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ABSTRACT

Some patients experience mixed response to immunotherapy, whose bio-
logical mechanisms and clinical impact have been obscure. We obtained
two tumor samples from lymph node (LN) metastatic lesions in a same
patient. Whole exome sequencing for the both tumors and single-cell se-
quencing for the both tumor-infiltrating lymphocytes (TIL) demonstrated
a significant difference in tumor clonality and TILs’ characteristics, espe-
cially exhausted T-cell clonotypes, although a close relationship between
the tumor cell and T-cell clones were observed as a response of an over-
lapped exhausted T-cell clone to an overlapped neoantigen. To mimic the
clinical setting, we generated a mouse model of several clones from a same
tumor cell line. Similarly, differential tumor clones harbored distinct TILs,
and one responded to programmed cell death protein 1 (PD-1) blockade
but the other did not in this model. We further conducted cohort study
(n = 503) treated with PD-1 blockade monotherapies to investigate the

outcome of mixed response. Patients with mixed responses to PD-1 block-
ade had a poor prognosis in our cohort. Particularly, there were significant
differences in both tumor and T-cell clones between the primary and LN
lesions in a patient who experienced tumor response to anti–PD-1mAb fol-
lowed by disease progression in only LNmetastasis. Our results underscore
that intertumoral heterogeneity alters characteristics of TILs even in the
same patient, leading to mixed response to immunotherapy and significant
difference in the outcome.

Significance: Several patients experiencemixed responses to immunother-
apies, but the biological mechanisms and clinical significance remain
unclear. Our results from clinical and mouse studies underscore that in-
tertumoral heterogeneity alters characteristics of TILs even in the same
patient, leading to mixed response to immunotherapy and significant
difference in the outcome.

Introduction
The acquisition of immune escape mechanisms, including various immuno-
suppressive molecules and/or immunosuppressive cells, is essential for cancer
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development and progression and one such mechanism involves the induction
of programmed death 1 (PD-1)/PD-1 ligands (1–5). PD-1, which interacts with
PD-1 ligands, is primarily expressed following the activation of T cells and sup-
presses T cell function, causing T cells to fall into a dysfunctional state called
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exhaustion after chronic antigen stimulation (6–8). Because of this, PD-1 block-
ade therapies are effective against various types of cancer, such as malignant
melanoma, lung cancer, gastric cancer, and head and neck cancer, via reinvig-
oration of such exhausted T cells in the tumor microenvironment (TME; refs.
2, 3, 9–14).

Although tumor-infiltrating CD8+ T cells have been reported to play an im-
portant role in PD-1 blockade–mediated antitumor immune response (2, 3, 15,
16), not all such T cells attack tumor cells, containing nonspecific bystander T
cells (17, 18). Thus, such tumor-specific T cells are considered to be difficult to
elucidate in the TME. Furthermore, because neoantigens derived from somatic
mutations can be recognized as nonself and elicit strong immune responses,
patients with high tumor mutational burden (TMB), who are expected to have
high numbers of neoantigens, have been reported to respond better to can-
cer immunotherapies (19–22). Thus, tumor-specific and neoantigen-specific
T cells, rather than just tumor-infiltrating CD8+ T cells, seem essential for
immunotherapies.

In recent years, progress in single-cell sequencing has enabled its use in a wide
range of research field, including cancer research, contributing our deep un-
derstanding of the TME (23–25). Several groups used this technology and have
revealed that skewed T-cell clonotypes have a high expression of well-known
exhaustion signaturemolecules such as PD-1, LAG-3, TIM-3, 4–1BB,CD39, and
CD103, and such exhausted T-cell clonotypes are speculated to attack tumor
cells directly (tumor-specific T cells; refs. 26, 27). Recently, we analyzed tumor-
infiltrating T cells using single-cell sequencing from patients melanoma treated
with an anti–PD-1 mAb. In this study, the skewed exhausted T-cell clonotypes
actually responded to autologous tumor cell lines and neoantigens derived from
somatic mutations (28).

Despite great advances in cancer therapy, tumor heterogeneity continues to
be a barrier for the successful treatment in not only cytotoxic chemother-
apies and molecular targeted therapies but also immunotherapies (29–32).
Particularly, neoantigen heterogeneity in tumor cells could induce resistance
to immunotherapies, suggesting the importance of immune-cell heterogene-
ity in the TME (31, 32). Here, we obtained two tumor samples from lymph
node (LN) metastatic lesions (LN1 and LN2) in the same patient. While they
were located next to each other, whole-exome sequencing (WES) for tumors
and single-cell sequencing for the TME showed significant differences in both
tumor cell and exhausted T-cell clones. In addition, we created different single
tumor cell clones from a samemouse tumor cell line. One of them responded to
PD-1 blockade with an inflamed TME, but the other failed with a noninflamed
TME, similar to a mixed response. Clinically, patients with a mixed response to
immunotherapies had a poor prognosis in various cancer types. These findings
suggest that mixed response to immunotherapies can be related to tumor and
immune cell heterogeneities, leading to a poor prognosis.

Materials and Methods
Patients
A male in his late 60s with advanced melanoma underwent surgical resection
and received anti–PD-1 mAb at Yamanashi University Hospital. The metastatic
lesion was resected en bloc and found to be comprised of two lesions sepa-
rated by connective tissue from which LN1 and LN2 samples were separately
obtained (Fig. 1A). Each tumor-infiltrating lymphocytes (TIL) and DNA ex-
tracted from resected samples were used for WES and single-cell sequencing.

