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ABSTRACT. In this paper, we introduce factorial analogues of the ordi-
nary Hall-Littlewood P- and @Q-polynomials, which we call the factorial
Hall-Littlewood P- and Q-polynomials. Using the universal formal group
law, we further generalize these polynomials to the universal factorial
Hall-Littlewood P- and Q-functions. We show that these functions sat-
isfy the wvanishing property which the ordinary factorial Schur S-, P-,
and Q-polynomials have. By the vanishing property, we derive the Pieri-
type formula and a certain generalization of the classical hook formula.
We then characterize our functions in terms of Gysin maps from flag
bundles in the complex cobordism theory. Using this characterization
and Gysin formulas for flag bundles, we obtain generating functions for
the universal factorial Hall-Littlewood P- and Q-functions. Using our
generating functions, we show that our factorial Hall-Littlewood P- and
Q-polynomials have a certain cancellation property. Further applications
such as Pfaffian formulas for K-theoretic factorial Q-polynomials are also
given.

1. INTRODUCTION

Let ®, = (z1,...,7,) and t be independent indeterminates over Z,
and A = (A\1,...,\,) a partition of length < n. Then the ordinary Hall-
Littlewood P- and Q-polynomials, denoted by Py(x,;t) and Qx(x,;t) re-
spectively, are symmetric polynomials with coefficients in Z[t]. When ¢ =
0, both the polynomials Py(x,;t) and Q,(x,;t) reduce to the ordinary
Schur (S-) polynomial s)(«,), and when ¢t = —1, to the ordinary Schur P-
polynomial Py(x,) and Q-polynomial Q,(x,) respectively. Thus the poly-
nomials Py(@,;t), Qx(x,;t) serve to interpolate between the Schur poly-
nomials and the Schur P- and @-polynomials, and play a crucial role in
the symmetric function theory, representation theory, and combinatorics.
In the context of Schubert calculus, it is well-known that the ordinary Schur
S-, P-, and @)-polynomials appear as the Schubert classes in the ordinary
cohomology rings of the various Grassmannians (Fulton |7, §9.4|, Pragacz
W@matics Subject Classification. Primary 05E05; Secondary 55N20, 55N22,
57};;6731. words and phrases. Factorial Hall-Littlewood P- and @Q-functions, Generating
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[31, §6]). Moreover, their factorial analogues, namely, the factorial Schur
S-, P-, and @-polynomials play an analogous role in equivariant Schubert
calculus (Knutson—Tao [17], Tkeda [11], Ikeda—Naruse [13]). As for the Hall-
Littlewood polynomials, it is known that there are some geometric or rep-
resentation theoretic inetepretations of them related to flag varieties or flag
bundles (readers are referred to e.g., De Concini-Procesi 5], Garsia—Procesi
[9], Pragacz [32]). In the context of Schubert calculus, there seems no obvi-
ous geometric meaning of the Hall-Littlewood polynomials at present, which
needs to be investigated further. In fact, in [35], Totaro considered the coin-
variant ring F(e,n) of the complex reflection group G(e,1,n) = Z/eZ 1 S,
(the wreath product) for e > 2, and suggested to think of the ring F'(e,n) as
the cohomology of a certain “flag manifold”. Then he considered a subring
C(e,n) of F(e,n), and described a basis for the ring C(e,n) given by the
Hall-Littlewood @-polynomials. For e = 2, the inclusion C'(2,n) C F(2,n)
is the inclusion of the cohomology of the Lagrangian Grassmannian in that
of the isotropic flag manifold of the symplectic group, and Totaro’s result
is interpreted as a generalization of the classical result in Schubert calculus
for Lagrangian Grassmannians (Jozefiak [16], Pragacz [31, §6]). It is natural
to consider a generalization of the above theory to the double coinvariant
rings (or equivariant coinvariant rings) of complex reflection groups (cf.
recent work of McDaniel [20]). From a geometric or topological point of
view, one expects that these rings would be related to torus-equivariant
cohomology of certain “flag manifolds”, and factorial version of the Hall-
Littlewood polynomials would play a crucial role. Moreover we notice that
all the results stated above are formulated in the ordinary cohomology the-
ory H*(—). In topology, it is classical that a complez-oriented generalized
cohomology theory h*(—) gives rise to a formal group law F"(u,v) over the
coefficient ring h* := h*(pt), where pt is a single point. Three typical exam-
ples are the ordinary cohomology theory H*(—), the (topological) complex
K-theory K*(—), and the complex cobordism theory MU*(—), which cor-
respond to the additive formal group law F,(u,v) = u-+wv, the multiplicative
formal group law F,,,(u,v) = u® v = u+ v — Puv, and the universal formal
group law Fp (u,v) = u 41, v, respectively. By the classical result of Quillen
[34, Proposition 1.10], the complex cobordism theory is universal among all
complex-oriented generalized cohomology theories. Therefore it is also quite
natural to ask whether one can generalize the above results formulated in
the ordinary cohomology theory to the complex cobordism theory.
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Motivated by these facts and the above preceding results, in this pa-
per, we introduce factorial and universal analogues of the ordinary Hall-
Littlewood P- and @Q-polynomials, which we call the universal factorial
Hall-Littlewood P- and Q-functions (for notation, see §2.1):

Definition 1.1 (Definition 3.1, cf. Naruse [28]). For a sequence of positive
integers A = (A1,..., A.) with r < n, we define

HE(@oitl) = 30w w\b 1L ]

wWESR/(S1)" X Sp—r 1=1 j=i+1
L Zi +L [L(T5) +o [t
HQX(,,; tb) = Yo we | [fmt)R H H
_ Z; +]L x]
WESy/(S1)" X Sn—r i=1 j=i+1

To the best of our knowledge, even a factorial version of the ordinary Hall-
Littlewood polynomials has not appeared in the literature. Here we em-
phasize the importance of these factorial Hall-Littlewood polynomials. In
fact, they will be needed in describing the torus-equivariant cohomology of
p-compact flag variety corresponding to G(e,1,n) (cf. recent work of Or-
tiz [30]). In this context, the “deformation parameters” b are interpreted
as the torus-equivariant parameters. We will discuss this new aspect of the
Hall-Littlewood functions in more detail in our forthcoming paper [27].
Then, we show that our factorial Hall-Littlewood P- and Q)-functions
have the so-called vanishing property (see Propositions 3.7, 3.8). We empha-
size that this vanishing property will be useful in describing the so-called
GKM description of the torus-equivariant cohomology ring of the p-compact
flag variety corresponding to G(e, 1,n) (|27]). By the vanishing property, we
can derive a Pieri-type formula for factorial Hall-Littlewood P-polynomials
(see Proposition 3.9). Moreover, a simple recursive argument based on the
associativity of factorial Hall-Littlewood P-polynomials, we can derive a
certain generalization of the hook formula (see Proposition 3.10). We then
give a characterization of them in terms of Gysin maps from full flag bundles
in the complex cobordism theory (Proposition 3.5). Using this characteri-
zation, we can derive generating functions for the universal factorial Hall-
Littlewood P- and @-functions. The idea of getting our result is to apply
the Gysin formula for a projective bundle repeatedly to the full flag bundle
since a full flag bundle is constructed as a sequence of projective bundles.
However, the existence of the deformation parameter b = (b, bo,...) pre-
vent us from a direct application of the Gysin formula. To circumvent this
difficulty, we developed a specific modification in each step (for details, see

§4.1). Then, carrying out an argument carefully, we succeeded in getting the
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required result. To state our result, we prepare some notation from §2.1, 2.2,

and 4.1: For a sequence of positive integers A = (Ay,..., \,) with r < n, we
set
i (U, U2,y .o, Uy = —_
b AT T2 wi (@) Ph(u;)
n i—1 i i
U; —HL, [t] (f]) U; —|—]]_, ﬂj 4 U; —HL, bj —it+1 : bj
X _ tn (2 _J ,

NL:(”) N]Lv(n) NL7(”)
HP," (w,|b) = HP,  (ur,ta, ... u,|b) = [[HP,), (u,uz, ..., ui|b).
=1

Then, our main result in this paper is stated as follows:

Theorem 1.2 (Theorem 4.3). For a sequence of positive integers A =

(A, ..oy \p) with v < n, the universal factorial Hall-Littlewood P-function
——1L,(n

H PE(2,,; t|b) is the coefficient of u™ = uy™ - - -u ™ in HP, ( )(ul, U |b).

Thus

HPY (z,;110) = [u™] (HP, " (/b))

Using similar, but simpler technique, we can also obtain a generating func-
tion for HQ%(x,;t|b) (see Theorem 4.5). Here we stress the usefulness of a
technique of generating functions. For instance, it is easy to derive Pfaffian
formulas for factorial K-theoretic ()-polynomials in a simple and uniform
manner (see Theorem 5.3). Moreover, a certain cancellation property (cf.
Pragacz [31, §2|) of the factorial Hall-Littlewood P- and @-polynomials
can be verified immediately (see Proposition 5.1). For further applications
of generating functions such as the so-called Pieri rule for K-theoretic P-

and @Q-polynomials, see also Naruse [28|.

