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Abstract

Much of our knowledge of particle physics has been incorporated into the Standard
Model (SM), which is a gauge field theory that describes 17 fundamental, structureless
particles. While the SM has been extremely successful, it leaves some striking deficiencies
which we aim to address. The Two-Higgs-Doublet model (2HDM) is a simple extension
of the SM with an additional Higgs doublet. Electroweak symmetry breaking in the
2HDM reveals a total of 5 massive scalar bosons including 2 CP-even scalars, a CP-odd
scalar, and 2 degenerate charged scalars. We consider three types of 2HDMs; namely,
the Type-I 2HDM, Type-II 2HDM and the Inert Doublet Model (IDM). The former two
have additional flavour-changing charged currents which may help explain anomalies in
flavour observables, while the latter includes a suitable dark matter (DM) candidate.
Global fits are performed using the GAMBIT software at tree-level with results presented
as frequentist profile likelihood ratio plots. The 2HDM was previously implemented
in GAMBIT, but is further enhanced with new features, bug fixes, and performance
improvements. Separate plots are presented for a variety of different theoretical and
experimental constraints. The theoretical constraints we consider are S-matrix unitarity,
perturbativity and vacuum stability, whereas the experimental constraints arise from
measurements of the electroweak S, T, and U parameters; dark matter direct and indirect
detection; flavour physics observables; and measurements of Higgs signal rates from
collider experiments. Results are found to favour an SM-like scenario in general. The
Type-II 2HDM provides the strongest lower bounds on the scalar masses due to flavour
constraints, while the Type-I 2HDM has weaker limits which arise only from collider
constraints. This is a result of a particular SM-like limit in Type-I model which weakens
the flavour constraints. Results for the hidden-Higgs scenario, where the heavier CP-even
scalar is considered to be SM-like, are presented separately. The main difference is that
the scalar masses have a strict upper limit of 600 GeV set by the theoretical constraints.
In the Type-II 2HDM, we find that this conflicts with the lower bound for charged scalar
mass set by flavour constraints. Preliminary results using the 2-loop-level FlexibleSUSY
spectrum generator are also presented with the main difference being a stricter limit on
the couplings. The IDM is initially generated by the GUM software which writes the
required code into GAMBIT to implement the new model. New features are also added to
GUM and further additions are made in the IDM implementation in GAMBIT, including
a tree-level spectrum generator, theoretical constraints and new bases. Results for the
IDM scans are presented at tree-level. We apply the observed relic density as an upper
bound, to allow the possibility of other dark matter candidates. We find lower bounds
on the scalar masses arising from experimental constraints except when the DM-SM
couplings are close to zero, or near the Higgs resonance.
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Chapter 1

Introduction

T
he main goal of particle physics is to identify the fundamental constituents
of matter and to understand the rules that govern their behaviour [15, 16].
Remarkable progress has been made over the last century, from the discovery

of the electron in 1897 by J. J. Thompson [17] to the discovery of the Higgs boson
in 2012 by the ATLAS and CMS experiments [18]. Much of our knowledge has been
incorporated into the Standard Model (SM), which is a gauge field theory that includes 17
fundamental, structureless particles and describes their interactions via three fundamental
forces. These are known as the strong, weak, and electromagnetic forces. As shown in
Figure 1.1, the matter particles can be categorised by:

Figure 1.1: Elementary particles of the standard model [1].
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• Spin: The SM can be divided into two spin categories. Fermions are particles
which carry half-integer spin whereas bosons have integer spin.

• Colour: Fermions are further categorised as either quarks, which carry colour
charge, or leptons, which do not. Colour charge enables quarks to interact via the
strong force.

• Generation: Each row of fermions includes three generations of similar particles
differing in only their mass (see columns labelled I, II, III). All stable matter is
composed predominantly of first-generation particles.

Fermions are matter particles which obey the Pauli Exclusion Principle. This prevents
them from reinforcing to create macroscopic fields. There are two types: quarks and
leptons. Quarks are always found in bound states called hadrons, such as protons,
neutrons and mesons. Bosons are force-carrier particles that mediate the electromagnetic,
strong, and weak forces. The familiar electromagnetic force binds electrons to protons
to form atoms. The weak force is responsible for radioactive decay of certain nuclei
and the strong force is responsible for the formation of hadrons. Most bound states of
these fundamental particles are short-lived, so our world is composed mainly of electrons,
protons, and neutrons in the form of atoms. Particles are differentiated by their mass,
spin and by a set of charges that they carry. In the SM, the types of charges that particles
carry are determined by the representation of an internal symmetry group that each
belongs to.

The SM is a remarkably successful theory. One of the greatest successes is the prediction
of a scalar particle called the Higgs Boson, which was discovered after it had been
theorised for over 50 years. Furthermore, the existence of the W and Z bosons, gluons,
and the top, bottom and charm quarks were predicted before they were observed –
including various properties of these particles. The SM also predicts the electric dipole
moment of the electron to incredible accuracy, given by a = 0.00115965218073(28) –
which is accurate to one part in a billion. Despite its success, the SM still leaves some
striking deficiencies, for example:

• Gravity: There is no description of gravity as it does not seem to be compatible
with quantum field theory (QFT) – which the SM is built from. Instead, gravity is
best explained by Einstein’s theory of General Relativity – a classical theory.

• Dark Matter: Cosmological and astronomical evidence suggests that most of the
universe’s mass is in the form of cold, non-baryonic matter known as dark matter
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[19]. Dark matter particles are believed to interact only via gravity and the weak
force. However, the SM provides no dark matter candidate.1

• Dark Energy: Cosmological evidence suggests that 70% of the universe’s energy
is in the form of so-called dark energy with a constant vacuum density. The SM
(and QFT in general) has no way of explaining this dark energy.2

• Hierarchy Problem: Corrections to the Higgs couplings, and thus particle
masses, tend to push the Higgs mass much larger than the experimental value of
125 GeV. This means that the SM requires very unnatural fine-tuned cancellation
of sub-amplitudes (where terms of order 1016 GeV cancel to leave 125 GeV).

• Baryon Asymmetry: The SM does not explain why the universe is composed
predominantly of matter, with only a small amount of anti-matter. Charge-parity
(CP) violation of the weak interaction may account for some of this, but more CP
violation would be required to match the observed asymmetry.

• Input Parameters: The SM requires 19 numerical constants whose values are
unrelated and arbitrary.

Recently, some experimental tensions have also started emerging. For example, Fermilab
measurements of the W-boson mass [20] show a 7 standard deviation discrepancy with
the SM prediction. The observed value of the muon anomalous magnetic moment was
also measured at Fermilab with a value that differs by 4.2 standard deviations [21].
Furthermore, a variety of observables from flavour physics show some deviation although
with a lower significance level compared to the aforementioned electroweak observables.

1.1 Extending the Standard Model

Despite its deficiencies, the SM has largely proven to be very accurate and useful. Hence,
our aim is to extend it so that it is alleviated from these shortcomings, rather than
abandon it. From a theoretical standpoint, it is not difficult to add new particles and
interactions to the SM in ways that achieve this. For example, a new heavy weakly-
interacting particle may provide a suitable dark matter candidate. The observed baryon
asymmetry may be solved by adding additional sources of CP violation. The Hierarchy
problem may be solved by Super-Symmetric (SUSY) Models [22], which add an additional
boson partner for every SM fermion.

1Note that we are making two key assumptions here: (i) that DM is composed of particles, and (ii)
that it is weakly interacting. It is much easier to detect DM under these assumptions, so this possibility
should be ruled out first before considering alternatives.

2It is surely not the famous “zero-point energy” which is off by 120 orders of magnitude.
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However, generally speaking, we lack the experimental evidence to determine which of
these extensions is preferred. Instead, we can only place further constraints on these
models. These limit the strength of new interactions and push the masses of new particles
above that which can be produced and therefore detected at particle colliders. This is
expected, since there are no positive discoveries of Beyond the Standard Model (BSM)
particles or interactions.

It is important not to add unnecessary complexity to our models. We can always add
new terms to some theory that are exceedingly close to zero without conflicting with any
experimental evidence. But this would reduce the model’s predictive power, making it
less useful in practice. We therefore aim to find models that explain our observations in
the simplest manner possible.

In this thesis, we study the Two-Higgs-Doublet Model (2HDM). This is a simple extension
of the SM with additional scalar particles. In the low-energy universe that we live in
today, the 2HDM provides 5 additional scalar bosons. There are a variety of methods to
produce these. Particle collider experiments smash together beams of high energy protons
or electrons resulting in the production of various other particles. Future upgrades, with
increased beam energy and intensity, will allow heavier particles to be detected. It is
useful to know whether the additional particles are within reach of future detectors, and
therefore providing mass bounds is of vital importance. Flavour observables involve
processes where particles change from one generation to another. The most commonly
measured are rare decays of the B-meson which are suppressed in the SM. Additional
scalar bosons contribute to the decay rate via quantum loops as virtual particles. Thus,
flavour observables provide a powerful probe of new physics, even at low energy. The
2HDM also provides new loop corrections to electroweak observables, such as the W -
boson mass and STU parameters. Finally, a special case of the 2HDM called the Inert
Doublet Model (IDM) provides a dark matter candidate. A variety of experiments place
constraints on dark matter observables which we consider for the IDM.

Note that the mathematical framework applied in this thesis is quantum field theory, as
this is the language of both the standard model and the 2HDM. Quantum mechanics –
of all varieties – consists of states, operators which act on states and a set of equations
of motion (EOMs) for these states and operators. Any physical system is fully described
by its state, which is denoted by |ψ〉. The equations of motion govern how the state and
operators change over time. Observables such as angular momentum, linear momentum,
spin, and electric charge are extracted via the action of operators on states.3 This is

3Actually, the situation is a little more complicated in QFT (compared to Schrodinger Mechanics) as
classical fields are postulated to obey the equations of motion and commutation relations, rather than
states themselves. States are then created and destroyed via the action of these fields on the vacuum
state: ψ|0〉.
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denoted by 〈ψ
∣∣∣Ô∣∣∣ψ〉.

There are also alternatives to QFT which make use of completely different mathematics.
These include, most notably, string theory, super gravity and loop-quantum gravity. Such
theories promise to combine quantum mechanics and general relativity – QFT on the
other hand does not seem to be amenable to this task. Given the extreme complexity
of these theories and lack of experimental evidence, we still continue to develop QFT.
Gravity is by far the weakest force, so the SM is still able to produce accurate results
without it. It is believed that the SM is a low-energy Effective Field Theory (EFT) of
some more complete theory. Any QFT can only be valid up to the Planck scale where
gravity becomes important. The 2HDM may also be a low energy EFT of some more
general QFT. Indeed, additional scalars are a common feature of BSM theories. Some of
these, most notably the Minimal Supersymmetric Standard Model, include two Higgs
doublets, and it is therefore possible that the 2HDM provides a valid theory at some
intermediate energy scale.

1.2 Research Methodology

In general, physics aims to identify models with a number of free parameters to describe
some aspect of our universe. We would like to constrain the parameter space as much
as possible – until the theory is ruled out or until we identify a set of parameters that
appear to agree with nature. The Higgs boson discovery provided the experimental
value of the final unknown SM parameter. Hence, there is little freedom to vary this
model. In contrast, the Type-I/Type-II 2HDMs that we consider include 6 additional
free parameters, and the IDM includes 5 extra parameters.

In this thesis, we run scans of the parameter space of the Type-I, Type-II, and Inert
2HDMs using the open-source global fitting software: GAMBIT [12]. It is important to
use global fits since new physics may be observed simultaneously in multiple sectors. By
applying theoretical and experimental constraints, we construct profile likelihood ratios
for each 2HDM parameter, including additional plots for each constraint. The theoretical
constraints we apply are S-matrix unitarity, perturbativity and vacuum stability, whereas
the experimental constraints include electroweak precision observables, dark matter
observables, flavour physics observables and measurements of Higgs signal rates obtained
at collider experiments.
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1.3 Organisation of this Thesis

This thesis consists of three parts. In the first part, we provide a brief background
on the standard model, 2HDM and IDM, followed by further background reading on
the theoretical and experimental constraints, relevant statistics, and the computational
software that we use.

In the second part, we present our results for the Type-I and Type-II 2HDMs. We begin
with just the theoretical constraints and show their individual effects. Following this, we
present results for each experimental constraint in isolation. Finally, we present the global
fits where all constraints are activated simultaneously. Results are mostly presented
at tree-level with a separate chapter to discuss preliminary results using the loop-level
FlexibleSUSY spectrum generator. An additional chapter discusses the hidden-Higgs
scenario for both models.

In the third part, we present our results for the IDM. We begin with the theoretical
constraints, followed by the separate experimental constraints and finally the global fits
for the IDM.

Finally, we state our conclusions and list any further work that could be done.
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Chapter 2

Outline of the Standard Model

In this chapter, we outline the SM and the fundamental physics that it is built from.