Amale in his middle 60s with advanced gastric cancer received anti–PD-1mAb
as third-line therapy at National Cancer Center Hospital East (Supplementary
Fig. S1). Autopsy sampleswere used forWES andTCR sequencing.We obtained
written informed consent for analyses. In addition, clinical data of various can-
cer patients who received PD-1 blockade monotherapies without any cytotoxic
chemotherapies were analyzed to evaluate mixed responses in this study (Sup-
plementary Tables S1–4). The protocols for these studies were approved by the
appropriate institutional review board and ethics committees at the Yamanashi
University Hospital, Chiba University Hospital, Shinshu University Hospital,
SaitamaMedical University International Medical Center, Okayama University
Hospital, National Cancer CenterHospital East, andChiba Cancer Center. This
study was conducted in accordance with the Declaration of Helsinki.

Assessment
Treatment response was assessed with CT and, if suitable, MRI. Tumor bur-
den was defined as the total sum of all measured lesions. Besides RECIST
version 1.1, we classified responses to PD-1 blockade monotherapies into three
groups: nonmixed responders (allmetastatic lesions regressing and no presence
of recurrences or new lesions), mixed responders (simultaneously regressing
and progressing metastatic lesions or with new lesions), and nonmixed nonre-
sponders (progressive metastatic lesions without any sites of tumor regression).
Mixed or nonmixed response to the treatment was measured during the first
6-month scans (33).

IHC
Formalin-fixed, paraffin-embedded (FFPE) sections (3 μm) were deparaf-
finized with xylene, rehydrated, and subjected to an antigen retrieval process
in a microwave oven for 20 minutes. After the inhibition of endogenous
peroxidase activity, individual slides were then incubated overnight at 4°C
with anti-HLA-I mAb (EMR8–5, Medical & Biological Laboratories Co., Ltd.)
and anti-CD8 mAb (human: C8/144B, Dako and mouse: 4SM15, Invitrogen,
Thermo Fisher). The slides were then incubated with an EnVision reagent
(Dako), and the color reaction was developed in 2% 3,3-diaminobenzidine in
50 mmol/L Tris buffer (pH 7.6) containing 0.3% hydrogen peroxidase. Regard-
ing Supplementary Fig. S1, automated IHC assays that used anti-CD8 mAb
(C8/144B, Dako) and anti–PD-L1 mAb (22C3, Dako) were performed using
Autostainer Link 48 (Agilent) according to the manufacturer’s protocol.

Multiplexed Fluorescent IHC
Multiplexed fluorescent IHC was performed with direct detection of antigens
by primary antibodies from the different species. Anti-CD8 rabbit mAb (SP16,
Abcam), and anti–PD-1 mouse mAb (NAT105, Abcam), were used for primary
staining. Anti-rabbit IgG Alexa Fluor 555 (Abcam) and anti-mouse IgG Alexa
Fluor 488 (Thermo Fisher Scientific) were applied for secondary antibodies.
PD-1+CD8+ T cells were counted in five randomly selected fields using a Leica
SP8 confocal microscope (Leica).

Cell Lines
The establishment of tumor cell lines was performed as previously described
(28). Briefly, we cultured 1 × 107 digested tumor cells in RPMI1640, includ-
ing 10% FBS (FBS; Thermo Fisher Scientific), 100 U/mL penicillin, 100 μg/mL
streptomycin, 50μg/mL gentamicin, and 0.25μg/mL amphotericin B (Thermo
Fisher Scientific). We passaged tumors at approximately 80%–90% confluent,
which was used when free of fibroblasts and growing beyond 10 passages.
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FIGURE 1 There were different tumor cell clones between LN1 and LN2. A, CT and the pathology of a male in his late 60s. Before the initiation of
treatment, LN1 and LN2 were located next to each other (arrows), which were subsequently resected surgically. Computed tomography (top) and HE
staining (bottom) are presented. Scale bars, 2 mm. B, IHC. FFPE sections (3 μm) from LN1 and LN2 were stained. Representative CD8 and PD-1 double
staining and the quantified summary are presented. Scale bars, 50 μm. C, Representative driver gene alterations. Extracted DNA from LN1 and LN2
were sequenced and representative driver gene alterations are presented. CN, copy number. D, Clonal evolution of tumor cells. The cellular prevalence
of clones carrying individual nonsynonymous mutations in LN1 and LN2 was determined using PyClone. The determined cellular prevalence was used
as input, and the phylogenetic relationships of clones were inferred with LICHeE. The means and SDs are shown. A t test was used to calculate
statistical significance in B. **, P < 0.01.

MC-38 cell line (mouse colon cancer) was purchased from Kerafast. NFAT-
luciferase reporter Jurkat (NFAT-Luc-Jurkat) cell line was purchased from
InvivoGen. Jurkat cell line was maintained in RPMI1640 medium (Thermo
Fisher Scientific) and MC-38 cell line was maintained in DMEM (Thermo
Fisher Scientific). Both were supplemented with 10% FBS. All tumor cells were
used after confirming that they were negative for Mycoplasma using the PCR
Mycoplasma Detection Kit (TaKaRa) according to the manufacturer’s protocol.

WES for Human Tumors
WES was performed as previously described (28). Briefly, we isolated ge-
nomic DNA from each cell line using a QIAamp DNA Mini Kit (QIAGEN).
For enrichment of exonic fragments, the SureSelect Human All Exon Kit
v6 (Agilent Technologies) was used. The isolated fragments were sequenced

