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Abstract

Label-Efficient Segmentation for Diverse Scenarios

by Yunzhi Zhuge

Segmentation, a fundamentally important task in computer vision, aims to partition
an image into multiple distinct and meaningful regions or segments. In this thesis, we
analyze the importance label-efficient segmentation techniques and provide a series of
methods to address segmentation tasks in different scenarios.

First, we propose a Deep Reasoning Network for few-shot semantic segmentation,
termed as DRNet, which is a novel approach that relies on dynamic convolutions to
segment objects of new categories. Unlike previous works that directly apply con-
volutional layers to integrated features to predict segmentation masks, our DRNet
generates learnable parameters for predicting layers based on query features, allowing
for greater flexibility and adaptability.

Second, we conduct further experiments and propose mining both dynamic and re-
gional context, termed as DRCNet, for few-shot semantic segmentation. Specifically,
we introduce a Dynamic Context Module to capture spatial details in the query im-
ages, and a Regional Context Module to model the prototypes for ambiguous regions
while excluding background and ambiguous objects in query images. The superior
performance of our method is demonstrated on various benchmarks.

Third, we address the unsupervised video object segmentation task by learning both
motion and temporal cues, in a method termed as MTNet. The proposed MTNet
integrates appearance and motion information through a Bi-modal Feature Fusion
Module and models the relations between adjacent frames using a Mixed Temporal
Transformer. Achieving state-of-the-art results on multiple datasets while maintaining
a much faster inference speed.

Finally, we propose a semi-supervised learning method for bird’s-eye-view (BEV) se-
mantic segmentation, which represents the first attempt at performing label-efficient
learning in this field.Without any whistles-and-bells, our proposed BEV-S4 can achieve
results on par with fully-supervised methods while requiring significantly fewer labels.
We hope that our approach could serve as a strong baseline and potentially attract
more attention to learning BEV perception with fewer labels.

http://www.adelaide.edu.au
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Chapter 1

Introduction

Dense prediction tasks in computer vision, such as object detection and image seg-
mentation, are fundamentally important as they form the basis for interpreting and
understanding environments. In the era of deep learning, and particularly with the
recent explosion of large foundation models, we are thrilled to witness many tasks
achieving astonishing results that were previously difficult to imagine. Typically, the
design of prediction tasks consists of two aspects: model engineering and data en-
gineering. Model engineering involves designing more effective neural networks to
improve the performance and efficiency of prediction tasks. On the other hand, data
engineering focuses on collecting and annotating diverse datasets that can address
existing challenges or help solve new tasks in computer vision. Given that preparing
new datasets is labor-intensive and challenging, many researchers opt for the first
route and concentrate their efforts on designing more effective or efficient models.

Some works also aim to reduce the reliance on labels by exploring label-efficient learn-
ing paradigms, such as few-shot, unsupervised, self-supervised, weakly-supervised, and
semi-supervised learning. These learning paradigms focus on situations with limited
labeled data, making the most of the available information to learn accurate models.
Although there are differences in the way they handle data availability, problem set-
tings, and specific goals, these learning paradigms are all important as they address
the challenges associated with data availability, labeling effort, and generalization in
perception tasks.

On the other hand, visual perception plays a vital role in autonomous driving, partic-
ularly in the pure vision-based technical route, which has already been broadly em-
ployed in advanced driver-assistance systems (ADAS) such as Tesla’s Autopilot (Wikipedia
contributors, 2023). Currently, many researchers focus on the bird’s-eye view (BEV)
coordinate system, which provides an overhead view of the surrounding environment
from a bird’s-eye perspective. These approaches often rely on large-scale datasets with
precise annotations, which can be labor-intensive and expensive to obtain. Therefore,
finding ways to develop label-efficient perception models is of great importance By
leveraging label-efficient learning paradigms, more cost-effective and scalable percep-
tion systems in the context of BEV-based autonomous driving can be achieved.



2 Chapter 1. Introduction

In this thesis, our goal is to design label-efficient paradigms for both conventional
2D images and autonomous driving scenarios, such as few-shot segmentation and
semi-supervised learning for BEV semantic segmentation. We capture relationships
between support and query sets using flexible dynamic convolutions, which is a pio-
neering effort in this field. Furthermore, we develop a semi-supervised bird’s-eye-view
semantic segmentation paradigm to investigate solutions for autonomous driving that
emphasize label efficiency. Additionally, we introduce a novel unsupervised video
object segmentation method that leverages both motion and temporal cues to en-
hance segmentation performance. Through these contributions, we aim to advance
the state-of-the-art in label-efficient learning, ultimately facilitating more cost-effective
and scalable perception systems in various computer vision applications.

1.1 Contribution and Outline

With the objective of general scenarios and label-efficient segmentations, we design a
serious of algorithms towards solving challenges in few-shot semantic segmentation,
unsupervised video object segmentation and semi-supervised bird’s-eye-view semantic
segmentation. The main contributions of this thesis are as follows:

• The first attempt to apply dynamic convolution to solve few-shot semantic seg-
mentation, termed as DRNet. Different from previous methods, the learnable
parameters of our proposed predicting layer are dynamically generated based
on support features, thereby adaptively bridging the gap between the query set
and support set for a more comprehensive understanding of semantics in fore-
ground regions. By leveraging dynamic convolutions in this manner, the model
can more effectively capture the relationship between the support and query
images, leading to improved performance in few-shot semantic segmentation.

• A further investigation of both dynamic and regional contexts for few-shot se-
mantic segmentation. Specifically, we propose a dynamic context module and a
regional context module. The dynamic context module is responsible for extract-
ing spatial information from query features, while the regional context module is
designed to address ambiguous regions in query images. By incorporating both
modules into our model, we aim to produce more reliable results in few-shot
semantic segmentation tasks.

• We address the challenge of unsupervised video object segmentation by simul-
taneously exploiting motion and temporal cues. To achieve this, we carefully
design a bi-modal fusion model and a mixed temporal transformer, which allows
our algorithm to effectively combine the strengths of both motion and tempo-
ral information.Our proposed method achieves new state-of-the-art results on
benchmark datasets for unsupervised video object segmentation. Moreover, it
maintains real-time inference speed on a 2080ti GPU
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• An empirical investigation of solving bird’s-eye-view (BEV) semantic segmen-
tation with semi-supervised learning. For the first time, we propose a learning
paradigm for BEV perception tasks under label scarce situations.We are excited
to discover that our semi-supervised learning method can achieve on par results
with the fully supervised method while using only 10% of labeled data.

Chapter 2 provides the necessary background information for understanding the
problems and techniques addressed in this thesis, which encompasses a range of top-
ics such as few-shot semantic segmentation, unsupervised video object segmentation,
and bird’s-eye-view semantic segmentation. In this chapter, we review related tasks
and their respective challenges, including semantic segmentation, few-shot semantic
segmentation, semi-supervised semantic segmentation, video object segmentation and
bird’s-eye-view perception. By reviewing these related tasks and the techniques used
to address them, this chapter aims to provide the necessary context for understand-
ing the novel contributions and findings presented in the subsequent chapters of the
thesis.

Chapter 3 highlights the shortcomings of previous prototype-based few-shot semantic
segmentation algorithms. Specifically, the relation modeling between the support
set and query set is relatively fixed, which may struggle to handle inter-class gaps
between training and testing categories. To address this issue, we introduce dynamic
convolutions via the DRNet (Zhuge and Shen, 2021), which has been shown to yield
more robust results.

In Chapter 4, we addresses the limitations associated with masked average pooling
as well as the challenges posed by noisy backgrounds and ambiguous regions in query
images. To tackle these issues, we introduce the dynamic context module and the
regional context module. These novel approaches lead to competitive results, both
quantitatively and qualitatively, as evidenced by the performance metrics and visual
analysis presented in (Gu et al., 2023).

In Chapter 5, we introduces a cutting-edge approach to address the challenges of
unsupervised video object segmentation. Our method capitalizes on motion cues
through compact bi-modal fusion modules and exploits temporal cues via mixed tem-
poral transformer modules. This innovative strategy not only achieves state-of-the-
art results, but also operates at an impressive speed of approximately 45 fps on a
2080ti GPU. Remarkably, our method is three times faster than the previously best-
performing technique (Zhuge et al., 2023b).

In Chapter 6, we focus on bird’s-eye-view (BEV) semantic segmentation, a crucial
task within the realm of BEV perception. Our approach employs a label-efficient
paradigm to tackle this problem. As a baseline, we utilize the fully-supervised,
yet straightforward and effective, PETR-v2 method (Liu et al., 2022b). Under this
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novel setting, we explore various semi-supervised learning techniques, such as teacher-
student networks and data augmentation strategies. Remarkably, even without incor-
porating complex components, our approach achieves results comparable to those of
supervised counterparts (Zhuge et al., 2023a).

In Chapter 7, we provide a summary of the thesis, highlighting the key findings and
contributions made throughout the work. Furthermore, we discuss potential avenues
for future research that is related to the foundation laid by our study.



5

Chapter 2

Background

2.1 Semantic Segmentation

Semantic segmentation (Guo et al., 2018; Hao, Zhou, and Guo, 2020) is a crucial
task in the field of computer vision that aims to allocate semantic labels to each pixel
within an image, thereby enabling the categorizing of each pixel into a predefined
category of objects. With the rise of deep learning techniques, the Fully Convolutional
Network (FCN) architecture (Long, Shelhamer, and Darrell, 2015) has emerged as
the predominant approach for semantic segmentation, utilizing a holistic and efficient
strategy for pixel-to-pixel classification. Since then, various works emerge to solve the
semantic segmentation problem based on FCN. Some works focus on enlarging the
receptive fields such as dilated convolutions (Yu and Koltun, 2015; Chen et al., 2017a;
Mehta et al., 2018), pyramid pooling (Chen et al., 2017b; Zhao et al., 2017; Hou et al.,
2020) and non-local operations (Huang et al., 2019; Zhu et al., 2019; Yu et al., 2020),
which enabled the model to have a more comprehensive understanding of the image.

Motivated by the prevalence and success of Vision Transformers (Carion et al., 2020;
Dosovitskiy et al., 2020), numerous recent studies have investigated the integration
of transformers for addressing the task of semantic segmentation. SETR (Zheng
et al., 2021) first leveraged the capabilities of transformers to solve semantic seg-
mentation by approaching semantic segmentation as a sequence-to-sequence problem,
showing promises of research. SegFormer (Xie et al., 2021a) made a further step by
adopting hierarchical transformer architecture and designing more compact decoder,
thereby achieving superior results with significantly reduced computational expenses.
HRViT (Gu et al., 2022) is a vision transformer backbone specifically optimized for
semantic segmentation. By combining the merits of ViTs and HRNet, the model is
capable of learning semantically-rich and spatially-precise multi-scale representations
in an efficient manner. MaskFormer (Cheng, Schwing, and Kirillov, 2021) adopted the
set prediction mechanism proposed in DETR (Carion et al., 2020) and replaced the
traditional per-pixel classification model with a mask classification model, enabling it
to effectively address both semantic-level and instance-level segmentation challenges in
a seamless pipeline. However, both the aforementioned methods necessitate substan-
tial amounts of annotated data to attain high performances, which is time-consuming,
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labor-intensive, and expensive. Furthermore, those fully-supervised models may lack
generalizability to new or unseen data. The most recent study SAM (Kirillov et al.,
2023) leveraged an extensive dataset comprising millions of images and billions of
annotated masks. This comprehensive approach not only yields impressive perfor-
mance in various image segmentation tasks but also exhibits robust zero-shot transfer
capabilities.

2.2 Few-shot Semantic Segmentation

The objective of few-shot semantic segmentation (FSS) is to obtain the ability of
performing semantic segmentation on a query image utilizing a limited number of
support images that have been labeled through pixel-level annotation. (Shaban et al.,
2017) first raised the problem.The paradigm is comprised of a conditional branch and
a segmentation branch, where the conditional branch generates classifier weights to be
utilized for segmenting the query image. Majority of the following methods inherit the
dual-branch architecture and are based on prototypical learning (Snell, Swersky, and
Zemel, 2017), where the representative works include SG-One (Zhang et al., 2020a),
CANet (Zhang et al., 2019b), PGNet (Zhang et al., 2019a), PANet (Wang et al.,
2019a), PFENet (Tian et al., 2020), PPN (Yang et al., 2020a) and PMM (Liu et al.,
2020c). The fundamental dissimilarities between these methods lie in the means for
acquiring and utilizing the prototypes. CANet concatenated the support prototype
with the query features and implemented an iterative optimization module to pro-
gressively refine the prediction. PFENet introduced the concept of utilizing high-level
categorical information and employed feature pyramid fusion to boost the fused fea-
tures. PPN decomposed the comprehensive class representation into a collection of
part-aware prototypes to capture the fine-grained and varied object feature.

Other lines of research either focuses on capturing fine-gained correspondence relations
or calculating cross-attention between the query and the support images. FSNet (Min,
Kang, and Cho, 2021) assembled a collection of 4D correlation tensors by utilizing a
wide range of geometric and semantic feature representations extracted from multiple
intermediate layers of a convolutional neural network, thereby providing a compre-
hensive set of correspondences across various visual aspects. In (Hong et al., 2022),
a volumetric transformer module for the cost aggregation incorporating a 4D swin
transformer was proposed to effectively capture the hypercorrelation in a volumetric
context. CyCTR (Zhang et al., 2021a) extracted information from the support im-
age by limiting the attention of the query features solely to cycle-consistent support
features, thereby reducing the impact of noise. CATrans (Zhang et al., 2022) de-
veloped two types of transformer blocks, named relation-guided context transformer
and relation-guided affinity transformer to transfer informative semantic information
from support to query image and accurately determine the cross-correspondences re-
spectively. In this study, we probe the feasibility of using dynamic convolutional
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layers to capture the relationships of support and query images for few-shot semantic
segmentation.

2.3 Semi-supervised Semantic Segmentation

Semi-supervised semantic segmentation represents a learning approach in which the
objective is to derive semantic segmentation models through the utilization of a limited
subset of labeled data, with the majority of the data remaining unlabeled. The notion
of consistency regularization has received considerable attention in the field of semi-
supervised semantic segmentation, the essence of which is to ensure the coherence
of predictions and intermediate features in the presence of multiple perturbations.
(Kim et al., 2020) considered the inter-pixel correlation and proposed a structured
consistency loss which enabled the network to learn more powerful generalization ca-
pabilities to predict in harmony with neighboring pixels. PseudoSeg (Zou et al., 2020)
introduced a novel formulation of pseudo-labeling, where it derives structured pseudo-
labels for supplementary data, illustrating that the utilization of well-calibrated soft
pseudo-labels obtained can significantly enhance the effectiveness of consistency train-
ing in semantic segmentation. ClassMix (Olsson et al., 2021) proposed a unique data
augmentation strategy for semantic segmentation, which involves the application of a
cut-and-paste technique to selectively transfer half of the predicted classes from one
image to another. CCT (Ouali, Hudelot, and Tami, 2020) enforced consistency in the
predictions of the main decoder on unlabeled data and those of the auxiliary decoders,
with the aim of improving the representation learning capabilities of the main decoder.
Similarly, in CPS (Chen et al., 2021), the consistency constraint was imposed on two
segmentation networks, where the pseudo segmentation map generated by one net-
work serves as an additional supervision signal for the other. DARS (He, Yang, and
Qi, 2021) dedicated to address the issue of bias in pseudo-labels by proposing a tech-
nique that combines distribution alignment and random sampling to re-balance the
skewed pseudo-labels and harmonize their distribution with the actual distribution.
U2-PL (Wang et al., 2022) utilized both reliable and unreliable pixels in a comprehen-
sive manner by using reliable predictions to derive positive pseudo-labels and treating
unreliable pixels as negative samples. (Liu et al., 2022d) observed that consistency
learning methods vulnerable to the influence of inaccurate predictions of unlabelled
training images. To address this issue, they introduced a novel mean-teaching frame-
work that employs an auxiliary teacher and a confidence-weighted cross-entropy loss,
aimed at enhancing the generalization of consistency learning.

2.4 Video Object Segmentation

Video object segmentation, which involves identifying and segmenting objects with
specific properties within a video scene, plays a crucial role in a broad spectrum of
downstream applications such as autonomous driving, robotics, virtual reality, video
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rendering, and online meetings. To date, heuristic knowledge-based methods (Papa-
zoglou and Ferrari, 2013; Wang et al., 2017) and hand-crafted feature-based methods
have become outdated. Consequently, our focus is primarily on deep learning-based
approaches, owing to their remarkable performance and widespread adoption in the
field. In the deep learning era, video object segmentation can generally be classified
into four categories based on the level of human interaction during inference. These
categories include unsupervised video object segmentation(UVOS), semi-supervised
video object segmentation(SVOS), referring video object segmentation(RVOS), and
interactive video object segmentation(IVOS), each differing in their degree of human
involvement and the supervisions provided for the task. Semi-supervised methods for
video object segmentation primarily rely on either mask propagation approaches (Per-
azzi et al., 2017; Jang and Kim, 2017; Jampani, Gadde, and Gehler, 2017; Khoreva
et al., 2019; Xiao et al., 2018) or matching-based solutions (Oh et al., 2019b; Zhang et
al., 2020b; Yang, Wei, and Yang, 2020; Seong, Hyun, and Kim, 2020; Xie et al., 2021d;
Cheng, Tai, and Tang, 2021b). The former utilized previous frame masks to infer the
current mask, a process which is prone to error accumulation due to occlusions and
drifts during mask propagation. On the other hand, matching-based methods focused
on constructing an embedding space that captures the object embeddings of initial
and previous masks. These methods determined the label of each pixel by assessing its
similarity to the target object within the embedding space, thereby mitigating some
of the issues faced by mask propagation techniques. Referring video object segmen-
tation (Gavrilyuk et al., 2018; Khoreva, Rohrbach, and Schiele, 2019; Seo, Lee, and
Han, 2020) is an emerging topic in which the object to be segmented is defined by
a linguistic sentence. Inspired by the success of vision transformers (Carion et al.,
2020; Dosovitskiy et al., 2020), numerous recent works (Botach, Zheltonozhskii, and
Baskin, 2022; Wu et al., 2022; Liang et al., 2023) were proposed to capture visual
and textual context using self-attention and cross-attention mechanisms. Interactive
video object segmentation (Oh et al., 2019a; Heo, Koh, and Kim, 2021; Cheng, Tai,
and Tang, 2021a; Yin et al., 2021) aims to aid the model in refining prediction re-
sults by incorporating human-in-the-loop through multiple rounds of prediction and
refinement.