1.1. Organization of the paper. The paper is organized as follows: In
Section 2, we prepare notation and conventions concerning the universal for-
mal group law, a Gysin formula for a projective bundle, which will be used
throughout the paper. In Section 3, the universal factorial Hall-Littlewood
P- and Q-functions are introduced, and a characterization of them by means
of a Gysin map is given. The vanishing property of these functions are also
discussed. By the vanishing property, a Pieri-type formula and a generaliza-
tion of the hook formula are derived. Using Gysin formulas for flag bundles
and characterizations of the Hall-Littlewood functions by means of Gysin
maps, in Section 4, we obtain generating functions for these universal facto-

rial Hall-Littlewood functions. In Section 5, using our generating functions,



5

we shall show that the factorial Hall-Littlewood P- and ()-polynomials sat-
isfy certain cancellation property. Pfaffian formulas for factorial K-theoretic
@-polynomials can be obtained as a by-product. In Appendix (Section 6), we
deal with the topic closely related to the current work, namely, generating
functions for the dual Grothendieck polynomials and the dual K-theoretic

Schur Q-polynomials.

2. NOTATION, CONVENTIONS, AND PRELIMINARY RESULTS

For notation and conventions, we shall follow those used in our previous
papers [24], [26]. However, to make the exposition self-contained as much
as possible, we collect some of them frequently used in this paper.

2.1. Lazard ring L and the universal formal group law Fp. Let
Fi(u,v) =u+v+ Y afut’ € Lu,v]]
i,j>1
be the unwwversal formal group law, where L is the Lazard ring. Namely,
Fi(u,v) is a formal power series in two indeterminates u, v with coefficients
agjj € L which satisfies the axioms of the formal group law. For the universal

formal group law, we shall use the following notation:

w4y v = F(u,v) (formal sum),

u=[—1]p(u) = x, (u) (formal inverse of u),

u—pv=u+y [-1]L(v) =u+LT (formal subtraction).
Furthermore, we define [0]p,(u) := 0, and inductively, [n]y,(u) := [n—1]L(u)+L
u for a positive integer n > 1. We also define [—n](u) = [n|L([-1]L(u))

for n > 1. We call [n](u) the n-series in the sequel. Denote by ¢y (u) €
L ® Q[[u]] the logarithm of Fy, i.e., a unique formal power series with lead-
ing term w such that

O (u 4, v) = 0 (u) + (v).

Using the logarithm ¢y, (u), one can rewrite the n-series [n|L(u) for a non-
negative integer n as £ ' (n - ¢ (u)), where ¢; ' (u) is the formal power series
inverse to ¢, (u). This formula allows us to define

[t (2) = [t](x) = €' (t - bu(2))
for an indeterminate ¢. This is a natural extension of ¢ - x as well as the
n-series [n|L(x).
Next we shall introduce various generalizations of the ordinary power
of variables. Let @ = (x1,z2,...) be a countably infinite sequence of inde-

pendent variables. We also introduce another set of independent variables
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b = (b1, bs,...). Then, for a positive integer k > 1, we define a generalization

of the ordinary k-th power z* of one variable = by

2lo]f == [ [ (@ +1 b)) = (& +1 b)) (@ 41 ba) -+ (2 +1 by).

j=1
We set [2]b]? := 1. For a sequence of positive integers A = (A1,...,\,), we
set
r oA
A
(bl == ] [lw:fbl = [T T [z 40 05).
i=1 i=1 j=1

Similarly, we define
[l2[Bl]f = (2 +1 2)[2 bl = (2 + @) (2 41 bu) (@ +1 b2) -+ (2 +1 be-s).

For a sequence of positive integers A = (Aq,...,\,), we set

s s

b))} = T llaslbl) = TG o )b

i=1 i=1
Moreover, for indeterminates x and ¢, we define

[l tb]]L = (2 +v [t](Z))[w[b]L "

for a positive integer £ > 1. For a sequence of positive integers

A= (A1,..., A\r), we define

T T

st = Tl 0] = T o 1) Ll

i=1 i=1
2.2. Gysin formula for a projective bundle in complex cobordism.
Recall from Quillen [33, Theorem 1] the Gysin formula for a projective
bundle in complex cobordism. We shall state his result in a manner suitable
for our purpose (for more details, see Nakagawa-Naruse [26, §3.1]): Let
E — X be a complex vector bundle of rank n. For any integer m € Z,
denote by S=(E) = #MU(E) the Segre class of F in complex cobordism,
and
SH(E;u) = Z&{E{(E)um
mez
its Segre series. The explicit expression of #%(E;u) is given by

(2.1)

n

1 z 1 2"
S (Bsu) = - - " = :
PL(z) };[1 Z+LT; . Pr(2) [ (z +1 7)) L
where 2V(z) == 1+ 7, aj,2, and a1, ..., 2, are the Chern roots of E in

complex cobordism.
Now consider the Grassmann bundle 7' : G'(E) — X of hyperplanes
in E. Denote by Q' the tautological quotient bundle on G'(E). Put z; :=
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MY (QY) € MU?*(G*(E)). For a monomial m of a formal Laurent series F,
we denote by [m](F') the coefficient of m in F. Note that the Grassmann
bundle G'(F) of hyperplanes in F is canonically isomorphic to the pro-
jective bundle P(EY) = G1(EY) of lines in the dual bundle EY. Then, by
dualizing the formula [26, (3.4)], we have the following form of Quillen’s
Gysin formula:

Proposition 2.1. For a polynomial f(u) € MU*(X)[u], the Gysin map
7l MU*(GY(E)) — MU*(X) is described by the following formula:

(2:2) T, (f (1)) = w7 (f (u) - (B 1/w)).

This is the fundamental formula for establishing more general Gysin formu-
las for general flag bundles.
Here we shall fix some notation concerning flag bundles’: Let £ — X

be a complex vector bundle of rank n. For a positive integer r = 1,2,...,n,
denote by m"rtel o FerrmbeWEY = Fl, i 1 (E) — X the

.....

associated flag bundle. Thus a point in F¢mr—1-

(x, (W,).), where (W), is a flag, i.e., nested subspaces of the form (W;), C
(Wa)e €+ C (W,)s, codim (W;), = r+ 1 — 4, in the fiber E, of E over
each point x € X. Following Darondeau—Pragacz [4, §1.2|, we shall call the
flag bundle of the form 7" ~b-1 . Fgrr=t--1(E) — X the full flag bundle
in this paper. When r = n, we call g b1 Feun—b-Y(F) — X the
complete flag bundle, and just write 7 : FU(E) — X. On FU(E), there is
the universal flag of subbundles

o=U,ctU,Cc---cU;C---CU,y CU,=7"(E),
where rank U; =i (i =0,1,...,n). and we put
(2.3) z; =V (Uny1i/Uni) € MUX(FUE)) (i=1,2,...,n),

which are the MU*-theory Chern roots of E. It is well-known (see e.g.,
Darondeau-Pragacz [4, §1.2]) that the full flag bundle F¢""~1-!(E) is con-

structed as a sequence of Grassmann bundles of codimension one hyper-
planes?:
(2.4)

wd s FOr o B) = GNUnopir) = -+ — G (Unr) = GY(E) ™ X.

IThe notation concerning flag bundles or flag manifolds varies depending on the
authors. We followed basically that used in Nakagawa—Naruse [24, §4.1], Darondeau—
Pragacz [4, §1].

2Note that, in [4, §1.2], the full flag bundle is constructed as a sequence of projective
bundles of lines.
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3. UNIVERSAL FACTORIAL HALL-LITTLEWOOD P- AND (Q-FUNCTIONS

In this section, we shall introduce our main object to study, the universal
factorial Hall-Littlewood P- and Q-functions, which are universal as well as

factorial analogues of the ordinary Hall-Littlewood polynomials.
3.1. Universal factorial Hall-Littlewood P- and ()-functions.

3.1.1. Definition of the universal factorial Hall-Littlewood P- and Q-functions.
We shall use the notation introduced in §2.1. We provide the variables
x = (r1,79,...) and b = (by,be,...) with deg(x;) = deg(b;) = 1 for
1=1,2,.... Then we make the following definition:

Definition 3.1 (Universal factorial Hall-Littlewood P- and @-functions).

For a sequence of positive integers A = (A1,..., A,) with r < n, we define
T T E @)
HPy(x,; t|b) := > w =Bl [T [] ————=>1,
WES,/(S1)" X Sn—r L =1 j=i+1
i T Tt [1(T)
HQN(,;t|b) = ) we [l [ ] =2
_ R Z; +L .'L’]
WESR/(S1)" X Sn—r L i=1 j=i+1
where the symmetric group S, acts naturally on the variables @, = (x1,...,z,)

by permuting them. We also define
HPY(xz,;t) := HPyY(x,;t|0) and HQY(x,;t) := HQY(x,;t|0).