with a HiSeq3000 in massively parallel (Illumina). After masking nucleotides
with sequence quality value of less than 20, WES reads were subsequently
subjected to alignment to the human reference genome (hg38) using BWA
(http://bio-bwa.sourceforge.net/) and Bowtie2 (http://bowtie-bio.sourceforge.
net/bowtie2/index.shtml). We identified somatic synonymous and nonsyn-
onymous mutations using our in-house caller and two publicly available
mutation callers: Genome Analysis Toolkit (https://gatk.broadinstitute.org/
hc/en-us), MuTect2, and VarScan2 (http://varscan.sourceforge.net/). Muta-
tions were excluded if any of the following criteria were met: The total read
number was <20, the variant allele frequency in tumor samples was <0.05,
the mutant read number in the germline control samples was >2, the mu-
tation was present in only one strand of the genome, or the variant was
reported in normal human genomes in either the 1000Genomes Project dataset
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(https://www.internationalgenome.org/) or our in-house database. Gene mu-
tations were annotated by SnpEff (https://pcingola.github.io/SnpEff/). We
estimated copy number status with our in-house pipeline, in which the logR
ratio (LRR) as calculated as follows: (1) SNP positions registered in the 1000
Genomes Project database that were in a homozygous state (VAF ≤ 0.05 or
≥0.95) or a heterozygous state (VAF 0.4–0.6) in the genomes of respective
normal samples were selected (2), normal and tumor read depths at the se-
lected position were adjusted based on the G+C percentage of a 100 bp window
flanking the position (3), the LRR was calculated as log2 ti

ni
, where ni and ti are

normal and tumor-adjusted depths at position i, and (4) each representative
LRR was determined as the median of a moving window (1 Mb) centered at
position i.

WES and RNA-sequencing for the Mouse Cell Line
WES and RNA-sequencing were performed as previously described (28).
Briefly, DNA and RNA were isolated from each cell line using a QIAamp
DNA Mini Kit and a RNeasy Mini Kit (QIAGEN), respectively. Genomic
DNA was enriched for exonic fragments using the SureSelect mouse (Agilent
Technologies). Massively parallel sequencing of isolated fragments was per-
formed with a DNBSEQ-G400 (MGI Tech). After masking nucleotides with
sequence quality value of less than 20,WES readswere independently aligned to
the mouse reference genome (mm10) using BWA (http://bio-bwa.sourceforge.
net/) and Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml).
We identified somatic synonymous and nonsynonymous mutations using our
in-house caller and two publicly available mutation callers: Genome Analy-
sis Toolkit (https://gatk.broadinstitute.org/hc/en-us), MuTect2, and VarScan2
(http://varscan.sourceforge.net/). Mutations were excluded if any of the fol-
lowing criteria were met: The total read number was <20, the variant allele
frequency in tumor samples was <0.05, or the mutation were detected in only
one strand of the genome. Gene mutations were annotated using SnpEff (https:
//pcingola.github.io/SnpEff/). Poly-A–selected RNA libraries were prepared
using the SureSelect Strand-Specific RNA Library Preparation Kit for Illu-
mina (Agilent Technologies). RNA sequencing was performed on an Illumina
NextSeq 500 (Ilumina). After sequence acquisition and basic quality confir-
mation using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), RNA-sequencing reads were aligned to the mm10 mouse genome and
quantified with Subread and FeatureCounts (http://subread.sourceforge.net).
Genes with low expression were filtered and processed into count-per-million
reads by edgeR (https://bioconductor.org/packages/release/bioc/html/edgeR.
html).

Comparison of RNA-sequencing
For comparison of RNA sequencing, fold changes (FC) were calculated such
that genes with elevated expression in the #2D10 clone had a log2 FC value
greater than 0. Expression levels were also compared by a gene-wise exact test
under the assumption that RNA-sequencing counts were negative-binomially
distributed with a biological coefficient of variation of 0.1 (Supplementary Table
S5). Processed data were then underwent gene-set enrichment analysis (GSEA)
under default settings against a background of 50 hallmark gene sets curated in
MSigDB (https://www.gsea-msigdb.org/gsea/index.jsp).

Clonal Analysis in Tumor Cells
Copy-number alterations were detected with FACETS (34). The cellular preva-
lence of clones carrying individual nonsynonymousmutations was determined

with PyClone (35). The determined cellular prevalence was used as input, and
the phylogenetic relationships of the clones were inferred with LICHeE (36).
The results were visualized with the Timescape package in R (R Foundation for
statistical computing, Vienna, Austria; ref. 37).

Neoantigen Prediction
The NetMHCpan algorithm version 4.0 was used to predict the possible
neoantigens from the WES data (38, 39). The residues surrounding the amino
acids resulting from nonsynonymous mutations were scanned to identify can-
didate 9-mer peptides that were predicted to bind to the MHC class I alleles
of the cells. Strong binding peptides with %Rank ≤0.5 were used for assays
(Supplementary Table S6).

scRNA/TCR-seq
scRNA/TCR-seq was performed as previously described (28). We prepared the
libraries using the 10x Single Cell Immune Profiling Solution Kit according to
the manufacturer’s protocol. Briefly, sorted CD3+ T cells were washed and re-
suspended in PBSwith 0.5%FBS, whichwere subsequently captured in droplets
at a targeted cell recovery of <10,000 cells. After reverse transcription and cell
barcoding in droplets, the emulsions were broken, and the purified cDNA by
Dynabeads MyOne SILANE (Thermo Fisher Scientific) was amplified, which
was then used for both 5′ gene expression library construction and TCR en-
richment. For construction of gene expression libraries, 2.4–50 ng of amplified
cDNA was fragmented, end-repaired, double-sided size-selected with SPRIse-
lect beads (Beckman Coulter), PCR-amplified with sample indexing primers,
and again double-sided size-selected with SPRIselect beads. For construction
of TCR libraries, we enriched TCR transcripts from 2 μL of amplified cDNA
by PCR. Following the enrichment, 5–50 ng of enriched PCR product was frag-
mented and end-repaired, size-selected with SPRIselect beads, PCR-amplified
with sample-indexing primers, and again size-selected with SPRIselect beads.
We sequenced the scRNAand scTCR libraries using aHiSeq 3000 instrument to
a minimum sequencing depth of 25,000 reads and 5,000 reads per cell, respec-
tively. Sequencing read lengths were adjusted for each library type according to
the manufacturer’s protocol and reagent version.

