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Abstract. In this paper, we introduce factorial analogues of the ordi-
nary Hall–Littlewood P - and Q-polynomials, which we call the factorial
Hall–Littlewood P - and Q-polynomials. Using the universal formal group
law, we further generalize these polynomials to the universal factorial
Hall–Littlewood P - and Q-functions. We show that these functions sat-
isfy the vanishing property which the ordinary factorial Schur S-, P -,
and Q-polynomials have. By the vanishing property, we derive the Pieri-
type formula and a certain generalization of the classical hook formula.
We then characterize our functions in terms of Gysin maps from flag
bundles in the complex cobordism theory. Using this characterization
and Gysin formulas for flag bundles, we obtain generating functions for
the universal factorial Hall–Littlewood P - and Q-functions. Using our
generating functions, we show that our factorial Hall–Littlewood P - and
Q-polynomials have a certain cancellation property. Further applications
such as Pfaffian formulas for K-theoretic factorial Q-polynomials are also
given.

1. Introduction

Let xn = (x1, . . . , xn) and t be independent indeterminates over Z,
and λ = (λ1, . . . , λn) a partition of length ≤ n. Then the ordinary Hall–
Littlewood P - and Q-polynomials, denoted by Pλ(xn; t) and Qλ(xn; t) re-
spectively, are symmetric polynomials with coefficients in Z[t]. When t =

0, both the polynomials Pλ(xn; t) and Qλ(xn; t) reduce to the ordinary
Schur (S-) polynomial sλ(xn), and when t = −1, to the ordinary Schur P -
polynomial Pλ(xn) and Q-polynomial Qλ(xn) respectively. Thus the poly-
nomials Pλ(xn; t), Qλ(xn; t) serve to interpolate between the Schur poly-
nomials and the Schur P - and Q-polynomials, and play a crucial role in
the symmetric function theory, representation theory, and combinatorics.
In the context of Schubert calculus, it is well-known that the ordinary Schur
S-, P -, and Q-polynomials appear as the Schubert classes in the ordinary
cohomology rings of the various Grassmannians (Fulton [7, §9.4], Pragacz
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[31, §6]). Moreover, their factorial analogues, namely, the factorial Schur
S-, P -, and Q-polynomials play an analogous role in equivariant Schubert
calculus (Knutson–Tao [17], Ikeda [11], Ikeda–Naruse [13]). As for the Hall–
Littlewood polynomials, it is known that there are some geometric or rep-
resentation theoretic inetepretations of them related to flag varieties or flag
bundles (readers are referred to e.g., De Concini–Procesi [5], Garsia–Procesi
[9], Pragacz [32]). In the context of Schubert calculus, there seems no obvi-
ous geometric meaning of the Hall–Littlewood polynomials at present, which
needs to be investigated further. In fact, in [35], Totaro considered the coin-
variant ring F (e, n) of the complex reflection group G(e, 1, n) = Z/eZ ≀ Sn

(the wreath product) for e ≥ 2, and suggested to think of the ring F (e, n) as
the cohomology of a certain “flag manifold”. Then he considered a subring
C(e, n) of F (e, n), and described a basis for the ring C(e, n) given by the
Hall–Littlewood Q-polynomials. For e = 2, the inclusion C(2, n) ⊂ F (2, n)

is the inclusion of the cohomology of the Lagrangian Grassmannian in that
of the isotropic flag manifold of the symplectic group, and Totaro’s result
is interpreted as a generalization of the classical result in Schubert calculus
for Lagrangian Grassmannians (Józefiak [16], Pragacz [31, §6]). It is natural
to consider a generalization of the above theory to the double coinvariant
rings (or equivariant coinvariant rings) of complex reflection groups (cf.
recent work of McDaniel [20]). From a geometric or topological point of
view, one expects that these rings would be related to torus-equivariant
cohomology of certain “flag manifolds”, and factorial version of the Hall–
Littlewood polynomials would play a crucial role. Moreover we notice that
all the results stated above are formulated in the ordinary cohomology the-
ory H∗(−). In topology, it is classical that a complex-oriented generalized
cohomology theory h∗(−) gives rise to a formal group law F h(u, v) over the
coefficient ring h∗ := h∗(pt), where pt is a single point. Three typical exam-
ples are the ordinary cohomology theory H∗(−), the (topological) complex
K-theory K∗(−), and the complex cobordism theory MU∗(−), which cor-
respond to the additive formal group law Fa(u, v) = u+v, the multiplicative
formal group law Fm(u, v) = u⊕ v = u+ v− βuv, and the universal formal
group law FL(u, v) = u+L v, respectively. By the classical result of Quillen
[34, Proposition 1.10], the complex cobordism theory is universal among all
complex-oriented generalized cohomology theories. Therefore it is also quite
natural to ask whether one can generalize the above results formulated in
the ordinary cohomology theory to the complex cobordism theory.
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Motivated by these facts and the above preceding results, in this pa-
per, we introduce factorial and universal analogues of the ordinary Hall–
Littlewood P - and Q-polynomials, which we call the universal factorial
Hall–Littlewood P - and Q-functions (for notation, see §2.1):

Definition 1.1 (Definition 3.1, cf. Naruse [28]). For a sequence of positive
integers λ = (λ1, . . . , λr) with r ≤ n, we define

HP L
λ (xn; t|b) :=

∑
w∈Sn/(S1)r×Sn−r

w ·

[
[x|b]λL

r∏
i=1

n∏
j=i+1

xi +L [t](xj)

xi +L xj

]
,

HQL
λ(xn; t|b) :=

∑
w∈Sn/(S1)r×Sn−r

w ·

[
[[x; t|b]]λL

r∏
i=1

n∏
j=i+1

xi +L [t](xj)

xi +L xj

]
.

To the best of our knowledge, even a factorial version of the ordinary Hall–
Littlewood polynomials has not appeared in the literature. Here we em-
phasize the importance of these factorial Hall–Littlewood polynomials. In
fact, they will be needed in describing the torus-equivariant cohomology of
p-compact flag variety corresponding to G(e, 1, n) (cf. recent work of Or-
tiz [30]). In this context, the “deformation parameters” b are interpreted
as the torus-equivariant parameters. We will discuss this new aspect of the
Hall–Littlewood functions in more detail in our forthcoming paper [27].

Then, we show that our factorial Hall–Littlewood P - and Q-functions
have the so-called vanishing property (see Propositions 3.7, 3.8). We empha-
size that this vanishing property will be useful in describing the so-called
GKM description of the torus-equivariant cohomology ring of the p-compact
flag variety corresponding to G(e, 1, n) ([27]). By the vanishing property, we
can derive a Pieri-type formula for factorial Hall–Littlewood P -polynomials
(see Proposition 3.9). Moreover, a simple recursive argument based on the
associativity of factorial Hall–Littlewood P -polynomials, we can derive a
certain generalization of the hook formula (see Proposition 3.10). We then
give a characterization of them in terms of Gysin maps from full flag bundles
in the complex cobordism theory (Proposition 3.5). Using this characteri-
zation, we can derive generating functions for the universal factorial Hall–
Littlewood P - and Q-functions. The idea of getting our result is to apply
the Gysin formula for a projective bundle repeatedly to the full flag bundle
since a full flag bundle is constructed as a sequence of projective bundles.
However, the existence of the deformation parameter b = (b1, b2, . . .) pre-
vent us from a direct application of the Gysin formula. To circumvent this
difficulty, we developed a specific modification in each step (for details, see
§4.1). Then, carrying out an argument carefully, we succeeded in getting the
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required result. To state our result, we prepare some notation from §2.1, 2.2,
and 4.1: For a sequence of positive integers λ = (λ1, . . . , λr) with r ≤ n, we
set

H̃P
L,(n)
i,λi

(u1, u2, . . . , ui|b) :=
ui

ui +L [t](ui)
· 1

PL(ui)

×

(
n∏

j=1

ui +L [t](xj)

ui +L xj

i−1∏
j=1

ui +L uj

ui +L [t](uj)

λi∏
j=1

ui +L bj
ui

− tn−i+1

λi∏
j=1

bj
ui

)
,

H̃P
L,(n)
λ (ur|b) = H̃P

L,(n)
λ (u1, u2, . . . , ur|b) :=

r∏
i=1

H̃P
L,(n)
i,λi

(u1, u2, . . . , ui|b).

Then, our main result in this paper is stated as follows:

Theorem 1.2 (Theorem 4.3). For a sequence of positive integers λ =

(λ1, . . . , λr) with r ≤ n, the universal factorial Hall–Littlewood P -function
HP L

λ (xn; t|b) is the coefficient of u−λ = u−λ1
1 · · · u−λr

r in H̃P
L,(n)
λ (u1, . . . , ur|b).

Thus

HP L
λ (xn; t|b) = [u−λ]

(
H̃P

L,(n)
λ (ur|b)

)
.

Using similar, but simpler technique, we can also obtain a generating func-
tion for HQL

λ(xn; t|b) (see Theorem 4.5). Here we stress the usefulness of a
technique of generating functions. For instance, it is easy to derive Pfaffian
formulas for factorial K-theoretic Q-polynomials in a simple and uniform
manner (see Theorem 5.3). Moreover, a certain cancellation property (cf.
Pragacz [31, §2]) of the factorial Hall–Littlewood P - and Q-polynomials
can be verified immediately (see Proposition 5.1). For further applications
of generating functions such as the so-called Pieri rule for K-theoretic P -
and Q-polynomials, see also Naruse [28].

1.1. Organization of the paper. The paper is organized as follows: In
Section 2, we prepare notation and conventions concerning the universal for-
mal group law, a Gysin formula for a projective bundle, which will be used
throughout the paper. In Section 3, the universal factorial Hall–Littlewood
P - and Q-functions are introduced, and a characterization of them by means
of a Gysin map is given. The vanishing property of these functions are also
discussed. By the vanishing property, a Pieri-type formula and a generaliza-
tion of the hook formula are derived. Using Gysin formulas for flag bundles
and characterizations of the Hall–Littlewood functions by means of Gysin
maps, in Section 4, we obtain generating functions for these universal facto-
rial Hall–Littlewood functions. In Section 5, using our generating functions,
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we shall show that the factorial Hall–Littlewood P - and Q-polynomials sat-
isfy certain cancellation property. Pfaffian formulas for factorial K-theoretic
Q-polynomials can be obtained as a by-product. In Appendix (Section 6), we
deal with the topic closely related to the current work, namely, generating
functions for the dual Grothendieck polynomials and the dual K-theoretic
Schur Q-polynomials.