In what follows, HPy(x,;t) and HQ%(x,;t) will be called the universal
Hall-Littlewood P- and Q-functions respectively.

In the above definition, the action of the subgroup (S;)" x S,_, of S,
on the first factors [z|b]} and [[z;¢|b]]} is trivial, and the second factor
11 i +u [t](T;)

—— is invariant under this action. Therefore, the action
T +1L T

1<i<r, i<j<n
of the symmetric group does not depend on the choice of a representa-

tive w of the coset w € S, /(S1)" X S,_,. Note that when ¢t = —1 in the
definition, then H Py (zx,; —1|b) (resp. HQ%(x,; —1|b)) coincides with the
universal factorial Schur P-function Py (x,|b) (resp. Q-function Q% (z,|b)),
for a strict partition A, which have been introduced in our previous paper
[23, Definition 4.1]. In contrast to this, when ¢ = 0, both HP}(x,;0[b)
and HQ%(zx,;0[b) are different from the universal factorial Schur functions
s¥(x,|b) (|23, Definition 4.10]), S§(x,|b) (|24, Definition 5.1]).
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3.1.2. Factorial Hall-Littlewood P- and Q-polynomials. The specialization
from Fp(u,v) = u 41 v to Fy(u,v) = u + v is of particular importance.
Under this specialization, the generalized powers [z|b]¥, [[z;¢|b]]F reduce to
[z]b]F = HJ Lz +b;), [[z; t|b]]* = (z — tz)[x|b]*~! respectively, and we ob-
tain new symmetric polynomials denoted by H Py (x,;t|b) and HQ\(x,;t|b)
respectively. More explicitly, these are defined as follows:

Definition 3.2 (Factorial Hall-Littlewood P- and @-polynomials). For a

sequence of positive integers A = (Ay,..., \,) with r < n, we define

HP\(z,tb) == Y w- [az|b H H T _%']

WESy /(51)" X Sp—r i=1 j=i+1 i

SRR 111 (RN 1 =)

WESn/(S1)" X Sn—r i=1 j=1 i=1 j=i+1

HQu(zawitlb) == Y . [ z; t[b] H H o _x]]

Z

EES’n/(Sl)rXSn T = 1.7 i+1
=(1—-t)x
r o A—1 T -
iUy
3 [HHMM T _]
WESH/(S1)" X Sp—r i=1 j=1 i=1 j= 7,+1 J

We also define
and will be called the Hall-Littlewood P- and Q-polynomials respectively.

Note that, by definition, we have HQ\(x,;t|b) = (1 — )N H Py (x,,; t|0, b).
For a strict partition A, if ¢ specializes to be —1, then H Py(x,; —1|b) and
HQx(x,; —1]b) = 2"V HPy(x,; —1|0,b) coincide with the factorial Schur
P- and Q-polynomials (by replacing b with —b = (—by, —bs,...)) (for their
definition, see Ikeda-Mihalcea—Naruse [12, §4.2|). However, for a partition
A, both HPy\(x,;0|b) and HQ\(x,;0|b) do not coincide with the factorial
Schur polynomial (for its definition, see Molev—Sagan [21, §2, (3)]).

Example 3.3. Direct computation from Definition 3.2 gives some examples:
11—t

HPqyy(xy;t|b) = 21 + 29 + - + 20 + 1——tb1’
H Pz (x,; t|b) | e (1= =11 =)
1—tm

HPz) (@43 1]b) = (s2) (@) — tsa2) (@) + (by + b2)sqy(@n) + brby—7—.
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Here my(x,) and sy(x,) are respectively the monomial symmetric polyno-

mials and Schur polynomials corresponding to .

If A is a partition of length ¢(\) =7 < n,ie, A\ > Xy >--- >\, >0, our
factorial Hall-Littlewood P- and ()-polynomials are related to Macdonald’s
Hall-Littlewood P- and @-polynomials in the following way: We rewrite A
as A = (nf' nb? ---nlt nlh?), where ny > ng > -0 > ngq > ng = 0,
each p; > 0, pg = n —r, and Z?Zl pi = n. We put v(k) := Zle p; for
k =1,...,d and v(0) := 0. Denote by S, the symmetric group on my
letters v(k — 1)+ 1,...,v(k) for k =1,...,d. Thus the stabilizer subgroup
S2 of X\ under the action of S, on ) is given by S} = szl Sp,.- For an
integer k > 0, let vi(t) = Hle 1=t "and for the above partition ), we

=
define?
d—1

Unso(t) = va (1).

Using the identity

(3.1) > w

wESn

H T; —tx;
o Ly — Ty
1<i<j<n

in [19, Chapter III, (1.4)], one can prove the following fact along the same
line as the case of the usual Hall-Littlewood polynomials ([19, Chapter III,

(1.5)]):

. . ] A T; — t$j
(32)  HP\(znt|b) = viso(t) x > w- |[z[b] H pa—
WESy /S 1<i<j<n
>\i>>\j
Thus H Py\(x,;t|b) is divisible by vy~o(t). Taking this fact into account, we

define
1
(3.3) P\(x,,;t|b) := ———H P\(x,; t|b),

Vx>0 (t)

or equivalently,

i — l;
(3.4) Py(z,; tb) := Z w- | [z|b] - H x; — ta;
weSy /Sy 1<i<j<n Li = T

It is this polynomial that can be considered as a factorial version of Macdon-
ald’s Hall-Littlewood P-polynomial Py(x,;t). Putting b = 0 in (3.3), we
have HP)(x,;t) = vr=o(t)Py(x,;t). In particular, for A strict, HPy(x,;t)

3Do not confuse vso(t) with vy (t) := [Ii>0 vm,(t) in Macdonald [19, Chapter II1, §1],
where m; = m;(\) means the multiplicity for each ¢ > 0.
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coincides with Py(x,;t). On the other hand, by the argument in Macdon-
ald’ book [19, pp.210-211], we see that HQx(x,;t) equals to the ordinary
Hall-Littlewood @Q-polynomial Q(x,;t).

Remark 3.4. (1) The universal analogue of the left hand side of (3.1),

namely,
Zw'[ H +ILH£J)]
wESy 1<i<j<n Li —hL xj
is no longer a polynomial in ¢ alone (it contains the variables x1, ..., x,).

Therefore an analogous formula of (3.2) does not hold in this case.
(2) For a general sequence of positive integers A\, H P\(x,;t|b) may not
be divisible by vy~o(t).

3.2. Characterization of the universal factorial Hall-Littlewood P-
and @Q-functions. Geometrically, the universal factorial Hall-Littlewood
P- and @Q-functions are characterized by means of the Gysin map for certain
flag bundles. (We learned this idea from the work [32| by Pragacz.) Let
E — X be a complex vector bundle of rank n, and x4,...,x, are the
MU*-theory Chern roots of E as in (2.3). Consider the associated full flag
bundle 7" Lt o Ferr=l--1(F) — X. Then the Gysin homomorphism

of a symmetrizing operator (see Nakagawa-Naruse [24, Theorem 4.10], also
Brion [3, Proposition 1.1] for cohomology): For an (S;)" x S,,_.-invariant
polynomial f(X1,...,X,) € MU*(X)[X1,...,X,]5V)" 5 one has

(ﬂ_r ..... 1)*(]0(‘%1"”73:”)): Z w - [ f(l'l,...,ﬁn)

sesu/oexsn, L1 lgisn i<jzn(@ L T5)

Then it follows from Definition 3.1 and the above description of the Gysin

Proposition 3.5 (Characterization of the universal factorial Hall-Little-
wood P- and Q-functions).

(3.5) (7). ([wlb]ﬁH [T @+ [ﬂ(@))) = HPy(z,;t|b),

i=1 j=i+1

(3.6) ("), ([[w;t\b]]ﬁn Il @+ [ﬂ(@))) = HQx(n; t[b).

i=1 j=i+1
Here b = (b, bs,...) is a sequence of elements in MU*(X).

This characterization seems merely a paraphrase of Definition 3.1 at first

sight. However, this geometric interpretation will be crucial in our current
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work. In fact, as shown in the subsequent section §4, a careful application
of the fundamental Gysin formula (2.2) to the left hand side of (3.5), (3.6)
enables us to obtain the generating functions for the universal factorial
Hall-Littlewood P- and Q-functions.