Single-cell Sequencing Data Analysis
The data analysis was performed as previously described (28). Briefly, the reads
were processed with CellRanger software (version 6.02). Using UMI count ma-
trices loaded via the Seurat R package (40), cells with a mitochondrial content
above 10% and cells with less than 200 or more than 4,000 genes detected
were filtered out as dying cells, empty droplets, and doublets, respectively. For
normalization, we used the Seurat NormalizeData function, which were subse-
quently integrated by the IntegrateData function. The dimension was reduced
by running PCA and then computing UMAP embeddings using the first 15
components of the PCA for visualization and clustering. Finally, we manu-
ally annotated each cluster based on the expression of known marker genes,
including CDD, CDE, and CD (T cells); CD and CCR (naive CD4+ T
cells); CDA and CCR (naive CD8+ T cells), CD and FOXP (regulatory
T cells); CD and GZMA (combined with lack of CDA, cytotoxic CD4+ T
cells); CD, CD, and CXCL (follicular helper T cells); CD and CD
(activated/memory CD4+ T cells); CDA and CD (activated CD8+ T cells);
CDA and EOMES (memory CD8+ T cells); and CDA, PDCD, andHAVCR
(exhausted CD8+ T cells) (28).
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We aligned TCR reads to the GRCh38 reference genome, and used cellranger
vdj (10x Genomics, version 4.0.0) for consensus TCR annotation according to
the manufacturer’s protocol. As the matching to public bulk TCR datasets is
usually performed at the TCRβ level, cells with no reconstructed TCRα clono-
type were kept, whereas cells with no TCRβ clonotype were not retained for
following analysis. For cells with two or more clonotypes, we used the clono-
type with the highest number of UMIs. If the number of UMIs in the second
clonotype was more than half of the top clonotype, the cells were labeled as
ambiguous.

Virus Production and Transfection
The procedures of virus production and transfection were performed as pre-
viously described (28). Briefly, Each TCRα- and β-transduced pMSCV vector
was created by VectorBuilder, which were transfected into packaging cells
with a pVSV-G vector (TaKaRa) using Lipofectamine 3000 Reagent (Thermo
Fisher Scientific). After 48 hours, we concentrated the supernatant, which was
subsequently transfected into the NFAT-Luc-Jurkat cell line.

Luciferase Reporter Assay Using Peptides
We selected TCRs with commercially available antibodies from skewed ex-
hausted T-cell clonotypes in LN1 and LN2 (#1-#4) (Supplementary Table S7).
The procedure was performed as previously described (28). Briefly, we con-
firmed each TCR-transduced NFAT-Jurkat cell line using anti-TCR mAb,
which was subsequently cocultured with autologous cells after the pulse of
each peptide. After 24 hours, luciferase activity was analyzed using QUANTI-
Luc (InvivoGen) according to the manufacturer’s protocol. We calculated the
fold change in each NFAT-Luc-Jurkat cell line without each peptide pulse
(DMSO). In vitro experiments were performed in triplicate. We selected con-
trol clonotype #0 from minor clones in the TME that were frequently found in
MHC-matched Adaptive Biotechnologies public PBL datasets (41).

In Vivo Animal Experiments
In vivo experiment was performed as previously described (28). Briefly, we pur-
chased female C57BL/6J mice (6–8 weeks old) from SLC Japan, and RIKEN
BRC provided C57BL/6J-Prkdc<scid>/Rbrc mice (B6 SCID; RBRC01346)
through the National BioResource Project of the MEXT/AMED, Japan. Cells
(1 × 106) were subcutaneously inoculated, and tumor volume was measured
twice a week. For tumor growth curves, we used themeans of the long and short
diameters, and grouped mice when the tumor volume reached approximately
100 mm3. Thereafter, anti-PD-1 mAb (200 μg/mouse) or control mAb was ad-
ministered intraperitoneally three times every 3 days. Tumors were harvested at
baseline (approximately 100 mm3) to collect TILs for evaluation. When differ-
ent MC-38 clones were used in vivo, each clone was subcutaneously inoculated
at different sites in the same mouse. Rat anti-mouse PD-1 mAb (RMP1–14)
and control rat IgG2a mAb (RTK2758) were obtained from BioLegend. We
performed in vivo experiments at least twice. All mice were maintained un-
der specific pathogen-free conditions in the animal facility of the Institute
of Biophysics. Mouse experiments were approved by the Animal Committee
for Animal Experimentation of the Chiba Cancer Center. All in vivo experi-
ments met the U.S. Public Health Service Policy on Humane Care and Use of
Laboratory Animals.

Bulk TCR Sequencing and Data Analysis
TCR sequencing for clinical samples andmouse samples was performed on ex-
tracted RNA with Oncomine TCR Beta-SR Assay (Thermo Fisher Scientific)

and SMARTer Mouse TCRa/b Profiling Kit (TaKaRa), respectively. Human
TCR libraries were sequenced using Ion Torrent S5 (Thermo Fisher Scientific)
and then analyzed with Ion Reporter Software (Thermo Fisher Scientific). In
addition, we used the Illumina MiSeq platform (Illumina) and a 2 × 300 bp
paired-end kit for the sequencing of mouse TCR libraries, and then analyzed
the data with algorithms described previously (42).

Flow Cytometry Analyses
Flow cytometry assays were performed as described (43). Briefly, cells were
washed with PBS containing 2% FBS and subjected to staining with surface
antibodies. Intracellular staining was performed with specific antibodies and
the FOXP3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific)
according to the manufacturer’s protocol. For intracellular cytokine staining,
GolgiPlug reagent (BD Biosciences) was added for the last 4 hours of culture.
Samples were assessed with a BD FACSVerse instrument (BD Biosciences) and
FlowJo software (BD Biosciences). The staining antibodies were diluted follow-
ing the manufacturer’s instructions. Supplementary Table S8 summarizes the
antibodies used in the flow cytometry analyses.