2. Notation, conventions, and preliminary results

For notation and conventions, we shall follow those used in our previous
papers [24], [26]. However, to make the exposition self-contained as much
as possible, we collect some of them frequently used in this paper.

2.1. Lazard ring L and the universal formal group law FL. Let

FL(u, v) = u+ v +
∑
i,j≥1

aLi,ju
ivj ∈ L[[u, v]]

be the universal formal group law, where L is the Lazard ring. Namely,
FL(u, v) is a formal power series in two indeterminates u, v with coefficients
aLi,j ∈ L which satisfies the axioms of the formal group law. For the universal
formal group law, we shall use the following notation:

u+L v = FL(u, v) (formal sum),
u = [−1]L(u) = χL(u) (formal inverse of u),
u−L v = u+L [−1]L(v) = u+L v (formal subtraction).

Furthermore, we define [0]L(u) := 0, and inductively, [n]L(u) := [n−1]L(u)+L

u for a positive integer n ≥ 1. We also define [−n]L(u) := [n]L([−1]L(u))

for n ≥ 1. We call [n]L(u) the n-series in the sequel. Denote by ℓL(u) ∈
L⊗Q[[u]] the logarithm of FL, i.e., a unique formal power series with lead-
ing term u such that

ℓL(u+L v) = ℓL(u) + ℓL(v).

Using the logarithm ℓL(u), one can rewrite the n-series [n]L(u) for a non-
negative integer n as ℓ−1

L (n · ℓL(u)), where ℓ−1
L (u) is the formal power series

inverse to ℓL(u). This formula allows us to define

[t]L(x) = [t](x) := ℓ−1
L (t · ℓL(x))

for an indeterminate t. This is a natural extension of t · x as well as the
n-series [n]L(x).

Next we shall introduce various generalizations of the ordinary power
of variables. Let x = (x1, x2, . . .) be a countably infinite sequence of inde-
pendent variables. We also introduce another set of independent variables
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b = (b1, b2, . . .). Then, for a positive integer k ≥ 1, we define a generalization
of the ordinary k-th power xk of one variable x by

[x|b]kL :=
k∏

j=1

(x+L bj) = (x+L b1)(x+L b2) · · · (x+L bk).

We set [x|b]0L := 1. For a sequence of positive integers λ = (λ1, . . . , λr), we
set

[x|b]λL :=
r∏

i=1

[xi|b]λi
L =

r∏
i=1

λi∏
j=1

(xi +L bj).

Similarly, we define

[[x|b]]kL := (x+L x)[x|b]k−1
L = (x+L x)(x+L b1)(x+L b2) · · · (x+L bk−1).

For a sequence of positive integers λ = (λ1, . . . , λr), we set

[[x|b]]λL :=
r∏

i=1

[[xi|b]]λi
L =

r∏
i=1

(xi +L xi)[xi|b]λi−1
L .

Moreover, for indeterminates x and t, we define

[[x; t|b]]kL := (x+L [t](x))[x|b]k−1
L

for a positive integer k ≥ 1. For a sequence of positive integers
λ = (λ1, . . . , λr), we define

[[x; t|b]]λL :=
r∏

i=1

[[xi; t|b]]λi
L =

r∏
i=1

(xi +L [t](xi)[xi|b]λi−1
L .

2.2. Gysin formula for a projective bundle in complex cobordism.
Recall from Quillen [33, Theorem 1] the Gysin formula for a projective
bundle in complex cobordism. We shall state his result in a manner suitable
for our purpose (for more details, see Nakagawa–Naruse [26, §3.1]): Let
E −→ X be a complex vector bundle of rank n. For any integer m ∈ Z,
denote by S L

m(E) = S MU
m (E) the Segre class of E in complex cobordism,

and
S L(E; u) :=

∑
m∈Z

S L
m(E)um

its Segre series. The explicit expression of S L(E; u) is given by
(2.1)

S L(E; u) =
1

PL(z)

n∏
j=1

z

z +L xj

∣∣∣∣∣
z=u−1

=
1

PL(z)

zn∏n
j=1(z +L xj)

∣∣∣∣∣
z=u−1

,

where PL(z) := 1+
∑∞

i=1 a
L
i,1z

i, and x1, . . . , xn are the Chern roots of E in
complex cobordism.

Now consider the Grassmann bundle π1 : G1(E) −→ X of hyperplanes
in E. Denote by Q1 the tautological quotient bundle on G1(E). Put x1 :=
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cMU
1 (Q1) ∈ MU2(G1(E)). For a monomial m of a formal Laurent series F ,

we denote by [m](F ) the coefficient of m in F . Note that the Grassmann
bundle G1(E) of hyperplanes in E is canonically isomorphic to the pro-
jective bundle P (E∨) = G1(E

∨) of lines in the dual bundle E∨. Then, by
dualizing the formula [26, (3.4)], we have the following form of Quillen’s
Gysin formula:

Proposition 2.1. For a polynomial f(u) ∈ MU∗(X)[u], the Gysin map
π1
∗ : MU∗(G1(E)) −→ MU∗(X) is described by the following formula:

(2.2) π1
∗(f(x1)) = [un−1](f(u) · S L(E; 1/u)).

This is the fundamental formula for establishing more general Gysin formu-
las for general flag bundles.

Here we shall fix some notation concerning flag bundles1: Let E −→ X

be a complex vector bundle of rank n. For a positive integer r = 1, 2, . . . , n,
denote by πr,r−1,...,1 : Fℓr,r−1,...,1(E) = Fℓn−r,n−r+1,...,n−1(E) −→ X the
associated flag bundle. Thus a point in Fℓr,r−1,...,1(E) is written as a pair
(x, (W•)x), where (W•)x is a flag, i.e., nested subspaces of the form (W1)x ⊂
(W2)x ⊂ · · · ⊂ (Wr)x, codim (Wi)x = r + 1 − i, in the fiber Ex of E over
each point x ∈ X. Following Darondeau–Pragacz [4, §1.2], we shall call the
flag bundle of the form πr,r−1,...,1 : Fℓr,r−1,...,1(E) −→ X the full flag bundle
in this paper. When r = n, we call πn,n−1,...,1 : Fℓn,n−1,...,1(E) −→ X the
complete flag bundle, and just write π : Fℓ(E) −→ X. On Fℓ(E), there is
the universal flag of subbundles

0 = U0 ⊂ U1 ⊂ · · · ⊂ Ui ⊂ · · · ⊂ Un−1 ⊂ Un = π∗(E),

where rankUi = i (i = 0, 1, . . . , n). and we put

(2.3) xi := cMU
1 (Un+1−i/Un−i) ∈ MU2(Fℓ(E)) (i = 1, 2, . . . , n),

which are the MU∗-theory Chern roots of E. It is well-known (see e.g.,
Darondeau–Pragacz [4, §1.2]) that the full flag bundle Fℓr,r−1,...,1(E) is con-
structed as a sequence of Grassmann bundles of codimension one hyper-
planes2:
(2.4)
πr,...,1 : Fℓr,r−1,...,1(E) = G1(Un−r+1)

πr

−→ · · · −→ G1(Un−1)
π2

−→ G1(E)
π1

−→ X.

1The notation concerning flag bundles or flag manifolds varies depending on the
authors. We followed basically that used in Nakagawa–Naruse [24, §4.1], Darondeau–
Pragacz [4, §1].

2Note that, in [4, §1.2], the full flag bundle is constructed as a sequence of projective
bundles of lines.
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3. Universal factorial Hall–Littlewood P - and Q-functions

In this section, we shall introduce our main object to study, the universal
factorial Hall–Littlewood P - and Q-functions, which are universal as well as
factorial analogues of the ordinary Hall–Littlewood polynomials.

3.1. Universal factorial Hall–Littlewood P - and Q-functions.

3.1.1. Definition of the universal factorial Hall–Littlewood P - and Q-functions.
We shall use the notation introduced in §2.1. We provide the variables
x = (x1, x2, . . .) and b = (b1, b2, . . .) with deg (xi) = deg (bi) = 1 for
i = 1, 2, . . .. Then we make the following definition:

Definition 3.1 (Universal factorial Hall–Littlewood P - and Q-functions).
For a sequence of positive integers λ = (λ1, . . . , λr) with r ≤ n, we define

HP L
λ (xn; t|b) :=

∑
w∈Sn/(S1)r×Sn−r

w ·

[
[x|b]λL

r∏
i=1

n∏
j=i+1

xi +L [t](xj)

xi +L xj

]
,

HQL
λ(xn; t|b) :=

∑
w∈Sn/(S1)r×Sn−r

w ·

[
[[x; t|b]]λL

r∏
i=1

n∏
j=i+1

xi +L [t](xj)

xi +L xj

]
,

where the symmetric group Sn acts naturally on the variables xn = (x1, . . . , xn)

by permuting them. We also define

HP L
λ (xn; t) := HP L

λ (xn; t|0) and HQL
λ(xn; t) := HQL

λ(xn; t|0).

In what follows, HP L
λ (xn; t) and HQL

λ(xn; t) will be called the universal
Hall–Littlewood P - and Q-functions respectively.

In the above definition, the action of the subgroup (S1)
r × Sn−r of Sn

on the first factors [x|b]λL and [[x; t|b]]λL is trivial, and the second factor∏
1≤i≤r, i<j≤n

xi +L [t](xj)

xi +L xj

is invariant under this action. Therefore, the action

of the symmetric group does not depend on the choice of a representa-
tive w of the coset w ∈ Sn/(S1)

r × Sn−r. Note that when t = −1 in the
definition, then HP L

λ (xn;−1|b) (resp. HQL
λ(xn;−1|b)) coincides with the

universal factorial Schur P -function P L
λ (xn|b) (resp. Q-function QL

λ(xn|b)),
for a strict partition λ, which have been introduced in our previous paper
[23, Definition 4.1]. In contrast to this, when t = 0, both HP L

λ (xn; 0|b)
and HQL

λ(xn; 0|b) are different from the universal factorial Schur functions
sLλ(xn|b) ([23, Definition 4.10]), SL

λ(xn|b) ([24, Definition 5.1]).
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3.1.2. Factorial Hall–Littlewood P - and Q-polynomials. The specialization
from FL(u, v) = u +L v to Fa(u, v) = u + v is of particular importance.
Under this specialization, the generalized powers [x|b]kL, [[x; t|b]]kL reduce to
[x|b]k =

∏k
j=1(x+ bj), [[x; t|b]]k = (x− tx)[x|b]k−1 respectively, and we ob-

tain new symmetric polynomials denoted by HPλ(xn; t|b) and HQλ(xn; t|b)
respectively. More explicitly, these are defined as follows:

Definition 3.2 (Factorial Hall–Littlewood P - and Q-polynomials). For a
sequence of positive integers λ = (λ1, . . . , λr) with r ≤ n, we define

HPλ(xn; t|b) :=
∑

w∈Sn/(S1)r×Sn−r

w ·

[
[x|b]λ

r∏
i=1

n∏
j=i+1

xi − txj

xi − xj

]
,

=
∑

w∈Sn/(S1)r×Sn−r

w ·

[
r∏

i=1

λi∏
j=1

(xi + bj)×
r∏

i=1

n∏
j=i+1

xi − txj

xi − xj

]
,

HQλ(xn; t|b) :=
∑

w∈Sn/(S1)r×Sn−r

w ·

[
[[x; t|b]]λ

r∏
i=1

n∏
j=i+1

xi − txj

xi − xj

]
= (1− t)r×∑
w∈Sn/(S1)r×Sn−r

w ·

[
r∏

i=1

λi−1∏
j=1

xi(xi + bj)×
r∏

i=1

n∏
j=i+1

xi − txj

xi − xj

]
.