Remark 3.6. As a special case of the above result, the factorial Hall-
Littlewood P-polynomial H Py(x,;t|b) is characterized by the cohomology

Gysin map, i.e., we have

(" *<Mbq111 mj>:HPw%Jw)

=1 j=i+1
A factorial version of Macdonald’s Hall-Littlewood P-polynomial Py(x,;t|b)
can be also characterized by the Gysin map: Consider the partial flag
bundle 7T’\ . FONE) = Ferld-bvd=2..v)(F) — X. Here we write
A= (n{"---nh") and v(k) = Zi:l p; as in §3.1. Then the following for-
mula holds:

w*<MVHII~—m>=R@mW.

i=1 j=i+1

3.3. Vanishing properties of factorial Hall-Littlewood P- and Q-
polynomials. It is known that the factorial Schur S-, P-, and Q-polynomials
have the remarkable property called vanishing property (see Molev—Sagan
[21, Theorem 2.1], Ivanov |15, Theorem 5.3]). In this subsection, we shall
show that our factorial Hall-Littlewood P- and )-polynomials have this
property. Let b = (by,bs,...) be a sequence of indeterminates, and ¢ be an
indeterminate. For a partition p = (u1, o, - . .), let m; = m;(u) be the mul-
tiplicity of i (1 <1 < pq), i.e., the number of components in x whose size is
equal to 7. We define

_bu(t) = (_blznlu1 (t), ..., =b32(1), =bi" (1)),
where —bf(t) := (=b;, —tb;,...,—t""1b;) (we set —bY(t) = (), the empty
sequence). Let us consider to substitute the variables x,, = (x1, ..., x,) with

the sequence —by,(t) for a partition p of length (1) < n. We sometimes
write &, — —b,(t), or more specifically, say, x1 — —b,, when we make
such substitution. After the substitution x,, — —b,(t) was made, denote by
ev,(x;) (1 =1,...,n) the i-th entry of —b,(t). Therefore we have

(evy(x1),...,evy(xn)) = —=bu(t).
We also use the notation ev,(f(z1,...,2,)) = f(evu(z1),...,ev,(z,)) in the
following. For example, if 4 = (5,5,5,4,1,1), then my(pu) = 2, ma(p) = 0,
ms(p) =0, my(p) =1, ms(p) = 3, and
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—bu(t) = (—b5, —tb5, —t2b5, —b4, —bl, —tb1)7 ev“(xl) = —b5, GVH(.I’Q) = —tb5,

ev, (g —txy) = —tbs; —t-(—bs) = 0, etc. With these notations, we can prove

the following;:

Proposition 3.7 (Vanishing property). Let A\, p be partitions of length at
most n and set i == p—+ (1") = (w1 + L, o + 1,..., pup, + 1). Then the fac-
torial Hall-Littlewood P- and Q)-polynomials satisfy the following vanishing
property:

(1) If u 5 A, we have

HQ\(=b,(t),0,...,0;t|b) =0 and HP\(—b(t);t|b) = 0.
n—€(p)
(2) If u = X\, we have

A1 mg(A) q
HQ\(=by(1),0,...,0:t|b) = —t* 1, + ™ Np ) | and
QA(=ba(?) b)) =] (H( a p) | an

n—t(\) q=1 k=1 \p=1
A1 mq(;\) q—1 R

HP\(=bs(t);t[b) =vaso®) [ ] (H(—tk—lbqﬂmp@)bp)).
q=2 k=1 \p=1

Proof. We only prove the case of HPy(x,;t|b). The case of HQ\(x,;t|b)
can be proved similarly.

(1) As A ¢ p, we can find minimal &k such that A\ > pp (1 <k </{(\) =
7). For each choice w of w € S,,/(S1)" X Sp,—r, we will show the corresponding

summand in (3.2) vanishes, i.e.,

x; —tx;
(w'[[xl”’]“'--[xrrbw 11 x._JD "
Y b

1<i<r, i<j<n

For the permutation w, take minimal d (1 < d < k) such that w(d) > k.
Then we divide the discussion into two cases:
Case 1. w(d) = 1 or [w(d) > 1 and fly@)—1 > fw(a)|- In this case,

([ b)) =0

Toy(d)—eVa(Tw(a))
because ev;(Zy(g)) = —bpyy+1 @D Ay > A > g > fluy(a)-
Case 2. w(d) > 1 and fiy(@)—1 = fw(q)- In this case, we claim that

Lop(i) — txw j

evy < H (1) (J)) —0.
1<i<r, i<j<n Lw(i) = Tw(j)

First note that, by the minimality of the choice of k, we have w(d) > k.

Let p (1 < p < n) be an integer such that w(p) = w(d) — 1. Then, by the
minimality of d, we have d < p < n. Since fiy(p) = fw@) and w(d) = w(p)+1,
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we have evj(Twa) =t evi(Twp)). As 1 <d <7, and d < p < n, the factor
eV (Tw(a) — tw(p)) vanishes, and therefore our claim follows.

(2) When p = A, we first show that each summand corresponding to
w € S,/(S1)" X S,—, vanishes under the evaluation evj, except for w =€
(e the identity element). In fact, if w # €, we can find minimal d such that
1 < d < r and w(d) > d. Then, by dividing the argument into two cases
Case 1. Ay(@)—1 > Aw(a), and Case 2. A\y(g)—1 = Aw(q), We can show that the
corresponding summand vanishes under the evaluation evy.

For w = e, we can evaluate the term as follows. For each i (1 < i <),
we can write ev;(z;) = t" b, (k > 1, ¢ = \; + 1 > 2). Then, the direct
computation yields

1 — gma)—k+1 71

L ox — ta _ e (A
‘WXO%WV’II:H_$7>—* — [0+t V0,).
J

j=i+1 p=1

We then take all the product of these evaluations for 1 < ¢ < r. Since we

M mq(j\) 1— tmq(i)—k—i-l
have H H — Uas0(t), we get the desired formula. O

More generally, we can prove the vanishing property of the universal
factorial Hall-Littlewood P- and Q-functions by the similar way. We only
exhibit the result. To state the result, we prepare some notations. For a
partition u, we define
bylt] == (b, [t]: b, 21 [t by " [t], by [1])

where Ef[t] = (b, [t](B:), ..., [tF (b)) (we set E?[t] = () i.e., the empty
sequence).

Proposition 3.8 (Vanishing property). Let A\, p be partitions of length at
mostn and set i = p+(1") = (1 +1, po+1, ..., uy+1). Then the universal
factorial Hall-Littlewood P- and Q-functions satisfy the following vanishing
property:

(1) If u 5 A, we have

HQX(b,[t],0,...,0;t[b) =0 and  HPy(bg[t];t[b) = 0.

n—{(u)
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(2) If n = X\, we have

A1 mq(A) q
HQ%(b)[t],0,...,0;t|b) :H (H ([t (b,) +1 [t >](bp))> ,and

n—b(\) g=1 k=1 A\p=l1
A omg(N) /g1
HPE(bs[t):tb) = wvaso(®) [ T1 (H ([£*1(B) +1 [V (b, ))).
q=2 k=1 p=1

3.4. Pieri-type formula and Hook formula. The vanishing property
established in the previous section is so useful that one can derive several
interesting results of factorial Hall-Littlewood polynomials from this. De-
note by A(x,) = Z[xi,...,2,]° the ring of symmetric polynomials of n
variables, and P,, the set of partitions of length < n. Then, it is known that
the usual Hall-Littlewood P-polynomials Py(x,;t) (A € P,) form a Z][t]-
basis of A(x,)[t] = Z[t]| @z A(x,,) (cf. Macdonald [19, 111, (2.7)]). Therefore
there exist polynomials c§ ,(t) = c/\; (t) € Z[t] such that

Py(p;t)Pu(anst) = > 5 (P (@ast) (A p,v € Py).

v

It is known that (see Macdonald [19, III, (5.7)]) the following Pieri-type
formula holds:

(3.7) Poy(@ni ) Pu(anit) = Y ayu(t)P(znit),

HCw, [v/ul=1

— mi(¥)
where polynomial o, /,(t) = 0‘1(//) (t) is given by 4 if v/p has a box in

the jth column. As for the factorial version of Macdonald’s Hall-Littlewood
P-polynomials Py(x,;t|b) (see (3.3)), one can consider a similar problem:
First we see that factorial Hall-Littlewood P-polynomials Py(x,;t|b) (A €
P,.) form a Z[t] @z Z[b]-basis of A(x,|b)[t] := Z[t]| ®z Z[b] ®z A(x,,), where
Z[b] = Z[by,bs,...] is a polynomial ring of indeterminates b= (by,bo,...).
Therefore there exist polynomials c§ ,(t|b) = c/\# '(t|b) € Z[t] ® Z[b] such
that

(3.8)  Pr(x,;t|b) Pu(w,; t|b) = chﬂb (X3 t|b) (N, v € Py).