In contrast to these approaches, the goal of unsupervised video object segmentation
is to automatically segment objects in a video solely based on the visual content,
without any human intervention or prior knowledge about the objects in the scene.
Since the background and various objects can be ambiguous, unsupervised video ob-
ject segmentation is considered more challenging, and thus, requires greater effort.
In the realm of deep learning, particularly following the fully convolutional network
(FCN) (Long, Shelhamer, and Darrell, 2015), which addresses semantic segmentation
through per-pixel predictions, UVOS (Tokmakov, Alahari, and Schmid, 2017) has
experienced substantial advancements and progress. Drawing inspiration from non-
local networks (Wang et al., 2018b), several approaches, including ADNet (Yang et al.,
2019), COSNet (Lu et al., 2019), AGNN (Wang et al., 2019b) and F2Net (Liu et al.,
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2021a), modeled inter-frame correspondence to extract global information and achieve
a more comprehensive understanding of video content. On the other hand, optical flow
supplies vital motion information for the localization and differentiation of primary ob-
jects, serving as an additional cue in UVOS. MATNet (Zhou et al., 2020b) presented a
two-stream interleaved encoder, providing a motion-to-appearance pathway for infor-
mation propagation and a Motion-Attentive Transition Module for feature selection.
AMC-Net (Yang et al., 2021b) proposed a co-attention gate for motion appearance
re-weighting and an adaptive motion correction module for feature fusion. Employing
a full-duplex strategy, FSNet (Ji et al., 2021) designed a relational cross-attention
module and a bidirectional purification module to effectively fuse appearance and
motion information. DTNet (Zhang et al., 2021b) implemented an optimal structural
matching approach for the purification and alignment of motion-appearance features.
HFAN (Pei et al., 2022) introduced a hierarchical feature alignment network that
aligns appearance-motion features with primary objects and adaptively fuses them
to enhance performance. Although these two-stream methods demonstrate satisfac-
tory performance in certain scenarios, they struggle to track primary objects without
temporal contexts, particularly in intricate occlusion scenes.

2.5 Camera-based BEV Perception

Camera-based BEV perception has gained significant attention in both industry and
academia due to its unique advantages in assisting autonomous driving in a sensor-
friendly manner. Representing surrounding objects and environments in BEV is ben-
eficial for subsequent tasks, such as planning and control. Compared to LiDAR-based
or fusion-based solutions, camera-only BEV perception has attracted more interest
from researchers owing to its uncurated characteristics. However, the absence of ac-
curate depth information presents challenges.

View transformation, a vital component in vision-based BEV perception, plays a
key role in constructing 3D information and encoding 3D priors from 2D features.
Camera-based BEV perception encompasses several aspects, including 3D object de-
tection, BEV semantic segmentation, and motion prediction. Among these, BEV
semantic segmentation aims to assign each pixel in the BEV map with a semantic la-
bel, making it crucial for various applications that necessitate understanding complex
environments from an overhead perspective.

VPN (Pan et al., 2020) represents a groundbreaking contribution to this field. It was
the first to leverage simulation environments to gather cross-view annotations. Since
then, numerous methods (Roddick and Cipolla, 2020; Philion and Fidler, 2020; Ng
et al., 2020; Zhou and Krähenbühl, 2022; Xie et al., 2022) have emerged, consistently
setting new performance benchmarks. However, the high cost of annotating data may
hinder the development of larger datasets, potentially impeding progress in this field.
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Chapter 3

Deep Reasoning Network for
Few-shot Semantic Segmentation

3.1 Introduction

In dense prediction tasks such as semantic segmentation, instance segmentation and
video object segmentation, collecting labeled data is often a tedious and expensive
process. Furthermore, the labeled data is often limited to fixed set of predefined
categories, which make it difficult for the model to generalize to unseen categories.

To address these challenges, few-shot learning has been considered as a promising
solution. Specifically, models trained on previous tasks are expected to generalize to
unseen tasks given only several labeled images as prompt. This allows the transfer of
knowledge across tasks and facilitates more efficient use of the labeled data. Few-shot
learning has shown great potential in overcoming the limitations of previous deep
learning approaches, particularly in scenarios where labeled data is scarce or costly to
obtain.

Few-shot semantic segmentation (FSS) is situated at the intersection of few-shot learn-
ing and semantic segmentation, with the goal of accurately segmenting the foreground
regions of a novel object category using limited training data, typically comprising only
a few image-mask pairs. One of the key objectives of FSS is to effectively leverage
the information associated with the foreground objects, while mitigating the impact
of the background regions that can potentially hinder the segmentation process. To
accomplish this, FSS relies on the transfer of information from support images to
query images, with the aim of accurately segmenting objects that belong to the same
categories across both image sets. However, due to the scarcity of available anno-
tated data, achieving this task requires a sophisticated and robust approach that can
effectively overcome these limitations.

In this chapter, we present a novel approach to solve few-shot semantic segmentation
(FSS) by adopting dynamic convolutions to model the relationship between query
and support images. This technique employs a set of learnable filter coefficients to
generate a set of weights for a fixed set of filters, which are subsequently applied to
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Figure 3.1. Examples of support image images and query
image pairs. There are many challenges, such as complex relations,

various appearances, scale changes.

distinct regions of the input. Specifically, our research introduces a novel approach, the
Deep Reasoning Network (DRNet), which is designed to generate the parameters of
predicting layers and accurately infer the segmentation mask for every unseen category
in an adaptive manner. By this way, our method can effectively capture the critical
interactions between support and query images, which is a crucial aspect of accurate
FSS. Specifically, the dynamic convolutions enable the model to learn the optimal filter
coefficients for each query image, thus ensuring that the weight generation process is
customized to each specific input.

More concretely, we introduce an Attentional Feature Integration Sub-network (AFIS)
to extract consistent features from both support and query images. This approach
serves as an essential component of our methodology, with shared weights facilitating
category coherence across different data streams. Then a Pooling-based Guidance
Module (PGM) is employed to progressively establish correlations between support
features and query features. This is achieved through a progressive process, which en-
ables the identification and strengthening of correlations between the aforementioned
features. To disseminate information from support images to various query images, we
further propose a Dynamic Prediction Module (DPM) for generating the parameters
of predicting layers. The proposed modules are unified for the deep reasoning of each
query image segmentation.

In order to facilitate the dissemination of information from support images to various
query images, we introduce a novel approach called the Dynamic Prediction Module
(DPM). This module is designed to generate parameters for predicting layers, which
are used to inform the segmentation of each query image. Our proposed method is
unified in its application, enabling deep reasoning for the segmentation of all query
images. Experiments on two public benchmarks have demonstrated that our approach
achieves superior performance and outperforms the very recent state-of-the-art meth-
ods.
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3.2 Background

Semantic segmentation (Chen et al., 2017a; Xie et al., 2021a) is essentially important
in the field of computer vision, where the objective is to classify each pixel in an im-
age into predefined categories. This task is critical for a wide range of applications,
including autonomous driving (Hu et al., 2023), medical imaging (Singh, Sengupta,
and Lakshminarayanan, 2020), robot navigation (Gupta et al., 2020) and image ma-
nipulation (Zhou et al., 2020a). However, in the era of deep learning, the performance
of semantic segmentation models is often highly dependent on the scale and quality
of the training dataset. Unfortunately, generating these datasets is a laborious and
time-consuming process, as it requires annotating images at the pixel level. This an-
notation process is not only expensive in terms of human resources but also prone to
errors due to the subjective nature of the task. Therefore, it is important to find ways
that can decrease the dependence on human-labeled data for semantic segmentation
to make it more practical and scalable.

To reduce the reliance on human annotations, a wide range of techniques have been
explored, such as unsupervised or weakly supervised learning, to learn representations
from unlabeled or partially labeled data. While these methods have shown to be
promising, their performance still significantly lags behind that of fully supervised
methods in terms of accuracy and robustness.

In addition to the reliance on human annotations, semantic segmentation still strug-
gles with the generalization problem. The models trained on datasets with specific
categories exhibit limited adaptability to novel object classes and scenes. The above
problem can pose a severe challenge for its applicability to various downstream appli-
cations, such as autonomous driving, where the scenes are continually evolving, and
the availability of labeled data for new environments or objects may be limited.

Few-shot Semantic Segmentation (FSS) is a promising direction for addressing the
aforementioned limitations in semantic segmentation, which involves the task of ac-
curately segmenting objects of previously unseen categories with minimal annotated
data, typically consisting of only one or a few samples per class. This presents a signif-
icant challenge that necessitates innovative approaches to overcome the limitations of
insufficient labeled data and achieve high-quality segmentation outcomes. Specifically,
FSS delivers several benefits over traditional semantic segmentation paradigms. To
begin with, FSS significantly reduces the requirement of large-scale annotated data,
thus overcoming the scalability and labeling cost in traditional semantic segmentation.
Another significant advantages of FSS is its capability in handling the generalization
problem by learning to adapt to novel categories prompted by a small set of labeled
examples. This enables the model to learn more effectively from a smaller dataset and
enhances its ability to generalize to unseen data, which is crucial in many real-world
applications.
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However, the problem of Few-shot Semantic Segmentation (FSS) is especially diffi-
cult due to the nature of the test data, which consists of novel categories that were
excluded in the training set. Moreover, the huge variations in appearance and shape
between the support and query images further aggravate the challenge. Thus, accu-
rately segmenting objects across such diverse categories requires innovative solutions
that can effectively transfer information from support to query images despite the
variations in their features.

One main aim in Few-shot Semantic Segmentation (FSS) is to make full use of infor-
mation associated with the foreground objects, while simultaneously suppressing the
influence of the background regions that could impede the segmentation process. In
essence, FSS requires the transfer of information from support images to query im-
ages, with the aim of accurately segmenting objects that belong to the same categories
across both sets. Achieving this requires a sophisticated procedure that can overcome
the limitations imposed by the scarcity of available annotated data.

Technically, FSS performs semantic segmentation on unseen object categories with
only several pixel-level annotated pairs (Dong and Xing, 2018; Zhang et al., 2019b; Li
et al., 2020). To solve this task, existing methods are mainly based on prototypical
learning where a dual branch architecture is employed to process support images and
query images. Specifically, the support branch is used to extract class prototypical
information and guide the query branch for segmenting query images. To achieve
this goal, Global Average Pooling (GAP) is commonly adopted to generate support
vectors (Zhang et al., 2019b; Zhang et al., 2019a; Siam, Oreshkin, and Jagersand,
2019). These methods have already shown expressive results. However, there still
exist several key problems in existing methods. Firstly, those prototype-based meth-
ods (Zhang et al., 2019b; Zhang et al., 2019a; Zhang et al., 2020a; Siam, Oreshkin,
and Jagersand, 2019) simply integrate support features and query features after the
feature extraction which neglect the internal relations between features. This is not
sufficient to locate the areas that contain objects in query images. Furthermore, there
exist inter-class gaps between training categories and testing categories. To solve this
problem, Yang (Yang et al., 2020b) propose a online refinement strategy to adapt
the network to unseen categories. However, with their model, the computational cost
increases significantly while the performance is not enhanced remarkably.

To resolve the aforementioned limitations, in this work we propose a Deep Reasoning
Network (DMNet) for effective FSS. First, we propose an Attentional Feature Integra-
tion Sub-network (AFIS) extract multi-level consistent features from support images
and query images. With shared weights of two branches, it explores and captures more
correlated information, stimulating the category consistency of different data streams.
Besides, we propose a Pooling-based Guidance Module (PGM) to further enhance the
relation of support set and query set in semantic level. The PGM could generate and
merge features with different resolutions in a progressive manner. Finally, we propose
a Dynamic Predicting Module (DPM) to reduce the gaps between training categories
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Figure 3.2. Pipeline of the proposed Deep Reasoning Net-
work (DRNet). Our method mainly consists of Non-local Feature
Fusion Module (NFFM), Pooling-based Guidance Module (PGM) and
Dynamic Predicting Module (DPM). The NFFM firstly integrates and
refines multi-level features in each branch. Then, the PGM exploits
guidance information from support branch and collaborate with query
features in different levels. Finally, the DPM conditionally generates

learning parameters of predicting layer for segmentation.

and testing categories. The DPM adaptively generates the parameters of predicting
layer for segmenting each query image. To verify the effectiveness of our proposed
method, we conduct extensive experiments on two benchmark datasets (PASCAL-
5i (Shaban et al., 2017) and MS COCO-20i (Nguyen and Todorovic, 2019)). The
proposed method outperforms other state-of-the-art methods by a large margin. Fur-
thermore, extensive ablation studies are implemented to demonstrate the contribution
of each component module in our work.

Our main contributions can be summarized as follows:

• We propose a Deep Reasoning Network, to solve challenging problems in FSS.
Different from previous methods, the prediction layers of our method are dy-
namically generated for each query image.

• We propose a novel pooling-based guidance module to incorporate multi-level
support information into query features. This module significantly helps to
precisely locate the query objects.

• Our method achieves state-of-the-art results on two public benchmarks, i.e.,
PASCAL-5i and MS COCO-20i datasets. Ablation experiments also demon-
strate the effectiveness of each module in our work.

3.3 Our Approach

As shown in Figure 3.2, the proposed DRNet is composed of two branches, i.e., the
support branch and query branch. Previous methods directly apply convolutional



18 Chapter 3. Deep Reasoning Network for Few-shot Semantic Segmentation

layers on the integrated features to predict the segmentation masks (Zhang et al.,
2019b; Liu et al., 2020b; Wang et al., 2020). In contrast to existing approaches, our
proposed Deep Reasoning Network (DRNet) offers a novel and adaptive solution for
learning and predicting segmentation masks for previously unseen object categories.
Specifically, DRNet generates learnable parameters of predicting layers based on the
query features, allowing for greater flexibility and adaptability. Our method employs a
weight-shared encoder to extract support and query features, which are then processed
by the Non-Local Feature Fusion Module (NFFM) to refine the features of each branch.
Additionally, our Progressive Guidance Module (PGM) integrates query and support
features at different scales to more fully leverage guidance information from the query
features. Finally, DRNet employs the Dynamic Prediction Module (DPM) to generate
the predicting filters conditioned on the support features. The segmentation mask of
each query image is obtained by the predicting filter

3.3.1 Attentional Feature Integration Sub-network

As is demonstrated in (Zhang et al., 2019b), the utilization of features from higher
layers that contain more object-level concepts can result in a reduction in performance
for semantic segmentation. To address this issue, we propose a multi-level feature
integration method to enhance feature representation capabilities, as shown in Fig 3.2.
Meanwhile, the recent proposed non-local module (Wang et al., 2018b) could capture
long-range dependencies in an image or video. It also can be treated as a feature
fusion module. However, the vanilla non-local module holds high complexity of matrix
multiplications. To reduce the complexity, we introduce a new Non-local Feature
Fusion Module (NFFM) to enhance features in each branch.

Standard Non-local Module. In a standard non-local module, three 1 × 1 con-
volutions Convϕ, Convθ, and Convγ transform input feature X ∈ RC×H×W to new
embeddings ϕ ∈ RĈ×H×W , θ ∈ RĈ×H×W and γ ∈ RĈ×H×W as

ϕ = Convϕ(X), θ = Convθ(X), γ = Convγ(X) (3.1)

Three embeddings are then flattened to size Ĉ×N (N = HẆ ). The unified similarity
matrix V can be obtained by

V = Softmax(ϕT × θ) (3.2)

where Softmax is the Softmax normalization. Thus, the output of the non-local
module is

Y = Conv((V × γT )T ) +X (3.3)

where V × γT is to calculate the attention weight for each location in γ and Conv is
a 1× 1 convolution to ensure the same size of the output features.
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(a) (b)

Figure 3.3. The proposed Non-local Feature Fusion Module
(NFFM). (a) is the overall architecture and (b) shows the detailed

structure of pyramid pooling.

Reducing Complexity with Pyramid Pooling. Technically, the standard non-
local module introduces high computational cost with the two matrix multiplications,
resulting in C(CN2)=C(CW 2H2) complexity. Following (Zhu et al., 2019), we reduce
complexity by sampling representative points from θ and γ via Spatial Pyramid Pool-
ing (SPP) (Lazebnik, Schmid, and Ponce, 2006). The proposed method is efficient
and able to represent multi-scale relations. As shown in Figure 3.3, SPP is applied
on the embeddings θ and γ to extract compact samples. We set the output size of
pyramid pooling to n ⊆ {1, 2, 3, 6}, and thus the number of output samples is

S =
∑

n∈{1,2,3,6}

n2 = 50. (3.4)

Considering that the spatial locations in the input features is N = 64 × 64 = 4096,
the complexity of matrix multiplication can be reduced by T = N

S ≈ 81 times.