We also define

HPλ(xn; t) := HPλ(xn; t|0) and HQλ(xn; t) := HQλ(xn; t|0),

and will be called the Hall–Littlewood P - and Q-polynomials respectively.

Note that, by definition, we have HQλ(xn; t|b) = (1− t)ℓ(λ)HPλ(xn; t|0, b).
For a strict partition λ, if t specializes to be −1, then HPλ(xn;−1|b) and
HQλ(xn;−1|b) = 2ℓ(λ)HPλ(xn;−1|0, b) coincide with the factorial Schur
P - and Q-polynomials (by replacing b with −b = (−b1,−b2, . . . )) (for their
definition, see Ikeda–Mihalcea–Naruse [12, §4.2]). However, for a partition
λ, both HPλ(xn; 0|b) and HQλ(xn; 0|b) do not coincide with the factorial
Schur polynomial (for its definition, see Molev–Sagan [21, §2, (3)]).

Example 3.3. Direct computation from Definition 3.2 gives some examples:

HP(1)(xn; t|b) = x1 + x2 + · · ·+ xn +
1− tn

1− t
b1,

HP(12)(xn; t|b)

= (1 + t)

[
m(12)(xn) +

1− tn−1

1− t
b1m(1)(xn) +

(1− tn−1)(1− tn)

(1− t)(1− t2)
b21

]
,

HP(2)(xn; t|b) = (s(2)(xn)− ts(12)(xn) + (b1 + b2)s(1)(xn) + b1b2
1− tm

1− t
.



10 M. NAKAGAWA AND H. NARUSE

Here mλ(xn) and sλ(xn) are respectively the monomial symmetric polyno-
mials and Schur polynomials corresponding to λ.

If λ is a partition of length ℓ(λ) = r ≤ n, i.e., λ1 ≥ λ2 ≥ · · · ≥ λr > 0, our
factorial Hall–Littlewood P - and Q-polynomials are related to Macdonald’s
Hall–Littlewood P - and Q-polynomials in the following way: We rewrite λ

as λ = (np1
1 np2

2 · · ·npd−1

d−1 npd
d ), where n1 > n2 > · · · > nd−1 > nd = 0,

each pi > 0, pd = n − r, and
∑d

i=1 pi = n. We put ν(k) :=
∑k

i=1 pi for
k = 1, . . . , d and ν(0) := 0. Denote by Spk the symmetric group on mk

letters ν(k − 1) + 1, . . . , ν(k) for k = 1, . . . , d. Thus the stabilizer subgroup
Sλ
n of λ under the action of Sn on λ is given by Sλ

n =
∏d

k=1 Spk . For an
integer k ≥ 0, let vk(t) :=

∏k
i=1

1−ti

1−t
, and for the above partition λ, we

define3

vλ>0(t) :=
d−1∏
k=1

vpk(t).

Using the identity

(3.1)
∑
w∈Sn

w ·

[ ∏
1≤i<j≤n

xi − txj

xi − xj

]
= vn(t)

in [19, Chapter III, (1.4)], one can prove the following fact along the same
line as the case of the usual Hall–Littlewood polynomials ([19, Chapter III,
(1.5)]):

(3.2) HPλ(xn; t|b) = vλ>0(t)×
∑

w∈Sn/Sλ
n

w ·

[x|b]λ · ∏
1≤i<j≤n
λi>λj

xi − txj

xi − xj

 .

Thus HPλ(xn; t|b) is divisible by vλ>0(t). Taking this fact into account, we
define

(3.3) Pλ(xn; t|b) :=
1

vλ>0(t)
HPλ(xn; t|b),

or equivalently,

(3.4) Pλ(xn; t|b) :=
∑

w∈Sn/Sλ
n

w ·

[x|b]λ · ∏
1≤i<j≤n
λi>λj

xi − txj

xi − xj

 .

It is this polynomial that can be considered as a factorial version of Macdon-
ald’s Hall–Littlewood P -polynomial Pλ(xn; t). Putting b = 0 in (3.3), we
have HPλ(xn; t) = vλ>0(t)Pλ(xn; t). In particular, for λ strict, HPλ(xn; t)

3Do not confuse vλ>0(t) with vλ(t) :=
∏

i≥0 vmi
(t) in Macdonald [19, Chapter III, §1],

where mi = mi(λ) means the multiplicity for each i ≥ 0.
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coincides with Pλ(xn; t). On the other hand, by the argument in Macdon-
ald’ book [19, pp.210–211], we see that HQλ(xn; t) equals to the ordinary
Hall–Littlewood Q-polynomial Qλ(xn; t).

Remark 3.4. (1) The universal analogue of the left hand side of (3.1),
namely, ∑

w∈Sn

w ·

[ ∏
1≤i<j≤n

xi +L [t](xj)

xi +L xj

]
is no longer a polynomial in t alone (it contains the variables x1, . . . , xn).
Therefore an analogous formula of (3.2) does not hold in this case.

(2) For a general sequence of positive integers λ, HPλ(xn; t|b) may not
be divisible by vλ>0(t).

3.2. Characterization of the universal factorial Hall–Littlewood P -
and Q-functions. Geometrically, the universal factorial Hall–Littlewood
P - and Q-functions are characterized by means of the Gysin map for certain
flag bundles. (We learned this idea from the work [32] by Pragacz.) Let
E −→ X be a complex vector bundle of rank n, and x1, . . . , xn are the
MU∗-theory Chern roots of E as in (2.3). Consider the associated full flag
bundle πr,r−1,...,1 : Fℓr,r−1,...,1(E) −→ X. Then the Gysin homomorphism
(πr,...,1)∗ : MU∗(Fℓr,...,1(E)) −→ MU∗(X) is described as the following type
of a symmetrizing operator (see Nakagawa–Naruse [24, Theorem 4.10], also
Brion [3, Proposition 1.1] for cohomology): For an (S1)

r × Sn−r-invariant
polynomial f(X1, . . . , Xn) ∈ MU∗(X)[X1, . . . , Xn]

(S1)r×Sn−r , one has

(πr,...,1)∗(f(x1, . . . , xn)) =
∑

w∈Sn/(S1)r×Sn−r

w ·

[
f(x1, . . . , xn)∏

1≤i≤r, i<j≤n(xi +L xj)

]
.

Then it follows from Definition 3.1 and the above description of the Gysin
homomorphism (πr,...,1)∗ that the following formula holds:

Proposition 3.5 (Characterization of the universal factorial Hall–Little-
wood P - and Q-functions).

(πr,...,1)∗

(
[x|b]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))

)
= HP L

λ (xn; t|b),(3.5)

(πr,...,1)∗

(
[[x; t|b]]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))

)
= HQL

λ(xn; t|b).(3.6)

Here b = (b1, b2, . . .) is a sequence of elements in MU∗(X).

This characterization seems merely a paraphrase of Definition 3.1 at first
sight. However, this geometric interpretation will be crucial in our current
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work. In fact, as shown in the subsequent section §4, a careful application
of the fundamental Gysin formula (2.2) to the left hand side of (3.5), (3.6)
enables us to obtain the generating functions for the universal factorial
Hall–Littlewood P - and Q-functions.

Remark 3.6. As a special case of the above result, the factorial Hall–
Littlewood P -polynomial HPλ(xn; t|b) is characterized by the cohomology
Gysin map, i.e., we have

(πr,...,1)∗

(
[x|b]λ

r∏
i=1

n∏
j=i+1

(xi − txj)

)
= HPλ(xn; t|b).

A factorial version of Macdonald’s Hall–Littlewood P -polynomial Pλ(xn; t|b)
can be also characterized by the Gysin map: Consider the partial flag
bundle πλ : Fℓλ(E) := Fℓν(d−1),ν(d−2),...,ν(1)(E) −→ X. Here we write
λ = (np1

1 · · ·npd
d ) and ν(k) =

∑k
i=1 pi as in §3.1. Then the following for-

mula holds:

(πλ)∗

(
[x|b]λ

r∏
i=1

n∏
j=i+1

(xi − txj)

)
= Pλ(xn; t|b).

3.3. Vanishing properties of factorial Hall–Littlewood P - and Q-
polynomials. It is known that the factorial Schur S-, P -, and Q-polynomials
have the remarkable property called vanishing property (see Molev–Sagan
[21, Theorem 2.1], Ivanov [15, Theorem 5.3]). In this subsection, we shall
show that our factorial Hall–Littlewood P - and Q-polynomials have this
property. Let b = (b1, b2, . . .) be a sequence of indeterminates, and t be an
indeterminate. For a partition µ = (µ1, µ2, . . .), let mi = mi(µ) be the mul-
tiplicity of i (1 ≤ i ≤ µ1), i.e., the number of components in µ whose size is
equal to i. We define

−bµ(t) := (−b
mµ1
µ1 (t), . . . ,−bm2

2 (t),−bm1
1 (t)),

where −bki (t) := (−bi,−tbi, . . . ,−tk−1bi) (we set −b0i (t) = ( ), the empty
sequence). Let us consider to substitute the variables xn = (x1, . . . , xn) with
the sequence −bµ(t) for a partition µ of length ℓ(µ) ≤ n. We sometimes
write xn → −bµ(t), or more specifically, say, x1 → −bµ1 when we make
such substitution. After the substitution xn → −bµ(t) was made, denote by
evµ(xi) (i = 1, . . . , n) the i-th entry of −bµ(t). Therefore we have

(evµ(x1), . . . , evµ(xn)) = −bµ(t).