By definition, the “structure constant” c§ ,(¢[b) is a homogeneous polyno-
mial of degree || 4+ |u| — |v| in the indeterminates b = (b, by, ...) with
coefficients in Z[t]. Comparing the highest homogeneous components in
&, = (x1,...,x,) on both sides of (3.8), we see that

v _ )R A [p] = (v,
i u(tlb) = { 0 if [\ + |p| < |v|.
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From the commutativity of the product in the left hand side of (3.8), the
symmetry c§ ,(t|b) = ¢}, ,(t[b) holds obviously. Furthermore, using the van-
ishing property?, Proposition 3.7, we claim that c5 . (t|b) is zero unless A C v
and p C v. The proof proceeds as follows (cf. Molev—Sagan [21, p.4434|):
Let v be minimal with respec to containment relation among all partitions
p in (3.8) such that c§ ,(t|b) # 0. Suppose that y ¢ v. We set @, = —b,(t)
in (3.8). Then, by Proposition 3.7 (1), we have

0 = &, (¢]B) P, (=by (1); 1[b).

By Proposition 3.7 (2), we have P, (—b;(t); t|b) # 0, and hence c§ ,(t|b) = 0.
However this contradicts to ¢ ,(¢|b) # 0, and hence p C v holds. From this
and the symmetry relation c§ ,(t|b) = ¢}, ,(t|b), our claim follows.

Now we consider the case where A = (1) in (3.8). Then, by the known
properties of the structure constants, we only need to consider those v with
w Cvand |v| < |u|+ 1, Thus (3.8) takes the following form:

Pay(xn; t|b) P, t]b) = c?l)7u(t]b)PN(wn;t]b)+ Z 1), (t10) P (s t]b).
HCw, [o/ul=1

Setting «,, = —b;(t) and using the vanishing property, we see that cﬁ)’“ (t|b) =

Pa)(=ba(t); £|b). On the other hand, by the degree reason, we have c(;, ,(¢[b) =

cly () = cwyu(t) when pp C v oand |v/pu| = 1. Therefore we obtain the fol-

lowing formula:

Proposition 3.9 (Pieri-type formula for factorial Hall-Littlewood P-polynomials).

Py (2n;t|b) Py(2n; t|b) = Py (—=bp(t); t|b) Py(xn; t|b)+ Z Py (;t|b).

KC, [v/pl=1

Using Proposition 3.9, we can derive a generalization of the so-called hook
(length) formula. We argue as follows (the following argument is essentially
the same as that given in Molev-Sagan |21, Proposition 3.2| for factorial
Schur polynomials, although they did not mention the relation to the hook
formula. For this type of argument, see also Naruse-Okada |29, Lemma 4.5]).
For simplicity, we shall use the abbreviated notation Py, cf ,, and a,/, for
Py(x,; t|b), cll(:gf) (t|b), and ag\%(t) respectively in the following. Then our
hook formula is stated as follows:

Proposition 3.10 (Hook formula for factorial Hall-Littlewood P-polynomials).
Let u be a partition of length ((p) < n and size |u| = k, a positive integer.

4By the definition (3.3), Px(x,;t|b)’s also satisfy the vanishing property.
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Then we have the following formula:

(3.9)
Z Oéu(kfl)/u(k) ..... Oé’u,(l)/u(m . Oéu(@/y,(l)
(k) (2) 1)
o o o H o I
p=p(® 2 2@ 2.2 = C(1)u T C(1),u0) W~ “u  CWn T S)um
1
Bu(—=ba(t); t|b)

Proof. We consider the associativity of the product
(PayPx) Py = Py (PAFL),

and take the coefficient of P, on both sides. Using the fact that czy’ 5 Is zero
unless o C v and 3 C , and Proposition 3.9, we have

Ak E poo_
CHACh + A/ Cuy = €1y 1o
pOV, [v/A|=1

and therefore we have

(0?1),“ - CE\l),)\)C)\,,u = Z Qy/x C’J,u-
uOVDA, |v/A|=1
By definition and Example 3.3, we know that Pp)(x,;t|b) = 21+ -+, +
1:: by. Therefore, if p 2 A\, we see that cé‘lm — CZ\I),A = Pa)(=bu(t);t|b) —
Py(=b;(t);t|b) # 0. Thus we have the following recurrence formula:

i = Qe c?
A c“ — AT
/JDVQ)\, |y/)\‘:1 (1)7/J (1)7A

Using this recurrence formula repeatedly, we obtain

" Oy (k=1) /() QUy(0) /(1) "
C@Jl - Z 1 'u,(k) o n M(l) C/‘Luu"
p=p® 2pW 2@ 2020 =p C(1).0 T C1), k) €W~ Cayum

The fact that cg L =1 is obvious from the definition of structure constants.
The value of ¢, , equals to P,(—bu(t);t|b) by virtue of the vanishing prop-
erty, Proposition 3.7. Therefore, we have the desired equation. Il

As mentioned before the proposition, one can obtain a similar hook for-
mula by [21, Proposition 3.2]. More concretely, under their notation, one
has the following formula:

(3.10)

1 1
2 Mavl = lago ) -+ (Jav] = lae-nl)  sy(ala)

P=p0) —=p1) ... pl=1) ()=
We remark that this formula can be interpreted as a special case of Nakada’s
colored hook formula (|22, Corollary 7.2]), which is a generalization of the

famous hook formula due to Frame-Robinson—Thrall [6]. As an example,
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let us take v = (2,2) and n = 2, the number of variables. Then the above
formula leads to

1

(a3 — az)(az — a1)(aq — a1)(ay + a3 — az — ay)

1

(a3 — az)(ay — as)(ay — a1)(ay + a3 — az — ay)

1

(a3 — az)(az — a1)(as — az)(as — ar)

Now consider the simple root system {a, as, as} of type As. If one represent
the simple root «; as a; —a; 1 for i = 1,2, 3, then the above identity becomes

(3.11)
1

042(041 + 062)(041 + oo + Oég)(Oél + 20&2 + 043)

1
+
Oég(@g + Oég)(Oél “+ g + 043)(041 -+ 2@2 -+ Odg)

1
N 042(@1 + Oég)(OéQ + 063)(@1 + g + 053)’

which agrees with the example given in [22, p.1088]. When we special-
ize t to be 0, our factorial Hall-Littlewood P-polynomial H Py(x,;0]b) =
Py(z,,; 0|b) does not coincide with the factorial Schur polynomial sy(z,|b).”
Thus t = 0 specialization of our hook formula (3.9) yields another colored
hook formula (see the example below). It is well-known that the classical
hook formula and its shifted analogue have geometric background known
as Schubert calculus, and are closely related to combinatorics of Grassman-
nians, root systems, and Weyl groups (see e.g., Hiller [10]). In our forth-
coming paper ([|27]), we shall discuss geometric or topological background
of our hook formula, in relation to complex reflection groups G(e, 1,n) and
G(e,e,n) (for root systems of these groups, see Bremke-Malle [1] [2]).

Example 3.11. For the partition p = (2,2), the explicit form of our hook
length formula is given as follows: First note that there exist “two paths”

from p = (2,2) to ) = (). Namely,

p=22)22102@ 202 ada= (22221211 2(1)2().

°In the definition of the factorial Schur polynomial sy (z|a) given by Molev-Sagan [21,
§2, (3)], we replaced a doubly-infinite variable sequence a = (a;), ¢ € Z, by b = (b1, ba, . ..).
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From the fact that c{}, , = cl(/l()"y) (t|b) = P((f))(—bl;(t); t|b), we get the follow-
ing result directly:

cth() =0,

i)y = ~ba + 1771y,

iy = (L4 5)(=by + £772by),
1) @ = ~bs + 1"y,

ety = —bs — b + (1 + )"~ 2by,
oz = (L4 1)(=bs +1"72by).

Similarly, a,/\ = a(VT;))\(t) can be computed directly from the definition, and
we get
ae2)/e1) =1+t aerye =1, aeiyany =1, agya) =1, aqiya =1+t

/) = L.
By Proposition 3.7, we have, for p = (2,2),
P (=bp(t);t|b) = (—bs + " 2by)(—tbs + " 2b1)(—bs + ba)(—tbs + by).

Therefore our hook formula gives the following identity:

141 1 1
—tbg + b2 —tbg + tn—le —bg — tbg + bg + tn_2b1
n 1 14+t
—bg — tbg + b2 + tbg —bg — tbg + b2 + tn72bl
1

X
—bg — tbg + tn—le + tn—lbl
1

(—bg + tn72b1)(—tb3 + tn72bl)(_b3 + bg)(—tbg + bg) '

4. GENERATING FUNCTIONS FOR THE UNIVERSAL FACTORIAL
HALL-LITTLEWOOD P- AND ()-FUNCTIONS

In this section, by utilizing a Gysin formula in complex cobordism,
Proposition 2.1, we shall derive the generating functions for the universal
factorial Hall-Littlewood P- and @-functions.