Statistical Analyses
GraphPad Prism 8 (GraphPad Software) or R version 4.0.2 was used for statis-
tical analyses. We compared patients’ characteristics among groups using the
Fisher exact test. The comparison of continuous variables among groups were
performed using the t test or one-wayANOVA. The comparisons among tumor
volume curveswere performedusing two-wayANOVA.Bonferroni corrections
were applied for multiple testing. Progression-free survival (PFS) and overall
survival (OS) were defined as the time from the initiation of PD-1 blockade
therapies until the first observation of disease progression or death from any
cause and until death from any cause, respectively. We analyzed PFS and OS
using the Kaplan–Meier method and compared among groups using a log-rank
test. To estimate HRs, we also used a Cox proportional hazards model. P-values
of <0.05 were considered statistically significant.

Data Availability
The data discussed in this publication have been deposited in Japanese
Genotype-Phenotype Archive (JGA). Accession numbers are JGAS000285 and
JGAD000391.

Results
A Patient had Different Tumor Cell Clones and TME in
Two Lymph Node Metastatic Lesions Next to Each Other
A male in his late 60s with recurrent facial superficial spreading melanoma
received anti-PD-1 mAb as 1st line therapy. Before the treatment, he received
surgical resection of occipital lymph node metastases as diagnosis, and the
remaining pulmonary metastases responded to anti–PD-1 mAb (Fig. 1A).

While the occipital LNmetastasis was resected en bloc, two separate metastatic
lesions were found to be separated by connective tissue (Fig. 1A). We ob-
tained two samples from each lesion next to each other (LN1 and LN2). While
they were located next to each other and both had CD8+ T-cell infiltration,
LN1 had a significantly higher frequency of PD-1+CD8+ T cells in the TME
than LN2 (Fig. 1B). We next performed WES for these two lesions. LN1 had
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BRAF fusion but LN2 did not, and there was a significant difference in tu-
mor cell clones between LN1 and LN2 (Fig. 1C and D). These findings suggest
that there could be both tumor and immune cell heterogeneities between LN1
and LN2.

Skewed Exhausted T Cell Clones Were Considerably
Found in the TME From LN1 but not from LN2
We analyzed the tumor-infiltrating T cells from LN1 and LN2 using droplet-
based 5′ single-cell RNA sequencing and single-cell T cell receptor (TCR)
sequencing. In total, we obtained paired TCR sequences in 18,637 out of 32,674
T cells (70.5%, Supplementary Table S9). As previously reported, we classi-
fied T cells into 9 clusters based on gene expression profiling (Fig. 2A and B;
Supplementary Fig. S2A; refs. 28, 44). LN1 had a considerable population of
exhausted T-cell cluster characterized by exhaust signature genes such as
PDCD, TNFRSF, ENTPD, and ITGAE,whereas LN2 had few (Fig. 2A and B;
Supplementary Fig. S2B). High PD-1 expression in CD8+ T cells, particularly in
exhausted T cells, was also observed in LN1 (Supplementary Fig. S2C).We next
focused on T-cell clones since we previously reported that skewed exhausted T
cell clones in the TME were tumor-specific (28, 45–47). Accordingly, the TCR
of the exhausted cluster was skewed compared with other clusters, particularly
in LN1 (Fig. 2C). Furthermore, whenwe plotted the top 10 clonotypes from each
sample into the UMAP figure, some of the clonotypes from LN1 were classified
into the exhausted cluster, whereas those from LN2were not (Fig. 2D), suggest-
ing that tumor-specific exhausted T-cell clones were skewed in LN1 but not in
LN2. A regulatory T-cell cluster was observed with greater TCR skewing in LN1
compared with LN2 (Fig. 2A–D; Supplementary Fig. S2A and B). These results
indicate heterogeneity in T-cell clones, such as the presence of tumor-specific
exhausted T-cell clones, between LN1 and LN2.

An Overlapped Exhausted T-Cell Clone Responded to
an Overlapped Neoantigen
Both tumor and T-cell heterogeneities between LN1 and LN2 led us to analyze
neoantigen heterogeneities in tumor cells. Nonsynonymous somatic mutations
and predicted neoantigens are summarized in Fig. 3A. While nonsynonymous
somatic mutations were considerably found in both LN1 and LN2 and consid-
erable numbers were overlapped, many of the predicted neoantigen with strong
binding (%Rank < 0.5) were found in LN1 (Fig. 3A; Supplementary Table S6).
On the other hand, there was no predicted neoantigen with strong binding
found in only LN2 (Fig. 3A). We next merged TCR clonotypes between LN1
and LN2 (Fig. 3B). There were some skewed exhausted T-cell clonotypes in
LN1 dominant clonotypes, whereas we found few exhausted T-cell clonotypes
in LN2 dominant clonotypes (9/33 vs. 4/50, P < 0.01; Fig. 3B).

We created each TCR-transduced NFAT-Luc-Jurkat cell line, and investigated
luciferase activity using each peptide from predicted neoantigens. We se-
lected TCRs with commercially available antibodies from skewed exhausted
T-cell clonotypes in LN1 and LN2 (#1-#4) and neoantigens with strong bind-
ing (Supplementary Tables S6 and S7). The responses of some selected TCRs
to the autologous cell line was confirmed in our previous study (28), and
TCR expression was confirmed with flow cytometry (Supplementary Fig.
S3A). Among the clonotypes and neoantigens that we tested, an overlapped
exhausted T-cell clonotype (#4) responded to an overlapped neoanti-
gen (IMPA2_F113V, DGTCNFVHRVPTVAVSIGF; Fig. 3C; Supplementary
Fig. S3B).