2.1 Motivation

The SM has many attractive features. Firstly, it is a gauge field theory meaning that all
interactions and vector fields originate from a single principle, thus greatly reducing the
number of terms which must be inserted by hand. It accounts for the experimental fact
that parity is not conserved in weak interactions. It successfully predicted the existence
of a CP-even scalar, known as the Higgs boson, to explain the origin of mass. It gives a
consistent way of encoding three of the four fundamental forces observed in nature. The
following sections are based on Refs [23], [16] and [24].

2.2 Selecting a Lagrangian

All quantum field theories begin with a Lagrangian1, which encodes the physics of
the theory into a single equation. We begin by describing how such Lagrangians are
constructed. We know from everyday experience that the laws of physics are invariant
under spacetime translations, rotations, and boosts – which together are known as
Poincaré transformations (or Lorentz transformations if not including the translations).
If this were not the case, then no experiment we perform on Earth would be consistent
since the velocity and position of our planet changes constantly as it revolves around
the sun. Hence, we must ensure that our Lagrangian is invariant under the relativity

1Technically it is a “Lagrangian density”, but we shorten this to just “Lagrangian” – as is commonplace
in the literature.
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principle of our universe2 – which, as confirmed by the last 100 years of experimental
results, is the special theory of relativity proposed by Einstein. In practice, our notation
ensures that this is the case. Each term in our Lagrangian carries a set of (possibly
zero) spacetime indices: e.g., Fµv or Aµ. So long as all covariant indices are contracted
with contravariant indices (and all spinors are multiplied by their adjoint), the resulting
Lagrangian is a Lorentz (and Poincaré) scalar and obeys special relativity.

Lagrangians are composed from quantum fields. As an example, the Lagrangian for some
scalar field, ϕ, can be written: L = ∂µϕ∂µϕ−mϕ2. A particle can be created via the
action of this quantum field on the vacuum state: |ϕ〉 = ϕ|0〉. We may define a particle as
a set of states which mix amongst themselves under Poincaré transformations. Only the
particle’s spin3 orientation, position and momentum change under the transformation.
Particles also carry a set of charges, such as electric charge, weak isospin and colour
charges, which are conserved in all interactions. Noether’s theorem states that such
conserved charges arise from additional symmetries in our Lagrangian, known as internal
symmetries. For example, if we would like our theory to conserve electric charge, the
Lagrangian must have a U(1) symmetry. An important prediction of QFT is that certain
quantities like mass and coupling strengths depend on the energy scale of the particles that
we are observing (they are said to “run” with energy). For example, the electromagnetic
coupling strength becomes stronger at high energies while the strong force becomes
weaker. Renormalisation group equations predict exactly how these quantities run with
energy. In order to find such equations, our theory must be renormalisable. It can be
shown that if a Lagrangian contains terms with a mass dimension greater than four, then
it is not renormalisable. This means that, for example, we cannot include interaction
vertices with 5 scalars or 4 fermions.

Another important requirement is that our particle states must belong to unitary rep-
resentations of the Lorentz group. This is because the observables we compute and
measure take the form: M≡ 〈ψ1|ψ2〉 and must themselves be Poincaré scalars. Under
the transformation

〈ψ1|ψ2〉 → 〈ψ1|ψ2〉′ = 〈ψ1|P †P |ψ2〉, (2.1)

we must have P †P = 1, which confirms that the particle states are unitary. There is also
an even stronger requirement – that the S-matrix is unitary. This places a constraint on
the dynamics of the theory. We shall discuss this more in Section 4.1.

2Any relativity principle seeks to answer the following question: ‘consider two observers A and B
whose location and velocity with respect to some origin may differ. If A takes some measurements of
something then how would the values differ from those made by B?’

3The spin of a particle depends on the Poincaré representation that it belongs to. Particles with integer
spin belong to tensor representations, while those with half-integer spin belong to spinor representations.
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2.2.1 Gauge Invariance

According to the gauge principle, the interactions of our theory arise from the promotion
of global symmetries in the Lagrangian to local ones. Gauge theories are important
since, as shown by t’Hooft [25, 26], they are renormalisable. The process of making our
Lagrangian locally symmetric (aka gauge invariant) under some Lie group is not entirely
straight-forward. Thus, in this section we develop a technique to achieve this. We begin
with a Lagrangian that exhibits a global symmetry under some compact Lie group. When
we try to promote it to a local symmetry, we will find extra terms originating from the
derivatives which break the symmetry. We need to eliminate these terms. To do this, we
introduce a new vector field into the theory with a specific transformation rule. This
generates new terms which cancel off any local symmetry violating terms, thus enabling
the theory to be locally symmetric. We describe how this is done for specific groups in
the sections below.

2.2.2 Local U(1) symmetry and Quantum Electrodynamics

Quantum electrodynamics describes interactions between the photon and charged particles
(such as the electron). Electrons are spin-½ particles, so in QFT they are created by a
Dirac field ψ. Photons are spin-1 particles and are created by a massless vector field Aµ.
We shall begin with a free spin-½ Lagrangian given by

L1/2
0 = iψ̄γµ∂µψ −mψ̄ψ, (2.2)

and demonstrate that the correct photon interactions can be obtained via the gauge
principle. We notice that the Lagrangian is invariant under a global U(1) transformation
of the field given by

ψ → ψ′ = eiqαψ, α ∈ R. (2.3)

According to the gauge principle, we should promote this global symmetry to a local one,
α→ α(x). As it stands, the above Lagrangian is not locally gauge invariant since

ψ†∂µψ →
(
ψ†
)′

(∂µψ)′ =
(
ψe−iqα

) (
eiqα (iqα+ 1) ∂µψ

)
6= ψ†∂µψ. (2.4)

The derivative in the above equation does not transform covariantly due to the extra iqα
term. Now consider the introduction of a new vector field Aµ into the derivative
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∂µ → Dµ ≡ (∂µ + iqAµ) , (2.5)

where the new field is given the transformation rule4

Aµ → A′µ = Aµ − ∂µα. (2.6)

Clearly the term in the derivative will cancel the iqα term above and restore the symmetry.
Thus, the new derivative term, Dµψ, transforms covariantly (meaning “with ψ”). It is
called the “covariant derivative”, and the above procedure where we take ∂µ → Dµ is
called minimal substitution.5

The coefficient q is the electromagnetic coupling coefficient. We had the freedom to add
q because it will be cancelled in the transformation rule above. We should also add the
Kinetic Energy Density (KED)6 for Aµ which in this case is just the typical KED for a
vector field. To summarise, the resulting Lagrangian,

L = iψ̄γµ∂µψ −mψ̄ψ −
1

16πF
µvFµv − qψ̄γµψAµ, (2.7)

where Fµv ≡ ∂µAv − ∂vAµ, (2.8)

obeys the local U(1) symmetry. We see the appearance of an interaction between the
fermion (electron) and photon. This is precisely the interaction of QED; here it was
a result of the gauge principle. It turns out that it is possible to derive all classical
electrodynamics from this Lagrangian. Note that we cannot add a mass term for Aµ as
this would break the gauge symmetry.

2.2.3 Non-Abelian Gauge theory

Now that we have successfully obtained the interactions in QED via the gauge principle,
we wonder whether the weak and strong interactions may be obtained in the same manner.

4Notice that the required transformation rule for Aµ looks just like a gauge transformation in classical
electrodynamics.

5There is also another way of understanding this. First recall that the derivative can be defined by:
dxµ∂ψ (x) = ψ (x+ dx) − ψ (x). But since we are considering a local symmetry, where all spacetime
coordinates may be rotated independently, it is meaningless to compare the field at different spacetime
points as above. Hence, we need a way to parallel transport the ψ (x) to the gauge at x+ dx so that we
can compare them. The extra term in the derivative is what allows us to do this.

6Sometime known as the “kinetic terms”.
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Before doing so we will need to develop gauge theory for multiple fields. Consider the
following Lagrangian which exhibits a global SU(2) symmetry7

L =
[
ψ̄1 , ψ̄2

]
γµ∂µ

ψ1

ψ2

− [ψ̄1 , ψ̄2

]
m

ψ1

ψ2

 . (2.9)

Notice that this is just the Lagrangian for two non-interacting Dirac fields. We can also
write it as

L =
(
iψ̄1γ

µ∂µψ1 −mψ̄1ψ1
)

+
(
iψ̄2γ

µ∂µψ2 −mψ̄2ψ2
)
. (2.10)

Note that the full symmetry group of this Lagrangian is actually U(2). But the U(1)
part of this leads to the same results as the previous section, so we shall only consider
the SU(2) symmetry here. We can write the transformation as

ψ1

ψ2

→
ψ1

ψ2


′

= exp

(taθa)

ψ1

ψ2


, (2.11)

where ta are the generators of SU(2). We usually give each independent symmetry a
name – as an example we may call this YM symmetry. The above-column vector is
called an SU(2)YM -doublet and transforms via the fundamental representation of this
group. Now we would like to promote this to a local symmetry. This is not as easy as
the U(1) case. The trouble comes from the derivative, given by

∂µψ → ∂µψ + 1
2 [taθa(x)] ∂µψ + i

2 [ta∂µθa(x)]ψ +O
(
θ2
)
. (2.12)

The third term prevents ∂µψ from being invariant. So, we introduce new gauge fields
which will cancel this term when they transform. It can be shown that the substitution

∂µ → Dµ = ∂µ −
i

2g t
aWµ,a (x) , (2.13)

will enforce the local gauge symmetry. Here g is called the SU(N) coupling constant. If
this procedure is going to work, we need Dµψ to transform the same way that ψ does.
The required transformation rule for the gauge fields is

7Note that the equations presented here extend directly to SU(N).
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τaWµa → τaWµa + 1
g
τa∂µαa − τa

(
εabcα

bW c
µ

)
. (2.14)

We would also like to add the kinetic terms for each of the gauge bosons. The standard
terms, FµvFµv = (∂µAv − ∂vAµ)2 do not preserve the SU(2) symmetry under the above
transformation rule. Instead, the appropriate terms which preserve the symmetry are8

Wµv,aWµv,a, (2.15)

where: Wµv,a ≡ ∂µWv,a − ∂vWµ,a + fabcWbWc. (2.16)

Here fabc are the structure constants of SU(2). This term takes the role of Fµv from U(1)
theory. But unlike the U(1) case, we now have interactions amongst the gauge bosons.

Substitution of the covariant derivative into the Lagrangian will provide the interactions
between matter and gauge fields. The final Lagrangian which preserves the local SU(2)
symmetry is

L =
(
iψ̄γµDµψ −mψ̄ψ

)
+Wµv,aW

µv,a. (2.17)

2.2.4 Products of gauge groups

It turns out that the SM gauge group is a direct product of unitary groups, so we must
extend our gauge theory to this scenario. Suppose we have a Lagrangian that is invariant
under the direct product

G = H ⊗K. (2.18)

A matter field which belongs to some representation of this group will transform as

ϕh,k → ϕ′h,k = Uhh′Vkk′ϕh′k′ , (2.19)

where the matrices U and V are parameterised by wa and xa respectively, and belong to
some representation of H and K. Note that the field, ϕ, has dimU × dimV components.
The covariant derivative includes a separate term for each symmetry group, given by

8We can also write it as: Wµv,a = DµWv,a −DvWµ,v, which may be considered more elegant since it
takes the same form as the U (1) case.
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Dµ = ∂µ −
i

2gww
aWµ,a −

1
2gxx

aXµ,a. (2.20)

We can prove this simply by showing that Dµϕ transforms covariantly. The gauge fields
Wµ,a and Xµ,a only transform under their corresponding groups H and K9. Hence, the
full gauge KED just consists of separate KEDs for Wµ,a and Xµ,a (which take the same
form as Equation 2.16) given by

T = Wµ,aW
µ,a +Xµ,aX

µ,a. (2.21)

2.3 Noether currents arising from Gauge symmetries

According to Noether’s theorem, symmetries in a Lagrangian, such as the U(1) and
SU(N) symmetries considered above, lead to conserved charges. As an example, the
global U(1) symmetry of the QED Lagrangian leads to conservation of electron number
(N ≡ (num. of electrons) − (num. of positrons)), while a local U(1) symmetry would
also lead a conservation of electric charge. There is a conserved Noether charge for
each generator of each symmetry. Noether’s theorem may be stated as follows – if a
Lagrangian L(ϕr, ϕr,µ) is symmetric with respect to the transformation ϕr → ϕ

′r(α)
then the following four-current is divergenceless

jµ
(
ϕr, ϕr ,v

)
≡ ∂L
∂ϕr ,µ

∂ϕ′r

∂α
, ∂µj

µ = 0. (2.22)

For the U(1) and SU(N) theories in the previous sections, the Noether current becomes

Jµa ≡
1
2ψγ

µtaψ, a = 1, .., N2 − 1. (2.23)

We can integrate away the spatial dimensions (assuming the current goes to zero at
infinity) to obtain the corresponding conserved Noether charges, i.e.10

Qa ≡
∫
d3x

(1
2ψ
†taψ

)
, ∂tQa = 0, a = 1, .., N2 − 1. (2.24)

9i.e. they belong to the trivial representation of the respective groups.
10Note that non-diagonal generators will lead to charge operators that couple different fields together

and therefore taking the expectation value leads to zero charge. Hence, only diagonal generators (i.e. the
Cartan subalgebra elements) lead to non-trivial charge operators.
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Note that while we have only considered charge and current operators so far, it follows
that the expectation values of the corresponding charge observables are also conserved,
that is

∂tQ̄a = 0, Q̄a = 〈state |Qa| state〉 , (2.25)

∂µJ̄
µ
a = 0, J̄µa = 〈state |Jµa | state〉 . (2.26)

This is what is meant when we say that Qa or Jµa is conserved.