4.1. Generating function for H P} (x,;t|b). Basic idea is to apply the
fundamental formula (2.2) repeatedly to the characterization (3.5) to obtain
the generating function. Here we remark that the formula (2.2) still holds for
a formal power series f(u) € MU*(X)[[u]] as well, and we shall use such an
extended form of (2.2). However, we will be confronted with some difficulty
when we apply the formula to (3.5). In order to clarify the difficulty, let us
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consider the simplest case A = (A1) with A\; > 1 (and hence r = 1) of (3.5).
We wish to push forward the expression [z;|b]}" [Tj_s(z1 4+ [t](F;)) via the
Gysin map 7} : MU*(G'(E)) — MU*(X). Naively, setting

n

f(u) = [ulplg! - [ [Cu o [1(z)),

j=2
we wish to compute 7!(f(z1)). However, one cannot regard f(u) as an ele-
ment of MU*(X)[[u]] as it is. Therefore we consider the following expression

instead:
fiu): u|bh ﬁ +
1(u) = T FluL (7))
Since symmetric functions in xq,...,x, can be regarded as elements of

MU*(X) (x1,...,x, are the Chern roots of E), the coefficients of f;(u) with
respect to u are actually in MU*(X). Moreover, we have f(x1) = fi(x1) ob-
viously. However, it is not a formal power series in u because of the constant
term bybs - - - by, in the numerator, and therefore the formula (2.2) does not
apply directly. We further modify f;(u), and consider the following expres-

sion:

@y hw) :=%{H<m )~ u+}

j=1 J=1
The effect of subtracting the term []7_, [t](u +1 7;) (hereafter we call it the
“correction term”) is two-fold: Firstly, the expression [[_, (u +v [t](T;)) —
[[_,[t](u +1 7;) is divisible by u, and therefore f5(u) becomes indeed
a formal power series in u with coefficients in MU*(X). Secondly, when
we substitute x; for u, we have f(z1) = fa(z1) by the obvious identity
[T;_,[t](x1 +L7;) = 0. Therefore the fundamental Gysin formula (2.2) does

apply to fa(u), and the result is given as follows:
HPG (@ t|b) = m(fo(21)) = [u"](fo(u) x (5 1/u))

ey |l [ T N
= [u ]_W{H(U+L[t](x])) H[t](UﬁL%)} SH(E; 1/ u)

e 1 u ut @)y e T) | pretib
= [u™"] PL(u) u+y, [t](7) {Hl U+, T, , U+, T }JH u

Example 4.1. As a special case of the above formula, the ordinary factorial
Hall-Littlewood P-polynomial corresponding to the one-row (\;) is given by

1 ou—tx al u—+b
. — [N | = g J
HP(A1)<wn7t’b) - [u ] ll_t <J1;[ u— x; ¢ ) X H u

j=1
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In particular, we have

1 u — ta; u+ by
: — [yl | —— 1 _¢m
HPqy(za;t|b) = [u ][1_t<£[u_% t>>< "

L (xnst) +
1@ 1—t

:xl+l'2+"'+l’n+(1+t+t2—{—...+tn71)bll

Here ¢.(x,;t) (r =0,1,2,...) are given by the following generating functions:

n

“[I _zqr (2ot
=1 !

ﬁ z —tw;j
j=1 Z = ZL‘] z=u—1

For a general sequence of positive integers A = (Aq, ..., A,) with r < n,
we need to compute the push-forward image of [2[b]2 [T/_, [Tj—.; (z: +1
t](Z;)) under the Gysin map (7"~ 11, : MU*(F(1(E)) — MU*(X).

r—1 1
T ..., T, suc-

The image of (7™"~1+~1), can be computed by applying 77,
cessively. In each step, we use the modification such as (4.1), i.e., subtracting
the “correction term”. This technique enables us to apply the fundamental

Gysin formula (2.2), and we are able to show the following result:

Lemma 4.2. For a sequence of positive integers A = (Ay,..., \,) with r <
n, we have the following formula:
(4.2)
(wr=ten), ([aloT] TT (oo [ﬂ(@))) = [Huz ]
=1 j=1+1 =1

i—1

ui o [H(T) w; 41 [t)(W;) vy 1w +175)
X{H u; + T; _H[](UzJﬂLUJ)H U; 1. T; }

j=1 j=1 j=1
T i
U LU ‘HL uz U; +1, bj
<11 <1111
u.
1<i<j<r j +]L ) i=1 j=1 ?

Proof. Let us compute the push-forward image of [az|b])‘ [Lic [l (4o
t](Z;)) under the Gysin map (7" 11, =wlo---onl ™t onl. As we ex-

plained above, we carry out the computation inductively. Fora (= 1,2,...,r—
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1), we assume the following result:

(4.3)
(,Nr—a—O—l o---om™ 1o 7r7“)* ([w]b]ﬁH H (.TZ “+1 [t] (f]))>
e [ T v 1

r—a+1 r— r P ? el i J i:T_a_Hui ‘|‘IL [t] (ﬂz)
ey - TT S @) T e L =
- {jrllwl(uz ) j7Ha+1 (1] (ui 4. ;5) j[lt:z-&-l[t]( o ])}

M M 120 1 yLEl/u,>].

i=r—a+1 j=1 r—a+1<i<j<r

We would like to push-forward this formula via the Gysin map
T MU*(GI(Un—H—a—H)) — MU* (GI(UR—T-HH-?))'

Taking (4.1) into account, we modify the right-hand side of (4.3) as

[y ey [_H_ [wifbl TT (i o [81(7)))

i=1 j=it1
[z, a|b/\T . = - _
P I Gra+oit1@)) — T W +.75)
r—a r— a j=r—a j=r—a

n

! uzb 1 _
x H 4 () {uzﬂ, t(Zr—a) H (4. (7))

U;
i=r—a+1 v +H“ j=r—a

o w @) - ;
jEH[t](ui ) (o ) jH i j}

r—a—1 T —
Uj +1, Ug

< IT I w+ez)x [ (w+eze—a) x @)

i=r—a+1 j=1 i=r—a+1 r—a+1<i<j<r

< [ & 1/@] .

i=r—a+1

Then, apply the fundamental Gysin formula (2.2). In the above modifica-

tion, we divide both denominator and numerator of — by u;,
u; +1 [t](Tr—a)

and consider it as a formal power series in z,_,. We also treat —
[t](wi +1 Tr—a)

in the same manner. Under this remark, the result is just replacing x,_, by

the formal variable u,_,, and multiplying by .#“(U,_,4as1;1/tr_q). Then,
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we extract the coefficient of u~, . Since we know from (2.1)
r—a—1
y]L(Un—T—HH—l; 1/“7‘—11) = U;(z_a_l) (ur—a +L fj) X y]L(E7 1/ur—a)7
j=1

we see directly that the formula (4.3) holds for a+ 1. Therefore, when a = r,

we have
<7TTT_1 ,,,,, « (;B’b ]LH H (33'1 +L )) — [u? 1 ’LL:}_I]
i=1 j=i+1
- n i—1 "
[ul‘b] w; +1 [t](;) B
L A i+ — LT Ay +1 T
= j= o -
u] +]L uz L
x (B,
B H )
Z ] T
Then, using the Segre series (2.1), we obtain the required formula. O

By a characterization (3.5), the left-hand side of (4.2) is H Py(x,;t|b),
and hence the right-hand side gives a generating function for H Py (x,;t|b).
Let us simplify this generating function in the following way: First note that

M — U; _HL UJ ! U; +]L U]
1§g§7"uj L [t] (Hl) 1SJ1:[Z-<T Uy +]L H H u; +
Therefore if we put

wi [t (@) - P (w)

S [(T) Tr % LT Ty % by
j=1 " Joog=1 " 7 =1 !
n N\ = i
_H[t](uz +L$j)1—i u; +1 U Huz +L b;
i1 U; +1, fj i [ (% —HL, u] e ’

H’P]ZL;}E:L)(UM U, . .. ,uz|b) =

r

HPH)-\”(’”) (u""|b) = HPH/-\‘7(N) (Ul, Uz, . . uT’lb HHPz i Ul, Ug, - - . 7ui|b)7
=1

then, one has
(4.4) HP: (2, 1)b) = [u™] (HPW (u,,|b)) |

Moreover, observe that

Us 1 . ..
° . is a formal power series in u;.

wi L [t (w) - P (w)
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n _ i—l _
T; +Lu; . .
° H (i +1. 7)) Sl B regarded as a formal power series
]:1 Ui +1 T, [t] (ul +L uj)
in u w1th constant term "t
Ai
° H is a formal Laurent series in u; whose lowest degree term

J=1

Ai
is u; M with coefficient Hbj'
J=1

Taking the above observation into account, we put

NL?(”) U; 1
HP; . (ug,ug,...,ub) = — .
JAi ( 1, 82 | ) w; +1, [t] (uz> ( )
n i—1 i i
ui o [t)(7;) ui +L U UJ n—it1 TT b
X ¢ 2
(U u; +1. T; U u; +, [t U U u; )’
7=1 7j=1 = 7j=1
——L,(n ——L,(n !
1P (wrb) = HPY ™ (ur, s, . |b) - H”HPM g, - wi]B).