3.3.2 Pooling-based Guidance Module

To extract category information from support samples, previous methods usually ap-
ply a Global Average Pooling (GAP) on the support features to obtain an embedding
vector. However, directly correlating the embedding vector with query features is
sub-optimal due to the mismatching of support masks and query objects. To address
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Figure 3.4. The Pooling-based Guidance Module. (a) is the
whole architecture. (b) and (c) are details of Global Feature Extraction

and Progressive Feature Integration

this problem, we propose a Pooling-based Guidance Module (PGM) to enhance the
spatial consistency and exploit the guidance of support samples. More specifically,
the PGM takes the query features, support features and support masks as inputs.
By using GAP, embedding vectors correspond to category information are extracted
from the foreground area of support features. Those vectors are further expanded and
integrated with query features of different resolutions in a progressive manner.

As shown in Figure 3.4, there are three key components for PGM: 1) Pyramid Fea-
ture Fusion (PFF) first down-samples query features into different scales, and then
integrates with category-oriented features in each scale; 2) Global Feature Extraction
(GFE) is performed to extract global guidance information from fused pyramid fea-
tures; 3) Progressive Feature Integration (PFI) is used to merge multi-level features.

As is shown in Figure 3.1, there exists huge variances between support masks and
query masks. Figure 3.5 statically analyzes the variance ratios in each split. It shows
that most support-query pairs are inconsistent in their spatial size. Directly integrat-
ing support features with query features might lead to poor localization results. Thus,
we propose the following pyramid feature fusion.

Pyramid Feature Fusion. As stated in above, query features FQ ∈ RH×W×C are
firstly down-sampled by spatial average pooling with strides S = [s1, ...sn], and then
followed by a 3×3 convolution layer that maintains the spatial dimensions unchanged.
Assuming that the pooled query features are F̂Q = {f iQ}ni=1 with spatial dimensions
{(H

Si ,
W
Si )}ni=1 And the category-oriented features FC = {f iC}ni=1 can be obtained by

extending embedding vectors to corresponding dimensions. The correlation of support
information and query images are established by

f ifuse = Conv2(Cat(f iQ, f
i
C)), i ∈ [1, n] (3.5)
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Figure 3.5. Histograms of scale variances between support masks
and query masks.

where Conv and Cat represents a 1 × 1 convolution and concatenation operation,
respectively. f ifuse is the component of fused feature Ffuse.

Global Feature Extraction. Effectiveness of global contexts has been proved in
many dense prediction tasks, e.g., semantic segmentation (Peng et al., 2017; Yu et
al., 2018) and salient object detection (Wang et al., 2018a; Zhang et al., 2018; Liu
et al., 2019). To extract global context information, we introduce a global feature
extraction module. Inspired by PSPNet (Zhao et al., 2017), the average pooling
with different bin sizes are used to extract multiple pyramid features. As is shown
in Figure 3.4(b), We use bin sizes of 1 × 1, 3 × 3 and 5 × 5. The pyramid features
are further processed by a 1 × 1 convolution layer, and then directly up-sampled to
original input sizes for global representation. Finally, we down-sample those features
that contain global information to different scales for progressive feature integration,
i.e., Fglobal = {f iglobal}ni=1.

Progressive Feature Integration. A direct way of integrating Ffuse and Fglobal of
different scales is to match them at each level and then merge the features together.
However, the variation of scales and appearances between support and query objects
could result in the mismatch in a certain layers. To solve it, we propose a Progressive
Feature Integration (PFI) to rectify the deviations. As is shown in Figure 3.4(c),It
progressively constructs inner connections between adjacent feature maps of different
levels. As a result, it yields more robust features for scale variations. More specifically,
the proposed PFI incorporates recurrent connections from f ifuse, F

i
global as well as the

output of previous stage i − 1. The generated four level features can be represented
as FRFI = {f iRFI}4i=1. In stage i, the features f iRFI is obtained by:

f iRFI = Conv2 (Cat (fi +Down(fi)), f
i
global) (3.6)

fi = Cat(f ifuse + Pool(f i−1
RFI) (3.7)
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Where Pool denotes the average pooling operation with down-sampling rate 2 × 2.
Down is residual branches which enrich the identity by feeding it into average pool-
ing layer followed by 3 × 3 convolution layer and then up-sampling it to the initial
resolution. Note that the term Pool(f i−1

RFI) is ingored when i = 1. Finally, a modified
res-block is proposed to integrate features FRFI of different scales by first concatenat-
ing and then passing them in a residual form.

3.3.3 Dynamic Predicting Module

The key of FSS is to fully exploit the information from support set annotations. Pre-
vious works (Tian, Shen, and Chen, 2020; Tian et al., 2022) generate the leaning pa-
rameters of K different mask heads for an image with K instances. Unlike traditional
methods, our unique contribution lies in the introduction of the Dynamic Predicting
Module (DPM). The primary purpose of DPM is to incorporate support information
conditionally, enabling a more precise prediction of the segmentation mask. One of
the distinguishing features of our DPM is its efficiency in parameter generation. Un-
like instance segmentation methods (Tian, Shen, and Chen, 2020; Tian et al., 2022)
that might continuously generate parameters, our DPM does so only once since only
one mask needs to be predicted.

It’s a well-established fact in the field that the deeper layers of neural networks tend
to capture more high-level semantic features and category-specific information. Lever-
aging this, our model extracts category vectors specifically from the last layer of the
support branch, ensuring a rich representation that captures intricate details relevant
to our segmentation task.

Moreover, to facilitate the dynamic generation of learnable parameters for the mask
prediction layer, we introduce a lightweight filter-generating network. This is a pivotal
part of our methodology, enabling the adaptive and on-the-fly generation of parame-
ters suited to the task at hand.

Lastly, the mask prediction layer is defined as a 1× 1 convolution layer. This design
choice simplifies the architecture, ensuring faster computation. Yet, it retains depth
with its 2 channels, allowing the layer to handle the intricate task of mask prediction
effectively. Supposing the input channels are 64, the mask predicting layer totally will
contain 130 parameters (weights = 64 × 2 and bias = 2). As is shown in Figure 3.2,
we apply DPM on both multi-level features and the integrated features to predict
intermediate segmentation maps and final segmentation maps.

To train our model, we introduce the deeply supervised learning and use the softmax
cross-entropy loss for the main loss and auxiliary losses. Thus, the total loss L can be
formally calculated by

L = Lmain + λ
n∑

i=1

Liaux (3.8)
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where Lmain and Liaux are the main loss for final segmentation maps and auxiliary
loss for intermediate segmentation maps respectively. λ is the loss weight for balance
which is set to 1.

3.4 Experiments

3.4.1 Experimental settings

Datasets. Following previous works, public PASCAL-5i (Shaban et al., 2017) and
MS COCO-20i (Nguyen and Todorovic, 2019) are used to verify the effectiveness of
our method.

PASCAL-5i is a widely-used dataset for FSS. It contains images from the PASCAL
VOC 2012 (Everingham et al., 2010) with extra annotations from SDS (Hariharan
et al., 2011). In PASCAL-5i, the original 20 object categories are evenly divided into
four folds for cross-validation. Specifically, three folds are used for training and the
rest one is for testing. Following (Shaban et al., 2017), we use 1000 support-query
pairs in each test.

MS COCO-20i is modified from the more challenging dataset MS COCO (Lin et al.,
2014). Similarly to the division in PASCAL-5i, 80 categories are evenly divided into
four splits. 60 categories are sampled for training and the remaining 20 are for testing
in each split. Different from previous approaches (Nguyen and Todorovic, 2019; Yang
et al., 2020a; Wang et al., 2020) that sampled 1000 support-query pairs in each split
for testing, we sample 5000 pairs during testing to achieve more stable results.

Implementation Details. We exploit multi-level features from the ResNet-50 (He
et al., 2016) pre-trained on ImageNet. To increase the receptive field, we also use the
dilated version for ResNet-50 as previous works (Zhang et al., 2019b; Zhang et al.,
2019a). The DRNet is optimized by SGD with the learning rate of 0.05 and momentum
of 0.9. The learning rate decays with the “poly” policy (Chen et al., 2017a). We train
our model for 100 epochs on PASCAL-5i and 50 epochs on MS COCO-20i with batch
size 8.

Evaluation Metric. Mean-IoU and FB-IoU are employed as metrics for evaluating
performances. Mean-IoU (Shaban et al., 2017) is the average of per-class foreground
Intersection-over-Union (IoU) over all classes. For each category, the IoU is calculated
by IoU = TP

TP+FP+FN , where TP, FP and FN represent the number of true positives,
false positives and false negatives. FB-IoU (Rakelly et al., 2018) is calculated by ignor-
ing the object categories and averaging the IoU score of foreground and background
over all test images.

3.4.2 Ablation Study

In this subsection, we first verify the effectiveness of the proposed key modules. Then
we conduct more experiments on the configurations of PGM and DPM.
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Effectiveness of key modules. To verify effects of each module in our method,
we conduct ablation studies based on the following baseline. Table 3.1 shows the
quantitative comparisons of 1-shot and 5-shot on PASCAL-5i dataset.

The used baseline is based on CANet (Zhang et al., 2019b), which is a simple yet
effective method for FSS. For fair comparison, we further simplify the architecture
of CANet by removing the iterative optimization module and ASPP (Chen et al.,
2017a). During testing, we also do not use multi-scale inputs. The result is shown in
in Table 3.1 (1st row).

Based on the above baseline, we further verify the effectiveness of each module by
adding different components. On the one hand, from the second row to the fourth
row, it can be observed that the addition of each module increases results in terms of
both Mean-IoU and FB-IoU. The most significant gain is brought by PGM and the
averaged Mean-IoU improves from 54.57 to 58.77. One the other hand, by introducing
NFFM, PGM and DPM, the performance can be further enhanced by a large margin.
These results further demonstrate that our proposed modules could be complementary
to each other.

Table 3.1. Ablation studies of the proposed architecture on
PASCAL-5i. Our baseline is the simplified version of CANet (Zhang

et al., 2019b).

Baseline Mean-IoU

+NFFM +PGM +DPM s-1 s-2 s-3 s-4 mean

53.92 64.10 49.97 50.28 54.57

✓ 54.81 64.45 50.19 51.17 55.16

✓ 60.79 68.01 52.51 53.88 58.77

✓ 54.57 64.73 51.04 50.62 55.24

✓ ✓ 61.13 67.83 53.27 54.40 59.16

✓ ✓ ✓ 61.99 68.87 53.74 55.02 59.91

Table 3.2. Comparison analysis of the PGM.

Settings
Mean-IoU

s-1 s-2 s-3 s-4 mean

Baseline + PGM 60.79 68.01 52.51 53.89 58.77
w/o GFE 60.84 66.98 52.13 52.90 58.21

w/o PFI 59.47 66.23 51.84 52.34 57.57

Designing Choices of PGM To further understand the effect of PGM, we perform
two additional experiments. Compared results are shown in Table 3.2. We alterna-
tively remove the GFE and PFI. The results are shown in the 2nd row and 3rd row.
We can see that the performance drops when compared with the complete module,
demonstrating that the GFE and PFI are indispensable.
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Table 3.3. Comparisons of features selection for DPM.

Layer
Mean-IoU

s-1 s-2 s-3 s-4 mean

Res-3 61.38 67.85 53.56 54.89 59.42

Res-4 61.99 68.87 53.74 55.02 59.91

Table 3.4. Results with various input channels of mask pre-
dicting layer. When Channels = 64, our model could achieve best

results.

Channels
Mean-IoU

s-1 s-2 s-3 s-4 mean

32 60.72 68.41 53.85 54.67 59.41

64 61.99 68.87 53.74 55.02 59.91
128 61.34 69.32 53.32 54.46 59.61

256 61.21 67.91 53.55 55.28 59.49

Detailed Analysis of DPM. In this work, we exploit the DPM in two aspects: num-
ber of input channels in predicting heads and conditional layer to generate parameters
of filters.

First, we verify the feature selection of DPM for generating parameters of the mask
prediction layer. As shown in Table 3.3, choosing features of the Res-4 layer in ResNet-
50 as input results in better performance. This demonstrates that it is more reasonable
to choose deeper layers for object-level concepts. To clarify the influence of input
channels at mask prediction layers, we change Cinput in a range between 32 to 256.
The results are shown in Table 3.4. As we can see, when Cinput = 64, it delivers the
best results. Thus, we keep it as a default number in other experiments.

We further prove the versatility of our DPM. Specifically, we re-implement PGNet (Zhang
et al., 2019a) with DPM as a plug-in module. The comparison results with/without
DPM are shown in Table 3.5. The DPM could increase the Mean-IoU of PGNet by
1.05%. From the results, we can observe that DPM is effective in proving performance
with a considerable margin.

Table 3.5. Results with the PGNet baseline on PASCAL-5i.

Method
Mean-IoU

s-1 s-2 s-3 s-4 mean

PGNet 55.07 63.92 47.15 50.93 54.27

PGNet+DPM 55.61 64.79 47.31 51.64 54.84

3.4.3 Comparison with State-of-the-arts

In this section, we compare the proposed method with other state-of-the-art methods
including OSLSM (Shaban et al., 2017), AMP (Siam, Oreshkin, and Jagersand, 2019),



26 Chapter 3. Deep Reasoning Network for Few-shot Semantic Segmentation

Figure 3.6. Visual results on PASCAL-5i dataset. Even when
suffering challenging scenes, e.g., appearance and variations between
query and support objects, our method can predict accurate segmen-

tation maps

PANet (Wang et al., 2019a), FWB (Nguyen and Todorovic, 2019), RPMMs (Yang et
al., 2020a), CANet (Zhang et al., 2019b), PGNet (Zhang et al., 2019a), PAP (Liu
et al., 2020c) and DAN (Wang et al., 2020). For fair comparison, we use either the
segmentation results or the codes provided by the corresponding authors.

Results on PASCAL-5i. As shown in Table 3.6, our method significantly out-
performs all previous methods under nearby all evaluation metrics. It convincingly
demonstrates the effectiveness of the proposed method. Specifically, in the 1-shot
setting, our method achieves 59.90% and 60.89% in terms of Mean-IoU and FB-IoU,
respectively. It is worth mentioning that our method with the ResNet-50 backbone
outperforms DAN (Wang et al., 2020) with the ResNet-101 backbone by 2.9% in the
Mean-IoU and 1.4% in the FB-IoU. This result convincingly demonstrates the effec-
tiveness of our method. Comparing the scores under 5-shot setting, our method also
outperforms other algorithms by a large margin. Figure 3.6 provides some visual com-
parisons of our method with CANet (Zhang et al., 2019b) and PGNet (Zhang et al.,
2019a). Comparing with the two previous works, we can observe that our method
could generate accurate results under challenging scenes.

Results on MS COCO-20i. We also quantitatively compare with previous methods
on MS COCO-20i dataset. The comparison results are shown in Table 3.7. Compared
with the most recent works (Nguyen and Todorovic, 2019; Liu et al., 2020c; Yang et
al., 2020a), our method could continuously achieve state-of-the-art results. Besides,
there are some interesting observations. First, in both 1-shot setting and 5-shot set-
ting, our methods outperform the very recent RPMMs (Yang et al., 2020a) by 10.8%
and 7.8% in terms of average Mean-IoU scores. Second, our method is inferior to
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the RPMMs under split-1 subset. The reason may be that the split-1 subset is more
complex in object parts. Under this case, RPMMs can perform better with proto-
type mixtures. However, our method delivers very comparable performances. Third,
our method performs better than RPMMs on other four splits, which demonstrates
the effectiveness of our method when dealing with various scenes. We also provide
some visual examples. However, due to the limitation of space, we arrange them in
supplemental materials.

3.5 Conclusion

In this paper, we propose a Deep Reasoning network (DRNet) to solve few-shot seman-
tic segmentation. Different from previous methods, the learnable parameters of our
proposed predicting layer are dynamically generated on support features. It effectively
exploits the category-level information of deep layers in support branch. Besides, we
develop a pooling-based guidance module to correlate multi-scale features of support
and query branches. Our proposed non-local feature fusion module could help to
fuse features of different levels in each branch. Extensive experiments on two public
benchmarks demonstrate the effectiveness of our method.
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Figure 4.1. Visual examples of ours and BAM (Lang et al., 2022).
From left to right: support images, query images, predictions of BAM,
our baseline with DCM, our baseline with RCM and the final results.

Chapter 4

Few-shot Semantic Segmentation
by Exploiting Dynamic and
Regional Contexts

4.1 Introduction

Few-shot semantic segmentation is a challenging problem that aims to address the
issue of scarce labeled data by learning to segment new object classes with only a few
annotated samples. The existing prototype-based few-shot segmentation methods
typically rely on the effective interaction between support and query images to learn
a reliable segmentation model. However, modeling such interaction is a complex
task, and the performance of these methods heavily depends on the quality of this
interaction.