2.4 Standard Model Lagrangian

We now introduce the SM as a gauge field theory. In the early universe, from roughly
10−36 to 10−12 seconds after the Big Bang, all SM particles were massless and the
Lagrangian was more symmetric than it is today. As the universe cooled down the
symmetry was broken into a smaller symmetry group, and this leads to the appearance
of mass. In this section we shall describe exactly how this symmetry breaking is carried
out and derive the mass terms for the SM particles. This section is based on Refs [23]
and [24] with some group theoretic aspects from Refs [27] and [28].

2.4.1 Particle content of the standard model

The SM is a gauge field theory whose Lagrangian is locally symmetric under an SU(3)C⊗
SU(2)L ⊗ U(1)Y group. The subscripts here refer to “Colour”, “Left”, and “Weak
Hypercharge Y ”, and give a name to each symmetry component. Following the framework
provided in the previous section, we must provide (a) the matter fields of the theory, (b)
which representation of the above group that they belong to, and (c) which combinations
of fields get transformed into each other. All interactions between matter fields and gauge
fields follow from the gauge principle. We are unable to add mass terms as they spoil
the symmetry. But later we show how such terms can arise as a result of spontaneous
symmetry breaking. The matter particles are listed in Table 2.1 (Dirac fields) and Table
2.2 (scalar fields).

There are three generations of similar Dirac particles. They belong to the same repre-
sentation of the SM group and have the same charges but are differentiated by their
mass. We shall hereon refer to them as up-type quarks ui, down-type quarks di, charged
leptons ei and neutrinos vi. Charged leptons are complex Dirac fields. Up and down
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Name Particle DOFs
up quark u1 12
charm quark u2 12
top quark u3 12

down quark d1 12

strange quark d2 12

bottom quark d3 12
electron e1 4
muon e2 4
tau e3 4
electron neutrino v1 4
muon neutrino v2 4
tau neutrino v3 4

Table 2.1: Dirac (spin-1/2) particles of the SM.

Name Particle DOFs

Higgs Doublet Φ ≡
[
ϕ+

ϕ0

]
≡
[
ϕ1 + iϕ2
ϕ3 + iϕ4

]
4

Table 2.2: Scalar (spin-0) particles of the SM.

type quarks are also complex Dirac fields but have an additional 3-times degeneracy
known as colour, giving them 12 DOFs each. Neutrinos were originally believed to be
massless, left-chiral Weyl fields. But neutrinos have been observed to “oscillate”, meaning
that there is a non-zero probability of measuring a different neutrino flavour than what
we started with after propagating some distance L. This probability depends on the
squared mass difference between the neutrinos and proves that at least 2 of 3 neutrinos
are massive. Hence, we shall assume that neutrinos are massive Dirac particles like the
other fermions.11

It is an experimental fact that parity is not conserved. This fact is implemented in the
SM by its different treatment of left-chiral versus right-chiral components of fermion fields.
Nature has decided that only left-chiral12 field components participate in interactions at
high energies. The chirality operator, γ5, is defined by γ5 ≡ γ0γ1γ2γ3. Its eigenstates,

11It is still possible that neutrinos are Majorana particles, rather than Dirac particles, meaning that
they are their own antiparticle. In this case, experimental observations can be explained by the fact that
anti-neutrinos would have the opposite chirality.

12Some background on chirality and Weyl fields: it turns out that for massless particles, the Dirac
equation breaks apart into 2 sets of coupled equations in two unknowns (rather than 4 coupled equations
in 4 unknowns). The solutions of each set are single-chirality eigenstates called Weyl fields. This is rather



Chapter 2 Outline of the Standard Model 17

denoted ψL, ψR, have eigenvalues +1,−1 and are said to have left-chirality and right-
chirality respectively.13 For any Dirac field, we can extract the left and right-chiral
components using the projection operators

ψL ≡ PLψ ≡
1
2 (1− γ5)ψ,

ψR ≡ PRψ ≡
1
2 (1 + γ5)ψ, (2.27)

where these obey the usual properties of projection operators,

PL + PR = 1, P 2
L = PL, P

2
R = PR. (2.28)

2.4.2 Standard model gauge fields

All fields belong to the fundamental representation of the U(1)Y part of the group. The
amount by which they transform is called the weak hypercharge. The multiplets of fields
that are transformed by the remaining gauge group are given in Table 2.3. We call those
belonging to the SU(3) 3-dimensional, fundamental representation colour triplets, and
those of the SU(2)L 2-dimensional, fundamental representation weak isospin doublets.

Following Section 2.2.1, we introduce gauge fields so that our Lagrangian is locally
symmetric. These fields appear when we apply the minimal substitution procedure
∂µ → Dµ; the required terms in each covariant derivative depend on which symmetry it
transforms under (for clarity, they are listed in Table 2.5). We introduce 8 gauge fields
(Gµ1 , . . . , G

µ
8 ) for SU(3), 3 gauge fields (Wµ

1 ,W
µ
2 ,W

µ
3 ) for SU(2) and a single gauge field

for (Bµ) U(1). The notation for the gauge fields and multiplets is provided in Table 2.4.
The gauge fields also require a KED term in the Lagrangian. We will make use of the
notation

Bµv ≡ ∂µBv − ∂vBµ, (2.29)

W a,µv ≡ ∂µW av − ∂vW aµ + g2εabcW
bµW cv, a, b, c ∈ {1, 2} , (2.30)

Ga,µv ≡ ∂µGav − ∂vGaµ + g3fabcG
bµGcv, a, b, c ∈ {1, . . . , 8} . (2.31)

simple in the Weyl representation (of the γ matrices) where Weyl fields can be represented by 2 × 1
column matrices.

13We are being careful not to confuse chirality with helicity here, where the latter describes states as
being either left-handed or right-handed. Both are the same for massless particles (or in the limit v ≈ c)
but are different in general.
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Field Multiplet SU (3)C ⊗ SU (2)L
representation[ui

di

]
r

[
ui

di

]
g

[
ui

di

]
b


L

3⊗ 2

[
u∗i,r u∗i,g u∗i,b

]
L

3∗ ⊗ 1

[
d∗i,r d∗i,g d∗i,b

]
L

3∗ ⊗ 1

[
vi,L

ei,L

]
1⊗ 2

e∗i,L, v∗i,L 1⊗ 1[
ϕ+

ϕ0

]
1⊗ 2

Table 2.3: SM matter field representations.

SU(N) Multiplet Notation
Singlets ei,R, vi,L, vi,R

SU(2) Doublets Qi,L ≡
[
ui,L

di,L

]
, Li,L ≡

[
vi,L

ei,L

]
, Φ ≡

[
ϕ+

ϕ0

]

SU(2) Gauge Fields Wµ ≡


Wµ

1
Wµ

2
Wµ

3



SU(3) Triplets Ui ≡


ui,R

ui,G

ui,B

 , Di ≡


di,R

di,G

di,B



SU(3) Gauge Fields Gµ ≡


Gµ1
...
Gµ8


Table 2.4: Notation for each SU(N) multiplet. The gauge fields belong to the adjoint

representation of their corresponding symmetry group.
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Qi,L Dµ = ∂µ + iY g1Bµ + ig2
2 W

µaσa + ig3
2 G

µaλa

Li,L Dµ = ∂µ + iY g1Bµ + ig2
2 W

µaσa

ui,R Dµ = ∂µ + iY g1Bµ + ig3
2 G

µaλa

ei,R Dµ = ∂µ + iY g1Bµ

Φ Dµ = ∂µ + iY g1Bµ + ig2
2 W

µaσa

Table 2.5: Covariant derivatives for each multiplet.

Here, εabc are the structure constants of SU(2) and fabc are the structure constants of
SU(3).

According to Noether’s theorem, symmetries give rise to conserved charges. To obtain
the charge of a given particle, we may construct a Noether charge operator by integrating
the Noether current from Equation 2.22, and take the expectation value for each particle
state Q = 〈state|Q̂|state〉. Doing so for the SM Lagrangian (see Equation 2.33 below),
we would obtain the charges given in Table 2.6.14,15 Here we have included electric
charge, which by definition is the sum of the hypercharge and third weak isospin charge.
However, the electric charge will only become relevant when the SM symmetry group is
spontaneously broken, which is the case for the low energy universe that we live in today.

2.4.3 Putting it together

We are now ready to state the full SM Lagrangian. It may be divided into four sectors,

LSM ≡ LFermion + LGauge + LScalar + LYukawa, (2.32)

where each sector is postulated to take the form

LFermion ≡ i
(
Q̄i,L /DQi,L + L̄i,L /DLi,L + ūi,R /Dui,R + d̄i,R /Ddi,R + ēi,R /Dei,R + v̄i,R /Dvi,R

)
,

LGauge ≡ −
1
4B

µvBµv −
1
4W

a,µvWa,µv −
1
4G

b,µvGb,µv,

LScalar ≡ (DµΦ)† (DµΦ)− λ
(
Φ†Φ− v2/2

)2
with λ > 0, v > 0,

LYukawa ≡ −Y D
ij Q̄i,LΦdj,R − Y U

ij Q̄i,L Φ̃ uj,R − Y E
ij L̄i,LΦej,R − Y N

ij L̄i,LΦ̃ vj,R +H.c.

(2.33)
14Notice that RC neutrinos have no charges and hence experience no forces. This is why it wasn’t

clear if they even existed until neutrino oscillations were observed.
15The charges that we measure are actually g1Y, g2I3, and eQ.
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Particle Y I I3 Q

Qi,L

[
+1/6
+1/6

]
1/2

[
+1/2
−1/2

] [
+2/3
−1/3

]

Li,L

[
−1/2
−1/2

]
1/2

[
+1/2
−1/2

] [
0
−1

]

ui,R +2/3 0 0 +2/3

di,R −1/3 0 0 −1/3

vi,R 0 0 0 0
ei,R −1 0 0 −1

Φ
[
+1/2
+1/2

]
1/2

[
+1/2
−1/2

] [
+1
0

]

Φ̃
[
−1/2
−1/2

]
1/2

[
+1/2
−1/2

] [
0
−1

]

Table 2.6: Noether charges assigned to each SM multiplet. The electric charge is given
by the Gell-Mann-Nishijima relation, Q = Y + I3.

Here H.c. stands for the Hermitian conjugate of all former terms and is added to ensure
that the Yukawa sector is Hermitian. In Section 3, which describes the 2HDM, we will
see that its Lagrangian is only a small extension of this, hence why we have listed it in
full detail here. In the 2HDM we include extra terms in the Yukawa and scalar sectors
while everything else is kept the same.

In Equation 2.33 we have already applied minimal substitution, ∂µ → Dµ, so that the
Lagrangian exhibits a local SU(3)C ⊗ SU(2)L ⊗ U(1)Y symmetry. Notice that we do not
add any gauge-fermion or gauge-scalar interactions directly. Instead, all such interactions
arise from the covariant derivative terms, which were a result of the gauge principle. We
do, however, need to postulate the Higgs-fermion and Higgs-Higgs interactions. Also
notice that no mass terms have been included. This is because mass terms would couple
LC and RC Weyl components together and would thus spoil the symmetry (which gives
special treatment to the LC Weyl fields). Furthermore, mass terms would require all
multiplet components to have the same mass. For example, the electron and electron
neutrino would have the same mass – which clearly does not match our observations.
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Figure 2.1: The Mexican hat potential in two field variables. The vertical axis
represents the potential as a function of the number density of the fields.

2.5 Symmetry Breaking

While the SM Lagrangian does not yet appear to have mass terms, in this section we shall
find that there are actually hidden mass terms arising from the scalar sector. Consider
the scalar potential written as

V = µ2Φ†Φ + λ
(
Φ†Φ

)2
. (2.34)

Assuming that µ2 is positive, the first term is just the mass term of the Higgs doublet.
Now suppose what would happen if this term was negative. We cannot simply read
off the mass term in this case. This is because the Feynman calculus is formulated as
deviations from the vacuum state.16 But the potential is not minimised for Φ = 0, thus
our fields represent perturbations about a false vacuum. So, we must shift the fields so
that they are centred about the true vacuum, i.e. the minimum of the potential, before
interpretation of the mass terms.

If we were to plot the above potential as a function of the fields, we would find that it
takes a four-dimensional Mexican hat shape. To illustrate this we show a 2D Mexican
hat potential in Figure 2.1, but note that we actually have 2 more field axes in the SM
scenario. Also note that the axes here actually represent the average number densities of
the corresponding fields (the fields themselves are operators and cannot be plotted).