——1L,(n
Then, we can reduce 'HP%’(R) (u,|b) to HPA( )(uT|b), and we obtain from
(4.4) the following result:

Theorem 4.3 (Generating function for H Py (x,;t|b)). For a sequence of
positive integers A = (Ay, ..., \,) with r < n, the universal factorial Hall-
Littlewood P-function H Py (x,;t|b) is the coefficient of w™> = uy ™ uy ™ - - - u ™
in %H;’(n)(ul,ug, ..., up|b). Thus

H P (@i 110) = [u) (HPS " (b))

If we specialize the universal formal group law Fp(u,v) = u 4, v to

F,(u,v) = u+ v, the above generating function becomes a relatively simple

form:
——(n) 1
HPZ‘/\_(Ul,...,Ui|b) = —
- Lot A A
n i—1 ; .
U; — tZL'j U; — Uy - U; + bj n—i+1 - bj
—t el
X(Hui—IjHUi—tujH Uy Huz ’
Jj=1 Jj=1 Jj= j=1
=) =) T
HP, (u,b) =HP, (ur,uz, ... u,|b) = [[HPi (w1, uz, ..., uilb).

i=1

Thus we have the following corollary:

Corollary 4.4 (Generating function for H Py\(x,;t|b)). For a sequence of
positive integers A = (A1,..., \.) with v < n, the factorial Hall-Littlewood
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P-polynomial HPy(x,;t|b) is the coefficient of u™ = uy M uy ™ ---u ™ in

%E\n)(ul,ug,...,urw). Thus
A (2™
H Py (@, 1]b) = [u™] (HP," (u (b))

4.2. Generating function for HQY%(x,;t|b). Next we shall derive the
generating function for HQ%(x,;t|b). In the one-row case A = ()\;) of (3.6),

we push-forward the expression

& 1+ |1)(T1)) |21 ]il_l -
o ol T o i) = O T o+ )
= b [+ 1)),

which is a formal power series in z;, and therefore (2.2) applies without any

problem, and one can obtain the following:

HQ(@q;tb) = [up ™ --ur‘”]
r n r A—1
U; +]L _ Uy 41 U Ui +1 bj
H?L ]1;[1 u; +L i 1<g<r uj +u [t](w) g o W
For each non-negative integer k, we set
n k
n 1 U+ [t](T) U~ b,
HO " (ulb Lo T —.
Q" (ulb) := QZJL()H U+ T H u
7=1 1
For a sequence of positive integers A = (A1,..., A,) with r < n, we set
u; 1 U;

HOY ™ (u,b) = HOY™ (ur, ..., u,|b) == T[HOY") (us|b) @Y
) = o ) = [T ) TT

Thus we have the following result:

Theorem 4.5 (Generating function for HQY(x,;t|b)). For a sequence of
positive integers A = (A1, ..., A\.) with r < n, the universal factorial Hall-
Littlewood Q-function HQ%(x,; t|b) is the coefficient of u™ = uy Muy ™ - - - u ™
in %Qﬂg’(")(ul,u% .o up|b). Thus

HQx (@ 1]b) = [u™] (HQ} ™ (u, b))
5. APPLICATION OF GENERATING FUNCTIONS

5.1. e-Cancellation property. A symmetric polynomial f(z1,...,x,) with
coefficients in Z has the Q)-cancellation property if the following holds: when
the substitution x; = a, x5 = —a, a an indeterminate, is made in f, the
resulting polynomial is independent of a (Pragacz [31, §2]). It is known
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that the Schur P- and ()-polynomials satisfy this cancellation property.
The notion of the @-cancellation property is generalized in the following
way: Let e > 2 be a fixed positive integer, and { = (., be a primitive eth
root of unity. We define a sequence a(¢) := (a,Ca,(%a,...,( ta). Sup-
pose that ¢ < nm. Then a symmetric polynomial f(zy,...,z,) with coef-
ficients in Z[(] has the e-cancellation property if f(a®(C),Tes1,.-.,Tn) =
f(a,Ca,C%a,...,(a,Zetq,. .., 2,) does not depend on a. In the case e =
2, this property is nothing but the ()-cancellation property. By specializ-
ing ¢ to be (, the factorial Hall-Littlewood polynomials H Py(x,; (|b) and
HQx(x,; ¢|b) are symmetric polynomials with coefficients in Z[(] ® Z[b] =
Z[C¢] ® Z]b1, by, . ..]. Thus one can ask if these symmetric polynomials have
the e-cancellation property or not. In this subsection, as the first application
of our generating functions, we shall show the e-cancellation property of the
factorial Hall-Littlewood P- and ()-polynomials.

Proposition 5.1 (e-Cancellation property). Assume that e < n. The facto-
rial Hall-Littlewood polyonomials H P\(x,;|b) and HQ\(x,;(|b) have the

e-cancellation property.

Proof. Let r be the length of A\. Then, by Corollary 4.4, HPy(x,;(|b) is
given as the coefficient of 4= in the following generating function

r n i—1 by i
1 u; — Cx; U; — U 1 Wi+ 0; - 1 b)
5.1 - 4 J ? J ? J _ n—itl 7 )
(51 (1_C)TH<HU1_«T‘HUJ1'_CU'H u ¢ Huz
=1 \y=1 J 7j=1 J 7j=1 7j=1
Substituting (z1,...,2z.) with a®(¢) in each factor H—, we have
j=1 " J
S - ou — (g ouy — Cay
— X — = —
7j=1 j=e+1 j=e+1
since (¢ = 1. Therefore, (5.1) does not depend on a and z,...,x.. From

this, the e-cancellation property of H Py(x,;(|b) follows. By Theorem 4.5,
HQ\(x,; ¢|b) is given as the coefficient of w~ in the following generating

function
ron Ai—1
Ll Lu— , u L up—Cyy
i=1 j=1 J=1 1<i<j<r

From this, the e-cancellation property of HQ\(x,; (|b) follows by the same
reason as that of HPy(x,;(|b). O

Remark 5.2. In the case of the universal factorial Hall-Littlewood P- and

Q-functions, we consider the substitution @, with the sequence a®[(] :=
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[¢¢"](a)). Then, using Theorems 4.3 and 4.5, one can

verify easily that H Py (z,,; (|b) and HQ%(x,; ¢|b) satisfy the e-cancellation

property too.

5.2. Pfaffian formula for GQ,(x,|b). Another application of our gener-

ating functions, we shall derive the Pfaffian formulas for the the K-theoretic

factorial @-polynomial GQ,(x,|b), which seems to be new. In what follows,

we assume that the length ¢(v) of a strict partition v is 2m (even). We

consider the specialization from Fy (u,v) = u 4 v to Fy,(u,v) = u® v with
t = —1. Then HQ%(x,;t|b) specializes to GQ,(x,|b), and, the generating

function H Q%™ (wy,,|b) reduces to
(5.2) GO (U |b) =

where, for each non-negative integer k,

H ng/ 71 u1|b

uj@ui
)
uj@ui

II

1<i<j<2m

we define

e Il |
j=1 Io=1
1 gl (B 1
_1—|—ﬁuH1—i—(u1+5 XH{1+ AP}

This is a generating function for the factorial K-theoretic ()-polynomials
GQ,(x,|b). Here we recall from Tkeda—Naruse [14, Lemma 2.4] the following

formula:
Pf ($J—£Cl) _ H iL‘j—.Z'Z'
.CEJ @ ZT; 1<i<j<2m 1<i<j<2m :U] @ xX;
Thus we can compute®
U; O Uy
J i
GO (U |b) = Hggy L)y [ =
R Uj D Uy
1<i<j<2m

2m 1
- HQQV ~ 1 (u;]b) HW '

= Pf,,, (g ,/_1(uz‘b) gQV —1( u;|b)

_ Py, ((1 T Bu) 2 (L Bu) GO (wlb) GO (us[B) -

Pf (—“J' — “)
Uj DU ) <icicom

1 1

Uy

(14 Bu;)?m=t (1 4 Puy)?m—I

uj@ui

6Below we shall use the notation Pfon(as ;) for the abbreviation of Pf(a; ;)i<i<cj<om

when the expression is too long.

‘_ui
uj D u;

uj@ui

)
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For non-negative integers p,q > 0 and positive integers k,l > 1, we define
polynomials GQEZ”?))(a:Mb) to be
) — n n u2 6 ul
GQE (walo) = [u*0s') (GO 1b) GO s (ual) - 22 ).