We also use the notation evµ(f(x1, . . . , xn)) = f(evµ(x1), . . . , evµ(xn)) in the
following. For example, if µ = (5, 5, 5, 4, 1, 1), then m1(µ) = 2, m2(µ) = 0,
m3(µ) = 0, m4(µ) = 1, m5(µ) = 3, and
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−bµ(t) = (−b5,−tb5,−t2b5,−b4,−b1,−tb1), evµ(x1) = −b5, evµ(x2) = −tb5,
evµ(x2− tx1) = −tb5− t · (−b5) = 0, etc. With these notations, we can prove
the following:

Proposition 3.7 (Vanishing property). Let λ, µ be partitions of length at
most n and set µ̂ := µ + (1n) = (µ1 + 1, µ2 + 1, . . . , µn + 1). Then the fac-
torial Hall–Littlewood P - and Q-polynomials satisfy the following vanishing
property:

(1) If µ ̸⊃ λ, we have

HQλ(−bµ(t), 0, . . . , 0︸ ︷︷ ︸
n−ℓ(µ)

; t|b) = 0 and HPλ(−bµ̂(t); t|b) = 0.

(2) If µ = λ, we have

HQλ(−bλ(t), 0, . . . , 0︸ ︷︷ ︸
n−ℓ(λ)

; t|b) =

λ1∏
q=1

mq(λ)∏
k=1

(
q∏

p=1

(−tk−1bq + tmp(λ)bp)

)
, and

HPλ(−bλ̂(t); t|b) = vλ>0(t)

λ̂1∏
q=2

mq(λ̂)∏
k=1

(
q−1∏
p=1

(−tk−1bq + tmp(λ̂)bp)

)
.

Proof. We only prove the case of HPλ(xn; t|b). The case of HQλ(xn; t|b)
can be proved similarly.

(1) As λ ̸⊂ µ, we can find minimal k such that λk > µk (1 ≤ k ≤ ℓ(λ) =

r). For each choice w of w ∈ Sn/(S1)
r×Sn−r, we will show the corresponding

summand in (3.2) vanishes, i.e.,(
w ·

[
[x1|b]λ1 · · · [xr|b]λr

∏
1≤i≤r, i<j≤n

xi − txj

xi − xj

])
xn→−bµ̂(t)

= 0.

For the permutation w, take minimal d (1 ≤ d ≤ k) such that w(d) ≥ k.
Then we divide the discussion into two cases:
Case 1. w(d) = 1 or [w(d) > 1 and µw(d)−1 > µw(d)]. In this case,(

[xw(d)|b]λd
)
xw(d)→evµ̂(xw(d))

= 0

because evµ̂(xw(d)) = −bµw(d)+1 and λd ≥ λk > µk ≥ µw(d).
Case 2. w(d) > 1 and µw(d)−1 = µw(d). In this case, we claim that

evµ̂

( ∏
1≤i≤r, i<j≤n

xw(i) − txw(j)

xw(i) − xw(j)

)
= 0.

First note that, by the minimality of the choice of k, we have w(d) > k.
Let p (1 ≤ p ≤ n) be an integer such that w(p) = w(d) − 1. Then, by the
minimality of d, we have d < p ≤ n. Since µw(p) = µw(d) and w(d) = w(p)+1,
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we have evµ̂(xw(d)) = t · evµ̂(xw(p)). As 1 ≤ d ≤ r, and d < p ≤ n, the factor
evµ̂(xw(d) − txw(p)) vanishes, and therefore our claim follows.

(2) When µ = λ, we first show that each summand corresponding to
w ∈ Sn/(S1)

r × Sn−r vanishes under the evaluation evλ̂, except for w = e

(e the identity element). In fact, if w ̸= e, we can find minimal d such that
1 ≤ d ≤ r and w(d) > d. Then, by dividing the argument into two cases
Case 1. λw(d)−1 > λw(d), and Case 2. λw(d)−1 = λw(d), we can show that the
corresponding summand vanishes under the evaluation evλ̂.

For w = e, we can evaluate the term as follows. For each i (1 ≤ i ≤ r),
we can write evλ̂(xi) = tk−1bq (k ≥ 1, q = λi + 1 ≥ 2). Then, the direct
computation yields

evλ̂

(
[xi|b]λi

n∏
j=i+1

xi − txj

xi − xj

)
=

1− tmq(λ̂)−k+1

1− t

q−1∏
p=1

(−tk−1bq + tmp(λ̂)bp).

We then take all the product of these evaluations for 1 ≤ i ≤ r. Since we

have
λ̂1∏
q=2

mq(λ̂)∏
k=1

1− tmq(λ̂)−k+1

1− t
= vλ>0(t), we get the desired formula. □

More generally, we can prove the vanishing property of the universal
factorial Hall–Littlewood P - and Q-functions by the similar way. We only
exhibit the result. To state the result, we prepare some notations. For a
partition µ, we define

bµ[t] := (b
mµ1

µ1
[t], b

mµ1−1

µ1−1 [t], . . . , b
m2

2 [t], b
m1

1 [t]),

where b
k

i [t] := (bi, [t](bi), . . . , [t
k−1](bi)) (we set b

0

i [t] = ( ) i.e., the empty
sequence).

Proposition 3.8 (Vanishing property). Let λ, µ be partitions of length at
most n and set µ̂ = µ+(1n) = (µ1+1, µ2+1, . . . , µn+1). Then the universal
factorial Hall–Littlewood P - and Q-functions satisfy the following vanishing
property:

(1) If µ ̸⊃ λ, we have

HQL
λ(bµ[t], 0, . . . , 0︸ ︷︷ ︸

n−ℓ(µ)

; t|b) = 0 and HP L
λ (bµ̂[t]; t|b) = 0.
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(2) If µ = λ, we have

HQL
λ(bλ[t], 0, . . . , 0︸ ︷︷ ︸

n−ℓ(λ)

; t|b) =

λ1∏
q=1

mq(λ)∏
k=1

(
q∏

p=1

([tk−1](bq) +L [t
mp(λ)](bp))

)
, and

HP L
λ (bλ̂[t]; t|b) = vλ>0(t)

λ̂1∏
q=2

mq(λ̂)∏
k=1

(
q−1∏
p=1

([tk−1](bq) +L [tmp(λ̂)](bp))

)
.

3.4. Pieri-type formula and Hook formula. The vanishing property
established in the previous section is so useful that one can derive several
interesting results of factorial Hall–Littlewood polynomials from this. De-
note by Λ(xn) = Z[x1, . . . , xn]

Sn the ring of symmetric polynomials of n

variables, and Pn the set of partitions of length ≤ n. Then, it is known that
the usual Hall–Littlewood P -polynomials Pλ(xn; t) (λ ∈ Pn) form a Z[t]-
basis of Λ(xn)[t] ∼= Z[t]⊗Z Λ(xn) (cf. Macdonald [19, III, (2.7)]). Therefore
there exist polynomials cνλ,µ(t) = c

ν,(n)
λ,µ (t) ∈ Z[t] such that

Pλ(xn; t)Pµ(xn; t) =
∑
ν

cνλ,µ(t)Pν(xn; t) (λ, µ, ν ∈ Pn).

It is known that (see Macdonald [19, III, (5.7)]) the following Pieri-type
formula holds:

(3.7) P(1)(xn; t)Pµ(xn; t) =
∑

µ⊂ν, |ν/µ|=1

αν/µ(t)Pν(xn; t),

where polynomial αν/µ(t) = α
(n)
ν/µ(t) is given by

1− tmj(ν)

1− t
if ν/µ has a box in

the jth column. As for the factorial version of Macdonald’s Hall–Littlewood
P -polynomials Pλ(xn; t|b) (see (3.3)), one can consider a similar problem:
First we see that factorial Hall–Littlewood P -polynomials Pλ(xn; t|b) (λ ∈
Pn) form a Z[t]⊗Z Z[b]-basis of Λ(xn|b)[t] := Z[t]⊗Z Z[b]⊗Z Λ(xn), where
Z[b] = Z[b1, b2, . . .] is a polynomial ring of indeterminates b = (b1, b2, . . .).
Therefore there exist polynomials cνλ,µ(t|b) = c

ν,(n)
λ,µ (t|b) ∈ Z[t] ⊗ Z[b] such

that

(3.8) Pλ(xn; t|b)Pµ(xn; t|b) =
∑
ν

cνλ,µ(t|b)Pν(xn; t|b) (λ, µ, ν ∈ Pn).

By definition, the “structure constant” cνλ,µ(t|b) is a homogeneous polyno-
mial of degree |λ| + |µ| − |ν| in the indeterminates b = (b1, b2, . . .) with
coefficients in Z[t]. Comparing the highest homogeneous components in
xn = (x1, . . . , xn) on both sides of (3.8), we see that

cνλ,µ(t|b) =
{

cνλ,µ(t) if |λ|+ |µ| = |ν|,
0 if |λ|+ |µ| < |ν|.
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From the commutativity of the product in the left hand side of (3.8), the
symmetry cνλ,µ(t|b) = cνµ,λ(t|b) holds obviously. Furthermore, using the van-
ishing property4, Proposition 3.7, we claim that cνλ,µ(t|b) is zero unless λ ⊂ ν

and µ ⊂ ν. The proof proceeds as follows (cf. Molev–Sagan [21, p.4434]):
Let ν be minimal with respec to containment relation among all partitions
ρ in (3.8) such that cρλ,µ(t|b) ̸= 0. Suppose that µ ̸⊂ ν. We set xn = −bν̂(t)

in (3.8). Then, by Proposition 3.7 (1), we have

0 = cνλ,µ(t|b)Pν(−bν̂(t); t|b).

By Proposition 3.7 (2), we have Pν(−bν̂(t); t|b) ̸= 0, and hence cνλ,µ(t|b) = 0.
However this contradicts to cνλ,µ(t|b) ̸= 0, and hence µ ⊂ ν holds. From this
and the symmetry relation cνλ,µ(t|b) = cνµ,λ(t|b), our claim follows.

Now we consider the case where λ = (1) in (3.8). Then, by the known
properties of the structure constants, we only need to consider those ν with
µ ⊂ ν and |ν| ≤ |µ|+ 1, Thus (3.8) takes the following form:

P(1)(xn; t|b)Pµ(xn; t|b) = cµ(1),µ(t|b)Pµ(xn; t|b)+
∑

µ⊂ν, |ν/µ|=1

cν(1),µ(t|b)Pν(xn; t|b).

Setting xn = −bµ̂(t) and using the vanishing property, we see that cµ(1),µ(t|b) =
P(1)(−bµ̂(t); t|b). On the other hand, by the degree reason, we have cν(1),µ(t|b) =
cν(1),µ(t) = αν/µ(t) when µ ⊂ ν and |ν/µ| = 1. Therefore we obtain the fol-
lowing formula:

Proposition 3.9 (Pieri-type formula for factorial Hall–Littlewood P -polynomials).