16The vacuum state is by definition the lowest energy state. It is not necessarily a state with zero
particles.
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The key point is that the minimum of the potential occurs for a non-zero value of the
fields, and hence the universe will tend to move towards a state where the vacuum
expectation value of the Higgs field is non-zero. In other words, the universe is more
stable in a state where a non-zero number density of scalar particles exists. There is a
degenerate set of possible vacua along the valley of the Mexican hat and any of these
can be selected as the true vacuum. We pick a vacuum such that the VEV of the Higgs
doublet takes the form

〈0 |Φ| 0〉 = 1√
2

0

v

 . (2.35)

The Higgs doublet can be written as a perturbation about the true vacuum as follows

Φ = 1√
2

 η1 + iη2

(h+ v) + iη3

 , (2.36)

where η1 ≡ ϕ1, η2 ≡ ϕ2, (h+ v) ≡ ϕ3, η4 ≡ ϕ4.

When we substitute this into the SM Lagrangian we find that the SU (2)⊗ U (1) sym-
metry is broken. In particular, we find that three symmetry components are broken.
Furthermore, if we were to plug Equation 2.36 back into the scalar potential, we would
find mass terms for h while η1, η2, η3 remain massless. This is a result of Goldstone’s
theorem, which states that for each global symmetry of L that is broken by the spectrum
of physical states:

I There exists a massless scalar (called a Nambu-Goldstone boson).

II There is a degeneracy of possible true vacua.

III The corresponding generator of the broken symmetry does not “annihilate the
vacuum”, meaning that δΦ = TiΦ 6= 0.

Later we shall show that three mass terms for the gauge bosons will emerge. Hence,
if we count the number of DOFs before and after the electroweak symmetry breaking,
it appears that we have gained three additional DOFs.17 However, some of our fields
transform under the SM gauge group meaning that they cannot be observable quantities.
Since the original Lagrangian is symmetric under the gauge symmetry, doing a gauge
transformation could not possibly affect the phenomenology. Therefore, we are free to

17Note that massive vector fields have 1 more DOF than massless vector fields (3 rather than 2).
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pick a gauge to simplify our theory. The simplest choice is to pick a gauge that eliminates
the three additional DOFs, which in our case will be the three Goldstone bosons. This
choice is called the unitary gauge. Our low-energy Higgs doublet then becomes

Φ = 1√
2

 0

h+ v

 . (2.37)

The electroweak generators do not annihilate the vacuum since

σ1Φ =

0 1

1 0


 0

1√
2 (v + h)

 =

 1√
2 (v + h)

0

 ,

σ2Φ =

0 −i

i 0


 0

1√
2 (v + h)

 = −i

 1√
2 (v + h)

0

 ,

σ3Φ =

1 0

0 −1


 0

1√
2 (v + h)

 = −

 0
1√
2 (v + h)

 ,

IΦ =

1 0

0 1


 0

1√
2 (v + h)

 =

 0
1√
2 (v + h)

 . (2.38)

But notice that the following combination of generators does annihilate the vacuum

1
2
(
I + σ3

)
Φ =

1 0

0 0


 0

1√
2 (v + h)

 =

0

0

 . (2.39)

The corresponding symmetry group, denoted U(1)Q,18 is the only symmetry that is not
spontaneously broken by the vacuum. In fact, this is just the familiar electromagnetic
symmetry – its corresponding gauge boson is the photon.

This completes our discussion of electroweak symmetry breaking – the rest of the theory
follows simply by plugging Equation 2.37 into the SM Lagrangian 2.33. In Table 2.7 we
summarise the results of doing this, and in the sections below we carry out the algebra.

18Note that U (1) '
{

exp iQ
[

1 0
0 0

]}
.
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Sector/Term Significance
Scalar Potential Higgs boson mass and self-coupling terms.

Scalar KED Higgs boson KED, gauge boson mass terms,
Weinberg angle, and Higgs-gauge couplings.

Yukawa Sector
Physical basis, quark/lepton mass terms, and
couplings between the Higgs boson and phys-
ical quarks/leptons.

Fermion Sector Quark/lepton KED and couplings between
physical gauge bosons and quarks/leptons.

Gauge Sector Gauge boson KED and couplings amongst
the gauge bosons.

Table 2.7: What happens as a result of spontaneous symmetry breaking in the SM.

mg,mγ 0

mW
1
2vg1

mZ
1
2v
√
g2

1 + g2
2

mh

√
2λv2

mf
Yfv√

2

Table 2.8: All masses of the Standard Model.

2.5.1 Symmetry breaking in the scalar potential

The scalar potential is just the SM scalar sector from Equation 2.33 but without the
derivative terms, and is given by

VScalar = λ
(
Φ†Φ− v2/2

)2
, where λ > 0, v > 0. (2.40)

Upon substitution of the low-energy Higgs doublet (Equation 2.37), we arrive at

VScalar = λv2h2 − λvh3 − λ

4h
4 + constant, (2.41)

where we see a three-Higgs and four-Higgs interaction along with a mass term for the
Higgs boson. For future reference, we list all masses and couplings in Table 2.8 and Table
2.9 respectively. We will derive all expressions in these tables shortly.
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+ 𝑓𝑎𝑏ℎ𝑓𝑔𝑑ℎ(𝑔𝜇𝜌𝑔𝑣𝜆 − 𝑔𝜇𝑣𝑔𝜆𝜌)) 

𝑔[𝑍3
𝜇

𝑊1
𝑣+𝑊2

𝜆−] 𝑖𝑔𝑊 cos(𝜃𝑊) (𝑔𝑣𝜆(𝑞1
𝜇

− 𝑞2
𝜇

) + 𝑔𝜆𝜇(𝑞1
𝑣 − 𝑞2

𝑣) + 𝑔𝜇𝑣(𝑞1
𝜆 − 𝑞2

𝜆)) 

𝑔[𝑍𝜎𝑍𝜆𝑊𝜇+𝑊𝑣−] 𝑖𝑔𝑊
2 cos2(𝜃𝑊) (2𝑔𝜇𝑣𝑔𝜆𝜎 − 𝑔𝜇𝜆𝑔𝑣𝜎 − 𝑔𝜇𝜎𝑔𝑣𝜆) 

𝑔[𝑊𝑣−𝑊𝜇+𝑊𝜎−𝑊𝜆+] 𝑖𝑔𝑊
2 (2𝑔𝜇𝑣𝑔𝑣𝜎 − 𝑔𝜇𝑣𝑔𝜆𝜎 − 𝑔𝜇𝜎𝑔𝑣𝜆) 

𝑔[𝐴3
𝜇

𝑊1
𝑣+𝑊2

𝜆−] 𝑖𝑔𝑒 (𝑔𝑣𝜆(𝑞1
𝜇

− 𝑞2
𝜇

) + 𝑔𝜆𝜇(𝑞1
𝑣 − 𝑞2

𝑣) + 𝑔𝜇𝑣 (𝑞1
𝜆 − 𝑞2

𝜆)) 

𝑔[𝐴𝜆𝐴𝜎𝑊𝑣−𝑊𝜇+] −𝑖𝑔𝑒
2(2𝑔𝜇𝑣𝑔𝜆𝜎 − 𝑔𝜇𝜆𝑔𝑣𝜎 − 𝑔𝜇𝜎𝑔𝑣𝜆) 

𝑔[𝐴𝜆𝑍𝜎𝑊𝑣−𝑊𝜇+] 𝑖𝑔𝑒𝑔𝑤 cos(𝜃𝑊) (2𝑔𝜇𝑣𝑔𝜆𝜎 − 𝑔𝜇𝜆𝑔𝑣𝜎 − 𝑔𝜇𝜎𝑔𝑣𝜆) 

Gauge-Fermion 

𝑔[𝑓𝑓̅𝐴𝜇] 𝑖𝑔𝑒𝛾𝜇 

𝑔[𝑞̅𝑞𝑔𝜇] −
𝑖𝑔𝑠

2
𝜆𝛼𝛾𝜇 

𝑔[𝑣𝑙̅𝑙𝑊𝜇−] −
𝑖𝑔𝑤

2√2
𝛾𝜇(1 − 𝛾5)𝑉𝑖𝑗

𝑃𝑀𝑁𝑆 

𝑔[𝑢̅𝑗𝑑𝑖𝑊
𝜇−] −

𝑖𝑔𝑤

2√2
𝛾𝜇(1 − 𝛾5)𝑉𝑖𝑗

𝐶𝐾𝑀 

𝑔[𝑓𝑓̅𝑍𝜇] −
𝑖𝑔𝑧

2
𝛾𝜇(𝐼3

𝑓
− 2𝑄𝑓 − 𝐼3

𝑓
𝛾5) 

Fermion-Fermion 𝑔[𝑜𝑛𝑙𝑦 𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠] 0 

 

Table 2.9: All couplings of the Standard Model.
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2.5.2 Symmetry breaking in the scalar KED

Now consider the derivative terms in the scalar potential, given by

TScalar = (DµΦ)† (DµΦ) . (2.42)

The relevant covariant derivative from Table 2.5 can be expanded in matrix form as

Dµ = ∂µ + 1
2 ig1Bµ + 1

2 ig2W
a
µσ

a

= ∂µ + ig1
2

Bµ 0

0 Bµ

+ ig2
2

 W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

 . (2.43)

Plugging this into the scalar KED gives the following result

(DµΦ)† (DµΦ) = (∂µh)† (∂µh)− (v + h)2

4

[
Wµ1 Wµ2 Wµ3 Bµ

]
M2

Gauge



Wµ1

Wµ2

Wµ3

Bµ


,

(2.44)

where the mass matrix is given by

M2
Gauge ≡



g2
2

g2
2

g2
2 −g1g2

−g1g2 g2
1


. (2.45)

We see the appearance of mass terms but some of them couple different fields together.
It is more convenient to work in a basis of gauge fields where the mass matrix is diagonal
so that the gauge fields are independent. The lower 2x2 matrix can be diagonalised by a
rotation matrix. The corresponding rotation angle, called the Weinberg angle, is given by

cos (θw) ≡ g2√
g2

1 + g2
2

, (2.46)
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and the mass matrix in the rotated basis takes the form

M2
Gauge ≡



g2
2

g2
2

g2
2 + g2

1

0


. (2.47)

The physical gauge fields are written as

Aµ
Zµ

 = R (θW )

 Bµ
W3µ

 . (2.48)

In the diagonal mass matrix, we find that the mass of Aµ is zero. In fact, this is just
the familiar photon field. Note that while W1µ and W2µ are mass eigenstates, they are
not electric charge eigenstates. Since electric charge is the only type of weak charge
that is conserved in the low-energy universe, it is convenient to rotate these into charge
eigenstates. These are given by

W±µ = 1√
2

(W1µ ∓ iW2µ) . (2.49)

Notice that Equation 2.44 also includes interactions between the Higgs and weak gauge
bosons.

2.5.3 Symmetry breaking in the Yukawa sector

The Yukawa sector (Equation 2.33) included all the couplings between the fermion fields
and the Higgs doublet. In the low energy universe, we expect to instead find interactions
between the Higgs boson, h, along with mass terms for the fermions. Plugging the Higgs
doublet into Equation 2.33 yields

LYukawa ≡
1√
2

(v + h)
(
Y D
ij d̄i,Ldj,R + Y U

ij ūi,Luj,R + Y E
ij ēi,Lej,R + Y N

ij v̄i,L vj,R +H.c.
)
.

(2.50)

Clearly, the terms proportional to v will be bilinear in two fermion fields. However, these
terms may couple different fermions together. To find the mass terms we must switch to
a basis of fermions which diagonalises the Yukawa matrices so that all bilinear terms
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couple the same field.19 In general, any non-singular matrix can be diagonalised by two
unitary matrices, i.e.,

M = UYK†, where M is diagonal, and U,K are both unitary. (2.51)

Also note that M is positive definite, thus all mass terms have the appropriate sign.
In our case we have four Yukawa matrices, Y f , which are diagonalised by Uf and Kf ,
where f = D,U,E,N . We use a different notation for such a basis where the Yukawa
matrices are diagonal given by20

LYukawa ≡
1√
2

(v + h)
(
MD
lmd̄l,Ldm,R +MU

lmūl,Lum,R +ME
lmēl,Lem,R +MN

lmv̄l,L vm,R +H.c.
)
,

(2.52)

where the fermions before and after the transformation are related via

fLl = Uflif
L
i , fRl = Kf

lif
R
i , f = d, u, e, v. (2.53)

We call this the physical basis, or alternatively the mass basis. The original basis we
started with is called the flavour basis. Note that we have denoted physical basis fermions
using the subscripts l,m, whereas we used i, j to denote the generic basis fermions. We
can consider Y f and Mf to be the Yukawa matrices in the flavour and physical bases
respectively.