A Mouse Cell Line has Different Tumor Cell Clones
with Different TME Related to a Mixed Response to
PD-1 Blockade
Our human clinical sample data showing heterogeneous tumor cell clones with
heterogeneous exhausted CD8+ T-cell clonal infiltration suggest that the effi-
cacy of immunotherapies can be different among heterogeneous lesions in the
same patient. Thus, we next created several single tumor cell clones from the
samemouse tumor cell line (Fig. 4A). Briefly, single clones were cultured in 96-
well plates at limiting dilution and then gradually expanded to 24-well plates
and 10-cm dishes. The number of passages was between 6 and 10. Cellular
morphology remained constant between passages (Supplementary Fig. S4A).
IHC for CD8 demonstrated that CD8+ T-cell infiltration differed among the
clones (Fig. 4B). On the basis of CD8+ T-cell infiltration, we selected two clones
(#1C11, CD8 lowest; #2D10, CD8 highest) and investigated the detailed TME,
subcutaneously injecting each clone at different sites of the same mice (Sup-
plementary Fig. S5). TIL analyses demonstrated that PD-1+CD8+ T cells and
IFNγ-producing PD-1+CD8+ T cells were frequently found in the TME from
#2D10 but were less frequently found from #1C11 even in the same mice (Fig.
4C and D). On the other hand, MHC-I expression analyzed by flow cytometry
tended to be higher in #1C11 than in #2D10 with or without IFNγ stimulation
in vitro (Supplementary Fig. S4B), and GSEA from RNA-sequencing in vitro
demonstrated that immune-response-related hallmarks such as IFNɑ or IFNγ

response were suppressed in #2D10 (Supplementary Fig. S4C). For example,
#1C11 had higher Cd (encoding PD-L1) expression levels compared with
#2D10 (log2 FC= −1.27; Supplementary Table S5). Thus, evaluating differences
in immune cell infiltration between the clones was challenging using MHC-
I expression and RNA-sequencing data. In contrast, WES indicated that both
TMB and the number of predicted neoantigens were more frequently found
in #2D10 when compared with #1C11 (Fig. 5A). In addition, most somatic mu-
tations and neoantigens were not shared among them (Fig. 5A). Accordingly,
substantial tumor clone heterogeneity was observed, with clone #1C11 found
to be particularly rare among heterogeneous parental MC-38 cells (Fig. 5B).
Furthermore, a well-known SNV rs13480628 Jmidc in MC-38 was found in
both clones, indicating these cells were derived from parental MC-38 cells (48).
TCR sequencing also indicated different T-cell clones and small shared TCR
clonotypes between tumors, as seen for somatic mutations and neoantigens
(Fig. 5C; Supplementary Fig. S6A). On the other hand, many somatic muta-
tions and neoantigens were shared between the parental MC-38 and #2D10
(Fig. 5A). Anti–PD-1mAb exhibited efficacy against parentalMC-38 and #2D10
tumors but not against #1C11 tumors even in the same mice (Fig. 5D; Supple-
mentary Figs. S5 and S6B). In immunocompetent mice, #1C11 tumors tended
to grow faster than #2D10 tumors; however, the difference was not statisti-
cally significant (Fig. 5D). No significant difference in tumor growth or PD-1
blockade–mediated efficacy was observed between #1C11 and #2D10 tumors
in immunodeficient mice (Supplementary Fig. S6C). These findings suggest
that heterogeneous tumor and T-cell clones can induce a heterogeneous mixed
response to cancer immunotherapies.

Patients with a Mixed Response to Immunotherapies
Have a Poorer Prognosis Compared to Nonmixed
Responders
Finally, we investigated clinical data about the mixed response to immunother-
apies in several cancer types, including melanoma, NSCLC, gastric cancer, and
head and neck cancer, who received PD-1 blockade monotherapies. Clinical
data of 503 patients are summarized in Supplementary Tables S1–4. A mixed
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FIGURE 2 LN1, but not LN2, had skewed exhausted T-cell clones in the TME. A, T-cell clustering. We digested LN1 and LN2 to extract TILs. Single-cell
sequencing was performed for sorted CD3+ T cells from the extracted TILs. The data of two TIL samples were merged and then clustered based on
gene expression. UMAP figure (left) and the summary (right) are presented. B, Representative gene expression in each cluster. Representative genes
that are generally used for annotation are shown. C, T-cell clonotype diversity. Pielou’s evenness indexes of each sample and each cluster are
calculated and summarized. Bars indicate the indexes of all clusters. D, Top 10 clonotype distributions from each sample. The distribution of the top 10
clonotypes from each TIL sample in the UMAP figure is presented.

responsewas defined as previously reported (33). Briefly, we classified responses
to PD-1 blockade monotherapies into three groups: nonmixed responders (all
metastatic lesions regressing and no presence of recurrences or new lesions);
mixed responders (simultaneous regression and progression of metastatic

lesions or new lesions); and nonmixed nonresponders (progressive metastatic
lesions without tumor regression at any site). Mixed or nonmixed responses
to treatment was determined from initial 6-month scans (33). There were 70
mixed responders in our cohort (total, 13.9%; melanoma, 18.6%; head and neck
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FIGURE 3 An overlapped exhausted T cell clonotype responded to an overlapped neoantigen. A, Venn diagrams of nonsynonymous somatic
mutations (TMB) and predicted neoantigens. WES for LN1 and LN2 was performed. We used the NetMHCpan algorithm version 4.0 in order to predict
the neoantigen candidates from the WES data (38, 39). The numbers of nonsynonymous somatic mutations (left) and predicted neoantigens with
strong binding (right) are shown. B, Clonotype in LN1 and LN2. We merged the clonotypes of LN1 with LN2, which were grouped into LN1 dominant,
equivalent, or LN2 dominant clonotypes according to their frequencies. The UMAP figures of clonotype groups (left) and exhausted T cell frequency
(right) are shown. Arrows, tested clonotypes in Supplementary Table S7. C, Peptide assay. After mutated IMPA2 peptide pulse, TCR-transduced
NFAT-Luc-Jurkat cell lines were cocultured with autologous cells for 24 hours. Thereafter, luciferase activity was analyzed. The fold change in each
NFAT-Luc-Jurkat cell line with no peptide pulse (DMSO) is presented. All in vitro experiments were performed in triplicate, and we show the means and
SEMs. To calculate statistical significance in C, one-way ANOVA with the Bonferroni correction were used. *, P < 0.05; ns, not significant.