Note that, by Theorem 4.5, we have GQ . (,|b) = GQEZ;;(me) for pos-

itive integers k > [ > 0. Then, by Theorem 4.5, one obtains

GQ,(x,|b) = [Hu

x GQ, "1 (uilb) GQ, " (u;|b) x —>
i—1 i —1\") Uj D u; 1<i<j<om

= P (0 (1 + B 120+ oo

U; O U;
%GO (u]b) GO (us]b) —))
' i Ui DU ) ) <icicom

— Pf ([u;”iu;”"] ( (Z o N 2m> (J - Qm) B
k=0 (=0

GO (uib) GO, (uy|b) - ﬂ))
1<i<j<2m

X

uj@ui

1<i<j<2m

k=0 =0

Thus we obtained the following:

Theorem 5.3 (Pfaffian formula for GQ,(x,|b)). For a strict partition v of
length 2m, we have

Go.(ole) v (X3( ) () )

k=0 1=0

Remark 5.4. (1) Putting b = 0 in (5.2), we obtain a generating func-
tion for the (non-factorial) K-theoretic Q-polynomials GQ,(x,). On
the other hand, dual K-theoretic P- and ()-polynomials were intro-
duced in our previous papers [23, §5], [25]. We have a conjecture on
a generating function for the dual K-theoretic (-polynomials, and
their Pfaffian formula (see Appendix §6.2).

(2) The generating function technique can also be applied to the deriva-
tion of the determinantal formula for factorial Grothendieck poly-
nomials Gy(x,|b). On the other hand, a generating function for
the dual Grothendieck polynomials gy(x,) (for their definition, see
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Lascoux—Naruse [18]) can be obtained by a purely algebraic manner.
We shall give the details in the Appendix, §6.1.

6. APPENDIX

6.1. Generating function for the dual Grothendieck polynomials.
As we mentioned in Remark 5.4, we give a generating function for the dual
Grothendieck polynomials. Following Lascoux—Naruse [18], let us introduce
the dual Grothendieck polynomials gy(y,), where y, = (y1,y2,...,Yn) is
a set of independent variables and A € P,. First we need some notation:
Given two sets of variables (called alphabets as usual) A, B, the complete

functions s(A —B) (k=0,1,2,...) are given by the following generating

function:
= 1
k _
Zsk(A - B)" = H P H(l — bz).
k=0 acA beB
In particular, when we add r letters specialized to 1, namely the set {1,1,...,1},
—

r

to one of the alphabets A or B, we have

Zsk(A—BiT)zk:(l—z) Hl—azH (1—10z).

k=0 acA
Then, for the variables y,, = (1, ..., y,) and any integer r, we have
Sl = (-2 [
k=0 o1 T Uiz

I
VR
(¢
|
=
/N
=
+
-~ -~
|
—
~
|
N
<.
o
ngl;
>
<
<
2
Y
~_—

and hence we have

k .
(6.1) sk(yn—l—r):Z(T+Z_1>hk_i(yn) (k=0,1,...).
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Using (6.1), the dual Grothendieck polynomial ¢y (y,) for A € P,, of length
r is given by (see Lascoux—Naruse [18, (3)]):

g)\(yn) = Sk(yrwyn + 17 e Y+ — 1)
= det(sy,—i+j(Yn +1—1))1<ij<r

Ai—i+j
(6.2) = det < > (( - 1),: o 1) hAi—i-&-j—k(yn))

k=0 1<i j<r
(it k—2
= det (Z( I >h)\¢—i+j—k<yn)>
k=0 1<i j<r
We set
n 1 o0
_ 17(n) _ _ k
HE) = HOE) =T = Yl
j=1 k=0
- 2 © Z;
9(zr) =g(z1,...,2,) = HH(zi) —.
i=1 1<i<j<r “i

We shall show that g(z,) is the generating function for the dual Grothendieck
polynomials, namely we have the following:

Theorem 6.1 (Generating function for gx(y,)). For a partition A = (A1,..., \;)

of length {(X\) = r < n, the dual Grothendieck polynomial gx(y,) is the co-

efficient of 2 = 2125?22 in g(21, 2, . . ., 2r). Thus

a(yn) = [2Y](g(20))-

Proof. By the Vandermonde determinant formula, we have

19 j
I | I

1<i<j<r i=1 j=i+1 %
— r—1
1 1
= : — - (zi — 2j)
g(1+ﬁzi+1)~~(1+ﬁzr) Ezi 1<E<T !

i 1 1 .
- H(l + Bz;)i~1 ' H S - det(z; J)lsi,jﬁv"
i=1 v i=1 ~1

= det((1 + B2) "2 7 )1<ijer-

Therefore one can compute

2 © 2j —i i—j
9(z1,... 2 HH =) 11 z—] = det((1+ Bz)' "2 H (%) h<ijsr

1<i<j<r v
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Extracting the coefficient of the monomial 2* = []I_, 2%, we obtain

[Z)‘](g(zl, cey % [HZ' ] (det (14 Bz)' = - ]H(Z'L>)1<z ]<r>
— det ([z;](u + 5zi)l—iz§*jH(zi)>

1<i,j<r

X /1= o
= det | [2V] (Z( I Z) CAFAS ZE_JH(Zz‘)))
k=0 1<i,j<r
(1 —10\ .
= det I BN —iti—t(Yn)
k=0 1<i,j<r
(i+k—2
= det Z( . )(_6>kh)\ii+jk(yn)>
k=0 1<i,5<r

Here we used the following identity:

(1;) B (—(ik— 1)) _(_1),€<¢+Z—2)’

for integers ¢ > 1, k > 0. This is the dual Grothendieck polynomial g, (y.,)
introduced in (6.2) with g = —1. O

6.2. Conjecture on a generating function for gq,(y,). In [14, §3.4],
Ikeda—Naruse introduced the K-theoretic P- and @Q-functions GP,(x) and
GQ,(x) in countably many variables & = (x1,x9,...). Let GI"'(x) denote
the ring of symmetric functions satisfying the K-theoretic ()-cancellation
property (see |14, Definition 1.1]). Similarly, let GT'(x) denote the subring
of GI"(x) consisting of functions f satisfying the condition:f(t,zs,...) —
f(0,25,...) is divisible by ¢ @ t.” Then, they showed that GP,(x)’s and
GQ,(x)’s (v strict) form a formal Z[f]-basis of GI"(x) and GI'(x) respec-
tively. Using this “basis theorem” and the following “Cauchy kernel”

Sl

i=1 j=1 L=y,
where y = (Y1, ¥z, - . .) is another set of independent variables, we can define
the dual K -theoretic P- and Q-functions, denoted by gp,(y) and gq,(y), as
follows (see also Nakagawa-Naruse [23, Definition 5.3, Remark 5.4]):

Definition 6.2 (Dual K-theoretic Schur P- and @Q-functions). Let SP de-
note the set of all strict partitions. We define gp,(y) and gq,(y) for a strict

"We slightly changed the notation from that used in [14]. In that paper, GI"(z) and
GT'(x) are written as GI' and GT'; respectively.
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partition v € SP by the following identities:
(6.3)

Alz;y) HHlizyj—ZGP )9a.(y) = > GQu(x)gp,(y).

i=1 j=1 veSP veSP

One can check that gp,(y) and gq,(y) are actually symmetric functions,
i.e., they are elements of A(y) ® Z[f], where A(y) is the ring of symmetric
functions in the variables y = (y1,ya,...) over Z. For each positive integer
n, one can define a surjective ring homomorphism p™ : A(y) — A(y,) by
putting Ypi1 = Yny2 = --- = 0. Here A(y,) = Z[yi, ..., yn)°" is the ring of
symmetric polynomials in y,, = (y1,...,¥y,) under the usual action by the
symmetric group S,,. We also denote by p(™ its extension over Z[3]. Then we
define the dual K -theoretic Schur P- and Q-polynomials, denoted by gp, (y,)
and gq, (y,) for a strict partition v of length < n, by gp, (y,) = p™ (gp,(y))

and gq,(yn) = p™ (9q,(y)) respectively.
Next we set

9a(=) = | [5= yj = gar(yn)?,
.7

7=1

! 2 9Oz
99(z) = ga(z1,.. ., %) = [ Joa(z) ] =—=
=1

2 Dz
1<i<j<r i Dz

Then we make the following conjectures:

Conjecture 6.3 (Generating function for gq,(y,)). For a strict partition
v=(v1,...,v,) of length ¢(v) = r < n, the dual K-theoretic Q-polynomial

vy U2

96, (yy) is the coefficient of z, = 21" 252 - -+ 2¥7 in gq(z1, ..., 2,). Thus
99, (yn) = [2"1(94(2,)).

We have checked that the above conjecture holds for r < 2. As a corollary
to the above conjecture, we immediately obtain the following formula:

Corollary 6.4 (Pfaffian formula for gq,(y,)). For a strict partition v of

length 2m, we have

99, (yn) = Pt (Z Zﬁk+l< ) < ) QQ(Vi—k,Vj—l)(yn)>

k=0 1=0 1<i<j<2m
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