2.5.4 Symmetry breaking in the fermion sector

Originally, before minimal substitution, the fermion sector only included the KED for
each fermion. We must now substitute in the covariant derivative from Table 2.5. We
should also write the gauge bosons as charge eigenstates in their mass basis. Carrying
out the algebra yields

LFermion = −if̄i/∂fi −Qf f̄i /Afi +Qf tan θW f̄i /Zfi −
g2

cos θW
I3
f f̄

L
i /Zf

L
i

19In general we are free to re-define fields or rotate them into each other so long as the symmetries of
our theory are preserved.

20Mass terms for Dirac particles can be written: mψ̄ψ = mψ̄ (PR + PL)ψ = mψ̄LψR +mψ̄RψL. Both
terms on the RHS are present due to the H.c in the Yukawa Lagrangian.
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− g2√
2
v̄Li /W

+
eLi −

g2√
2
ēLi /W

−
vLi −

g2√
2
ūLi /W

+
dLi −

g2√
2
d̄Li /W

−
uLi , (2.54)

where a sum over f = d, u, e, v is implied. Note that we have kept the fermions in the
flavour basis. To write these in the physical basis, we will have to first expand the
fermions into Weyl components. For the Aµ and Zµ bosons, we have terms like

f̄iAµγ
µfi = f̄i,RAµγ

µfi,R + f̄i,LAµγ
µfi,L. (2.55)

The terms for the W± boson are similar except that they couple different fields together

v̄Li W
+
µ γ

µeLi = v̄Li W
+
µ γ

µeLi + v̄Li W
+
µ γ

µeLi . (2.56)

So, when writing our fermions in the physical basis, we need just to insert a U †U or K†K
term for the Aµ and Zµ bosons, and a Uf1†Uf2 term for the W± bosons. The former
case is just the identity matrix, and we therefore conclude that the interactions with Aµ
and Zµ bosons look the same in both bases. However, we cannot assume that Uf1 = Uf2 ,
thus the W± terms include an additional mixing matrix when written in the physical
basis. Writing this out in full yields

− g√
2

(
v̄Ll /W

+
UV UE

†
eLl + ēLl /W

−
UEUV

†
vLl + ūLl /W

+
UUUD

†
dLl + d̄Ll /W

−
UDUU

†
uLl

)
,

(2.57)

where we notice that the matrices appear in pairs. These mixing matrices are denoted

VPMNS ≡ UEUV
†
, VCKM ≡ UDUU

†
. (2.58)

The first is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and the second
is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM and PMNS matrices
are unitary and therefore have 9 DOFs each. However, 5 of them can be eliminated with
the appropriate choice of basis. The remaining 4 can be parameterised as 3 rotation angles
and one complex phase. This complex phase provides the only source of CP-violation in
the SM.

When dealing with neutrino oscillations, it is more common to pick a basis where VPMNS

appears in the mass terms rather than the W± interactions. Therefore, we usually
assume an alternative basis for leptons defined as
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vLα ≡ V PMNS
αl vLl , vRα ≡ δαlvRl , eL,Rα ≡ δαleL,Rl , MN

αα ≡ δαlMN
ll . (2.59)

In this basis, the W± interactions take the simple form

− g√
2

(
v̄Lα /W

+
eLα + ēLα /W

−
vLα

)
, (2.60)

while the mass terms are more complicated. These are given by

− v√
2
v̄RαMααV

PMNS
αβ

†
vLβ −

v√
2
v̄LαV

PMNS
αβ Mββv

R
β . (2.61)

Finally, notice that the W± boson provides the only Flavour-Changing Charged Current
(FCCC) in the SM and that there are no Flavour-Changing Neutral Currents (FCNCs).21

This feature is strongly supported by experimental evidence [29, 30] and is therefore
something we should preserve when extending to the 2HDM.

2.5.5 Symmetry breaking in the gauge sector

Since the Higgs doublet does not appear in the gauge sector, there are no masses or new
interactions that arise from this sector. However, it would be more convenient to write
the weak bosons as mass (and charge) eigenstates. We will not carry out the algebra here
as it is rather lengthy but doing so will yield a variety of 3 and 4 gauge boson vertices.
There are also terms which couple different gauge bosons, for example W+W−ZZ and
AAZZ. Of course, charge must be conserved at all vertices so we cannot have terms like
W+ZZZ. All interactions can be found in Table 2.9.

21At least, there are no FCNCs at tree-level. We could however combine two FCCCs to create an
effective FCNC at 1-loop level.
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Two-Higgs-Doublet Models

While the SM has the simplest possible scalar sector that allows for spontaneous symmetry
breaking, there is no reason why it must be this way. Given that multiple fermion
generations have already been observed, it would not be strange if we were to discover
multiple Higgs generations. Veltman’s ρ parameter provides an important restriction on
which Higgs fields can be added to our theory [31, 32]. This parameter, defined by

ρ ≡
(

mW

cos θWmZ

)
, (3.1)

relates the ratio of the weak boson masses to the Weinberg angle. In the SM it has a
value of exactly 1 at tree level, and experimentally is it known to be very close to 1. In
general, for a gauge theory with n scalar SU (2)L⊗U (1)Y multiplets with weak isospins,
Ii, weak hypercharges, Yi, and vacuum expectation values of the neutral components, vi,
the parameter is given by (at tree level)

ρ =
∑n
i=1

(
Ii (Ii + 1)− Y 2

i

)
vi∑n

i 2Y 2
i vi

. (3.2)

To obtain ρ = 1, we can either: (i) fine-tune the parameters of the potential to get
the right VEVs, or (ii) only allow representations that lead to ρ = 1. Taking the later
approach, one finds that both SU(2) singlets (with Y = 0) and doublets (with Y = ±1)
give ρ = 1, while other allowed representations are much more complicated. Hence,
the simplest approach is the addition of a scalar singlet into the SM Lagrangian. The
resulting theory is known as the Scalar Singlet model and may provide a DM candidate –
but it is not studied in this thesis. The next step is to try adding another Higgs doublet.1

1Expanding the Higgs representation to 3⊗ 2 is no good as we introduce Higgs-gluon interactions.
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3.1 Motivation

There are many good reasons to study the 2HDM. We list some key motivations below:

• Electroweak observables: Some observables from the electroweak sector show
a potential discrepancy with the SM, including the W-boson mass and muon-
anomalous magnetic moment. These may be accommodated in the 2HDM via new
scalar loop corrections.

• Flavour Observables: Some flavour observables differ from the SM predictions.
These may be accommodated by the 2HDM via new FCCCs involving the charged
scalars H±.

• Dark Matter: A special case of the 2HDM, known as the Inert Doublet Model
(IDM), includes a DM candidate.

• Baryon asymmetry: The SM is unable to account for the dominance of matter
over antimatter in our universe. Extra sources of CP-violation in the 2HDM may
offer an explanation.

• Low-energy limit: The 2HDM may provide a low-energy EFT of more exotic
models such as supersymmetric models and axion models, which require at least
two Higgs doublets.

3.2 Overview

Carrying out electroweak symmetry breaking in the 2HDM reveals 5 massive scalar
bosons (h, H, A, H+, H−) and 3 Goldstone bosons (G0, G+, G−). Of the massive
bosons there are two CP -even scalars (with one of them being the 125 GeV Higgs boson
detected by collider experiments), two degenerate charged scalars, and one CP -odd
scalar. Like the SM, all Goldstone bosons can be rotated into longitudinal modes of the
W+, W−, and Z bosons enabling them to acquire mass. The most general 2HDM allows
CP-violation (both explicit and spontaneous) and flavour changing neutral currents
(FCNCs). These features are usually considered undesirable as they are tightly limited by
experiment. In this work, we consider CP-conserving Z2-symmetric 2HDMs. In the scalar
sector, all parameters are set real to eliminate the explicit CP-violation. When applied
to the Yukawa sector, the Z2 symmetry eliminates all FCNCs, and we also apply this
to scalar sector to prevent FCNCs from emerging at 1-loop level. In general, we expect
parameter scans to favour SM-like behaviour, since the SM has so far been in remarkable
agreement with experiment. In the regular Higgs scenario the lightest CP-even scalar
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Name Particle DOFs

Higgs Doublet 1 Φ1 ≡
[
ϕ+

1
ϕ0

1

]
≡
[
ϕ1 + iϕ2
ϕ3 + iϕ3

]
4

Higgs Doublet 2 Φ2 ≡
[
ϕ+

2
ϕ0

2

]
≡
[
ϕ5 + iϕ6
ϕ7 + iϕ8

]
4

Table 3.1: Scalar (spin-0) fields of the 2HDM.

corresponds the SM Higgs boson, by which we mean that it has a mass of 125 GeV. The
alternative scenario, called the Hidden Higgs scenario, has roles of the light and heavy
CP -even scalars reversed. An important limit, known as the alignment limit, occurs
when the 125 GeV CP -even scalar has the same coupling strengths as the SM Higgs
boson, while the other CP -even scalar is completely decoupled from all fermions and
gauge bosons at tree-level. SM-like behaviour may also occur when the additional scalars
are so heavy that insufficient energy is available to produce them. This is known as the
decoupling limit.

3.3 2HDM Lagrangian

Like the SM, the 2HDM is a gauge field theory whose Lagrangian exhibits a local
SU(3)C ⊗ SU(2)L ⊗ U(1)Y symmetry [31]. It includes all particles of the SM (all
belonging to the same representations of the gauge group) plus an additional Higgs
doublet with the same charges as the first. The notation for the 2HDM scalar fields is
provided in Table 3.1. The electric charge of each component is found using the charge
operator, which is given by

Q =

1 0

0 0

 . (3.3)

Applying this to the Higgs doublets reveals that ϕ+
1 and ϕ+

2 are positively charged –
hence justifying our choice of notation. Furthermore, applying the CP-operator (i.e.
complex conjugation) to the Higgs doublets will reveal that ϕ3, ϕ7 are CP-even, while
ϕ4, ϕ8 are CP-odd.

The 2HDM Lagrangian looks very similar to the SM Lagrangian, and in shorthand
notation is
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L2HDM ≡ LFermion + LGauge + LScalar + LYukawa. (3.4)

The fermion and gauge sectors have the same form as for the SM, while the Higgs and
Yukawa sectors need to be modified to account for the additional doublet. A Lagrangian
of any gauge field theory must satisfy Hermiticity, Lorentz invariance, gauge symmetry
and renormalisability. Hence, writing down the most general scalar sector, we would
obtain

LScalar =
2∑
i=1

(DµΦi)† (DµΦi)− V2HDM, (3.5)

where the scalar potential is

V2HDM = µijΦ†iΦj + 1
2ΛijklΦ†iΦjΦ†kΦl, i, j, k, l ∈ {1, 2} . (3.6)

Here we have simply listed all possible Higgs terms up to mass dimension 4 using index
notation (where a sum is implied over i, j, k, l). In a similar manner, we construct the
general Yukawa sector as

−LYukawa = Q̄i,L
(
Y u

1,jiΦ̃1 + Y u
2,jiΦ̃2

)
uj,R + Q̄i,L

(
Y d

1,jiΦ1 + Y d
2,jiΦ2

)
dj,R

+ L̄i,L
(
Y e

1,jiΦ1 + Y e
2,jiΦ2

)
ej,R + L̄i,L

(
Y ν

1,jiΦ̃1 + Y ν
2,jiΦ̃2

)
vj,R

+H.c. (3.7)

We are reusing the notation from Equation 2.4 for the fermion doublets. Quantum
mechanics requires the scalar potential to be Hermitian, leading to

µij = µ∗ji, Λijkl ≡ Λklij = Λ∗jilk. (3.8)

Removing this redundancy leads to

V2HDM = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − (m2
12Φ†1Φ2 + H.c.)

+ 1
2λ1(Φ†1Φ1)2 + 1

2λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)
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+ λ4(Φ†1Φ2)(Φ†2Φ1) +
[1

2λ5(Φ†1Φ2)2

+ λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†2Φ2)(Φ†1Φ2) + H.c
]
, (3.9)

which is the most commonly used notation for the scalar potential in physics literature.
The parameters are related via

m2
11 ≡ µ11, m2

12 ≡ −µ12, m2
22 ≡ µ22, λ1 ≡ Λ1111, λ2 ≡ Λ2222,

λ3 ≡ Λ1221, λ4 ≡ Λ1122, λ5 ≡ Λ1212, λ6 ≡ Λ1112, λ7 ≡ Λ1222, (3.10)

and
m2

11,m
2
22, λ1, λ2, λ3, λ4 ∈ R, m2

12, λ5, λ6, λ7 ∈ C. (3.11)

The complex terms in the Lagrangian result in CP-violation.2 Such CP-violation would
cause the 3 neutral scalar states (h,H, and A) to mix together. The resulting states
would not be eigenstates of CP. It is already confirmed that the experimentally measured
scalar is not CP-odd, although there is still a possibility that it may be a mixed CP-state.
We shall leave this possibility to a future study as it makes the analysis much more
complicated. Hence, we eliminate this CP violation by taking all parameters to be real
[33]. The resulting theory is known as the General CP-conserving (GCP) 2HDM.