To tackle this issue, we propose a novel Dynamic and Regional Context Network
(DRCNet) that achieves sufficient support-query interaction for accurate few-shot
semantic segmentation. Our proposed approach leverages a Dynamic Context Module
(DCM) to capture the spatial details in the query images. The DCM builds dynamic
convolutions in local views, which complements the traditional global prototypes and
forms multi-context interaction between support and query. This interaction leads to
more accurate predictions on the query images.
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In addition, we propose a Regional Context Module (RCM) to further improve the
accuracy of our approach by modeling the prototypes for ambiguous regions and ex-
cluding the background and ambiguous objects in query images. Our experimental
results on Pascal-5i and COCO-20i datasets demonstrate that our proposed DRCNet
significantly outperforms state-of-the-art methods. Our approach provides a promis-
ing direction for accurate few-shot semantic segmentation, and our proposed modules
can be readily integrated into existing models to enhance their performance.

4.2 Background

In recent years, deep learning has brought significant improvements to the field of
semantic segmentation. However, one of the major challenges in training segmentation
models lies in the dependence on large amounts of human annotated data. As is known
to us all, annotating a dataset for semantic segmentation is a time-consuming and
resource-intensive process, and it becomes even more challenging when the dataset
contains a large number of object categories or a high level of intra-class variability.

Semi-supervised semantic segmentation has been proposed as a solution to this prob-
lem, which is based on the assumption that a large amount of unlabeled data is avail-
able in addition to a small number of labeled data. These approaches aim to learn from
both labeled and unlabeled data to improve the segmentation performance. However,
the requirement of labeled data is still a bottleneck in these approaches, and they are
prone to generalizing poorly on novel categories.

To address this limitation, few-shot semantic segmentation has emerged as a promising
solution, the purpose of which is to learn a model that can quickly adapt to new object
categories with only a few annotated examples as the prompt. In other words, it allows
the model to generalize to novel categories without the necessity of a large amount of
labeled data. The goal is to leverage prior knowledge learned from the base categories
to efficiently segment novel categories.

While current methods have produced impressive results in few-shot segmentation,
they are not without limitations. One such limitation is the use of Masked Aver-
age Pooling (MAP) operation in the prototypical learning framework, which can lead
to the destruction of spatial structure in the feature space. This, in turn, can have
a negative impact on mask quality, particularly for objects with large shape varia-
tions. Another challenge that must be addressed is the issue of background noise
and ambiguous regions present in query images. To tackle this issue, it is essential
to develop a technique that can effectively model regional context information while
simultaneously excluding background and ambiguous objects.

To alleviate the aforementioned problems, we propose a novel approach known as the
Dynamic and Regional Context Network (DRCNet) for precise Few-shot Semantic
Segmentation (FSS). DRCNet is designed to produce robust representations for both
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the target objects and ambiguous regions. The approach is based on the prototypical
learning framework, which consists of two main components: the Dynamic Context
Module (DCM) and the Regional Context Module (RCM). To begin with, DCM is
employed to capture intricate spatial details by utilizing dynamic convolution to in-
teract with both the support and query features. Dynamic kernels are learned from
the support features to extract spatial information from the query features. The re-
sultant features, combined with the query feature and traditional global prototype via
MAP, are integrated to provide multi-context support-query interaction. The result-
ing features are then passed to a decoder to generate an initial prediction. In addition
to DCM, we introduce the RCM, which is responsible for dealing with ambiguous
regions in query images. This module calculates an uncertainty map to create pro-
totypes that can effectively eliminate noise interference in query features and refine
initial masks, resulting in more precise and accurate predictions. By leveraging the
strengths of both DCM and RCM, DRCNet can overcome the challenges of few-shot
semantic segmentation and produce more reliable results.

To summarize, our contributions are as follows:

• We propose a novel method called Dynamic and Regional Context Network (DR-
CNet) for accurate Few-shot Semantic Segmentation (FSS) by learning robust
prototypes for both target objects and ambiguous regions.

• We introduce a Regional Context Module (RCM) to effectively capture and
eliminate complex background and interference objects that belong to other
categories.

• We propose a Dynamic Context Module (DCM) to model local interaction be-
tween query and support samples, enabling DRCNet to capture fine spatial
details.

• Extensive experiments on PASCAL-5i and COCO-20i demonstrate the superior
performance of the proposed DRCNet compared to state-of-the-art methods.

4.3 Our approach

4.3.1 Problem Setting

Few-shot Semantic Segmentation (FSS) is a challenging task that aims to accurately
segment objects from novel classes using only a few annotated samples. To accomplish
this, FSS uses a training set Dtr and a testing set Dts, where the base classes and
the novel classes are disjoint, i.e., Ctr ∩ Cts = ∅. Both Dtr and Dts are composed
of multiple episodes or sub-tasks, where each episode includes a support set S and a
query set Q from the same class.

In the k-shot FSS scenario, the support set S can be represented as S = {(xsi ,ms
i )}

K
i=1,

where xis and ms
i ) represent the support image and mask, respectively, and k is the
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Figure 4.2. Overall architecture of the proposed DRCNet.
Given the support and query features, the Dynamic Context Module
(DCM) is used to perform their local interaction via dynamic convolu-
tion. The generated features together with the traditional MAP based
prototypes and query feature are concatenated to generate an initial
mask via decoder. Then, a Regional Context Module (RCM) is pro-
posed to mine the prototype of ambiguous regions to further distill the

noises of initial mask.

number of samples. Similarly, the corresponding query set can be formulated as
Q = {xq,mq}. During training, an episode (S,G) is sampled, and the model takes S
and xq as input to produce a binary mask m̂q. The model is supervised with binary
cross-entropy (BCE) loss to update its weights. Specifically, given that the resolution
of predicted binary mask m̂q and ground-truth mq is H ×W , the BCE loss can be
calculated as:

BCE(m̂q,mq) =
1

H ×W

H∑
i=1

W∑
j=1

(−mq
ij · log(m̂

q
ij− (1−mij) · log(1− m̂q

ij− (1−mij)))

(4.1)

Once the training process is done, the meta-testing is performed by taking randomly
sampled episodes from Dts for evaluation.

4.3.2 Overview

We introduce a novel approach, the Dynamic and Regional Context Network (DRC-
Net), for few-shot semantic segmentation, which aims to segment objects from novel
classes using only a few annotated samples. The architecture of our proposed network
is shown in Figure4.2. Here, we elaborate our work on the 1-shot setting for simplic-
ity. The DRCNet is built upon the prototype-based framework and consists of two
key sub-modules, namely Dynamic Context Module (DCM) and Regional Context
Module (RCM). We employ ResNet-50 (He et al., 2016) and VGG-16 (Simonyan and
Zisserman, 2014) as our backbone to extract multi-level features for both support and
query images, which are denoted as {F l

s}Ll=1 and {F l
q}Ll=1, respectively.

To accomplish the interaction between support feature and query feature, we introduce
the DCM, which uses dynamic convolution to capture the spatial details. Specifically,
the kernels are produced from the support features, and applied to the query features
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Figure 4.3. The architecture of the dynamic context module.
The DCM takes the input as support feature, mask and query fea-
ture, and aims to perform sufficient interaction between them. First,
the target objects are emphasized in support feature by support mask,
which are decoupled into key and value to form dynamic kernel. Then,
the dynamic kernels are applied to query features using dynamic con-
volution to model the pixel-wise interaction between support region
and query image. Finally, a multi-context attention is applied to the

query feature to produce the output dynamic feature.

to extract more informative features. These generated features, combined with the
original global prototypes and query features, are fed to a decoder to generate an
initial mask. The dynamic convolution allows our model to adapt to the target object
in the query image, resulting in more accurate segmentation performance.

Moreover, to eliminate the interference from the background, we propose the RCM
to model the prototype of those ambiguous regions. The RCM is designed to learn
a more robust representation of the ambiguous regions and exclude them from the
segmentation process. This is achieved by modeling the prototype of the ambiguous
regions based on a calculated uncertainty map. The RCM suppresses the interference
in the query features and refines the initial masks, thus could obtaining more accurate
and robust predictions.

We explain the details of DCM and RCM in the following sections, and demonstrate
the effectiveness of our proposed approach through comprehensive experiments.

4.3.3 Dynamic Context Module

In few-shot semantic segmentation, prototype-based methods (Zhang et al., 2019b;
Tian et al., 2020; Mao, 2022) have been commonly used to compress feature vectors
that represent target objects. The Masked Average Pooling (MAP) on support fea-
tures enables the prototypes to capture the global context of target regions, which
helps in accurately recognizing truly-matching objects in query images. However, the
accuracy of these models, particularly on objects with complex shape variations, tends
to decline rapidly due to the lack of adequate spatial details that come with average
pooling. To tackle this problem, we propose a Dynamic Context Module (DCM) that
models the local context between support and query features. The DCM complements
the global prototypes by capturing fine details in query images. The architecture of
DCM is illustrated in Figure 4.3 to provide a clearer understanding of the mechanism.
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The DCM uses dynamic convolution which enables the model to capture spatial de-
tails in the support features. The kernels generated by the DCM from the support
features facilitate the interaction between support feature and query feature. This
interaction allows for the capture of fine-grained details in the query images, which
are crucial for accurate segmentation results. The generated features are then com-
bined with the original global prototypes and query features and fed to a decoder to
generate an initial mask. This process allows the model to eliminate background noise
and focus on the target objects. In the following sections, we will elaborate on the
details of the DCM and the Regional Context Module (RCM) that complement the
DCM to improve the performance in few-shot semantic segmentation.

Following previous works (Zhang et al., 2019b; Tian et al., 2020), we use the mid-level
features to form the support and query features respectively as:

Fs = Conv1×1(Cat(F
2
s , F

3
s )) (4.2)

Fq = Conv1×1(Cat(F
2
q , F

3
q )) (4.3)

where Conv1×1 indicates convolution with kernel size as 1×1. F 2
s and F 3

s are extracted
features of support image on the second and third stage of backbone, and so as F 2

q

and F 3
q . Cat denotes the concatenation along channel dimensions. Fs and Fq are

support and query features, which will be fed to DCM. To emphasize the foreground
regions, the support feature Fs is first multiplied with the corresponding mask Ms by:

F
′
s = Fs ⊙Ms (4.4)

where ⊙ is the Hadamard product. Note that the support mask Ms is resized to
the same resolution as Fs. This allows for better alignment between the features
and the mask, which is important for accurate segmentation. Instead of using a
fully connected layer to generate dynamic kernels from the support feature F ′

s, we
utilize a more efficient method based on matrix multiplication (Liu et al., 2020a).
Specifically, we first apply two independent 1 × 1 convolutions to transform F

′
s into

the key K ∈ RH×W×C and value V ∈ RH×W×k2 . This approach efficiently explores
the categorical information in support features from both aspects by modulating F ′

s

from the perspective of channel using the key feature K, and capturing the global
spatial distributions of F ′

s with the value feature V . This allows the dynamic kernels
to be generated in a more effective and computationally efficient manner, leading to
improved performance in segmentation tasks. To generate the dynamic kernels, we
first reshape the key feature and value feature to K ′ ∈ RN×C and V ′ ∈ RN×k2 , where
N = H ×W . Then, the condition matrix D′

s ∈ RC×k2 is obtained by:

D
′
s = (K

′
)TV

′
(4.5)
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Finally, we reshape the condition matrix D′
s ∈ RC×k2 to Ds ∈ RC×k×k to obtain the

dynamic kernels.

After applying the generated kernels Ds to the query features, we still need to address
the scale inconsistency between the support and query objects. To tackle this issue,
we establish multi-scale contextual relations by creating a triplet of dynamic kernels
with various dilation rates R ∈ 1, 2, 3. This allows us to capture objects at different
scales, which is crucial for accurate recognition. However, rather than directly ob-
taining the output by applying these kernels to the query features, we first generate
weighting mapsW1,W2, andW3, each of which corresponds to a different dilation rate.
These maps are then averaged to produce the final weighting map W . This approach
allows us to combine information from multiple scales, resulting in more robust and
accurate feature representation. Finally, we enhance the feature representation even
further through a feature matching process (Zhang et al., 2019b), which leads to the
generation of F̃q by:

F ′
q = Conv1×1(Cat(Fq, Cq, F

D
q )) (4.6)

where Cq is traditional prototype by MAP. Finally, We use F ′
q to predict an initial

mask Y i
q ∈ RH×W×1 via a segmentation head:

Y i
q = Conv1×1(Conv3×3(ASPP (F

′
q))) (4.7)

where ASPP , Conv3×3 and Conv1×1 are the atrous spatial pyramid pooling layer,
3× 3 convolution layer and 1× 1 convolution layer, respectively. This refined feature
representation is a critical step in the matching process and helps to improve the
accuracy of the final segmentation result.

4.3.4 Regional Context Module

The proposed feature F ′
q generated using DCM has been effective in building pixel-wise

relationships between query images and target objects from support images. However,
in complex scenes with interference objects or backgrounds from other classes, relying
solely on the support target regions may not always provide sufficient discrimination.
To address this issue, we introduce RCM, which is designed to mine ambiguous regions
in query images.

In a previous study (Liu et al., 2022c), the authors proposed using proxy masks to
represent the support foreground, background, and distracting regions. While this
approach has been effective in some cases, it has several fatal drawbacks. One such
drawback is the inconsistency between the support and query images, which can lead
to misleading information and result in an enlarged discrepancy of distracting. For
example, in a support image scene, a cat may be lying on a sofa, while in the cor-
responding query image, another cat may be held by a person. This inconsistency
may prevent the model from extracting common cues between the support and query
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images, and such misleading information may accumulate as the discrepancy of dis-
tracting being enlarged. Unlike DCPNet, which relies on support images, our method
focuses on the query image itself, avoiding inconsistencies between the support and
query images. By doing so, RCM can extract the most relevant information from
the query image, thus improving the overall performance of the model. Therefore,
we propose RCM to mine the ambiguous regions in query images to complement the
target regions in support images for better discrimination.

Given the high-level query feature F 4
q , we directly attach a segmentation head behind

to obtain a coarse mask Y c
q ∈ RH×W×1.

Y c
q = Conv1×1(Conv3×3(F

4
q )) (4.8)

As shown in Figure 4.2, the coarse mask is inaccurate with complex noise from back-
ground.

After obtaining the initial and coarse predictions Y i
q and Y c

q , respectively, we refine the
query feature F̃ q by leveraging the differences between the two predictions. Specifi-
cally, while Y qi is designed to capture the target objects, Y c

q provides a more global
view of the scene. Therefore, we can exploit the contrast between these two predic-
tions to extract more discriminative features that can help to distinguish foreground
objects from complex backgrounds.

In other words, the differentiation between Y i
q and Y c

q contains external regional con-
texts that the model can learn from to mine more informative features. By doing so,
the refined query feature can capture the subtle details of the foreground objects that
are difficult to extract from the initial prediction. Additionally, the model can learn
to differentiate between foreground and background more effectively, as the external
contexts provide a more comprehensive view of the scene. This refinement process
thus improves the overall performance of the model by enhancing the discriminative
power of the query feature.

To be specific, we first obtain the regional compensate mask Y r
q ∈ RH×W×1 by:

Y r
q =

∣∣Y c
q − Y i

q

∣∣ (4.9)

The following step involves masked average pooling with Y r
q on the query feature Fq.

This pooling operation allows us to obtain a regional compensate prototype vector
pr ∈ R1×1×C , which we then expand to p

′
r ∈ RH×W×C . The expanded vector p′r

contains information about the regional context of the query image, which can help
us to better distinguish foreground objects from complex backgrounds.

With the expanded vector p′r in hand, we combine it with the activated query feature
F

′
q . This combination is then passed through a segmentation head, allowing us to
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obtain the region refined mask Y m
q ∈ RH×W×1:

Y m
q = Conv1×1(Conv3×3(ASPP (Cat(F

′
q , p

′
r)))) (4.10)

Note that the segmentation head in RCM is not shared with that in DCM. This
mask provides us with information about the foreground objects in the query image,
which we can use to better localize and classify these objects. By using the regional
compensate prototype vector in combination with the query feature, we are able to
improve the overall accuracy of our model in identifying foreground objects in complex
scenes. Finally, we use the ensemble module (Lang et al., 2022) to obtain our final
predict mask Y f

q by:
Y f
q = Fensemble(Y

m
q , Yb) (4.11)

where Y b is the prediction of base learner and Fensemble is a lightweight mask adjust
module to effectively integrate those two signals. Specifically, Fensemble comprises two
1×1 convolutional operations. One operation refines the coarse results from the meta
learner, and the other operation fuses the outputs of the two learners using designated
initial parameters.

4.3.5 k-shot Setting

In the case of k-shot learning where there are more annotated support images avail-
able, previous methods have mainly relied on either averaged support prototypes to
guide query features or direct forward of k times. However, (Lang et al., 2022) has
demonstrated that both these methods are likely to produce sub-optimal results. To
overcome this issue, we adopt the adaptive weighting approach proposed by BAM to
assign importance to different support images. Specifically, we concatenate the ad-
justment factors of support samples to form a unified vector, which is then processed
through two fully connected layers to generate fusion weights. By doing this, we can
effectively capture the importance of each support image and use this information to
guide the learning process.

