancer risk prediction models is usually low because a substantial propor-

tion of cases are diagnosed in women with no known risk factors and the AUC of the different

models vary between 60 and 70% [14]. This is clearly in contrast with prediction models for
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other diseases, such as cardiovascular disease, which achieve good discrimination [38,39].

However, the model presented in this paper performed as well as other models that include

many other risk factors that were not available in this study. As one of the reasons why the

existing risk models have not been implemented for personalized screening is that it is difficult

to collect all of the necessary risk factors in practice, a simpler model like the one we present

could be useful. We tested other approaches to validate our model, such as the AUC estimation

proposed by Li et al [40]. This estimation uses weights to calculate the contribution in the esti-

mates of those women without a breast cancer diagnosis who were censored before reaching

the time horizon. However, this approach produced no substantial differences in our

validation.

A major strength of our model is that we used individual-level data from more than

120,000 women participating in a large, well-established, population-based screening program

in Spain from 1995 to 2015, with a mean follow-up of more than 7.5 years and a maximum of

20 years. The program has a participation rate of 67% and a re-attendance rate of 91.2% [19].

This study also has some limitations. First, a major weakness is the lack of information on

breast density, which was not systemically collected as part of screening data in the participat-

ing centers. Previous models estimating individual breast cancer risk have shown that the addi-

tion of breast density improved the discriminatory power of the models [9,17,41,42]. Dense

breasts confer women a higher risk of breast cancer and are also associated with a higher risk

of false-positive results, masking, and interval cancers [43]. In addition, we had no information

on common genetic variants, which has been added to other breast cancer risk prediction

models [44,45]. However, the discriminatory accuracy of the models was scarcely improved by

the inclusion of information on single nucleotide polymorphisms (SNPs). This lack of both

variables may be useful for some institutions where these risk factors are not available.

Second, the number of breast cancer cases among women with a proliferative BBD was

small, which reduced our ability to accurately predict the expected number of cases across risk

factor subgroups. Nevertheless, the overall calibration of the model across the time horizons

assessed was highly accurate. Also, as a consequence of the small number of subsequent breast

cancer cases among those women with a proliferative BBD with atypia, we merged prolifer-

ative BBD with and without atypia into a single category which might make the model less

usable in practice.

Third, our model was based on a large set of representative data from the Breast Cancer

Screening Program in Spain, which provides good generalizability. However, external valida-

tion of the results is needed to verify the predictive performance of our risk model.

Another limitation might be the reason for censoring. Over 52% of women in the cohort

had their last mammogram in the last two years of the study follow-up and 17% of women had

their last mammogram at ages 68 or 69 years. Most of the remaining 31% are women who did

not participate in the 2014–2015 round or who have changed health areas and thus are not in

our study population. The screening program does not have an exhaustive record of which

women die and, therefore, we cannot differentiate them from non-participating women.

Finally, we were unable to analyze the association between the laterality of the BBD with the

subsequent risk of breast cancer. In a previous analysis, we found that 40% of incident breast can-

cer cases in women with BBD were contralateral to the prior BBD, suggesting that a large propor-

tion of benign lesions may be risk markers rather than precursors of subsequent cancer [46].

Conclusions

We designed and internally validated a risk prediction model to estimate the short- and long-

term risk of breast cancer in women eligible for mammography screening based on their age,
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family history, previous benign breast disease, and previous mammographic features. The

model showed good calibration and modest discriminatory power, and could be improved by

adding further variables such as breast density and polygenic risk scores. The model can be

used biennially to predict a woman’s breast cancer risk during her screening lifespan (age 50

to 69 years) using information easily obtained at screening participation. Risk prediction mod-

els specifically designed for women eligible for breast cancer screening are key to guide indi-

vidualized screening strategies aiming to improve the risk-benefit balance of mammography

screening programs.
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