3.4 Reparametrisation invariance and basis transformations

In general, a theory has reparametrisation invariance if two different sets of parameters
lead to the same observables [31, 34]. Recall that our scalar potential was a function of
both parameters and fields. The physical observables are a function of the parameters
only, O (µ,Λ), and not the fields themselves. This means that we are free to redefine the
fields how we like. Furthermore, since both Higgs doublets carry the same charges we
may consider them as components of a “hyperspinor”, (Φ1,Φ2). Transformations of this
hyperspinor leaves the symmetries of the theory invariant. Now consider some arbitrary
transformation of the doublets

Φi → Φ′i = MijΦj . (3.12)
2This is called explicit CP violation. This is in contrast to spontaneous CP-violation which is caused

by the VEV.
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Sometimes it is possible to find a simultaneous transformation of the parameters which
leave the potential invariant, i.e.

µ′abΦ′aΦ′b ≡ tabcdµcdMaeΦeMbfΦf = µabΦaΦb. (3.13)

In this case, the physics encoded by both sets of parameters must be the same. This
would also imply that the transformation, M , is invertible and therefore belongs to some
group G. The doublets, Φi, transform under M ∈ G, and the parameters, µab, are put
into the appropriate tensor representation of G to preserve µabΦaΦb. What we have
stated in Equation 3.12 can also be considered a basis transformation where Φi are the
basis vectors and µ′ab are the coefficients in the transformed basis, Φ′i. Sometimes the
coefficients may be invariant under the transformation, i.e. µab = µ′ab. In this case the
transformation is also a symmetry. Other times, we must put the coefficients into a
non-trivial representation so that Equation 3.13 is satisfied.

We often use basis transformations to eliminate parameters from our theory. This allows
us to identify how many DOFs are really present. For example, consider the selection of
a basis where one of the parameters is zero, e.g. µ11 = 0. Then we would find that the
observables can be determined with fewer parameters than we originally thought. Notice
that this is not possible if the transformation is also a symmetry.3 Hence, we conclude
that each generator which induces a non-trivial transformation of the parameters may
be used to eliminate a parameter from the theory.

As an example, we can show that 3 parameters can be eliminated from the most general
2HDM potential – bringing the count down from 14 to 11. The 3 eliminated parameters
correspond to the 3 generators of SU(2). While we can consider a more general U(2)
basis transformation, the U(1) part is already a symmetry and therefore cannot be used
to eliminate a parameter.4 In the Z2-symmetric 2HDMs that we consider, (which will be
discussed shortly) a basis transformation may be used to render λ5 real.

As a simple example of a basis transformation, consider a unitarity transformation of
the doublets given by

Φ′a = UabΦb, where U ∈ U(2). (3.14)

which induces the following transformation [35] on the parameters in Equation 3.5
3Since the parameters do not transform if it is also a symmetry.
4Note that when one imposes additional symmetries on the 2HDM Lagrangian, the number of

parameters which may be eliminated through basis transformations may be less than three.
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µ′ab = UacµcdU
∗
bc,

λ′abcd = UaeUcgλefghU
∗
bfU

∗
dh, (3.15)

All observables must of course be in singlet representations of this group. Note that the
scalar KED is symmetric under this unitary transformation. This is important for this
example since the KED does not have any parameters. In Appendix D we show how it is
possible to generalise to the full GL(2, C) group.

3.5 The generalised CP transformation

The standard CP-transformation for a theory with a single scalar field reads

CP : Φ (t, x)→ Φ∗ (t,−x) . (3.16)

Note that parity is always conserved in a scalar theory: Φ (t, x) = Φ (t,−x), thus we can
suppress the spatial coordinates. The natural extension to two scalar fields would be

Φi (t, x)→ Φ∗i (t,−x) . (3.17)

Now consider how this CP-transformation appears after a basis transformation is applied.
It becomes

Φ′i = UijΦ∗j . (3.18)

We can also do the basis transformation first, and then apply a CP transformation to
the transformed basis. The result is

Φ′i = (UijΦj)∗ = U∗ijΦ∗j . (3.19)

However, these CP transformations now appear different. It is not possible to apply
another basis transformation, Xij ∈ U(2), such that XilU

∗
lkX

†
kj = Uij . But a basis

transformation could not possibly affect the phenomenology. Hence, we conclude that
our definition of the CP transformation must be too restrictive. We can construct a
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more general CP transformation (known as the generalised CP transformation [36]) by
also incorporating a U(2) transformation, i.e.

GCP transformation: Φi → UijΦ∗j . (3.20)

3.6 Symmetries of the 2HDM

We may wonder what types of physics are possible in the 2HDM. By this we mean: “what
are all the ways we can restrict the parameters to give a unique set of interactions /
conservation laws?”5 According to Noether’s theorem, such conservation laws are induced
by symmetries in the Lagrangian, so this question amounts to asking: “what are all the
symmetries that the 2HDM Lagrangian may possess?”6

When imposing a symmetry, we must be careful not to modify the KED as it may leave
the theory non-renormalisable. The most general symmetry group of the scalar KED is
given by HF ⊗GCP , where HF is called the Higgs family symmetry and GCP is the
generalised CP symmetry. These are defined by

HF : Φi = UijΦj , where U is unitary,

GCP : Φi = UijΦ∗j , where U is unitary. (3.21)

So, we just need to find all the subgroups of HF ⊗ GCP . However, identifying all
subgroups is quite inefficient as many are related by basis transformations and hence
lead to the same phenomenology (they are said to belong to the same conjugacy class).
In [37] it is proven that there are only 6 unique symmetry classes. They are listed in
Table 3.2 and the restrictions on the parameters are given in Table 3.3 [38]. Example
transformations for each symmetry are

U (2) :

e−iξ cos θ e−iψ sin θ

−eiψ sin θ eiξ cos θ

 ,
5Note that the symmetries and charges are not enough to determine the phenomenology of the theory

– we must also know the specific parameter values. The symmetries only determine which interactions are
allowed/forbidden, and whether particles acquire mass.

6We impose the symmetries by restricting the parameters to take specific values. Notice that this is
quite different to basis transformations, where we put the parameters in some representation in order to
keep the potential invariant. Only in the latter case do the parameters vary under the transformation.
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Class Symmetry Type Parameters DOFs

G2HDM N/A N/A 14 11

Class I U(2) HF 3 3

Class II CP3 GCP 4 4

Class III CP2 GCP 8 5

Class IV U(1) HF 6 6

Class V Z2 HF 8 7

Class VI CP1 GCP 10 8

Table 3.2: The six symmetry classes of the 2HDM potential. The parameters column
refers to the number of parameters that remain after imposing the relevant symmetry
in the generic basis, while the DOFs refers to the minimum number of parameters in

any basis.

Class m2
11 m2

22 m2
12 λ1 λ2 λ3 λ4 λ5 λ6 λ7

Class I m2
11 0 λ1 λ1 − λ3 0 0 0

Class II m2
11 0 λ1 λ1 − λ3 − λ4 0 0

Class III m2
11 0 λ1 −λ6

Class IV 0 0 0 0

Class V 0 0 0

Class VI real real real real

Table 3.3: Restrictions on the generic basis parameters for the six symmetry classes.

U (1) :

e−iξ 0

0 eiξ

 = U (2) (θ = 0) ,

Z2 :

1 0

0 −1

 ,

CP3 :

 cos θ sin θ

− sin θ cos θ

 ,

CP2 :

 0 1

−1 0

 = CP3 (θ = −π/2) ,

CP1 :

1 0

0 1

 = CP3 (θ = 0) , (3.22)

where ξ, ψ, θ are arbitrary real numbers.
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The six models resulting from the imposition of each of those symmetries have different
physical implications: different spectra of scalars, different interactions with gauge bosons,
and, in some cases, predictions of massless axions or potential dark matter candidates.
The least restrictive of these is the CP1 class with 8 free parameters. This is just the
usual CP-transformation and is enforced by setting all parameters real. For our scans
we use the Z2 symmetry class which has 7 free parameters. This results in λ6 = λ7 = 0
while all other couplings are real. In general, the large number of parameters of the
general 2HDM reduces the theory’s predictive power so any symmetries that we can
impose are welcome.

3.7 Vacuum structure and Symmetry Breaking

Like the SM, all mass terms in the 2HDM are a result of spontaneous symmetry breaking,
where the Higgs doublets acquire a VEV (in the low-energy universe), which breaks the
gauge symmetry [31, 39]. In the SM, originally the VEV took the form

〈0 |Φ| 0〉 =

v1 + iv2

v3 + iv4

 . (3.23)

But importantly, we were able to pick an SU (2)× U (1) gauge transformation, M , to
eliminate v1, v2, v3 and thus leaving us with

〈0 |MΦ| 0〉 =

0

v

 . (3.24)

This means that the charge and CP violating components can be eliminated, and therefore
these symmetries are not broken in the low-energy universe.7 When we have two Higgs
doublets, we are still able to exploit our gauge freedom to eliminate 3 components from
the VEVs, but this still leaves 5 components – some of which may break charge or CP
symmetry. All possible minimum solutions in the 2HDM were investigated in Ref [40]. It
was shown that three types of minima are possible: (i) the charge-breaking minimum,
(ii) CP-breaking minimum and (iii) the normal minimum. These are given in Equations
3.25, 3.26 and 3.27 respectively.8

7If we were to pick a different gauge we would still have electric charge conservation, but the electric
charge operator would have to be defined differently.

8Finding the minimum of the potential requires us to solve ∂V/∂vi = 0, leading to
[µij + 2Λijklv∗kvl] vj = 0. Unfortunately, this equation cannot be solved explicitly.



Chapter 3 Two-Higgs-Doublet Models 41

〈0 |Φ1| 0〉 = 1√
2

α
v1

 , 〈0 |Φ2| 0〉 = 1√
2

 0

v2

 (Charge-breaking minimum) (3.25)

〈0 |Φ1| 0〉 = 1√
2

 0

v1

 , 〈0 |Φ2| 0〉 = 1√
2

 0

v2eiθ

 (CP-breaking minimum) (3.26)

〈0 |Φ1| 0〉 = 1√
2

 0

v1

 , 〈0 |Φ2| 0〉 = 1√
2

 0

v2

 (normal minimum) (3.27)

The normal minimum is a special case of the CP-breaking minimum, which does not
break CP or electric charge symmetry. Notice that we do not have a minimum that is
simultaneously electric charge-breaking and CP-breaking.

Note that a charge-breaking VEV would result in a massive photon, while a CP-breaking
VEV would effectively eliminate the near CP-symmetry that we observe in nature
(particles would be able to switch between different CP-eigenstates as they propagate).
Clearly these are not the minimum solutions of our universe, so from now on we assume
a normal VEV.9 Prior to interpretation of any mass terms, we must re-express our fields
as fluctuations about the normal vacuum. We do this by writing the doublets as

Φi =

 ϕ+
i

1√
2 (vi + hi + izi)

 . (3.28)

Rather than using v1, v2 as parameters it is more convenient to use tan β ≡ v1/v2, v ≡√
v2

1 + v2
2. This will become apparent in Section 3.7.1 where we show that v2 = v2

SM .
Since the VEVs correspond to the minimum of the potential, they must satisfy

∂V
∂ϕi

∣∣∣∣
Φa=〈0|Φa|0〉

= 0, i = 1, . . . , 8 and a = 1, 2. (3.29)

Evaluating this gives 2 independent conditions for a normal minimum and 3 for a charge-
or CP-breaking minimum. For the normal minimum these conditions are

9We should probably be more careful here since it may be possible to render the CP-breaking VEV
real via a basis transformation. We shall derive more general conditions in Appendix G.
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Sector/Term Significance

Scalar Potential
Scalar mass matrices; the mass basis with 5
scalar bosons and 3 Goldstone bosons; cou-
plings amongst the scalars.

Scalar KED Scalar KED terms; gauge boson mass terms;
scalar-gauge couplings.

Yukawa Sector
Physical basis and mass terms for quarks/lep-
tons; couplings between the scalar bosons and
physical quarks/leptons.

Fermion Sector (identical to SM)

Gauge Sector (identical to SM)

Table 3.4: What happens as a result of spontaneous symmetry breaking in the 2HDM.

m2
11v1 −m2

12v2 + λ1
2 v

3
1 + λ345

2 v1v
2
2 + 1

2
(
3λ6v

2
1v2 + λ7v

3
2
)

= 0,

m2
22v1 −m2

12v1 + λ2
2 v

3
2 + λ345

2 v2v
2
1 + 1

2
(
λ6v

3
1 + 3λ7v2v

2
1
)

= 0, (3.30)

where λ345 ≡ λ3 + λ4 + λ5. These can be used to trade the m2
11 and m2

22 parameters for
v1, v2, thus eliminating two parameters from our theory.

This completes our discussion of symmetry breaking in the 2HDM. The rest of the theory
follows by substituting Equation 3.28 back into the 2HDM Lagrangian (Equation 3.4).
The results of doing this are summarised in Table 3.4 and the following subsections carry
out the algebra.