Once we obtain the fusion weights, the ensemble can be achieved by performing a
weighted summation between feature maps and their corresponding fusion weights.
This approach enables taking into account the contribution of each support image in
a more effective way, leading to better performance in k-shot learning scenarios. By
assigning different weights to different support images, we can capture the nuances
and complexities of the dataset more effectively, which can be particularly beneficial in
scenarios where there is significant variability between different support images. Over-
all, our approach provides a more flexible and robust way to handle k-shot learning
tasks, and we believe it will prove to be a valuable addition to the existing literature
in this area.
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4.3.6 Training Loss

Our training process involves using both binary cross-entropy (BCE) loss and cross-
entropy (CE) loss. To ensure an optimal learning outcome, the training is divided
into two distinct stages: the base-training stage and the meta-training stage. During
the base-training stage, a standard supervised learning paradigm is employed to train
the base learner using CE loss. This is done by comparing the base prediction Y b to
the ground-truth M b for training the base learner as:

Lbase = CE(Y b,M b) (4.12)

Moving on to the meta-training stage, we utilize an episodic learning paradigm to train
both the joint meta learner and ensemble module. In this stage, we use a combination
of BCE losses to enhance the learning process, which encourage the model to focus on
the foreground objects and avoid confusing them with the background or interfering
objects. Specifically, we apply four BCE losses to supervise the prediction of coarse
prediction Y c

q , initial prediction Y i
q , meta prediction Y m

q and the final prediction Y f
q ,

which can be formulated as:

Lmain = BCE(Y c
q ,Mq) +BCE(Y i

q ,Mq)

+BCE(Y m
q ,Mq) +BCE(Y f

q ,Mq)
(4.13)

where Mq is the ground truth of query objects. By doing this, the ensemble module
learns to make a more accurate prediction of the foreground objects.

We also introduce additional constraints on the predictions of support masks Ys by:

Laux =
1

K

K∑
k=1

BCE(Y ck
s ,Mk

s ) (4.14)

where k is the amount of available support pairs. Thus, the total training loss for
each episode is:

Ltotal = Lmain + λLaux (4.15)

where λ is a trade-off and set to 1.0 empirically.

4.4 Experiments

4.4.1 Datasets and Evaluation Metrics.

Datasets. The evaluation and comparison of our method with other state-of-the-art
techniques are carried out on two benchmarks: Pascal-5i (Shaban et al., 2017) and
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COCO-20i (Kang et al., 2019). Pascal-5i is derived from PASCAL VOC 2012 (Ever-
ingham et al., 2010) along with its extension dataset SDB (Hariharan et al., 2011).
It comprises a total of 20 classes, which are distributed equally among four folds,
indicating that each fold consists of five categories. On the other hand, COCO-20i is
a larger benchmark, modified from the MSCOCO (Lin et al., 2014) dataset, with 80
classes. Similarly to Pascal-5i, the categories in COCO-20i are partitioned into four
folds, and each fold contains 20 classes. For evaluating the performance of our model
on both Pascal-5i and COCO-20i datasets, we have used cross-validation technique.

Evaluation metrics. We conduct all the experiments using the Pytorch Toolkit. Fol-
lowing BAM (Lang et al., 2022), the training process is divided into two stages, i.e.,
pre-training of base learner using standard supervised learning paradigm and meta-
training of joint meta learner and ensemble module using episodic learning paradigm.
For base learner, we continue to use PSPNet (Zhao et al., 2017) to predict segmen-
tation results on base classes. As for the meta-training, we freeze the parameters
of encoder and base learner and optimize the rest of the network with SGD for 100
epochs and 50 epochs on Pascal-5i and COCO-20i respectively with initial learning
rate of 5e-3 and 2.5e-3. All the experiments are run on NVIDIA RTX TITAN GPUs.

4.4.2 Ablation Studies

Ablation study on effectiveness of different components. In order to analyze
the effectiveness of each component in DRCNet, we conducted a series of experiments
on Pascal-5i using Resnet-50 as the feature extractor. The results of these experiments
are shown in Figure 6.2. It is clear from the results that both components contribute
to improving the overall performance of the network. Specifically, we observed that (i)
the ensemble operation led to a significant increase in mIoU, with the score increasing
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Table 4.1. Ablation study on effectiveness of different com-
ponents.

Ensemble DCM RCM split0 split1 split2 split3 mean
65.48 71.34 65.38 58.82 65.25

✓ 68.49 73.20 66.40 60.89 67.24
✓ ✓ 68.83 73.89 66.94 61.09 67.69
✓ ✓ 70.02 74.51 67.80 61.72 68.50
✓ ✓ ✓ 70.36 74.68 67.87 61.98 68.72

Table 4.2. Ablation study on k-shot fusion.

Method mIoU FB-IoU
1-shot baseline 68.63 80.10

Mask vote 69.21 80.41
Mask average 69.24 80.89

Feature average 71.49 82.55
Reweighting 71.96 82.93

by 3.05%; (ii) when DCM and RCM were included, the mIoU increased by 3.74%

and 5.00%, respectively. Furthermore, when both DCM and RCM were combined, we
were able to achieve an even greater improvement of 5.32% in mIoU. These results
demonstrate that the combination of these different components is crucial for achieving
optimal performance in DRCNet.

Ablation study on k-shot fusion. DRCNet adopts reweighting, an early fusion
strategy for k-shot setting which learns an adjusting value ψ to allocate weights for
different support samples. We compare our reweighting with two late fusion strate-
gies,i.e.,mask voting (Min, Kang, and Cho, 2021) and mask average (Zhang et al.,
2019b), and feature average (Tian et al., 2020) which is another common early fusion
way. Our reweighting performs best among all the compared methods.

Ablation study on regional context module. To provide a clearer understanding
of the impact of the regional context module(RCM), we performed a comparison of
the predictions obtained at different stages within RCM. As shown in Figure 4.4,
our observations suggest that RCM has a crucial role in addressing missing areas(1st
row), enhancing the completeness of predictions(2nd row), and eliminating ambiguity
in the predicted results(3rd row). In other words, the RCM component of our model
is essential for improving the overall performance and accuracy of the segmentation
task.

4.4.3 Comparison with State-of-the-Art Methods

Pascal-5i. Table 4.4 presents the performance comparisons of our DRCNet with other
state-of-the-art methods on Pascal-5i. Our method obtains the best results in terms of
both mean intersection over union (mIoU) and foreground-background IoU (FB-IoU)
in various situations, i.e., using various backbones (VGG-16 and Resnet-50) and under
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Figure 4.5. Qualitative comparisons of our method with
BAM under 1-shot setting. We show the results of Pascal-5i on

left part and COCO-20i on the right.

both 1-shot and 5-shot settings. Specifically, under the 1-shot few-shot segmentation
(FSS) setting, the mIoUs of our method are consistently better than other methods
on all four folds. Moreover, our method achieves the mean mIoU of 65.20 and 68.63
using VGG-16 and Resnet-50, respectively, outperforming previous state-of-the-art
methods by 1.46% and 1.21%. When it comes to the 5-shot FSS setting, our method
still outperforms the previous best method by 1.46%.

In addition, Table 4.3 compares the average FB-IoU scores on PASCAL-5i. Our
method also outperforms other methods by a remarkable margin, which indicates that
our method can better capture the foreground and background regions of the objects.
Overall, the results demonstrate the effectiveness of our DRCNet in addressing the
few-shot segmentation problem on Pascal-5i.

COCO-20i. In Table 4.5, we compare with state-of-the-art methods on averaged
mean-IoUs using Resnet-50 as the backbone. It is evident from our results that our
proposed method outperforms existing approaches significantly, particularly in the
1-shot setting where we achieve an improvement of 4.59% over the closest competitor.

Qualitative comparison. To qualitatively compare our method with BAM (Lang
et al., 2022), we present predictions on Pascal-5i and COCO-20i datasets under the
1-shot setting. The predictions demonstrate that our DCRNet is capable of capturing
multiple contexts through DCM and RCM, thereby reducing the impact of complex
backgrounds and distracting objects (2nd, 5th, and 8th columns). Moreover, our
method outperforms BAM (Lang et al., 2022) in terms of predicting structurally
consistent results (4th and 7th columns). Thus, based on our observations, we can
conclude that DCRNet has superior performance in comparison to BAM (Lang et al.,
2022) under the 1-shot setting.
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Table 4.3. Averaged FB-IoU results of 4 folds on PASCAL-5i.

Backbone Methods FB-IoU (%)
1-shot 5-shot

VGG16

PFENet 72.00 72.30
HSNet 73.40 76.60
DPCN 73.70 77.20
NTRE 73.10 74.20
BAM 77.26 81.10

DRCNet 78.11 81.79

ResNet50

PFENet 73.30 73.90
HSNet 76.70 80.60
DPCN 78.00 80.70
NTRE 77.00 78.40
BAM 79.71 82.18

DRCNet 80.10 82.93
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Chapter 5

Learning Motion and Temporal
Cues for Unsupervised Video
Object Segmentation

5.1 Introduction

In this study, we tackle the difficulties associated with unsupervised video object
segmentation (UVOS) by introducing an efficient algorithm called MTNet, which si-
multaneously leverages motion and temporal information. In contrast to previous
approaches that focus solely on appearance and motion or temporal relationships,
our method unifies these elements within a single framework. MTNet effectively com-
bines appearance and motion features during the encoding process, resulting in a more
comprehensive representation.

To effectively utilize the complex long-range context and information present in videos,
we incorporate a temporal transformer module that enables efficient inter-frame in-
teractions throughout video clips. Subsequently, a set of decoders is arranged in a
cascading manner across all feature levels, aiming to fully exploit their capabilities in
generating increasingly accurate segmentation masks.

By doing so, MTNet offers a powerful and streamlined framework that investigates
both temporal and cross-modality knowledge to reliably identify and track the primary
object with accuracy across a variety of challenging situations. Experiments conducted
on an extensive range of datasets underscore the efficacy of our proposed methodology.

5.2 Background

Video Object Segmentation (VOS) is a fundamental task in computer vision, which
involves precisely locating and segmenting objects in all frames of a video. Different
from semi-supervised video object segmentation (SVOS) which relies on ground-truth
masks in the first frame to perform tracking and segmentation in subsequent frames,
unsupervised video object segmentation (UVOS) aims to adaptively segment objects
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without any human intervention. Due to its flexibility, UVOS has broad applications,
such as in video editing (Xu et al., 2019; Zeng, Fu, and Chao, 2020), virtual real-
ity (Zhou et al., 2019), and autonomous driving (Hu et al., 2023). However, obtaining
precise segmentation results in complex scenes still remains a challenging problem for
UVOS.

As a video dense prediction task, some methods naturally associate the near frames
via dynamic attention mechanism (Wang et al., 2019c), graph neural networks (Wang
et al., 2019b) and pyramid constrained self-attention (Gu et al., 2020). However,
these video-based approaches may still struggle to precisely locate the primary object
due to several factors. One primary issue is the lack of motion information, which is
critical for providing prior knowledge to distinguish the importance and determining
the trajectory of objects in unsupervised video object segmentation (UVOS). As a
result, high-interference objects can significantly impair the performance of existing
algorithms when dealing with complex videos. Moreover, while some methods incor-
porate frame-to-frame relationships to some extent, their performance may still be
inadequate for extremely long-term videos.

Currently, motion-appearance modeling serves as the basis for most advanced un-
supervised video object segmentation (UVOS) methods. Optical flow is utilized as
a motion guide, whereas appearance cues are extracted from the original images in
these approaches. By combining these two modalities, the model can capture the
characteristics of the primary object, as well as its movements throughout the video.
Although such complementary manner has been proven to be effective in UVOS across
several datasets, there is still much room to improve. Firstly, those fusion mechanisms
typically depend on sophisticated operations to reach superior performance, and the
increasing number of model parameters poses a challenge to satisfy the practical ap-
plication requirements on devices. Some methods (Zhou et al., 2020b; Zhen et al.,
2020; Ji et al., 2021; Yang et al., 2021b) even require a Conditional Random Fields
(CRF) (Krähenbühl and Koltun, 2011) post-processing step to obtain well-defined
boundaries, which further increases the computational burden of already resource-
intensive algorithms. Secondly, they do not explicitly model the video information,
which is crucial for tracking the primary object in situations where rapid object dis-
placement and occlusions occur.

After observing the limitations of the methods mentioned above, it is natural to
make the suspicion: what makes for an UVOS algorithm capable of handling various
challenging scenarios efficiently? Generally, an ideal tracker should be able to both i)
precisely locate the most important object from a video sequence, 2) robust to handle
intricate and long videos in which disappear and occlusion of objects may emerge
frequently, and 3) fast to run on edge devices.

Motivated by the aforementioned principles, we present a methodical and efficient al-
gorithm, referred to as MTNet, which concurrently exploits motion and temporal cues
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to address the complex unsupervised video object segmentation task. Different from
previous method that merely inherent appearance with motion (in Figure) or mod-
eling temporal relations, our method takes both their merits by collaborating them
in a unified framework. More specifically, the Bi-modal Fusion Module is devised to
effectively integrate and merge appearance features and motion features during the
feature extraction process within encoders, promoting a more complementary repre-
sentation. In order to comprehensively apprehend the intricate long-range contextual
dynamics and information embedded within videos, a Mixed Temporal Transformer
is subsequently proposed, which facilitates the achievement of efficacious inter-frame
interactions throughout a video clip. the Cascaded Transformer Decoders are incor-
porated across features of various levels, with the goal of generating progressively
more accurate segmentation masks. Taken all those together, MTNet provides an
end-to-end, more powerful and compact framework that explores both temporal and
cross-modality knowledge to robustly localize and track the primary mask accurately
and robustly.

We conduct experiments on a wide range of unsupervised video object segmentation
(UVOS) datasets and video salient object detection (VSOD) datasets, making several
noteworthy observations:

• MTNet exhibits stronger capability in handling long-term and motion occlu-
sions, positioning itself as a more practical UVOS tool for both academia and
industry.

• MTNet achieves state-of-the-art results across a wide range of UVOS and VSOD
benchmarks, demonstrating its ability to handle various scenarios and tasks.

• MTNet offers a significant advantage in terms of computational efficiency, as
evidenced by its lightweight architecture. Specifically, the compact MTNet
achieves a speed of 43.4 frames per second (fps) with a 2080Ti GPU, indicating
its potential for real-time applications and suitability for resource-constrained
environments.

5.3 Our approach

In this section, we start by presenting a overview of our proposed MTNet architecture
in § 5.3.1. Subsequently, we delve into the details of Bi-modal Fusion Module, Mixed
Temporal Transformer, and Cascaded Transformer Decoder in § 5.3.2, § 5.3.3, and
§ 5.3.4, respectively. Lastly, we furnish the details of loss functions in § 5.3.5.

5.3.1 Overview

Given an input video V = {Vi ∈ Rw×h×3}Ni=1, the objective of UVOS is to compute
binary segmentation masks for the corresponding frames: S = {Si ∈ 0, 1w×h}Ni=1.
To achieve this, we divide the input video and its corresponding length into C clips,
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Figure 5.1. (a) The proposed MTNet pipeline utilizes t frames of
images and flow maps as input to extract multi-level features. These
features at each level are fused by the (b) Bi-modal Feature Fusion
Module. Subsequently, the temporal modeling of high-level features
are achieved through the (c) Mixed Temporal Transformer. Finally,
the output masks are generated using the (d) Dilated Transformer

Decoder.

where the number of clips C = N
T , and T represents the length of each clip. Fol-

lowing the approach of HFAN (Pei et al., 2022), we employ RAFT (Teed and Deng,
2020) to extract the optical flow, denoted as O = {Oi ∈ Fw×h×3}Ni=1. Subsequently,
the extracted optical flow is partitioned into C clips, in accordance with the division
of the input video. The overall pipeline of MTNet is shown in Figure 5.1(a), which
primarily consists of three components: Bi-modal Fusion Module, Mixed Temporal
Transformer, and Dilated Transformer Decoder. Initially, we use ConvNeXt (Liu et
al., 2022f) as the shared encoder in our approach to extract appearance and motion
features from video frame clips and their associated flow maps, respectively. Prac-
tically, the extraction of appearance and motion features contains four stages, and
we use k ∈ [1, 2, 3, 4] to denote the each stage. In all both stages of the encoder,
Bi-modal Fusion Module is employed to fuse the corresponding appearance and mo-
tion features. At the last two stages where the resolutions are reduced to H

16 ×
W
16

and H
32 ×

W
32 , Mixed Temporal Transformer is utilized to model temporal relationships

between frames efficiently. Finally, the acquired multi-level features are input into the
Dilated Transformer Decoder to generate precise mask predictions for the video clip.
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5.3.2 Bi-modal Fusion Module

In various video tasks (Zhu et al., 2017; Xue et al., 2019), optical flow plays a vital
role by supplying motion data between successive frames, facilitating the model to
learn precise estimations of temporal variations. Prior research in unsupervised video
object segmentation (UVOS) (Zhou et al., 2020b; Yang et al., 2021b; Ji et al., 2021;
Zhang et al., 2021b; Pei et al., 2022) has employed elaborate designs to align optical
flow with video frames, guiding the prediction process. While these approaches have
led to significant performance improvements, the intricate operations involved may
potentially impede the efficiency of both training and inference stages. In light of this,
we introduce a streamlined approach by developing Bi-modal Fusion Modules (BFMs)
to efficiently combine features at each level derived from the encoder. We denote
the extracted appearance features and motion features as {Ak}Kk=1 and {Mk}Kk=1

respectively. For brevity, we use the k-level as an illustrative example, while noting
that the operation process can be readily generalized to other levels. As shown in
Figure 5.1, The appearance and motion features are initially compressed using two
separate 3x3 convolutional layers, followed by a concatenation of the resulting outputs.
Subsequently, these combined features are processed through a series of operations
designed to obtain the weighted vectors for each modality:

Fk = Conv(Cat(ConvS(Ak), ConvS(Mk))), (5.1)

FA
k ,FM

k = Split(Fk) (5.2)

gA = GAP (σ(FA
k )), (5.3)

gM = GAP (σ(FM
k )), (5.4)

where ConvS and σ denote the 1 × 1 convolution to shrink feature dimensions and
the Sigmoid function. The fused feature Fk is obtained by concatenating appearance
features Ak and motion featuresMk, followed by a 1×1 convolutional layer for initial
fusion. The resulting feature is then divided into two groups, FA

k and FM
k , which are

subsequently processed by Sigmoid and Global Average Pooling(GAP) operations to
derive the weighted vector for each respective modality. Then, the dot production ⊙ is
calculated between input features and the corresponding weighted vector to adaptively
enrich the feature of both modalities:

Âk = gA ⊙Ak, (5.5)

M̂k = gM ⊙Mk, (5.6)

The fused features undergo further concatenation and are processed through a parallel
of attention operations. Subsequently, a Sigmoid function is applied to constrain the
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Figure 5.2. Illustration of Local Window MHSA (top) and Global
MHSA (bottom).

resulting values to the interval [0,1], enabling effective re-weighting:

Rk = Cat(Âk,M̂k) (5.7)

R̂k = σ(Cattn(Rk) + Sattn(Rk)) (5.8)

where the Cattn and Sattn denotes co-channel attention and co-spatial attention, re-
spectively. With the re-weighted R̂k, we can finally obtain the output of BFM via:

Bk = R̂k ⊙ Âk + (1− R̂k)⊙ Âk (5.9)

where k ∈ {1 : K} represents the features from different stages of the backbone, in
alignment with prior works (Ji et al., 2021; Pei et al., 2022), we set K = 4 for our
experiments.