P(1)(xn; t|b)Pµ(xn; t|b) = P(1)(−bµ̂(t); t|b)Pµ(xn; t|b)+
∑

µ⊂ν, |ν/µ|=1

αν/µPν(xn; t|b).

Using Proposition 3.9, we can derive a generalization of the so-called hook
(length) formula. We argue as follows (the following argument is essentially
the same as that given in Molev–Sagan [21, Proposition 3.2] for factorial
Schur polynomials, although they did not mention the relation to the hook
formula. For this type of argument, see also Naruse–Okada [29, Lemma 4.5]).
For simplicity, we shall use the abbreviated notation Pλ, cνλ,µ, and αλ/µ for
Pλ(xn; t|b), cν,(n)λ,µ (t|b), and α

(n)
λ/µ(t) respectively in the following. Then our

hook formula is stated as follows:

Proposition 3.10 (Hook formula for factorial Hall–Littlewood P -polynomials).
Let µ be a partition of length ℓ(µ) ≤ n and size |µ| = k, a positive integer.

4By the definition (3.3), Pλ(xn; t|b)’s also satisfy the vanishing property.
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Then we have the following formula:

∑
µ=µ(0)⊋µ(1)⊋µ(2)⊋···⊋µ(k)=∅

αµ(k−1)/µ(k)

cµ(1),µ − cµ
(k)

(1),µ(k)

· · · · ·
αµ(1)/µ(2)

cµ(1),µ − cµ
(2)

(1),µ(2)

·
αµ(0)/µ(1)

cµ(1),µ − cµ
(1)

(1),µ(1)

=
1

Pµ(−bµ̂(t); t|b)
.

(3.9)

Proof. We consider the associativity of the product

(P(1)Pλ)Pµ = P(1)(PλPµ),

and take the coefficient of Pµ on both sides. Using the fact that cγα,β is zero
unless α ⊂ γ and β ⊂ γ, and Proposition 3.9, we have

cλ(1),λc
µ
λ,µ +

∑
µ⊃ν⊋λ, |ν/λ|=1

αν/λ c
µ
ν,µ = cµ(1),µc

µ
λ,µ,

and therefore we have

(cµ(1),µ − cλ(1),λ)c
µ
λ,µ =

∑
µ⊃ν⊋λ, |ν/λ|=1

αν/λ c
µ
ν,µ.

By definition and Example 3.3, we know that P(1)(xn; t|b) = x1+ · · ·+xn+
1−tn

1−t
b1. Therefore, if µ ⊋ λ, we see that cµ(1),µ − cλ(1),λ = P(1)(−bµ̂(t); t|b) −

P(1)(−bλ̂(t); t|b) ̸= 0. Thus we have the following recurrence formula:

cµλ,µ =
∑

µ⊃ν⊋λ, |ν/λ|=1

αν/λ

cµ(1),µ − cλ(1),λ
cµν,µ.

Using this recurrence formula repeatedly, we obtain

cµ∅,µ =
∑

µ=µ(0)⊋µ(1)⊋µ(2)⊋···⊋µ(k)=∅

αµ(k−1)/µ(k)

cµ(1),µ − cµ
(k)

(1),µ(k)

· · · · ·
αµ(0)/µ(1)

cµ(1),µ − cµ
(1)

(1),µ(1)

cµµ,µ.

The fact that cµ∅,µ = 1 is obvious from the definition of structure constants.
The value of cµµ,µ equals to Pµ(−bµ̂(t); t|b) by virtue of the vanishing prop-
erty, Proposition 3.7. Therefore, we have the desired equation. □

As mentioned before the proposition, one can obtain a similar hook for-
mula by [21, Proposition 3.2]. More concretely, under their notation, one
has the following formula:
(3.10) ∑

∅=ρ(0)→ρ(1)→···→ρ(l−1)→ρ(l)=ν

1

(|aν | − |aρ(0) |) · · · (|aν | − |aρ(l−1) |)
=

1

sν(aν |a)
.

We remark that this formula can be interpreted as a special case of Nakada’s
colored hook formula ([22, Corollary 7.2]), which is a generalization of the
famous hook formula due to Frame–Robinson–Thrall [6]. As an example,
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let us take ν = (2, 2) and n = 2, the number of variables. Then the above
formula leads to

1

(a3 − a2)(a3 − a1)(a4 − a1)(a4 + a3 − a2 − a1)

+
1

(a3 − a2)(a4 − a2)(a4 − a1)(a4 + a3 − a2 − a1)

=
1

(a3 − a2)(a3 − a1)(a4 − a2)(a4 − a1)
.

Now consider the simple root system {α1, α2, α3} of type A3. If one represent
the simple root αi as ai−ai+1 for i = 1, 2, 3, then the above identity becomes
(3.11)

1

α2(α1 + α2)(α1 + α2 + α3)(α1 + 2α2 + α3)

+
1

α2(α2 + α3)(α1 + α2 + α3)(α1 + 2α2 + α3)

=
1

α2(α1 + α2)(α2 + α3)(α1 + α2 + α3)
,

which agrees with the example given in [22, p.1088]. When we special-
ize t to be 0, our factorial Hall–Littlewood P -polynomial HPλ(xn; 0|b) =

Pλ(xn; 0|b) does not coincide with the factorial Schur polynomial sλ(xn|b).5

Thus t = 0 specialization of our hook formula (3.9) yields another colored
hook formula (see the example below). It is well-known that the classical
hook formula and its shifted analogue have geometric background known
as Schubert calculus, and are closely related to combinatorics of Grassman-
nians, root systems, and Weyl groups (see e.g., Hiller [10]). In our forth-
coming paper ([27]), we shall discuss geometric or topological background
of our hook formula, in relation to complex reflection groups G(e, 1, n) and
G(e, e, n) (for root systems of these groups, see Bremke–Malle [1] [2]).

Example 3.11. For the partition µ = (2, 2), the explicit form of our hook
length formula is given as follows: First note that there exist “two paths”
from µ = (2, 2) to ∅ = ( ). Namely,

µ = (2, 2) ⊋ (2, 1) ⊋ (2) ⊋ (1) ⊋ ( ) and µ = (2, 2) ⊋ (2, 1) ⊋ (1, 1) ⊋ (1) ⊋ ( ).

5In the definition of the factorial Schur polynomial sλ(x|a) given by Molev–Sagan [21,
§2, (3)], we replaced a doubly-infinite variable sequence a = (ai), i ∈ Z, by b = (b1, b2, . . .).
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From the fact that cν(1),ν = c
ν,(n)
(1),ν (t|b) = P

(n)
(1) (−bν̂(t); t|b), we get the follow-

ing result directly:

c
( )
(1),( ) = 0,

c
(1)
(1),(1) = −b2 + tn−1b1,

c
(1,1)
(1),(1,1) = (1 + t)(−b2 + tn−2b1),

c
(2)
(1),(2) = −b3 + tn−1b1,

c
(2,1)
(1),(2,1) = −b3 − b2 + (1 + t)tn−2b1,

c
(2,2)
(1),(2,2) = (1 + t)(−b3 + tn−2b1).

Similarly, αν/λ = α
(n)
ν/λ(t) can be computed directly from the definition, and

we get
α(2,2)/(2,1) = 1 + t, α(2,1)/(2) = 1, α(2,1)/(1,1) = 1, α(2)/(1) = 1, α(1,1)/(1) = 1 + t,

α(1)/( ) = 1.

By Proposition 3.7, we have, for µ = (2, 2),

P (n)
µ (−bµ̂(t); t|b) = (−b3 + tn−2b1)(−tb3 + tn−2b1)(−b3 + b2)(−tb3 + b2).

Therefore our hook formula gives the following identity:
1 + t

−tb3 + b2
·
(

1

−tb3 + tn−2b1
· 1

−b3 − tb3 + b2 + tn−2b1

+
1

−b3 − tb3 + b2 + tb2
· 1 + t

−b3 − tb3 + b2 + tn−2b1

)
× 1

−b3 − tb3 + tn−2b1 + tn−1b1

=
1

(−b3 + tn−2b1)(−tb3 + tn−2b1)(−b3 + b2)(−tb3 + b2)
.

4. Generating functions for the universal factorial
Hall–Littlewood P - and Q-functions

In this section, by utilizing a Gysin formula in complex cobordism,
Proposition 2.1, we shall derive the generating functions for the universal
factorial Hall–Littlewood P - and Q-functions.

4.1. Generating function for HP L
λ (xn; t|b). Basic idea is to apply the

fundamental formula (2.2) repeatedly to the characterization (3.5) to obtain
the generating function. Here we remark that the formula (2.2) still holds for
a formal power series f(u) ∈ MU∗(X)[[u]] as well, and we shall use such an
extended form of (2.2). However, we will be confronted with some difficulty
when we apply the formula to (3.5). In order to clarify the difficulty, let us



20 M. NAKAGAWA AND H. NARUSE

consider the simplest case λ = (λ1) with λ1 ≥ 1 (and hence r = 1) of (3.5).
We wish to push-forward the expression [x1|b]λ1

L
∏n

j=2(x1 +L [t](xj)) via the
Gysin map π1

∗ : MU∗(G1(E)) −→ MU∗(X). Naively, setting

f(u) := [u|b]λ1
L ·

n∏
j=2

(u+L [t](xj)),

we wish to compute π1
∗(f(x1)). However, one cannot regard f(u) as an ele-

ment of MU∗(X)[[u]] as it is. Therefore we consider the following expression
instead:

f1(u) :=
[u|b]λ1

L
u+L [t](u)

·
n∏

j=1

(u+L [t](xj)).

Since symmetric functions in x1, . . . , xn can be regarded as elements of
MU∗(X) (x1, . . . , xn are the Chern roots of E), the coefficients of f1(u) with
respect to u are actually in MU∗(X). Moreover, we have f(x1) = f1(x1) ob-
viously. However, it is not a formal power series in u because of the constant
term b1b2 · · · bλ1 in the numerator, and therefore the formula (2.2) does not
apply directly. We further modify f1(u), and consider the following expres-
sion:

(4.1) f2(u) :=
[u|b]λ1

L
u+L [t](u)

{
n∏

j=1

(u+L [t](xj))−
n∏

j=1

[t](u+L xj)

}
.