3.7.1 Symmetry breaking in the scalar potential

In the SM case, when we inserted the Higgs doublet into the scalar potential, we obtained
mass terms for the Higgs boson as well as Higgs-Higgs interactions. We shall find that
something similar happens for the 2HDM except that we now have mass terms for 5
scalar bosons and various interactions between these [14, 39]. Extracting the mass terms
for the scalars and writing them in matrix form yields

Vmass = −
[
ϕ−1 ϕ−2

]
M2
ϕ

ϕ+
1

ϕ+
2

− [z1 z2

]
M2
η

z1

z2

− [h1 h2

]
M2
ρ

h1

h2

 , (3.31)

where the mass matrices are given by
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M2
ϕ ≡

(
m2

12 −
(
v2/2

)
(λ4 + λ5 + λ6 cotβ + λ7 tan β) sin β cosβ

)tan β −1

−1 cotβ

 ,

M2
z ≡

(
m2

12 −
(
v2/2

)
(2λ5 + λ6 cotβ + λ7 tan β) sin β cosβ

)tan β −1

−1 cotβ

 ,
M2
h ≡M2

z +B2,

B2 ≡ v2

 λ1 cos2 β + λ5 sin2 β + 2λ6 sin β cosβ (λ3 + λ4) sin β cosβ + λ6 cos2 β + λ7 sin2 β

(λ3 + λ4) sin β cosβ + λ6 cos2 β + λ7 sin2 β λ2 sin2 β + λ5 cos2 β + 2λ7 sin β cosβ

 .
(3.32)

We would like to move to a basis in which these matrices are diagonal, so that the fields
are not coupled together. The parameter β works out to be the rotation angle, which
diagonalises both M2

ϕ and M2
z simultaneously. We define the parameter α as the rotation

angle that diagonalises M2
h . It is related to the other parameters via

sin (2α) =
2M2

h,12√(
M2
h,11 −M2

h,22

)2
+ 4

(
M2
h,12

)2
,

cos (2α) =
M2
h,11 −M2

h,22√(
M2
h,11 −M2

h,22

)2
+ 4

(
M2
h,12

)2
. (3.33)

The transformed basis (with diagonal mass matrices) is called the physical basis, while
the basis we started with is called the generic basis. The two bases are related by

G−
H−

 ≡ R (β)

ϕ−1
ϕ−2

 ,
G+

H+

 ≡ R (β)

ϕ+
1

ϕ+
2

 ,
G0

A0

 ≡ R (β)

z1

z2

 ,
H0

h0

 ≡ R (α)

h1

h2

 ,
(3.34)

where R (ω) denotes a rotation matrix through angle ω. Here H± are charged scalar
bosons, G± are charged Goldstone bosons, G0 is a neutral CP-odd Goldstone boson, A0

is a neutral CP-odd scalar boson and H,h are neutral CP-even scalar bosons. The mass
of the physical states can be read off the diagonalised mass matrices. We summarise the
results below



Chapter 3 Two-Higgs-Doublet Models 44

m2
A = m̄2 − v2

2 (2λ5 + λ6 cotβ + λ7 tan β) ,

m2
H+ = m2

A + v2

2 (λ5 − λ4) ,

m2
h = m2

A cos2 (β − α) + v2(λ1 cos2 β sin2 α+ λ2 sin2 β cos2 α− 2λ345 cosα cosβ sinα sin β

+ λ5 cos2 (β − α)− 2λ6 cosβ sinα cos (β + α) + 2λ7 sin β cosα cos (β + α)),

m2
H = m2

A sin2 (β − α) + v2(λ1 cos2 β cos2 α+ λ2 sin2 β sin2 α+ 2λ345 cosα cosβ sinα sin β

+ λ5 sin2 (β − α) + 2λ6 cosβ cosα sin (β + α) + 2λ7 sin β sinα sin (β + α)),

m2
G± = m2

G0 = 0. (3.35)

Here we made use of λ345 ≡ λ3 + λ4 + λ5. Notice that the mass of the two CP-even
scalars is different. By convention, we choose H to be the heavier one and h to be the
lighter one. To accommodate collider data, we usually cannot have an additional scalar
that is lighter than 125 GeV. So, we usually take h = h125 which also corresponds to
hSM , while H remains as a heavier unobserved CP-even scalar. The alternative scenario
with H = h125 is known as the hidden-Higgs scenario. For completeness we will run
parameter scans of both scenarios. We can also write our Higgs doublets in terms of the
physical states

Φ1 = 1√
2

 √
2
(
G+ cosβ −H+ sin β

)
v cosβ + (−h sinα+H cosα) + i

(
G0 cosβ −A0 sin β

)
 ,

Φ2 = 1√
2

 √
2
(
G+ sin β +H+ cosβ

)
v sin β + (h cosα+H sinα) + i

(
G0 sin β −A0 cosβ

)
 . (3.36)

So far, we have neglected the rest of the scalar potential, which consists of the interactions
amongst the scalars. Writing this term out in full would take the form

Vinteractions = Cijkϕiϕjϕk + Cijklϕiϕjϕkϕl (sum over i, j, k, l implied), (3.37)

where: ϕi =
{
H+, H−, G+, G−, A,G0, h,H

}
, and Cijk, Cijkl are the coefficients of the

3-scalar and 4-scalar couplings respectively. All couplings which violate CP or electric
charge conservation are zero. It is possible to write the couplings as a function of the
scalar masses (rather than the generic couplings λi), which gives somewhat simpler
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expressions. We shall not carry out the full algebra here, but the results are listed in
Refs [14, 41, 42].

3.7.2 Symmetry breaking in the scalar KED

Similar to the SM, the gauge-scalar interactions, and the gauge mass terms originate from
the scalar KED. As usual, the Goldstone bosons can be eliminated with the appropriate
choice of gauge (called the unitary gauge). In this gauge, the DOFs appear as longitudinal
modes for the weak bosons. The scalar KED is

TScalar ≡ (DµΦ1)† (DµΦ1) + (DµΦ2)† (DµΦ2) . (3.38)

Multiplying the covariant derivative with the Higgs doublets yields

DµΦi =

∂µϕ+
i +

(
(ig2/ cos θW )

(
1/2− sin2 θW

)
Zµ + ieAµ

)
ϕ+
i +

(
ig/
√

2
)
W+
µ ϕ

0
i

∂µϕ
0
i + (ig2/2 cos θW )Zµϕ0

i +
(
ig/
√

2
)
W−µ ϕ

+
i

 .
(3.39)

Next, we plug this into Equation 3.38 to get the interactions and gauge boson mass terms.
We should also write the scalars in their mass basis using Equation 3.36. Expanding this
out for just the mass terms yields

TScalar = 1
2 (∂µϕi) (∂µϕi) + 1

4g
2
2
(
v2

1 + v2
2
)
W+
µ W

−µ + 1
4
(
g2

1 + g2
2
) (
v2

1 + v2
2
)
ZµZ

µ

+ Tinteractions, (3.40)

where ϕi = {h,H,A,H±}. Note that we have prematurely rotated the Wµ
i and Bµ

into the mass-eigenstates that were found for the SM. However, in the above equation
there is no mixing amongst these fields and no mass term for Aµ and therefore the
mass-eigenstates in the 2HDM are derived using the same rotation of the gauge mass
matrix (c.f. Equation 2.46). We can read off the masses as

m2
W = g2

2
4
(
v2

1 + v2
2
)

= g2v2

4 ,

m2
Z = g2

1 + g2
2

4
(
v2

1 + v2
2
)

= g2
1 + g2

2
4 v2. (3.41)
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h0V V sin (β − α)
H0V V cos (β − α)
A0V V 0

Table 3.5: Reduced gauge-scalar couplings, where V V = W+W−, ZZ.

Looking back at the SM masses for these gauge bosons (see Equation 2.44), we can
identify v2 = v2

SM , which justifies our choice of notation. So far, we have neglected the
remainder of the scalar KED – which consists of gauge-scalar interactions. These terms
take the generic form

Tinteractions = TV V H + TV V HH + TV HH , (3.42)

H =
{
h,H,A,H+, H−, G0, G+, G−

}
, V =

{
W+,W−, Z

}
. (3.43)

As usual, any term that violates charge or CP symmetries in the above expressions must
vanish. We shall not do the full substitution here as the results are quite lengthy. All
vertices are provided in Ref [14] using the physical basis. Alternatively, Ref [41] provides
the vertices for the G2HDM using a basis-independent formalism (see also Ref [39]). The
ϕiW

+W− and ϕiZZ interactions are of high phenomenological importance, so we list
the reduced couplings (g2HDM/gSM ) for these in Table 3.5.

3.7.3 Higgs bases (Interlude)

Before continuing our investigation of symmetry breaking within the 2HDM, we first
need to introduce Higgs bases; these make it easier to obtain the physical states and
masses, and to identify scenarios with SM-like scalar structure. So far, we have been
working with Higgs doublets in the generic (Z2 eigenstate) basis. A Higgs basis is by
definition any basis in which the VEV appears only in the first doublet. It is related to
the generic basis via [43]

H1 ≡

H+
1

H0
1

 ≡ (Φ1 cosβ + Φ2 sin β) ,

H2 ≡

H+
2

H0
2

 ≡ e−iχ0 (−Φ1 sin β + Φ2 cosβ) , (3.44)
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which is unique up to an overall rephasing of H2. Note that we have assumed that the
relative complex phase of the VEVs is zero, i.e., the normal vacuum from Equation 3.27.
10 In the Higgs basis, the scalar potential takes the same form as the generic basis, except
with new coefficients. The potential is given by

V = M2
11H

†
1H1 +M2

22H
†
2H2 −

(
M2

12H
†
1H2 +H.c.

)
+ 1

2Λ1
(
H†1H1

)2
+ 1

2Λ2
(
H†2H2

)2
+ Λ3

(
H†1H1

) (
H†2H2

)
+ Λ4

(
H†1H2

) (
H†2H1

)
+
(1

2Λ5
(
H†1H2

)2
+
(
Λ6
(
H†1H1

)
+ Λ7

(
H†2H2

))
H†1H2 +H.c.

)
. (3.45)

The parameters are related to the generic basis by

Λ1 = λ1 cos4 β + λ2 sin4 β + 1
2λ345 sin2 (2β) + 2 sin (2β)

[
cos2 βλ6 + sin2 βλ7

]
,

Λ2 = λ1 sin4 β + λ2 cos4 β + 1
2λ345 sin2 (2β)− 2 sin (2β)

[
sin2 βλ6 + cos2 βλ7

]
,

Λ3 = 1
4 sin2 (2β) (λ1 + λ2 − 2λ345) + λ3 − sin (2β) cos (2β) (λ6 − λ7) ,

Λ4 = 1
4 sin2 (2β) (λ1 + λ2 − 2λ345) + λ4 − sin (2β) cos (2β) (λ6 − λ7) ,

Λ5e
−iχ0 = 1

4 sin2 (2β) (λ1 + λ2 − 2λ345) + λ5 − sin (2β) cos (2β) (λ6 − λ7) ,

Λ6e
−iχ0 = −1

2 sin (2β)
(
λ1 cos2 β − λ2 sin2 β − λ345 cos (2β)

)
+ cosβ cos (3β)λ6 + sin β sin (3β)λ7

Λ7e
−iχ0 = −1

2 sin (2β)
(
λ1 sin2 β − λ2 cos2 β + λ345 cos (2β)

)
+ cosβ cos (3β)λ7 + sin β sin (3β)λ6

(3.46)

Under a rephasing of the second doublet, H2 → eiχH2, the parameters transform via

[
M2

12,Λ6,Λ7
]
→ eiχ

[
M2

12,Λ6,Λ7
]
, Λ5 → e−2iχΛ5. (3.47)

For a CP-conserving potential, it can be shown that a basis exists that renders all
parameters real and therefore we can restrict χ to be a multiple of π,

χ = nπ, n = 0, 1, 2, . . . (3.48)
10In Ref [43] the Higgs basis is provided for the more general CP-violating VEV. In this case the

Higgs basis parameters include complex terms arising from the relative phase difference ξ which we have
set to zero.
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This means that for an explicitly CP-conserving potential, there is only one unique
transformation of the Higgs basis parameters that leads to the same phenomenology.
The minimisation conditions from Equation 3.30 become

M2
11 = −1

2Λ1v
2, M2

12 = 1
2Λ6v

2. (3.49)

The Higgs doublet components are rotated onto their mass eigenstates,

H1 = 1√
2

 √
2G+

v + h′1 + iG0

 , eiχ0H2 = 1√
2

 √2H+

h′2 + iA0

 , (3.50)

except for the CP-even scalars which remain mixed through an angle of β − α,

H
h

 =

cos (β − α) − sin (β − α)

sin (β − α) cos (β − α)


h′1
h′2

 . (3.51)

This is why it is usually easier to work with doublets in the Higgs basis. In the alignment
limit where cos (β − α) = 0, we find that h′1 = h0, h′2 = H0, and H1 takes the same
form as the SM Higgs doublet with h0 corresponding to the SM Higgs boson. The
Hidden-Higgs scenario is similar except that we instead have H0 appearing in H1. Hence,
the heavier CP-even boson corresponds to the SM-Higgs boson.