5.3.3 Mixed Temporal Transformer

To enhance the temporal relationship, we introduce the Mixed Temporal Transformer,
which comprises two transformer layers: the local temporal transformer layer (LTTL)
and the global temporal transformer layer (GTTL). This combination effectively cap-
tures long-term dependencies in an efficient manner. As is shown in Figure 5.2(d),
Given the input feature Bk ∈ RT×H×W×d, where T , H, W , and d represent tem-
poral length, height, width, and dimension, respectively, local temporal transformer
layer (LTTL) divides the input feature into H×W

M2 windows (Liu et al., 2021b), with
each window having the shape T × W × W × d. Within each local window, the
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standard multi-head self-attention is computed. To further enhance the dependencies
captured by the LTTL, a global temporal transformer layer (GTTL) is incorporated,
which reduces the resolution of keys and values to achieve computational efficiency
when calculating self-attention. Specifically, the computational process of the Mixed
Temporal Transformer can be represented as:

Lk = LTTL(LN(Bk)) +Bk, (5.10)

L
′
k = FFN(LN(Lk)) + Lk, (5.11)

Gk = GTTL(LN(L
′
k)) + L

′
k, (5.12)

G
′
k = FFN(LN(Gk)) +Gk, (5.13)

where LN and FFN represents the layer norm and feed forward network in Trans-
former (Vaswani et al., 2017). Additionally, we present a comparison between Local
Window Multi-Head Self-Attention (LW-MHSA) and Global Summarization Multi-
Head Self-Attention (GS-MHSA) in Figure 5.2. This comparison demonstrates that
LW-MHSA primarily emphasizes interactions within temporal grids, whereas GS-
MHSA effectively captures a more holistic understanding of the integral information.
By integrating both transformer layers, the Mixed Temporal Transformer adeptly
models the relationships between adjacent frames, which is essential for ensuring con-
sistent object localization within the video clip.

5.3.4 Cascaded Transformer Decoder

Given the input features {Fk}Kk=1 from four stages, where k ∈ {1, 2} from Bi-modal
Fusion Module, and k ∈ {3, 4} from Mixed Temporal Transformer, the Cascaded
Transformer Decoders (CTDs) can regulate the feature and pass provital information
from deep to shallow. Figure 5.1(a) and show the whole decoding process. Specifically,
the the whole process in our decoder can be formulated as:

F̂k =

{
CTD(Fk), if k = 4

CTD(Fk, ˆFk+1), if k = 1, 2, 3
(5.14)

Figure5.1(d) provides a detailed illustration of each Cascaded Transformer Decoder,
which draws inspiration from recent advancements in incorporating convolutions into
transformer architectures(Guo et al., 2022; Liu et al., 2022f). Specifically, we denote
the shallower input feature with higher resolution as Fshal and the deeper input feature
with lower resolution as Fdeep. The Cascaded Transformer Decoder initially extracts
information from Fshal as follows:

F̂shal = CA(DWConv(Fshal)), (5.15)

where DWConv signifies the sequential operations of a depth-wise convolution, fol-
lowed by batch normalization and a ReLU activation function, while CA denotes
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channel attention. Subsequently, the deep feature information is incorporated as fol-
lows:

F = DWConv(Up(Fdeep) + F̂ shal) + Fshal, (5.16)

F̂ = FFN(LN(F )) + F (5.17)

where Up refers to bilinear up-sampling, employed to align the resolution of features,
and F̂ represents the output. Upon completion of the overall process outlined in
Eq.5.14, a 1 × 1 convolutional layer and bilinear interpolation operation are utilized
as the mask decoder to predict the predictions masks P .

5.3.5 Loss Functions

We adopt deep supervision strategies to supervise the predictions at different levels
for stabilizing the training process. Specifically, the predictions at frame t can be
denoted as P t ∈ {P t

s}4s=2, where P t
1 is the final prediction, and {P t

s}4s=2 represents
the auxiliary predictions from various features. Binary cross-entropy loss is used to
supervise the training process by comparing P t and the ground-truth G:

L =
1

H ×W
(
∑
x,y

LBCE(P
t
1(x, y), G

t(x, y))

+λ

4∑
s=2

∑
x,y

LBCE(P
t
s(x, y), G

t(x, y)),

(5.18)

where (x, y) represents the spatial coordinates within frame t, while λ is set to 0.5 to
balance loss terms. During inference and evaluation, we utilize the original prediction
results for VSOD, while the argmax is further employed to generate binary masks for
UVOS.

5.4 experiments

5.4.1 Experimental Setup

UVOS Datasets. We assess our method on four publicly available datasets: DAVIS-
16 (Perazzi et al., 2016), FBMS (Ochs, Malik, and Brox, 2013), YouTube-Objects (Prest
et al., 2012), and Long-Videos (Liang et al., 2020). DAVIS-16 (Perazzi et al., 2016)
comprises 50 high-quality videos with dense annotations, including 30 training videos
and 20 validation videos. FBMS (Ochs, Malik, and Brox, 2013) contains 59 natural
videos featuring multiple target foreground objects, with 29 sequences designated for
training and 30 for testing. YouTube-Objects (Prest et al., 2012) consists of 126 videos
spanning 10 object categories, with ground-truth annotations provided sparsely every
ten frames. Long-Videos (Liang et al., 2020) encompasses three long videos, totaling
over 7,000 frames.
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VSOD Datasets. We conduct experiments on four widely-used datasets: DAVIS-
16 (Perazzi et al., 2016), ViSal (Wang, Shen, and Shao, 2015) and SegTrack-V2 (Li
et al., 2013) and DAVSOD (Fan et al., 2019). Among them, DAVIS-16 (Perazzi et al.,
2016) is the same as that employed for UVOS. ViSal (Wang, Shen, and Shao, 2015)
and SegTrack-V2 (Li et al., 2013) are earlier datasets for video object segmentation,
comprising 17 and 13 video sequences respectively. DAVSOD (Fan et al., 2019) repre-
sents a more challenging dataset for video segmentation, characterized by its complex
scenes, salience shifts, and diverse attributes,

Evaluation metrics. In accordance with (Ji et al., 2021; Pei et al., 2022), we report
mean region similarity (J ) and mean boundary accuracy (F) for evaluating UVOS
performance. For VSOD, we employ four standard metrics: structure-measure (Sα,
α=0.5), maximum enhanced alignment measure (Emax

ξ ), maximum F-measure (Fmax
β ,

β2=0.3), and mean absolute error (MAE).

Training details. All experiments are conducted using the PyTorch Toolkit. Fol-
lowing HFAN (Zhou et al., 2020b; Pei et al., 2022), we divide the training procedure
into two stages: pre-training on the YouTube-VOS (Xu et al., 2018) dataset, followed
by fine-tuning on the DAVIS-16 (Perazzi et al., 2016) training set. We employ the
tiny version of ConvNext (Liu et al., 2022f) as the shared encoder for extracting both
appearance and motion features. RAFT is utilized to generate optical flow maps,
which are then converted to a three-channel format. During training, we sample three
frames from the same video following the schedule in STCN (Cheng, Tai, and Tang,
2021b) to create a video clip. These video clips undergo data augmentation, including
random flips, random crops, random rotations between [-15, 15] degrees, and color
jittering; the video order is reversed with a 0.5 probability. All videos are resized to
512 × 512. We employ the AdamW optimizer and Binary Cross-Entropy (BCE) loss
for both training stages, while Automatic Mixed Precision (AMP) (Micikevicius et al.,
2017) is utilized to expedite the process.

Inference. Upon finishing the training process, we directly evaluate our model on
various datasets without applying any dataset-specific fine-tuning.

Our model is specifically designed for offline UVOS, enabling inferences with arbitrary
lengths and yielding performance that varies depending on the length. Specifically,
for a test video V and its corresponding flow maps O, both containing N frames, we
first partition V and O into C clips, where C = ⌊NT ⌋ and T represents the test length
of each clip. Subsequently, we feed each clip into our model and directly obtain the
clip-level results, enabling simultaneous and seamless primary object segmentation
and tracking.

5.4.2 Comparisons with State-of-the-Art Models

We show the performance comparisons of our MTNet with other state-of-the-art meth-
ods on four UVOS benchmarks and four VSOD benchmarks.
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Figure 5.3. Visual comparisons of videos from diverse scenarios.

DAVIS-16. The DAVIS-16 validation set, comprising 20 videos, is the most com-
monly used benchmark in UVOS. As illustrated in Table 5.1, MTNet surpasses the
recent state-of-the-art method HFAN (Pei et al., 2022) in terms of J Mean, F Mean,
and J&F Mean, while requiring significantly less inference time. Compared to meth-
ods (Yang et al., 2021b; Ji et al., 2021; Pei et al., 2022) that rely on Conditional
Random Fields (CRF) or Multi-Scale testing(MS), our approach demonstrates ad-
vantages in both inference speed and segmentation quality.

YouTube-Objects. Validation experiments on the Youtube-Objects dataset (Prest
et al., 2012) do not require external fine-tuning, which serves to validate the model’s
generalization ability across diverse scenarios. As shown in Table 5.2, our method is
outperformed by other approaches in certain categories, including Aeroplane, Boat,
Horse, and Motorbike. However, our method exhibits superior performance in the
remaining categories, as well as in the overall average results, particularly in Dog and
Train, where it surpasses the second-best method by 4.4% and 12.4%, respectively.

Long-Videos. Long-term videos have been proven to be both challenging and crucial
in tracking tasks (Dai et al., 2020; Zhang et al., 2021d), warranting increased attention
in unsupervised video object segmentation. The Long-Videos dataset (Liang et al.,
2020) comprises three video sequences, each averaging 2500 frames. In this benchmark,
we compare our method not only with other UVOS approaches but also with more
competitive SVOS methods that incorporate additional priors. As shown in Table 5.3,
the proposed MTNet surpasses HFAN (Pei et al., 2022) by 1.2% in J&F Mean,
highlighting the effectiveness of the temporal modules in handling long-term videos.
However, a performance gap still exists when compared to SVOS methods.

Main results on VSOD datasets. We compare the performance of our MTNet in
three VSOD datasets, i.e., DAVIS-16 (Perazzi et al., 2016), ViSal (Wang, Shen, and
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Figure 5.4. Influence of clip length during inference.

Shao, 2015), SegTrack-V2 (Li et al., 2013) and DAVSOD (Fan et al., 2019). Specif-
ically, we compare MTNet with 10 state-of-the-art VSOD methods. The results are
sourced either directly from the original publications or re-measured by us, adhering to
a strict evaluation process that employs the original testing codes and model weights
in their projects. As shown in Table 5.4, out proposed MTNet exhibits exceptional
performance in the majority of datasets, consistently achieving the best results across
various evaluation metrics. In Davis-16, MTNet outperforms previous best model
HFAN (Pei et al., 2022) by 1.0% in terms of Sm and Fm, and similar leading trend
can also be observed in FMBS abd DAVSOD.

Visualization Results. We present qualitative results of our method in Figure 5.3,
illustrating the capability of our approach to produce high-quality outcomes. In the 1st

row, the person in red shirt and blue jeans is dancing street dance, the pose of which
changes continuously. Our MTNet could consistently captures the person despite the
background is full of onlookers, which is quite distracting. In the 1st row, we observe an
individual wearing a red shirt and blue jeans engaging in a street dance performance,
characterized by a continuous change in poses. Despite the presence of numerous
onlookers in the background, which could potentially be quite distracting, our method
consistently and accurately captures the person of interest. Similar phenomena can be
observed in 2nd and 4th rows as well, where the scale and appearance of the racing car
undergo dramatic changes, and the ‘blueboy’ activates freely throughout the room. In
the videos where multiple objects co-exists (3nd and 5th rows), our method can still
achieve accurate tracking and segmentation. These cases demonstrates the robustness
of our approach in effectively distinguishing the target subject from complex and
dynamic backgrounds.

5.4.3 Ablation Studies

In this section, we conduct ablation studies on the DAVIS-16 and FBMS datasets.
We use the ConvNext version of MTNet as the standard model in our ablation study,
with the results reported in Table 5.5 (#1).
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Figure 5.5. J&F Mean when applying various corruptions on
DAVIS-16 (Perazzi et al., 2016).

Design choices of modules. We introduce the Bi-modal Fusion Module (BMF),
Mixed Temporal Transformer (MTT), and Cascaded Transformer Decoder (CTD)
to perform robust and accurate object tracking and segmentation. We validate the
effectiveness of each component. Table 5.5 (#2) presents the results of our baseline,
which is a simple combination of the encoder and FPN without any specific designs.
Experiments #3-#7 add different components to the baseline in a controlled manner.
Compared with the baseline results, we can observe that both components contribute
to the performance. In particular, adding either MTT or CTD results in a noticeable
gain, with both components increasing the average J&F Mean by 3.6. When both
components are used, the absolute increase further reaches 5.5, yielding the best
performance among all configurations.

Impact of modality. To investigate the influence of input modality on performance,
we conduct experiments and present the results in Table 5.5(8-11). In these exper-
iments, we employ a single-stream encoder for feature extraction, and the Bi-modal
Fusion Module is omitted. The terms ‘Add’ and ‘Concat’ indicate that images and
flow maps are pre-fused using addition or concatenation before being fed into the
model. The observed decline in performance for both modifications underscores the
importance of utilizing both modalities and the dual-branch architecture.
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Influence of training stages. Since our method undergoes a two-stage training pro-
cess, i.e., pre-training on YouTube-VOS (Xu et al., 2018) first and then fine-tuning
on DAVIS-16 (Perazzi et al., 2016), we conduct ablation experiments to evaluate the
impact of each stage. The results can be seen in Table 5.5(#12,#13). When removing
the fine-tuning stage and pre-training stage, the model experiences significant perfor-
mance decreases of 9.9 and 6.8, respectively, indicating that both training stages are
crucial.

Clip length. We examine the impact of varying clip lengths during the inference
stage. Our experiments are conducted on three benchmark datasets: DAVIS-16 (Per-
azzi et al., 2016), FBMS (Ochs, Malik, and Brox, 2013), and Long-Videos (Liang
et al., 2020). As illustrated in Figure 5.4, the F&J Mean for DAVIS-16 and FBMS
exhibits only minor changes as the clip length increases. Conversely, the Long-Videos
dataset demonstrates a significant improvement in performance as a function of clip
length, with this trend persisting until saturation is reached as t extends. Based on
these findings, we set t = 12 as the standard clip length in our experiments.

Robustness to corruptions. Robustness is a crucial aspect in various domains,
including segmentation (Xie et al., 2021a) and autonomous driving (Xie et al., 2023;
Ge et al., 2023). We sample nine common corruptions from ImageNet-C (Hendrycks
and Dietterich, 2019) and apply the most intense degrees to the DAVIS-16 (Perazzi
et al., 2016) validation set. Importantly, all results are obtained through zero-shot
testing, without any fine-tuning. As depicted in Figure 5.5, our method consistently
exhibits superior robustness compared to other approaches under a diverse range of
corruptions. This finding underscores the potential of our method to deliver reliable
performance in challenging and unpredictable environments.

Table 5.5. Ablation study on DAVIS-16 (Perazzi et al., 2016)
and FBMS (Ochs, Malik, and Brox, 2013). We use gray, green,
pink and yellow colors to denote the proposed method, ablations of
designed modules, input modality and training process, respectively.
△ denotes the performance change (averaged over benchmarks) com-

pared with the MTNet.