cancer, 16.3%; NSCLC, 11.5%; gastric cancer, 9.2%; Fig. 6A and Supplementary
Tables S1–4). Mixed responses were mainly observed in patients with RECIST
SD, especially inmelanoma and head and neck cancer (Fig. 6A and Supplemen-
tary Tables S1–4). We compared the prognosis among patients with nonmixed
responses, nonmixed non-responses, andmixed responses. Both PFS andOS of
mixed responders were shorter than those with nonmixed responders (Fig. 6B).
A gastric cancer patient experienced tumor response to anti-PD-1 mAb fol-
lowed by disease progression in only perigastric LNmetastasis (Supplementary
Fig. S1A and B). Pathologically, HLA class I (HLA-I) positive and negative
tumor cells were mixed in the primary lesion with heterogeneous CD8+ T-cell
infiltration, whereas the progressed LN lesion had only HLA-I negative tumor
cells with low CD8+ T-cell infiltration (Supplementary Fig. S1B). Accordingly,
there were significant differences in both tumor cell clones and TCRs between
the primary and LN lesions (Supplementary Fig. S1C and D).

Thirteen of 70mixed responders (18.6%) received local therapies (radiotherapy,
10; surgical resection, 2; arterial injection chemotherapy for liver metastasis,

1), and these patients tended to have longer OS than the others among mixed
responders (Fig. 6C). Heterogeneities in both tumor and immune cells con-
tributed to mixed responses to immunotherapies, leading to a poor prognosis.
Local therapies for resistant lesions may improve prognosis in such patients.

Discussion
The kinetics and heterogeneity of immunotherapy responses are insufficiently
evaluated by RECIST version 1.1. Recently, Rauwerdink and colleagues found
that mixed responders in the melanoma cohort were enriched for RECIST
SD with an intermediate survival outcome, and show that these responses are
dynamic and can evolve (33). We also found that a heterogeneous mixed re-
sponse to immunotherapies in various types of cancer is not uncommon with
an intermediate prognosis. In addition, we demonstrated that mixed responses
to immunotherapies could be related to both tumor and immune cells, espe-
cially tumor-specific T cells, heterogeneities from both human clinical sample
and mouse model data. Thus, the heterogeneity in tumor tissue including not
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FIGURE 4 Mouse tumors from different clones had different TME. A, Graphic of the experimental schema of in vivo experiments. We created several
single tumor cell clones from the same mouse tumor cell line and injected them subcutaneously. B, IHC for CD8. FFPE sections (3 μm) of tumor
samples from each clone were stained. Representative CD8 staining is presented. C and D, PD-1 expression by CD8+ T cells (C) and IFNɤ+PD-1+CD8+ T
cells (D) in the TME. Representative flow cytometry staining (left) and the summaries (right) are shown. All in vivo experiments were performed in
duplicate and produced similar results. The means and SEMs are shown. T-tests were used to calculate statistical significance in B, C, and D.
**, P < 0.01; ***, P < 0.001.

only tumor but also immune cells could be an important barrier for can-
cer immunotherapies, leading to a poor prognosis compared with nonmixed
responders.

From single-cell sequencing for clinical samples, tumor-infiltrating exhausted
T-cell clones were different between LN1 and LN2. In particular, exhausted T-
cell clones, which reportedly directly attack tumor cells (28, 45–47), were more
enriched in LN1 than in LN2. Tumor cell clones were also different between LN1
and LN2 from WES. Especially, predicted neoantigens were enriched in LN1
compared with LN2, which is consistent with enrichment of exhausted T-cell
clones in LN1. From these findings, the difference in tumor cell clones including
neoantigens could induce tumor-specific exhausted T-cell clonal difference. In

addition, skewed regulatory T-cell clones were also enriched in LN1, which can
be recruited as part of inflammatory responses (49, 50). Thus, tumor-specific
exhausted T cells that attack tumor cells directly in LN1may recruit skewed reg-
ulatory T-cell clones. Thus, different tumor cell clones may be associated with
different T-cell clonal infiltrations. In a mouse model to study tumor cell clones
originating from the samemouse cell line, #2D10 tumors had high PD-1+CD8+

T-cell infiltration and responded to PD-1 blockade, whereas #1C11 tumors failed
to respond to PD-1 blockade and displayed low PD-1+CD8+ T-cell infiltra-
tion. These can reflect mixed responses in clinical settings. Therefore, tumor
and immune cell heterogeneities, which can be related to each other, can cause
mixed responses to immunotherapies, leading to a poor prognosis compared
with nonmixed responders.
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FIGURE 5 Mouse tumors from different clones exhibited mixed responses to PD-1 blockade. A, Venn diagrams of nonsynonymous somatic
mutations (TMB) and predicted neoantigens. WES for MC-38 (parent), MC-38 #1C11, and MC-38#2D10 was performed. We used the NetMHCpan
algorithm version 4.0 in order to predict the neoantigen candidates from the WES data (38, 39). The numbers of nonsynonymous somatic mutations
(left) and predicted neoantigens with strong binding (right) are shown. B, Clonal evolution of tumor cells. The cellular prevalence of clones with
individual nonsynonymous mutations in parental MC-38, #1C11, and #2D10 was determined with PyClone. As input, the determined cellular prevalence
was used, and the clonal phylogenetic relationships were inferred using LICHeE. C, TCR clustering. Bulk RNA were extracted from tumors and
sequenced for TCR and the results were clustered. D, Efficacy of PD-1 blockade in a mouse model. Cells (1 × 106) were subcutaneously inoculated in
immunocompetent wild-type mice, and tumor volume was measured twice a week. We grouped mice when the tumor volume reached approximately
100 mm3 (n = 6 per group). Afterward, anti-PD-1 mAb or control mAb was administered intraperitoneally three times every 3 days. All in vivo
experiments were performed in duplicate with similar results. We show the means and SEMs. To calculate statistical significance in D, two-way ANOVA
with Bonferroni correction were used. **, P < 0.01; ns, not significant.