The effect of subtracting the term
∏n

j=1[t](u+L xj) (hereafter we call it the
“correction term”) is two-fold: Firstly, the expression

∏n
j=1(u +L [t](xj)) −∏n

j=1[t](u +L xj) is divisible by u, and therefore f2(u) becomes indeed
a formal power series in u with coefficients in MU∗(X). Secondly, when
we substitute x1 for u, we have f(x1) = f2(x1) by the obvious identity∏n

j=1[t](x1 +L xj) = 0. Therefore the fundamental Gysin formula (2.2) does
apply to f2(u), and the result is given as follows:

HP L
(λ1)

(xn; t|b) = π1
∗(f2(x1)) = [un−1](f2(u)× S L(E; 1/u))

= [un−1]

[
[u|b]λ1

L
u+L [t](u1)

{
n∏

j=1

(u+L [t](xj))−
n∏

j=1

[t](u+L xj)

}
· S L(E; 1/u)

]

= [u−λ1 ]

[
1

PL(u)

u

u+L [t](u)

{
n∏

j=1

u+L [t](xj)

u+L xj

−
n∏

j=1

[t](u+L xj)

u+L xj

}
·

λ1∏
j=1

u+L bj
u

]
.

Example 4.1. As a special case of the above formula, the ordinary factorial
Hall-Littlewood P -polynomial corresponding to the one-row (λ1) is given by

HP(λ1)(xn; t|b) = [u−λ1 ]

[
1

1− t

(
n∏

j=1

u− txj

u− xj

− tn

)
×

λ1∏
j=1

u+ bj
u

]
.
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In particular, we have

HP(1)(xn; t|b) = [u−1]

[
1

1− t

(
n∏

j=1

u− txj

u− xj

− tn

)
× u+ b1

u

]

=
1

1− t
q1(xn; t) +

1− tn

1− t
b1

= x1 + x2 + · · ·+ xn + (1 + t+ t2 + · · ·+ tn−1)b1.

Here qr(xn; t) (r = 0, 1, 2, . . .) are given by the following generating functions:

n∏
j=1

z − txj

z − xj

∣∣∣∣
z=u−1

=
n∏

j=1

1− txju

1− xju
=

∞∑
r=0

qr(xn; t)u
r.

For a general sequence of positive integers λ = (λ1, . . . , λr) with r ≤ n,
we need to compute the push-forward image of [x|b]λL

∏r
i=1

∏n
j=i+1(xi +L

[t](xj)) under the Gysin map (πr,r−1,...,1)∗ : MU∗(Fℓr,...,1(E)) −→ MU∗(X).
The image of (πr,r−1,...,1)∗ can be computed by applying πr

∗, π
r−1
∗ , . . . , π1

∗ suc-
cessively. In each step, we use the modification such as (4.1), i.e., subtracting
the “correction term”. This technique enables us to apply the fundamental
Gysin formula (2.2), and we are able to show the following result:

Lemma 4.2. For a sequence of positive integers λ = (λ1, . . . , λr) with r ≤
n, we have the following formula:
(4.2)

(πr,r−1,...,1)∗

(
[x|b]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))

)
=

[
r∏

i=1

u−λi
i

]
[

r∏
i=1

ui

ui +L [t](ui)
· 1

PL(ui)

×

{
n∏

j=1

ui +L [t](xj)

ui +L xj

−
i−1∏
j=1

ui +L [t](uj)

[t](ui +L uj)

n∏
j=1

[t](ui +L xj)

ui +L xj

}

×
∏

1≤i<j≤r

uj +L ui

uj +L [t](ui)
×

r∏
i=1

λi∏
j=1

ui +L bj
ui

]
.

Proof. Let us compute the push-forward image of [x|b]λL
∏r

i=1

∏n
j=i+1(xi +L

[t](xj)) under the Gysin map (πr,r−1,...,1)∗ = π1
∗ ◦ · · · ◦ πr−1

∗ ◦ πr
∗. As we ex-

plained above, we carry out the computation inductively. For a (= 1, 2, . . . , r−
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1), we assume the following result:
(4.3)

(πr−a+1 ◦ · · · ◦ πr−1 ◦ πr)∗

(
[x|b]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))

)

= [un−1
r−a+1 · · · un−1

r−1u
n−1
r ]

[
r−a∏
i=1

[xi|b]λi
L

n∏
j=i+1

(xi +L [t](xj)) ·
r∏

i=r−a+1

[ui|b]λi
L

ui +L [t](ui)

×

{
n∏

j=r−a+1

(ui +L [t](xj))−
i−1∏

j=r−a+1

ui +L [t](uj)

[t](ui +L uj)

n∏
j=r−a+1

[t](ui +L xj)

}

×
r∏

i=r−a+1

r−a∏
j=1

(ui +L xj) ·
∏

r−a+1≤i<j≤r

uj +L ui

uj +L [t](ui)
·

r∏
i=r−a+1

S L(E; 1/ui)

]
.

We would like to push-forward this formula via the Gysin map

πr−a
∗ : MU∗(G1(Un−r+a+1)) −→ MU∗(G1(Un−r+a+2)).

Taking (4.1) into account, we modify the right-hand side of (4.3) as

[un−1
r−a+1 · · · un−1

r−1u
n−1
r ]

[
r−a−1∏
i=1

[xi|b]λi
L

n∏
j=i+1

(xi +L [t](xj))

× [xr−a|b]λr−a

L
xr−a +L [t](xr−a)

{
n∏

j=r−a

(xr−a +L [t](xj))−
n∏

j=r−a

[t](xr−a +L xj)

}

×
r∏

i=r−a+1

[ui|b]λi
L

ui +L [t](ui)

{
1

ui +L [t](xr−a)

n∏
j=r−a

(ui +L [t](xj))

−
i−1∏

j=r−a+1

ui +L [t](uj)

[t](ui +L uj)
· 1

[t](ui +L xr−a)

n∏
j=r−a

[t](ui +L xj)

}

×
r∏

i=r−a+1

r−a−1∏
j=1

(ui +L xj)×
r∏

i=r−a+1

(ui +L xr−a)×
∏

r−a+1≤i<j≤r

uj +L ui

uj +L [t](ui)

×
r∏

i=r−a+1

S L(E; 1/ui)

]
.

Then, apply the fundamental Gysin formula (2.2). In the above modifica-

tion, we divide both denominator and numerator of
1

ui +L [t](xr−a)
by ui,

and consider it as a formal power series in xr−a. We also treat
1

[t](ui +L xr−a)
in the same manner. Under this remark, the result is just replacing xr−a by
the formal variable ur−a, and multiplying by S L(Un−r+a+1; 1/ur−a). Then,
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we extract the coefficient of un−r+a
r−a . Since we know from (2.1)

S L(Un−r+a+1; 1/ur−a) = u
−(r−a−1)
r−a

r−a−1∏
j=1

(ur−a +L xj)× S L(E; 1/ur−a),

we see directly that the formula (4.3) holds for a+1. Therefore, when a = r,
we have

(πr,r−1,...,1)∗

(
[x|b]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))

)
= [un−1

1 . . . un−1
r ]

[
r∏

i=1

[ui|b]λi
L

ui +L [t](ui)

{
n∏

j=1

(ui +L [t](xj))−
i−1∏
j=1

ui +L [t](uj)

[t](ui +L uj)

n∏
j=1

[t](ui +L xj)

}

×
∏

1≤i<j≤r

uj +L ui

uj +L [t](ui)
×

r∏
i=1

S L(E; 1/ui)

]
.

Then, using the Segre series (2.1), we obtain the required formula. □

By a characterization (3.5), the left-hand side of (4.2) is HP L
λ (xn; t|b),

and hence the right-hand side gives a generating function for HP L
λ (xn; t|b).

Let us simplify this generating function in the following way: First note that

∏
1≤i<j≤r

uj +L ui

uj +L [t](ui)
=

∏
1≤j<i≤r

ui +L uj

ui +L [t](uj)
=

r∏
i=1

i−1∏
j=1

ui +L uj

ui +L [t](uj)
.

Therefore if we put

HPL,(n)
i,λi

(u1, u2, . . . , ui|b) :=
ui

ui +L [t](ui)
· 1

PL(ui)

×

(
n∏

j=1

ui +L [t](xj)

ui +L xj

i−1∏
j=1

ui +L uj

ui +L [t](uj)

λi∏
j=1

ui +L bj
ui

−
n∏

j=1

[t](ui +L xj)

ui +L xj

i−1∏
j=1

ui +L uj

[t](ui +L uj)

λi∏
j=1

ui +L bj
ui

)
,

HPL,(n)
λ (ur|b) = HPL,(n)

λ (u1, u2, . . . , ur|b) :=
r∏

i=1

HPL,(n)
i,λi

(u1, u2, . . . , ui|b),

then, one has

(4.4) HP L
λ (xn; t|b) = [u−λ]

(
HPL,(n)

λ (ur|b)
)
.

Moreover, observe that

• ui

ui +L [t](ui)
· 1

PL(ui)
is a formal power series in ui.
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•
n∏

j=1

[t](ui +L xj)

ui +L xj

i−1∏
j=1

ui +L uj

[t](ui +L uj)
is regarded as a formal power series

in ui with constant term tn−i+1.

•
λi∏
j=1

ui +L bj
ui

is a formal Laurent series in ui whose lowest degree term

is u−λi
i with coefficient

λi∏
j=1

bj.

Taking the above observation into account, we put

H̃P
L,(n)
i,λi

(u1, u2, . . . , ui|b) :=
ui

ui +L [t](ui)
· 1

PL(ui)

×

(
n∏

j=1

ui +L [t](xj)

ui +L xj

i−1∏
j=1

ui +L uj

ui +L [t](uj)

λi∏
j=1

ui +L bj
ui

− tn−i+1

λi∏
j=1

bj
ui

)
,

H̃P
L,(n)
λ (ur|b) = H̃P

L,(n)
λ (u1, u2, . . . , ur|b) :=

r∏
i=1

H̃P
L,(n)
i,λi

(u1, u2, . . . , ui|b).

Then, we can reduce HPL,(n)
λ (ur|b) to H̃P

L,(n)
λ (ur|b), and we obtain from

(4.4) the following result:

Theorem 4.3 (Generating function for HP L
λ (xn; t|b)). For a sequence of

positive integers λ = (λ1, . . . , λr) with r ≤ n, the universal factorial Hall–
Littlewood P -function HP L

λ (xn; t|b) is the coefficient of u−λ = u−λ1
1 u−λ2

2 · · · u−λr
r

in H̃P
L,(n)
λ (u1, u2, . . . , ur|b). Thus

HP L
λ (xn; t|b) = [u−λ]

(
H̃P

L,(n)
λ (ur|b)

)
.