# Method DAVIS-16 FBMS △

1 MTNet 89.7 83.8 -
2 Baseline 86.8 75.9 -5.5
3 w/ BMF 87.6 77.0 -4.5
4 w/ MTT 88.7 81.2 -1.9
5 w/ CTD 88.9 81.0 -1.9
6 w/ BMF+MTT 89.2 80.5 -2.0
7 w/ BMF+CTD 89.3 82.1 -1.1
8 w/o Appearance 82.0 63.1 -16.0
9 w/o Motion 85.9 79.2 -4.3
10 Add Motion&Appearance 87.1 72.3 -7.1
11 Concat Motion&Appearance 86.3 77.2 -5.0
12 w/o Fine-tuning 82.7 71.2 -9.9
13 w/o Pre-training 84.8 75.2 -6.8





Statement of Authorship
Title of Paper  

Publication Status Published Accepted for Publication
 

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in 
manuscript style  

Publication Details  

 

  

Principal Author
Name of Principal Author (Candidate)

 

 

 

 
Contribution to the Paper

  
Overall percentage (%)

 

 

Certification: This paper reports on original research I conducted during the period of my Higher Degree by 
Research candidature and is not subject to any obligations or contractual agreements with a 
third party that would constrain its inclusion in this thesis. I am the primary author of this paper.

   
Signature Date

 
 

  

  

  

 

  

Co-Author Contributions
By signing the Statement of Authorship, each author certifies that:

i.

ii.

iii.

the candidate’s stated contribution to the publication is accurate (as detailed above);

permission is granted for the candidate in include the publication in the thesis; and

the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution. 

Name of Co-Author

  
Contribution to the Paper

    
Signature Date

 

  

Name of Co-Author

  

Contribution to the Paper

    

Signature

Date

  

 

 

 

Name of Co-Author

Contribution to the Paper

Signature

Date

Submitted to ACM MM 2023

Yunzhi Zhuge

Proposed the idea, made partial experiments and wrote the manuscript of the paper.

70%

10/05/2023

12/05/2023

12/05/2023

12/05/2023

BEVS4: Semi-supervised Bird's-eye-view Semantic Segmentation

Jiayuan Zhou

Make partial experiments

Lijun Wang

Discussion, revision of paper

Yifan Wang

Discussion

√



Date

Contribution to the Paper

Signature

Name of Co-Author Huchuan Lu

Discussion

12/05/2023



71

Chapter 6

BEV-S4 Semi-supervised
Bird’s-eye-view Semantic
Segmentation

Su
p
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G
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Segmentation BEV Front Back Back_Right

Figure 6.1. Visualizations of the supervised baseline and our semi-
supervised method using 3D bounding boxes under the BEV view (2nd
column) and selected image views (3rd-5th columns) are presented.
The 3D bounding boxes for each view are transformed from the pre-
dictions of BEV segmentation (1st column). It is important to note
that our method is purely vision-based, and the LiDAR maps in both

rows represent the ground truth for illustrative purposes.

6.1 Introduction

Recently, bird’s-eve-view semantic segmentation have drawn much attention due to
the emergence of autonomous driving. However, most of the previous methods are
trained using fully-supervised learning paradigm, requiring large amounts of human



72 Chapter 6. BEV-S4 Semi-supervised Bird’s-eye-view Semantic Segmentation

annotations which are labor-intensive to obtain. Drawing inspirations from the preva-
lent of semi-supervised learning in 2D semantic segmentation, we present a simple-yet-
effective baseline approach utilizing a teacher-student framework for bird’s-eye-view
semantic segmentation, which achieves comparable results to fully-supervised counter-
part with limited annotations. In this work, we aim to learn BEV semantic segmen-
tation with limited manual annotations. To address this novel and challenging task,
we propose BEV-S4: a baseline method for semi-supervised semantic segmentation
in BEV space. Employing a teacher-student architecture, our method emphasizes
BEV pseudo labeling, intricately designed with data perturbations and threshold-
ing. To fully utilize the spatial-temporal properties of BEV, we further propose a
teacher temporal ensemble approach to enhance the quality of pseudo-labels with-
out introducing extra computational costs during inference. Extensive experiments
on nuScenes dataset (Caesar et al., 2020) demonstrate that our method significantly
boosts the performance under various proportions of labeled training data. We believe
our method would serve as a strong baseline and attract more attention to learning
BEV perception with fewer labels.

6.2 Background

Bird’s-eye-view (BEV) perception tasks, such as 3D object detection (Huang et al.,
2021), BEV segmentation (Zhou and Krähenbühl, 2022), motion prediction (Zhou and
Krähenbühl, 2022), and lane detection (Zhou and Krähenbühl, 2022), play a crucial
role in the fields of autonomous driving and robotics. These tasks are essential for
enabling vehicles and robots to accurately perceive their surroundings, understand
the spatial relationships between objects, and make informed decisions based on the
information they own.

Among the various BEV perception tasks, BEV segmentation is of particular interest
as it focuses on performing semantic segmentation on the surrounding regions and
objects. This encompasses, among others, the categorization of areas such as drivable
areas, lanes, car parks, and vehicles. As a fundamental step towards constructing the
BEV map, BEV segmentation has been paid significant attention in recent times.

However, the development of high-performance BEV segmentation algorithms neces-
sitates the utilization of expensive and labor-intensive manual annotation processes.
Take the widely used nuScenes as an example, the segmentation annotations are ob-
tained by transforming 1.4M 3D bounding boxes annotations over 40K frames to the
BEV space. In comparison to the traditional manual annotation processes, which can
be both limited in scope and financially costly, the acquisition of raw data directly
from driving vehicles offers a scalable and cost-effective alternative. This makes it
an attractive point for researchers looking to overcome the challenges associated with
manual annotation and advance the algorithms in this field.
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The utilization of the plentiful yet unlabeled data for advancing BEV perception
constitutes a crucial and prospective direction of research, which has received limited
attention until now. As completely getting rid of the annotations is unrealistic, in this
work we seek into the paradigm of semi-supervised learning, which has been proved to
be effective in a wide range of 2D dense prediction tasks, e.g.semantic segmentation,
object detection and point cloud semantic segmentation. However, directly migrating
the existing semi-supervised pipeline to solve bird’s-eye-view can be difficult, as there
exists a huge modality gap between bird’s-eye-view and image view.

Semi-supervised semantic segmentation methods that have been developed recently
primarily rely on consistency training, which shows benefits such as increased stabil-
ity and better generalization capabilities. A representative work in the field of semi-
supervised semantic segmentation is CowMix (French et al., 2019), which implements
a consistency enforcement strategy on the outputs generated from mixed inputs with
their corresponding predictions using the MixUp (Zhang et al., 2017). Other subse-
quent studies have either used multiple decoders on unlabeled data to produce various
predictions while ensuring consistency between the main decoder’s outputs and the
others (Ouali, Hudelot, and Tami, 2020), or employed cross pseudo-supervision, in
which the consistency between two segmentation networks is ensured by supervising
one branch with the pseudo labels from the other and vice versa (Chen et al., 2021).
Despite advancements in the field of semi-supervised semantic segmentation, the de-
terminants of its efficacy are yet to be explicitly established due to the insufficiency of
evaluation criteria. In making quantitative comparisons, the lack of strict alignment
between variables such as segmentation networks and input resolutions can result in
unfair comparising results.

Therefore, our motivations towards resolving the issue of semi-supervised bird’s-eye-
view semantic segmentation are:

• What is the potential of exploring established semi-supervised learning ap-
proaches and designs to augment the effectiveness of our task?

• How to address our task by considering its intrinsic essence and seeking more
effective solutions?

We start designing from the perspective of data augmentation, the goal of which is to
make the model invariant and robust to various augmentations applied to the input,
and is a widely explored approach in the consistency training based semi-supervised
semantic segmentation methods. Previous works (Chen et al., 2021; Yuan et al., 2021;
Yang et al., 2022; Zhao et al., 2022) already propose various data augmentation strate-
gies for generating discrepant inputs and enforcing consistency on them. However, due
to the lack of uniform standards, many data augmentations are difficult to quantify in
terms of their transferability in other pipelines. CPS (Chen et al., 2021) Incorporates
with the Cutmix (Yun et al., 2019) as the data augmentation in which both the input
two source images and the two pseudo segmentation maps are mixed for inputs of



74 Chapter 6. BEV-S4 Semi-supervised Bird’s-eye-view Semantic Segmentation

30

35

40

45

50

55

60

65

5% 10% 20% 30% 40%

Sup Semi-sup
60.3(+18.1)

42.2

47.9

60.8(+12.9)

52.3

61.0(+8.7)

54.5

60.5(+6.0)

m
Io
U
(%

)

34.9

50.6(+15.7)

Figure 6.2. mIoU comparisons of supervised baseline and our
semi-supervised method on nuScenes.

networks and cross supervision recpectively. Following RandAugment (Cubuk et al.,
2020), (Yuan et al., 2021) establish a pool or operations which is composed of 16 image
transformations to form the strong augmentation. ST++ (Yang et al., 2022) further
presents a thorough empirical and systematic analysis of the efficacy of strong data
augmentation techniques on unlabeled data. The results indicate that performing
strong augmentations on labeled data may have a detrimental effect on the integrity
of the underlying clean data distribution. In contrast, implementing strong augmen-
tation solely on unlabeled data leads to superior performance outcomes. Inspired by
those prior works, we carefully design a set of data augmentation techniques for our
task, aims at enhancing the performance and robustness of our model.

Besides, BEV perception is a temporal task, where the implementation of efficient
temporal fusion strategies holds great promise for enhancing performance. BEV-
Former (Li et al., 2022) incorporates temporal self-attention to recurrently integrate
historical BEV information with temporal information, resulting in improved velocity
estimation of moving objects and detection of heavily occluded objects with minimal
computational overhead. SOLOFusion (Park et al., 2022a) highlights the limitation
of utilizing only a limited number of recent frames, which restricts the localization
capacity and undermines the advantages of prior works’ temporal fusion techniques.
After exploiting the utilization of a 16-frame BEV cost volume, which already demon-
strates improved results, they make a further step by employing short-term temporal
fusion in conjunction with a computationally efficient sampling module to achieve even
better performance. Considering that incorporating an additional external temporal
module may introduce computational complexity, we present a straightforward de-
sign that maintains the original architecture of the network. Our approach leverages
a temporal ensemble technique applied to the predictions generated by the teacher
network, thereby enhancing the reliability of the generated pseudo-labels.

We adopt a fully-supervised method PETR-v2 as our baseline. The student model
learns both the manual annotation on the labeled sequences and also the teacher
model’s output on the unlabeled sequences. To avoid harmful pseudo-label biases,
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we carefully design the pseudo labeling strategies in BEV space, including data per-
turbations and thresholding. We further leverage the spatial-temporal properties of
BEV perception to perform stronger semi-supervised learning. The highly structured
video sequences provide rich and informative cues, which can be used to construct
more accurate training signals on unlabeled data. Specifically, we introduce a teacher
temporal ensemble strategy to generate more reliable pseudo labels by aggregating
information from multiple historical frames. This approach brings no additional com-
putational overhead to the model inference, as the ensemble operation is performed
only during the training phase.

Without bells and whistles, our semi-supervised method yields significant improve-
ments over the supervised baseline (see Figure 6.2) on nuScenes dataset. Moreover,
we compare the results of transforming the segmentation maps to 3D bounding boxes
in both the BEV view and multiple image views (see Figure 6.1). These comparisons
highlight the potential of our semi-supervised pipeline in assisting downstream tasks.
Importantly, the performance gains are consistent across various settings, ranging from
5% to 40% labeled data. Remarkably, our method attains comparable performance
to the fully supervised counterpart while using less than half of the labels.

In summarize, this chapter presents several substantial contributions to the field,
which are meticulously described as follows:

• Observing the potential impact of high annotation costs on the progress of BEV
perception tasks, we aim to investigate and implement label-efficient approaches
to enhance the efficiency of this task.

• We introduce a simple-yet-effective framework to solve the new problem of semi-
supervised semantic segmentation in BEV space, with careful designs on data
augmentation strategy and BEV pseudo labeling.

• We propose the teacher temporal fusion to fully utilize historical information
for generating more reliable pseudo-labels, without adding extra computational
cost during inference.

• We conduct extensive experiments with varied settings and show that our pro-
posed BEV-S4 can achieve significant improvements when learning with par-
tially labeled data.

6.3 Method

In this work, we aim to solve semi-supervised BEV semantic segmentation. Figure 6.3
overviews the framework of our proposed BEV-S4 method. The student model is
trained on both labeled and unlabeled data simultaneously via consistency training.
The teacher model is built by a temporal ensemble to capture temporal coherence for
generating high-quality pseudo labels for unlabeled data. Both student and teacher
models adopt PETRv2 (Liu et al., 2022b) for its simplicity, and our framework is also
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Figure 6.3. Overall framework of BEV-S4. BEV-S4 adopts a
teacher-student architecture. The teacher model parameterized by θt
generates pseudo-labels on unlabeled images, and is slowly progressed
via exponential moving average (EMA) of student. The student model
parameterized by θs is trained by jointly minimizing the supervised loss
Ls on labeled data with ground truth and the supervised loss Lu on

unlabeled data with pseudo-labels.

applicable to other BEV segmentation models. To further improve the generaliza-
tion ability of semi-supervised learning, a variety of data augmentation strategies are
also investigated from the perspective of BEV perception. In the following, we first
revisit PETRv2 (Liu et al., 2022b) in Section 6.3.1. Section 6.3.2 and Section 6.3.3
introduce the proposed teacher-student architecture as well as teacher temporal en-
semble in detail. We finally elaborate on the proposed data augmentation strategies
in Section 6.3.4.

6.3.1 Revisiting PETRv2

The pipeline of PETRv2 contains three key components, i.e., temporal modeling,
feature-guided position embedding and BEV map prediction. We briefly review them
as follows and refer the readers to (Liu et al., 2022b) for more details.

Temporal Modeling. PETRv2 implements temporal modeling by 3D coordinates
alignment (CA) and feature-guided position encoder (FPE) to fuse the information
between current and historical input. Denoting camera cooedinate as c(t), lidar co-
ordinate as l(t) and ego coordinate as e(t) at frame t, the coordinates of 3D points
from a previous frame t− 1 are aligned to frame t by using global coordinate space to
bridge two frames:

P
l(t)
i (t− 1) = T

l(t)
l(t−1)P

l(t−1)
i (t− 1), (6.1)
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where P l(t−1)
i (t− 1) denotes the 3D points projected from i-th camera in frame t− 1,

and the temporal transformation can be calculated by:

T
l(t)
l(t−1) = T

l(t)
e(t)T

e(t)
g T e(t−1)−1

g T
l(t−1)−1

e(t−1) , (6.2)

The aligned point sets
[
P

l(t)
i (t− 1), P

l(t)
i (t)

]
are further utilized to generate 3D PE.

Feature-guided Position Embedding. Different from the image independent 3D
position embedding (3D PE) in PETR, PETRv2 adopts the feature-guided position
encoder by:

PE3
i d(t) = ξ(Fi(t)) ∗ ψ(P l(t)

i (t)), (6.3)

where Fi(t) denotes the 2D features of the i-th camera. ψ and ξ are two multi-layer
perceptions(MLPs) for generating attention weights and 3D PE respectively. The
addition of 3D PE with 2D features and the projected 2D features serve as key and
value for transformer decoder respectively.

BEV Map Prediction. In PETRv2, seg query is introduced to BEV segmentation
and each of which corresponds to a patch region of the BEV map. Initialized with fixed
anchor points and projected by a MLP with two linear layers, those seg queries are
then input to the transformer decoder and interact with the image features. Finally,
a segmentation head is applied to predict the segmentation map with the updated seg
queries as inputs.

6.3.2 Teacher-Student Architecture

Consistency regularization methods are predominant in semi-supervised semantic seg-
mentation. Motivated by their great success, we adopt the consistency learning phi-
losophy for semi-supervised BEV semantic segmentation. As depicted in Figure 6.3,
our proposed BEV-S4 consists of a teacher model and a student model, parameter-
ized by θt and θs, respectively. We use the exponential moving average (EMA) of the
student model to gradually evolve the teacher model:

θt ← αθt + (1− α)θs, (6.4)

where α denotes the momentum parameter, which is set to 0.999 following previous
works.

To better leverage the enormous amount of unlabeled data, we train the student model
via supervised learning on labeled data regularized by the consistency between student
and teacher predictions on unlabeled data. To this end, labeled and unlabeled images
are randomly sampled according to a predefined data sampling ratio sr to form a
training data batch in each training iteration. The overall loss function for training
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the student model is defined as follows:

L = Ls + λLu, (6.5)

where Ls and Lu denote supervised loss on labeled images and unsupervised consis-
tency regularization on unlabeled images, respectively, and λ is the hyper-parameter
to balance the loss weights. For labeled images, the weighted CE loss (Liu et al.,
2022b) is utilized to supervise the predicted BEV map:

Ls =
1

N

K∑
k=0

N∑
i=0

ωsŷi,k log(yi,k) + (1− ŷi,k) log(1− yi,k), (6.6)

where N is the number of pixels, K is the number of object categories, ŷ is the ground-
truth label, and y is the BEV map predicted by the student model, with yi,k indicating
the probability of the i-th pixel belonging to the k-th category. ωs represents the
weight of positive samples and is obtained by calculating the proportion between the
negative samples and the positive samples in ground truth. It should be noted that
one pixel in the BEV space may belong to multiple semantic categories, therefore, we
compute the binary weighted cross-entropy loss for each category independently.