We analyzed more than 500 patients across different cancer types, showing
that the frequencies of mixed response were varied among cancer types. While
the frequency in melanoma is similar to that in a previous retrospective study
(33), there has been no comparison among various cancer types. Thus, this

present study is the first report to compare these frequencies. Although this
study includes several biases, the frequencies of mixed responses in melanoma
or head and neck cancer patients seemed higher, indicating that these can-
cer types could have more heterogeneities. The patient analyzed in detail in
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FIGURE 6 Mixed responders to immunotherapies had a poor prognosis compared with nonmixed responders in various cancer types. A, The
frequencies of mixed responses in various cancer types. We investigated the clinical data in several cancer types, including melanoma, NSCLC, gastric
cancer, and head and neck cancer, treated with PD-1 blockade monotherapies. A mixed response was defined as previously reported (33). The
frequencies according to cancer types (left) or RECIST response (right) are presented. B and C, Survival curves. We compared a prognosis in all
patients among nonmixed responders, nonmixed nonresponders, and mixed responders. A prognosis in mixed responders was also compared
according to local therapies. PFS and OS were defined as the time from the initiation of PD-1 blockade therapies until the first observation of disease
progression or death from any cause and the time from the initiation of PD-1 blockade therapies until death from any cause, respectively. PFS (left) and
OS (right) in all patients according to responses (B) and OS in mixed responders according to local therapies (C) are presented. PFS and OS were
analyzed using the Kaplan–Meier method and compared among groups using a log-rank test. *, P < 0.05; **, P < 0.01; ****, P < 0.0001.

our study received surgical resection for both LN1 and LN2, and the remain-
ing lesions responded to ICI, although LN2 could be resistant. Considering
his clinical course, mixed responders can get clinical benefits from local thera-
pies for resistant lesions such as surgical resection and/or radiotherapy. Indeed,
locally treated mixed responders had longer OS in our cohort, and a previ-
ous study has also shown a similar tendency (33). In addition, other studies
have shown that local therapies in patients with heterogeneous responses,
such as oligometastatic progression and mixed response to immunothera-
pies, can render patients disease-free (51, 52). In our cohort, local therapies
mainly consisted of radiotherapies (10/13), and we previously reported in-
creased efficacy of radiotherapy after PD-1 blockade therapies due to enhanced

antitumor immunity (53). From these findings, local therapies for remaining
lesions, including radiotherapy, should be considered for mixed responders to
immunotherapies.

This study has some limitations. First, we could analyze heterogeneities of
T-cell clones in detail from just one case. Thus, we created several mouse
tumor cell clones with different TME from the same cell line to validate human
clinical sample data. Although not all mouse experiments were performed
using different sites of the same mice and we did not analyze neoantigen-
specific T cells, one clone responded to PD-1 blockade with high PD-1+CD8+

T-cell infiltration while the other failed to respond to blockade and had low
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PD-1+CD8+ T-cell infiltration. These findings may indicate mixed responses
are to be expected in clinical settings. Although a mixed response was not
observed in our clinical case after surgical resection, there were significant dif-
ferences in both tumor and immune cell clones between the lesions. Significant
differences in both tumor and T-cell clones between primary and LN lesions in
our clinical case of gastric cancer, with disease progression observed only in LN
lesions with the loss of HLA-I. Second, we could prove just one neoantigen to
which an exhausted CD8+ T-cell clonotype responded. Many previous studies,
including our study, have demonstrated that not all predicted neoantigen are
truly neoantigens (28) and prediction models have limitations. Although the
difference among tumor cell clones, especially in neoantigens, could induce
the difference in exhausted CD8+ T-cell clonal infiltration, the proved neoanti-
gen was overlapped between LN1 and LN2. Otherwise, an exhausted T-cell
clonotype that responded to this overlapped neoantigen was also overlapped
between LN1 and LN2, which is reasonable for our hypothesis. Third, our
mouse model of mixed response did not completely reflect the changes seen
in LN1 and LN2. The mouse model rather reflects inflamed (#2D10) vs. non-
inflamed TME (#1C11), whereas the clinical cases of LN1 and LN2 both had
similar levels of CD8+ T-cell infiltration. However, the mouse model partially
reflected clinical observations regarding exhausted CD8+ T-cell infiltration.
Fourth, we retrospectively analyzed approximately 500 patients treated with
PD-1 blockade monotherapies, and the clinical characteristics varied. In
addition, the number of locally treated mixed responders is tiny. Thus, more
extensive prospective analyses should be performed to confirm our findings.

In summary, we analyzed two samples that were closely located to each other
withWES and single-cell sequencing.WES for tumors and single-cell sequenc-
ing for the TME showed heterogeneities of both tumor cell and exhausted T-cell
clones. We also showed that tumor and T-cell heterogeneities could induce
mixed responses to immunotherapies using amousemodel. Clinically, patients
with mixed responses to immunotherapies had a poorer prognosis than non-
mixed responders in various cancer types. These findings suggest that mixed
response to immunotherapies can be related to both tumor and immune cell
heterogeneities, leading to a poor prognosis, and that such resistant lesions
should be locally treated. Because there are several limitations in this study,
further basic and clinical researches are required.
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