If we specialize the universal formal group law FL(u, v) = u +L v to
Fa(u, v) = u+ v, the above generating function becomes a relatively simple
form:

H̃P
(n)

i,λi
(u1, . . . , ui|b) =

1

1− t

×

(
n∏

j=1

ui − txj

ui − xj

i−1∏
j=1

ui − uj

ui − tuj

λi∏
j=1

ui + bj
ui

− tn−i+1

λi∏
j=1

bj
ui

)
,

H̃P
(n)

λ (ur|b) = H̃P
(n)

λ (u1, u2, . . . , ur|b) =
r∏

i=1

H̃P
(n)

i,λi
(u1, u2, . . . , ui|b).

Thus we have the following corollary:

Corollary 4.4 (Generating function for HPλ(xn; t|b)). For a sequence of
positive integers λ = (λ1, . . . , λr) with r ≤ n, the factorial Hall–Littlewood
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P -polynomial HPλ(xn; t|b) is the coefficient of u−λ = u−λ1
1 u−λ2

2 · · · u−λr
r in

H̃P
(n)

λ (u1, u2, . . . , ur|b). Thus

HPλ(xn; t|b) = [u−λ]
(
H̃P

(n)

λ (ur|b)
)
.

4.2. Generating function for HQL
λ(xn; t|b). Next we shall derive the

generating function for HQL
λ(xn; t|b). In the one-row case λ = (λ1) of (3.6),

we push-forward the expression

[[x1; t|b]]λ1
L

n∏
j=2

(x1 +L [t](xj)) =
(x1 +L [t](x1))[x1|b]λ1−1

L
x1 +L [t](x1)

n∏
j=1

(x1 +L [t](xj))

= [x1|b]λ1−1
L

n∏
j=1

(x1 +L [t](xj)),

which is a formal power series in x1, and therefore (2.2) applies without any
problem, and one can obtain the following:

HQL
λ(xn; t|b) = [u−λ1

1 · · · u−λr
r ][

r∏
i=1

1

PL(ui)

n∏
j=1

ui +L [t](xj)

ui +L xj

∏
1≤i<j≤r

uj +L ui

uj +L [t](ui)
·

r∏
i=1

λi−1∏
j=1

ui +L bj
ui

]
.

For each non-negative integer k, we set

HQL,(n)
k (u|b) := 1

PL(u)

n∏
j=1

u+L [t](xj)

u+L xj

×
k∏

j=1

u+L bj
u

.

For a sequence of positive integers λ = (λ1, . . . , λr) with r ≤ n, we set

HQL,(n)
λ (ur|b) = HQL,(n)

λ (u1, . . . , ur|b) :=
r∏

i=1

HQL,(n)
λi−1(ui|b)

∏
1≤i<j≤r

uj +L ui

uj +L [t](ui)
.

Thus we have the following result:

Theorem 4.5 (Generating function for HQL
λ(xn; t|b)). For a sequence of

positive integers λ = (λ1, . . . , λr) with r ≤ n, the universal factorial Hall–
Littlewood Q-function HQL

λ(xn; t|b) is the coefficient of u−λ = u−λ1
1 u−λ2

2 · · · u−λr
r

in HQL,(n)
λ (u1, u2, . . . , ur|b). Thus

HQL
λ(xn; t|b) = [u−λ]

(
HQL,(n)

λ (ur|b)
)
.

5. Application of generating functions

5.1. e-Cancellation property. A symmetric polynomial f(x1, . . . , xn) with
coefficients in Z has the Q-cancellation property if the following holds: when
the substitution x1 = a, x2 = −a, a an indeterminate, is made in f , the
resulting polynomial is independent of a (Pragacz [31, §2]). It is known
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that the Schur P - and Q-polynomials satisfy this cancellation property.
The notion of the Q-cancellation property is generalized in the following
way: Let e ≥ 2 be a fixed positive integer, and ζ = ζe be a primitive eth
root of unity. We define a sequence ae(ζ) := (a, ζa, ζ2a, . . . , ζe−1a). Sup-
pose that e ≤ n. Then a symmetric polynomial f(x1, . . . , xn) with coef-
ficients in Z[ζ] has the e-cancellation property if f(ae(ζ), xe+1, . . . , xn) =

f(a, ζa, ζ2a, . . . , ζe−1a, xe+1, . . . , xn) does not depend on a. In the case e =

2, this property is nothing but the Q-cancellation property. By specializ-
ing t to be ζ, the factorial Hall–Littlewood polynomials HPλ(xn; ζ|b) and
HQλ(xn; ζ|b) are symmetric polynomials with coefficients in Z[ζ]⊗ Z[b] =
Z[ζ] ⊗ Z[b1, b2, . . .]. Thus one can ask if these symmetric polynomials have
the e-cancellation property or not. In this subsection, as the first application
of our generating functions, we shall show the e-cancellation property of the
factorial Hall–Littlewood P - and Q-polynomials.

Proposition 5.1 (e-Cancellation property). Assume that e ≤ n. The facto-
rial Hall–Littlewood polyonomials HPλ(xn; ζ|b) and HQλ(xn; ζ|b) have the
e-cancellation property.

Proof. Let r be the length of λ. Then, by Corollary 4.4, HPλ(xn; ζ|b) is
given as the coefficient of u−λ in the following generating function

(5.1)
1

(1− ζ)r

r∏
i=1

(
n∏

j=1

ui − ζxj

ui − xj

i−1∏
j=1

ui − uj

ui − ζuj

λi∏
j=1

ui + bj
ui

− ζn−i+1

λi∏
j=1

bj
ui

)
.

Substituting (x1, . . . , xe) with ae(ζ) in each factor
n∏

j=1

ui − ζxj

ui − xj

, we have

e∏
j=1

ui − ζja

ui − ζj−1a
×

n∏
j=e+1

ui − ζxj

ui − xj

=
n∏

j=e+1

ui − ζxj

ui − xj

,

since ζe = 1. Therefore, (5.1) does not depend on a and x1, . . . , xe. From
this, the e-cancellation property of HPλ(xn; ζ|b) follows. By Theorem 4.5,
HQλ(xn; ζ|b) is given as the coefficient of u−λ in the following generating
function

r∏
i=1

n∏
j=1

u− ζxj

u− xj

×
λi−1∏
j=1

u+ bj
u

×
∏

1≤i<j≤r

uj − ui

uj − ζui

.

From this, the e-cancellation property of HQλ(xn; ζ|b) follows by the same
reason as that of HPλ(xn; ζ|b). □

Remark 5.2. In the case of the universal factorial Hall–Littlewood P - and
Q-functions, we consider the substitution xn with the sequence ae[ζ] :=
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(a, [ζ](a), [ζ2](a), . . . , [ζe−1](a)). Then, using Theorems 4.3 and 4.5, one can
verify easily that HP L

λ (xn; ζ|b) and HQL
λ(xn; ζ|b) satisfy the e-cancellation

property too.

5.2. Pfaffian formula for GQν(xn|b). Another application of our gener-
ating functions, we shall derive the Pfaffian formulas for the the K-theoretic
factorial Q-polynomial GQν(xn|b), which seems to be new. In what follows,
we assume that the length ℓ(ν) of a strict partition ν is 2m (even). We
consider the specialization from FL(u, v) = u+L v to Fm(u, v) = u⊕ v with
t = −1. Then HQL

ν (xn; t|b) specializes to GQν(xn|b), and, the generating
function HQL,(n)

ν (u2m|b) reduces to

(5.2) GQ(n)
ν (u2m|b) =

2m∏
i=1

GQ(n)
νi−1(ui|b)

∏
1≤i<j≤2m

uj ⊖ ui

uj ⊕ ui

,

where, for each non-negative integer k, we define

GQ(n)
k (u|b) :=

1

1 + βu

n∏
j=1

u⊕ xj

u⊖ xj

×
k∏

j=1

u⊕ bj
u

=
1

1 + βu

n∏
j=1

1 + (u−1 + β)xj

1 + (u−1 + β)xj

×
k∏

j=1

{1 + (u−1 + β)bj}.

This is a generating function for the factorial K-theoretic Q-polynomials
GQν(xn|b). Here we recall from Ikeda–Naruse [14, Lemma 2.4] the following
formula:

Pf

(
xj − xi

xj ⊕ xi

)
1≤i<j≤2m

=
∏

1≤i<j≤2m

xj − xi

xj ⊕ xi

.

Thus we can compute6

GQ(n)
ν (u2m|b) =

2m∏
i=1

GQ(n)
νi−1(ui|b)

∏
1≤i<j≤2m

uj ⊖ ui

uj ⊕ ui

=
2m∏
i=1

GQ(n)
νi−1(ui|b)

2m∏
i=1

1

(1 + βui)2m−i
· Pf

(
uj − ui

uj ⊕ ui

)
1≤i<j≤2m

= Pf2m

(
GQ(n)

νi−1(ui|b) GQ(n)
νj−1(uj|b)

1

(1 + βui)2m−i

1

(1 + βuj)2m−j
· uj − ui

uj ⊕ ui

)
= Pf2m

(
(1 + βui)

i+1−2m(1 + βuj)
j−2mGQ(n)

νi−1(ui|b) GQ(n)
νj−1(uj|b) ·

uj ⊖ ui

uj ⊕ ui

)
.

6Below we shall use the notation Pf2m(ai,j) for the abbreviation of Pf(ai,j)1≤i<j≤2m

when the expression is too long.
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For non-negative integers p, q ≥ 0 and positive integers k, l ≥ 1, we define
polynomials GQ

(p,q)
(k,l) (xn|b) to be

GQ
(p,q)
(k,l) (xn|b) := [u−k

1 u−l
2 ]

(
GQ(n)

p−1(u1|b) GQ(n)
q−1(u2|b) ·

u2 ⊖ u1

u2 ⊕ u1

)
.

Note that, by Theorem 4.5, we have GQ(k,l)(xn|b) = GQ
(k,l)
(k,l)(xn|b) for pos-

itive integers k > l > 0. Then, by Theorem 4.5, one obtains

GQν(xn|b) =

[
2m∏
i=1

u−νi
i

](
Pf

(
(1 + βui)

i+1−2m(1 + βuj)
j−2m

× GQ(n)
νi−1(ui|b) GQ(n)

νj−1(uj|b)×
uj ⊖ ui

uj ⊕ ui

)
1≤i<j≤2m

)
= Pf

(
[u−νi

i u
−νj
j ] ((1 + βui)

i+1−2m(1 + βuj)
j−2m

×GQ(n)
νi−1(ui|b) GQ(n)

νj−1(uj|b)×
uj ⊖ ui

uj ⊕ ui

))
1≤i<j≤2m

= Pf

(
[u−νi

i u
−νj
j ]

(
∞∑
k=0

∞∑
l=0

(
i+ 1− 2m

k

)(
j − 2m

l

)
βk+luk

i u
l
j

× GQ(n)
νi−1(ui|b) GQ(n)

νj−1(uj|b) ·
uj ⊖ ui

uj ⊕ ui

))
1≤i<j≤2m

= Pf

(
∞∑
k=0

∞∑
l=0

(
i+ 1− 2m

k

)(
j − 2m

l

)
βk+lGQ

(νi,νj)

(νi+k,νj+l)(xn|b)

)
1≤i<j≤2m

.