For unlabeled images, we use the teacher model to generate the corresponding pseudo
labels for consistency regularization. Although the teacher model is more reliable than
the student model, the generated pseudo labels may inevitably contains erroneous
predictions. We thus design a confidence mining based label selection method to
alleviate the impact of noisy pseudo labels on the training process. The basic idea
is to filtering out unreliable pseudo labels with low prediction confidence. To this
purpose, we first compute a confidence map ωu according to the predicted pseudo
label ỹ:

ωu
i,k =

{
1, if ỹi,k > τup or ỹi,k < τlow,

0, otherwise,
(6.7)

where τup and τlow are pre-defined thresholds. We then implement the unsupervised
consistency regularization using the following confidence-aware cross-entropy loss:

Lu =
1

N

K∑
k=0

N∑
i=0

ωu
i,k(ỹi,k log(yi,k) + (1− ỹi,k) log(1− yi,t)). (6.8)

where unreliable pseudo labels (i.e., those with ωu
i,k = 0) can be effectively ignored.

6.3.3 Teacher Temporal Ensemble

Recent study (Liu et al., 2022b; Li et al., 2022; Park et al., 2022b) indicates that
temporal feature learning using historical information can significantly benefit BEV
perception. To justify this idea under the semi-supervised learning framework, we
design a teacher ensemble approach (See Figure 6.4) to capture temporal consistency
in BEV data. Specifically, given the BEV features {Bh|h = 1, 2, . . . , T} of T historical
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Figure 6.4. Teacher temporal ensemble. Features of multiple
previous frames are aligned and fused with current features respec-
tively. Averaging aggregation is then applied on prediction maps to

obtain more reliable pseudo-labels.

inputs, we first warp these feature into the current view following the procedures in
Sec.6.3.1, producing the aligned feature {Ah|h = 1, 2, . . . , T}. Each of the aligned
historical feature is separately combined with the current BEV feature Bt to form the
input of the teacher ensemble {B′

h|h = 1, 2, . . . , T}:

B′
h = [Bt, Ah], (6.9)

where [·, ·] denotes feature concatenation. As shown in Figure 6.4, the concatenated
features are individually sent to the teacher model to obtain their corresponding out-
puts. The final pseudo label computed as the average of all the outputs. As a con-
sequence, the pseudo labels produced by the teacher temporal ensemble are more
accurate than those generated from each individual frame, leading to more stable
unsupervised consistency regularization. In addition, the temporal ensemble is only
conducted during training, and thereby introducing no extra computational cost to
inference.
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Table 6.1. Details of geometry transformations in the weak
augmentation and intensity transformations in strong aug-

mentation.

Geometrical Augmentations

Random Scaling Randomly resizes the image.
Random Cropping Randomly crops an region from the image.
Random Flipping Horizontally flips the image with a probability of 0.5.

Intensity Augmentations

Identity Returns the original image.
AutoContrast Maximizes (normalize) the image contrast.
RandEqualize Equalize the image histogram.
RandSolarize Inverts image pixels above a threshold from [1,256).
RandColor Enhances the color balance of the image by [0.05, 0.95].
RandPosterize Reduces the number of bits for each channel.
RandContrast Adjusts the contrast of the image by [0.05, 0.95].
RandBrightness Adjusts the brightness of the image by [0.05, 0.95].
RandSharpness Adjusts the sharpness of the image by [0.05, 0.95].
CutOut Masks out square regions of image.

6.3.4 Data Augmentation Strategies

Data augmentation strategies have been intensively studied for both semi-supervised
2D semantic segmentation (Yuan et al., 2021; Liu et al., 2022d) and fully supervised
BEV perception tasks (Huang et al., 2021), yielding significant performance boosting.
For instance, BEVDet (Huang et al., 2021) propose the data augmentation techniques
for both BEV space and isolated image views to avoid over-fitting, which have been
widely adopted by follow-up methods (Huang and Huang, 2022). Nonetheless, our
experiments (Table 6.5, Table 6.6) show that these augmentations are less effective
and even result in performance drop in semi-supervised BEV segmentation. We con-
jecture that these methods with over-distortions could hamper semi-supervised learn-
ing (Yuan et al., 2021), and the optimal augmentation strategies for semi-supervised
BEV segmentation remain under-explored.

To mitigate the above issue, we perform a thorough investigation of a variety of data
augmentation methods and design a new augmentation strategy to improve semi-
supervised BEV segmentation. We classify all the data augmentation methods into
two categories, i.e., geometry augmentation (e.g., random scaling, flipping, etc.) and
intensity augmentation (e.g., autocontrast, random color jittering, etc.), the details
of which are illustrated in Table 6.1. We define the weak augmentation pipeline as
the cascade of all the geometry augmentations and the strong augmentation pipeline
as the integration of all the geometry augmentations and certain number of randomly
selected intensity augmentations. During training, we follow the convention in semi-
supervised learning and apply the weak and strong augmentation pipeline to the input
of teacher and student model, respectively.
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6.4 Experiments

6.4.1 Datasets and Metrics

NuScenes (Caesar et al., 2020) is a large scale autonomous driving benchmark, which
is adopted for our main experiments. The sensor set for nuScenes contains 6 cameras,
1 LiDAR and 5 Radars, capturing 1000 driving scenes in Boston and Singapore,
with 1.4M camera images in total. The whole dataset is divided into 850 scenes
for training/validation and 150 for testing. In our experiments, we conduct semi-
supervised learning using different proportions of labeled training images. Under
complete training settings, we individually sample 10%, 20%, 30%, and 40% of all
the training images as labeled data with the rest training images as unlabeled ones.
Under the fast training setting, we randomly sample 5% and 20% of all the training
images as labeled and unlabeled training images, respectively, to reduce training time.

As for evaluation, We adopt the Intersection-over-Union (IoU) as the metric. The
ground truth includes seven categories that are common in autonomous driving: Driv-
able area, Lane, Vehicle, Pedestrian Crossing, Walkway, Stop Line, and Carpark. The
lane category is formed by two map layers: Lane-Divider and Road-Divider. Following
(Liu et al., 2022e), we maintain the overlaps between different categories and evaluate
the binary segmentation result for each category separately.

6.4.2 Implementation Details

We use PETRv2 (Liu et al., 2022b) with segmentation head as our BEV segmentation
network due to its simplicity and effectiveness. VoVNetV2 (Lee and Park, 2020) is
employed as the backbone network and we conduct most of the experiments on it.
Following BEVDet4D (Huang and Huang, 2022) and PETRv2 (Liu et al., 2022b),
we randomly sample a previous frame from the range of [3, 27] for student model
during training, and sample the 15th previous frame during inference. For teacher
temporal ensemble, we randomly sample 3 previous frames from the range of [3, 27]
to include more historical information. We set the confidence thresholds to τlow=0.2
and τup=0.8.

The model is trained for 24 epochs on 2 Nvidia A100 GPUs with a batch size of
4 using AdamW (Loshchilov and Hutter, 2017) optimizer with a weight decay of
0.01. The initial learning rate is 1 × 10−4 and is decayed following cosine annealing
policy (Loshchilov and Hutter, 2016).

6.4.3 Ablation Studies

In this section, we conduct the ablations with VoVNet-99 backbone to explore the
effectiveness of each proposed module. All the ablation experiments are trained under
the fast training setting, i.e., 5% labeled and 20% unlabeled training data for efficiency.
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Table 6.2. Threshold. We compare results when differing the con-
fidence thresholds.

Threshold mIoU
τlow = 0.4 τup = 0.6 49.1
τlow = 0.3 τup = 0.7 50.0
τlow = 0.2 τup = 0.8 50.6
τlow = 0.1 τup = 0.9 50.5

Table 6.3. Loss Functions. Different loss functions used in unsu-
pervised branch.

Loss Function mIoU
LBCE 49.1
LCenter 50.1
LWeight 18.3
LConf 50.6

Impact of Loss Functions. We evaluate the performance of different confidence
thresholds τlow and τup in our confidence-aware unsupervised loss function Lu (Equa-
tion (6.7)). The results are shown in Table 6.2, where τlow = 0.2, τup = 0.8 delivers the
best result and is adopted by our final model. In addition, we also varify the effective-
ness of our confidence-aware unsupervised loss function Lu by replacing it with other
alternatives. Table 6.3 reports the comparison results, where ‘LBCE ’ is the vanilla bi-
nary cross entropy loss, ‘LCenter’ is the BEV Centerness loss (Xie et al., 2022), ‘LConf ’
denotes the proposed confidence-aware cross entropy loss, and ‘LWeight’ represents the
weighted CE loss (Liu et al., 2022b). It shows that the proposed confidence-aware
cross entropy loss outperforms all the other methods with significant margins.

Table 6.4. Data Augmentation. Ablative experiments on combi-
nations of data augmentation strategies.

Teacher-Student mIoU
weak-weak 48.9

strong-strong 50.3
weak-strong 50.6

Impact of Strong and Weak Data Augmentation. In our proposed BEV-S4,
weak and strong data augmentation pipelines are applied to the input of teacher
and student model, respectively. To understand their impact, we experiment with
different combination manner of these pipelines. As shown in Table 6.4, the ap-
proach ‘X-Y’ denotes to apply the ‘X’ and ‘Y’ augmentation pipelines to the input
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of teacher and student model, respectively. The comparison result shows that our
adopted ‘weak-strong’ augmentation achieves the best performance, yielding 3.48%
and 0.60% improvements compared to ‘weak-weak’ and ‘strong-strong’ baselines.

Table 6.5. BEV Space Augmentation. Effects of augmentations
in BEV Space.

BEV Aug mIoU
Flip 45.9
Scale 50.3
Rot 50.4

Table 6.6. Augmentation View. Effect of augmentations in dif-
ferent views and frames.

View mIoU
all 50.6
frame-wise 50.2
image-wise 47.7

Table 6.7. Augmentation Number. Results of tuning number of
intensity transformations.

k mIoU
1 50.6
2 50.4
3 49.2

Analysis of Isolated View and BEV Space Augmentation. The isolated view
and BEV space data augmentation methods proposed by (Huang et al., 2021) achieve
considerable performance improvement for fully supervised BEV perception. To have
a comprehensive understanding of these augmentation approaches, we evaluate their
performance under the unsupervised setting. In Table 6.5, the method ‘All’ means
to apply consistent data augmentation on all the 12 input images from current and
previous frames. Following (Huang et al., 2021), ‘View-wise’ and ‘Frame-wise’ repre-
sent to apply different augmentation strategies for different views and different frames,
respectively. In Table 6.6, ‘Flip’, ‘Scale’, and ‘Rot’ denote applying BEV space aug-
mentation (Huang et al., 2021), i.e., flipping, scaling and rotating together with
our data augmentation strategies. The comparison results suggest that both isolated
view and BEV space data augmentation fails to generalize to semi-supervised BEV
segmentation task. We conjecture that these two augmentation strategy is too strong
for semi-supervised learning. To partially verify this, we test the number of selected
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intensity transformations in strong augmentation. As shown in Table 6.7, more strong
augmentations degrade the performance, confirming that over-distortions can indeed
bring negative impact to the model. We thus set the number k = 1 in our experiments.

Table 6.8. Teacher Temporal Ensemble. Results of using differ-
ent number of historical frames.

T Intervals mIoU
1 [3, 27] 49.2
2 [3, 15], [15, 27] 49.5
3 [3, 11], [11, 19], [19, 27] 50.6
4 [3, 9], [9, 15], [15, 21], [21, 27] 49.7

Effectiveness of Teacher Temporal Ensemble. To analyze the impact of teacher
temporal ensemble, we evaluate the performance of using different number of historical
frames as input. As shown in Table 6.8, T indicates the number of input historical
frames and ‘Intervals’ denotes their sampling intervals. As a result, T = 1 represents
the baseline without temporal ensemble. It can be seen that T = 3 achieves the best
performance, which justifies the effectiveness of the teacher temporal ensemble.

6.4.4 Comparison

We evaluate the benefits of our BEV-S4 method using various proportions of labeled
data and compare its performance with the fully supervised baseline PETRv2 (Liu
et al., 2022b). Table 6.9 presents the results on the nuScenes dataset in terms of
per-category IoU and mIoU. Under different proportions of labeled data, our semi-
supervised approach consistently outperforms the supervised baseline across all cate-
gories. The performance gap tends to widen as the amount of labeled data decreases,
except for the 5% labeled set, where the unlabeled data is incomplete. Notably, with
only 10% labeled data and 90% unlabeled data, our semi-supervised method achieves
an mIoU improvement of 18.1%, increasing from 42.2% to 60.3%. This result is only
1.6% lower than the oracle, demonstrating that our method can serve as an effective
solution when annotations are scarce.

Figure 6.5 illustrates the qualitative segmentation results. When compared to the
supervised baseline, our semi-supervised model produces visually more accurate seg-
mentation maps, further highlighting the efficacy of our approach.

6.5 Conclusion

In this paper, we present a semi-supervised pipeline designed to reduce the reliance on
extensive labeled data for bird’s-eye view (BEV) semantic segmentation. By leverag-
ing both labeled and unlabeled data through semi-supervised learning, our proposed
teacher-student dual training framework and data augmentation strategies enable the
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Figure 6.5. Qualitative results on nuScenes. We visually com-
pare supervised baseline and our semi-supervised approach under var-
ious proportions of labeled data. Regions of different categories are

distinguished with specified colors.

model to learn more robust representations via consistency training on pseudo-labels.
Furthermore, we introduce a teacher temporal ensemble module, inspired by the in-
herent abundance of historical information in BEV tasks, to enhance performance
further. Experimental results on the nuScenes dataset demonstrate that our BEV-S4

method significantly improves performance by effectively utilizing unlabeled data. We
anticipate that our approach will serve as a strong baseline for semi-supervised BEV
semantic segmentation and offer valuable insights for future research on efficient BEV
perception techniques.

Limitation and Discussion. In this work, our primary focus is on addressing the
bird’s-eye view (BEV) semantic segmentation using semi-supervised learning. How-
ever, we acknowledge that our approach has certain limitations. For instance, we have
not implemented our method for other BEV tasks, such as object detection and 3D
lane detection, which could potentially benefit from a joint framework. In the future,
we plan to develop a unified semi-supervised pipeline for tackling multiple BEV tasks
simultaneously. Another limitation of our BEV-S4 method is the increased training
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time due to the incorporation of the teacher temporal ensemble, even though the in-
ference speed remains unaffected. We aim to address this issue and further refine our
approach in future research.
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Chapter 7

Conclusions

In recent years, image segmentation has emerged as a crucial perception task in the
field of computer vision, particularly with the advent of large foundation models and
AI-generated content transforming various aspects of our lives. As such, the devel-
opment of practical segmentation methodologies has gained increased attention, with
an emphasis on achieving accurate and robust results using fewer labeled samples and
exploring techniques tailored for autonomous driving applications.

in this dissertation, we deliberately in solving several important tasks with careful
designs, including few-shot semantic segmentation, unsupervised video object seg-
mentation and semi-supervised bird’s-eye-view semantic segmentation. The objective
of our research is to develop novel methods and algorithms to improve segmentation
performance in various scenarios.

Dynamic convolutions for few-shot segmentation. To adaptively leverage the
relationships between the query set and support set, we proposed DRNet (Zhuge
and Shen, 2021), which effectively exploited the category-level information from deep
layers in the support branch through dynamic convolutions. Moreover, we introduced
DRCNet (Gu et al., 2023), which explored contexts using a dynamic context module
and a regional context module. These modules are responsible for extracting spatial
information from query features and addressing ambiguous regions in query images,
respectively, to produce more reliable results in few-shot semantic segmentation.

Learning motion and temporal cues for unsupervised video object segmen-
tation. Temporal-based and motion-based unsupervised video object segmentation
(UVOS) methods each offer their unique benefits. However, the potential of simulta-
neously exploiting both approaches remains largely untapped. In response, we intro-
duced MTNet (Zhuge et al., 2023b), the first attempt at combining the advantages of
both motion and temporal information for addressing UVOS. Our method achieved
state-of-the-art results on multiple benchmarks while also providing real-time infer-
ence speeds on a 2080 Ti GPU, demonstrating its practicality for downstream tasks.

Semi-supervised bird’s-eye-view semantic segmentation. Bird’s-eye-view (BEV)
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perception is an increasingly important area of research, with BEV semantic segmen-
tation gaining particular attention. However, the immense labor costs associated with
ground truth labeling have hindered progress in the field. To address this challenge,
we introduced Semi-BEV (Zhuge et al., 2023a), the first attempt at employing semi-
supervised learning to tackle BEV semantic segmentation. Remarkably, we demon-
strated that with only 10% of labeled data, our method can achieve results on par
with a fully supervised approach trained on the entire dataset.

7.1 Future work

DRNet and DRCNet, as presented in Chapters 3 and 4, offer practical designs for
tackling few-shot semantic segmentation using dynamic convolutions. While signifi-
cant performance improvements have been observed, their effectiveness has only been
demonstrated in 2D images. We hope to extend the application of few-shot segmenta-
tion to point cloud and autonomous driving scenarios, which would allow us to further
address the reliance on labeled data, as we have made an initial attempt to do so in
Chapter 6.

In the era of large foundation models and the explosion of unified multi-task methods,
the future research direction in vision perception is filled with both challenges and
opportunities. To begin with, current unified methods primarily focus on unifying
tasks that share commonalities in their input, output modalities, and latent space.
However, devising a universal solution for a wide range of differentiated tasks remains
an open challenge. Furthermore, data scaling and model scaling play crucial roles in
foundation models, but both aspects are computationally demanding. Thus, research
on developing computation-friendly foundation models holds great potential and can
significantly impact the future of vision perception.
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