Thus we obtained the following:

Theorem 5.3 (Pfaffian formula for GQν(xn|b)). For a strict partition ν of
length 2m, we have

GQν(xn|b) = Pf2m

(
∞∑
k=0

∞∑
l=0

(
i+ 1− 2m

k

)(
j − 2m

l

)
βk+lGQ

(νi,νj)

(νi+k,νj+l)(xn|b)

)
.

Remark 5.4. (1) Putting b = 0 in (5.2), we obtain a generating func-
tion for the (non-factorial) K-theoretic Q-polynomials GQν(xn). On
the other hand, dual K-theoretic P - and Q-polynomials were intro-
duced in our previous papers [23, §5], [25]. We have a conjecture on
a generating function for the dual K-theoretic Q-polynomials, and
their Pfaffian formula (see Appendix §6.2).

(2) The generating function technique can also be applied to the deriva-
tion of the determinantal formula for factorial Grothendieck poly-
nomials Gλ(xn|b). On the other hand, a generating function for
the dual Grothendieck polynomials gλ(xn) (for their definition, see
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Lascoux–Naruse [18]) can be obtained by a purely algebraic manner.
We shall give the details in the Appendix, §6.1.

6. Appendix

6.1. Generating function for the dual Grothendieck polynomials.
As we mentioned in Remark 5.4, we give a generating function for the dual
Grothendieck polynomials. Following Lascoux–Naruse [18], let us introduce
the dual Grothendieck polynomials gλ(yn), where yn = (y1, y2, . . . , yn) is
a set of independent variables and λ ∈ Pn. First we need some notation:
Given two sets of variables (called alphabets as usual) A, B, the complete
functions sk(A−B) (k = 0, 1, 2, . . .) are given by the following generating
function:

∞∑
k=0

sk(A−B)zk =
∏
a∈A

1

1− az

∏
b∈B

(1− bz).

In particular, when we add r letters specialized to 1, namely the set {1, 1, . . . , 1︸ ︷︷ ︸
r

},

to one of the alphabets A or B, we have

∞∑
k=0

sk(A−B± r)zk = (1− z)∓r
∏
a∈A

1

1− az

∏
b∈B

(1− bz).

Then, for the variables yn = (y1, . . . , yn) and any integer r, we have

∞∑
k=0

sk(yn + r)zk = (1− z)−r

n∏
i=1

1

1− yiz

=

(
∞∑
i=0

(
−r

i

)
(−z)i

)(
∞∑
j=0

hj(yn)z
j

)

=

(
∞∑
i=0

(−1)i
(
r + i− 1

i

)
(−z)i

)(
∞∑
j=0

hj(yn)z
j

)

=
∞∑
k=0

(
k∑

i=0

(
r + i− 1

i

)
hk−i(yn)

)
zk,

and hence we have

(6.1) sk(yn + r) =
k∑

i=0

(
r + i− 1

i

)
hk−i(yn) (k = 0, 1, . . .).
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Using (6.1), the dual Grothendieck polynomial gλ(yn) for λ ∈ Pn of length
r is given by (see Lascoux–Naruse [18, (3)]):

(6.2)

gλ(yn) = sλ(yn,yn + 1, . . . ,yn + n− 1)

= det(sλi−i+j(yn + i− 1))1≤i,j≤r

= det

(
λi−i+j∑
k=0

(
(i− 1) + k − 1

k

)
hλi−i+j−k(yn)

)
1≤i,j≤r

= det

(
∞∑
k=0

(
i+ k − 2

k

)
hλi−i+j−k(yn)

)
1≤i,j≤r

.

We set

H(z) = H(n)(z) :=
n∏

j=1

1

1− yjz
=

∞∑
k=0

hk(yn)z
k,

g(zr) = g(z1, . . . , zr) :=
r∏

i=1

H(zi)
∏

1≤i<j≤r

zi ⊖ zj
zi

.

We shall show that g(zr) is the generating function for the dual Grothendieck
polynomials, namely we have the following:

Theorem 6.1 (Generating function for gλ(yn)). For a partition λ = (λ1, . . . , λr)

of length ℓ(λ) = r ≤ n, the dual Grothendieck polynomial gλ(yn) is the co-
efficient of zλ = zλ1

1 zλ2
2 · · · zλr

r in g(z1, z2, . . . , zr). Thus

gλ(yn) = [zλ](g(zr)).

Proof. By the Vandermonde determinant formula, we have

∏
1≤i<j≤r

zi ⊖ zj
zi

=
r−1∏
i=1

r∏
j=i+1

1

1 + βzj
· zi − zj

zi

=
r−1∏
i=1

1

(1 + βzi+1) · · · (1 + βzr)
·
r−1∏
i=1

1

zr−i
i

·
∏

1≤i<j≤r

(zi − zj)

=
r∏

i=1

1

(1 + βzi)i−1
·

r∏
i=1

1

zr−i
i

· det(zr−j
i )1≤i,j≤r

= det((1 + βzi)
1−izi−j

i )1≤i,j≤r.

Therefore one can compute

g(z1, . . . , zr) =
r∏

i=1

H(zi)
∏

1≤i<j≤r

zi ⊖ zj
zi

= det((1 + βzi)
1−izi−j

i H(zi))1≤i,j≤r.
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Extracting the coefficient of the monomial zλ =
∏r

i=1 z
λi
i , we obtain

[zλ](g(z1, . . . , zr)) =

[
r∏

i=1

zλi
i

](
det((1 + βzi)

1−izi−j
i H(zi))1≤i,j≤r

)
= det

(
[zλi

i ]((1 + βzi)
1−izi−j

i H(zi)
)
1≤i,j≤r

= det

(
[zλi

i ]

(
∞∑
k=0

(
1− i

k

)
βkzki · z

i−j
i H(zi)

))
1≤i,j≤r

= det

(
∞∑
k=0

(
1− i

k

)
βkhλi−i+j−k(yn)

)
1≤i,j≤r

= det

(
∞∑
k=0

(
i+ k − 2

k

)
(−β)khλi−i+j−k(yn)

)
1≤i,j≤r

.

Here we used the following identity:(
1− i

k

)
=

(
−(i− 1)

k

)
= (−1)k

(
i+ k − 2

k

)
,

for integers i ≥ 1, k ≥ 0. This is the dual Grothendieck polynomial gλ(yn)

introduced in (6.2) with β = −1. □

6.2. Conjecture on a generating function for gqν(yn). In [14, §3.4],
Ikeda–Naruse introduced the K-theoretic P - and Q-functions GPν(x) and
GQν(x) in countably many variables x = (x1, x2, . . .). Let GΓ′(x) denote
the ring of symmetric functions satisfying the K-theoretic Q-cancellation
property (see [14, Definition 1.1]). Similarly, let GΓ(x) denote the subring
of GΓ′(x) consisting of functions f satisfying the condition:f(t, x2, . . .) −
f(0, x2, . . .) is divisible by t ⊕ t.7 Then, they showed that GPν(x)’s and
GQν(x)’s (ν strict) form a formal Z[β]-basis of GΓ′(x) and GΓ(x) respec-
tively. Using this “basis theorem” and the following “Cauchy kernel”

∆(x;y) =
∞∏
i=1

∞∏
j=1

1− xiyj
1− xiyj

,

where y = (y1, y2, . . .) is another set of independent variables, we can define
the dual K-theoretic P - and Q-functions, denoted by gpν(y) and gqν(y), as
follows (see also Nakagawa–Naruse [23, Definition 5.3, Remark 5.4]):

Definition 6.2 (Dual K-theoretic Schur P - and Q-functions). Let SP de-
note the set of all strict partitions. We define gpν(y) and gqν(y) for a strict

7We slightly changed the notation from that used in [14]. In that paper, GΓ′(x) and
GΓ(x) are written as GΓ and GΓ+ respectively.
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partition ν ∈ SP by the following identities:
(6.3)

∆(x;y) =
∞∏
i=1

∞∏
j=1

1− xiyj
1− xiyj

=
∑
ν∈SP

GPν(x)gqν(y) =
∑
ν∈SP

GQν(x)gpν(y).

One can check that gpν(y) and gqν(y) are actually symmetric functions,
i.e., they are elements of Λ(y)⊗ Z[β], where Λ(y) is the ring of symmetric
functions in the variables y = (y1, y2, . . .) over Z. For each positive integer
n, one can define a surjective ring homomorphism ρ(n) : Λ(y) −↠ Λ(yn) by
putting yn+1 = yn+2 = · · · = 0. Here Λ(yn) = Z[y1, . . . , yn]Sn is the ring of
symmetric polynomials in yn = (y1, . . . , yn) under the usual action by the
symmetric group Sn. We also denote by ρ(n) its extension over Z[β]. Then we
define the dual K-theoretic Schur P - and Q-polynomials, denoted by gpν(yn)

and gqν(yn) for a strict partition ν of length ≤ n, by gpν(yn) = ρ(n)(gpν(y))

and gqν(yn) = ρ(n)(gqν(y)) respectively.
Next we set

gq(z) =
n∏

j=1

1− yjz

1− yjz
=

∞∑
k=0

gqk(yn)z
k,

gq(zr) = gq(z1, . . . , zr) :=
r∏

i=1

gq(zi)
∏

1≤i<j≤r

zi ⊖ zj
zi ⊕ zj

.

Then we make the following conjectures:

Conjecture 6.3 (Generating function for gqν(yn)). For a strict partition
ν = (ν1, . . . , νr) of length ℓ(ν) = r ≤ n, the dual K-theoretic Q-polynomial
gqν(yn) is the coefficient of zr = zν11 zν22 · · · zνrr in gq(z1, . . . , zr). Thus

gqν(yn) = [zν ](gq(zr)).

We have checked that the above conjecture holds for r ≤ 2. As a corollary
to the above conjecture, we immediately obtain the following formula:

Corollary 6.4 (Pfaffian formula for gqν(yn)). For a strict partition ν of
length 2m, we have

gqν(yn) = Pf

(
i−1∑
k=0

j∑
l=0

βk+l

(
i− 1

k

)(
j

l

)
gq(νi−k,νj−l)(yn)

)
1≤i<j≤2m

.
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