3.7.4 Symmetry breaking in the Yukawa sector

The Yukawa sector is easier to analyse in the Higgs basis.11 In the Higgs basis, we
can write a simple set of interactions between the fermions and physical scalar states.
Transforming the Yukawa sector from Equation 3.7 into the Higgs basis yields

−LYukawa = Q̄i,L
(
kuijH̃1 + ξuijH̃2

)
uj,R + Q̄i,L

(
kdijH1 + ξdijH2

)
dj,R

+ L̄i,L
(
kvijH̃1 + ξvijH̃2

)
vj,R + L̄i,L

(
keijH1 + ξeijH2

)
ej,R

+H.c., (3.52)

where the Higgs basis Yukawa matrices are related to those in the generic basis via
11See Ref [41] for a discussion of the most general Yukawa sector in a basis independent formalism.
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kf = Y f cosβ + Y f
2 sin β, ξf = −Y f

1 sin β + Y f
2 cosβ, f = u, d, e, v. (3.53)

We will assume that the unitary gauge has been applied. Hence, the Higgs doublets in
the Higgs basis can be written

H1 = 1√
2

 0

sin (β − α)h+ cos (β − α)H

 ,

H2 = 1√
2

 √
2H+

cos (β − α)h+ sin (β − α)H + iA

 . (3.54)

In the SM, the generic and physical bases for fermions were related by the Uf and Kf

matrices (cf. Equation 2.53). In the 2HDM, kf takes the role of the SM Yukawa matrix,
since it is multiplied by H1 – which provides all the mass terms via v. Hence, using the
same notation from Equation 2.51, the transformation to the physical basis looks like

Q̄i,Lk
d
ijH1dj,R =


(
ūkU

U†
kn

)
UUniU

D†
il(

d̄iU
D†
il

)

T

H1
(
UDli k

d
ijK

†D
jm

) (
KD
mjdj,R

)

≡ Q̄l,LH1M
D
lmdm,R, (3.55)

where we also get a similar term for ku, kv, and ke by transforming the other terms in
Equation 3.52. Note that the Mf matrix is just given by

Mf =
√

2
v

diag (mf1 ,mf2 ,mf3) , f = u, d, e, v. (3.56)

Also note that the l,m indices in Equation 3.55 are used to denote physical basis
fermions12, while i, j are used for the generic basis. Notice that we have used UDli (rather
than UUli ) in the definition of MD as this matches the SM case. But in doing so, we have
created a mess in the upper component of Q̄. In fact, the upper components of Q̄ (and L̄)
include an extra CKM (and PMNS) matrix defined in Equation 2.58 and restated below

VPMNS ≡ UEUV
†
, VCKM ≡ UDUU

†
. (3.57)

12Not to be confused with the scalar physical basis that was mentioned previously.
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Type-I Type-II Type-X Type-Y
Up-type quarks Φ2 Φ2 Φ2 Φ2
Down-type quarks Φ2 Φ1 Φ2 Φ1
Charged leptons Φ2 Φ1 Φ1 Φ2

Table 3.6: Fermion couplings for each doublet as a result of the Z2-representation
assignments. Note that we do not consider Higgs couplings with neutrinos.

In the SM, the upper component of the Higgs doublet was zero, so we always pick out
the lower component from Q̄l. This is also true here since the upper component of H1 is
zero. But when we consider H2 below, we will find that interactions with H+ include a
CKM or PMNS matrix.

In general, the basis used to diagonalise kfij will not simultaneously diagonalise ξfij .
Therefore, we still have non-diagonal entries in ξfij which lead to FCNCs at tree-level.
These are tightly limited by experiment, and not present in the SM at all. There are a
few approaches that we can take to deal with these:

I Assume that the 2HDM parameters are close to the decoupling limit, where the
light CP-even scalar remains at the electroweak scale while the additional scalars
appear at a much larger scale.

II Assume that the Yukawa matrices in the generic basis are proportional, i.e., Y f
1 =

cY f
2 , so that they are both diagonalised simultaneously. Hence, in the fermion mass

basis there will be no FCNCs. The resulting 2HDM is called the aligned 2HDM.
This could be a result of some symmetry or unknown flavour dynamics associated
with a UV completion of the model [44].

III Apply a theorem due to Glashow, Weinberg, and Paschos, which states that in a
model with multiple Higgs doublets, tree-level FCNCs will be absent if all fermions
of the same electric charge couple to no more than one Higgs doublet [45, 46].

In this work, we shall choose option III. This is achieved via the introduction of a
Z2-symmetry where Φ1 belongs to the odd representation while Φ2 belongs to the even
representation. We are free to choose whether up-quarks, down-quarks, and charged
leptons belong to even/odd representations. The different choices lead to 4 different
types of Z2-symmetric 2HDMs. In Table 3.6, we list which doublets each fermion couples
to as a result of the Z2 assignments.

Since there are no FCNCs in the Z2-symmetric 2HDMs, ξf must be proportional to kf .
The constant of proportionality is denoted κf , resulting in
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Type-I Type-II Type-X Type-Y
Γuh cosα

sinβ
ΓuH sinα

sinβ
ΓuA cotβ
Γdh cosα

sinβ − sinα
cosβ

cosα
sinβ − sinα

cosβ
ΓdH sinα

sinβ
cosα
cosβ

sinα
sinβ

cosα
cosβ

ΓdA − cotβ tan β − cotβ tan β
Γeh cosα

sinβ − sinα
cosβ − sinα

cosβ
cosα
sinβ

ΓeH sinα
sinβ

cosα
cosβ

cosα
cosβ

sinα
sinβ

ΓeA − cotβ tan β tan β − cotβ

Table 3.7: Reduced fermion-scalar couplings for Z2-symmetric 2HDMs.

ξf = κfk
f . (3.58)

Note that κf depends on the model type.13 We can substitute Equations 3.58, 3.56 and
3.54 into the Yukawa Lagrangian to find the scalar couplings for each 2HDM. After
carrying out the algebra, the result is

−LYukawa =
∑

f=u,d,e,v

mf

v

(
vf̄f + Γfhf̄fh+ ΓfH f̄fH − iΓ

f
Af̄γ5fA

)

+
√

2
v

(
ūlV

CKM
lm

(
ΓdAmdmPR + ΓuAmumPL

)
dmH

+ +H.c.
)

+
√

2
v

(
v̄lV

PMNS
lm

(
ΓEAmelPR + ΓNAmvlPL

)
elH

+ +H.c.
)
, (3.59)

where: Γfh = sin (β − α) + κf cos (β − α), ΓfH = cos (β − α)− κf sin (β − α), ΓfA = κf .

In the SM, the Higgs couplings are given by mf/v. In the above equation we notice that
the various Γ factors are just reduced couplings, defined by the ratio: g2HDM

ϕii /gSM
hii . We

list all reduced couplings in Table 3.7.

In the Type-I 2HDM, all h-fermion couplings take the same form, which we can write as

κh = cosα
sin β =

√
1− cos2 (β − α) + cos (β − α)

tan β . (3.60)

13It can be found by setting the appropriate Yukawa matrix in Equation 3.53 to zero, and eliminating
the remaining unknown Yukawa matrix.
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We see that in the alignment limit, where cos (β − α) = 0, the couplings of h are exactly
SM-like and the couplings of H vanish. In the opposite case with cos (β − α) = ±1 we
find that H is SM-like and couplings of h vanish.

Finally, we mention that the Z2-symmetry imposed on the Yukawa sector should also
be extended to the scalar sector, otherwise the Z2-violating terms would result in large
FCNCs at 1-loop level. This results in λ1 = λ2 = 0 for the generic basis and two extra
conditions for the Higgs basis given at the end of Appendix E.6.

3.8 Conventions and basis independence

When selecting a set of parameter ranges, one problem that we face is that the parameter
space is redundant, meaning that there are multiple ways of picking parameters that
lead to the same phenomenology. This is because there is some basis transformation that
relates such combinations of parameters. We would like to establish a set of conventions
so that the parameters are well defined (they are upgraded to observables). We shall
do this by artificially restricting the values that each redundant parameter may take.
First, consider the Higgs basis where there is only one basis transformation in which we
rephase the second doublet [47]. The Higgs basis parameters then transform via

[
M2

12,Λ6,Λ7
]
→ eiχ

[
M2

12,Λ6,Λ7
]
, Λ5 → e−2iχΛ5,

under H2 → eiχH2. (3.61)

However, we are only interested in CP-conserving 2HDMs, thus we restrict all parameters
to be real. In this case, the only possible basis transformation is

[
M2

12,Λ6,Λ7
]
→ −

[
M2

12,Λ6,Λ7
]

under H2 → −H2. (3.62)

Note that M2
12 and Λ6 are not independent parameters as they are related via the

minimisation conditions (c.f. Equation 3.49). So, in fact we only have one way to change
parameters while keeping observables fixed. This can be done by flipping the sign of
both Λ6 and Λ7 simultaneously.
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The CP-even scalar fields, H and h, are only defined up to an overall sign. This is
because the sign of each can be flipped via a sign change of sin (β − α), cos (β − α) or
H2. For example

cos (β − α)→ − cos (β − α), sin (β − α)→ − sin (β − α), H2 → +H2 =⇒ H → −H, h→ −h

cos (β − α)→ + cos (β − α), sin (β − α)→ − sin (β − α), H2 → −H2 =⇒ H → +H, h→ −h

cos (β − α)→ − cos (β − α), sin (β − α)→ + sin (β − α), H2 → −H2 =⇒ H → −H, h→ +h
(3.63)

This implies that β − α is only well defined modulo π. We are free to pick any interval
of length π. In our convention we assume that

0 ≤ β − α < π, (3.64)

leading to
− 1 ≤ cos (β − α) ≤ +1, 0 ≤ sin (β − α) ≤ 1. (3.65)

We can also see that the product sin (β − α) cos (β − α) is a pseudo-invariant under
H2 → −H2.

In the process of diagonalizing the CP-even mass matrix in the Higgs basis, we can derive
relationships between β − α and the parameters given by

Λ1v
2 = m2

h sin2 (β − α) +m2
H cos2 (β − α), (3.66)

Λ6v
2 =

(
m2
h −m2

H

)
sin (β − α) cos (β − α), (3.67)

m2
A + Λ5v

2 = m2
H sin2 (β − α) +m2

h cos2 (β − α). (3.68)

Since we choose h to be the lightest CP-even scalar, Equation 3.67 leads to the requirement
that:

Λ6 sin (β − α) cos (β − α) ≤ 0. (3.69)

Furthermore, it can be shown that tan β changes sign under H2 → −H2. We shall pick a
convention where tan β is positive, which fixes the sign of H2. Using the above equation,
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Λ6 is fixed by our conventions (and also Λ7 since Λ6Λ7 is an invariant). We can then
derive the expressions

cos (β − α) = −sgn (Λ6)
√

Λ1v2 −m2
h

m2
H −m2

h

,

sin (β − α) =
√
m2
H − Λ1v2

m2
H −m2

h

. (3.70)

3.9 Inert models

Before closing this chapter, we briefly comment on how the Inert Doublet Model (IDM)
differs from the 2HDM [48–50]. The IDM is a 2HDM with an exact Z2-symmetry,
which implies that the lightest Z2-odd particle is stable and therefore a potential DM
candidate.14 Previously, we kept m2

12 as a soft Z2-violating parameter but now we must
set it to zero. Of course, the hard Z2-violating parameters, λ6 and λ7, are also fixed to
zero. These are the only changes made to the scalar potential from Equation 3.9.

We desire a set of physical states that respect the Z2-symmetry; this requires either
v1 = 0 or v2 = 0. The choice is arbitrary but to be consistent with literature we choose
v2 = 0. This results in v1 = v and tan β = 0. With this convention, the first doublet
becomes SM-like while the second is known as the inert doublet. The doublets can be
written in terms of the physical states quite simply as

Φ1 = 1√
2

 √
2G+

v1 + h+ iG0

 , Φ2 = 1√
2

√2H+

H + iA

 . (3.71)

We now only have 1 vacuum minimisation condition given by

m2
11 + λ1

2 v
2
1 = 0. (3.72)

We also desire the Z2-symmetry to be preserved in the Yukawa sector. We discussed this
previously for the 2HDM which lead to the 4 2HDM types in Table 3.6. However, if we
were to select a generation of fermions to couple to the inert doublet then this generation
would remain massless. Hence, we choose all fermions to couple with the SM-like doublet.
This corresponds to a Type-I 2HDM but the convention differs from Table 3.6 (where

14This symmetry is sometimes called the D-symmetry, but we will keep calling it the Z2-symmetry
since there are no other Z2 symmetries that we consider in the IDM.
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all fermions coupled to the second doublet). Instead, we have a convention where all
fermions couple to only the first doublet.15

Switching between the doublet conventions, i.e. Φ1 ↔ Φ2, results in the parameter
transformations

m2
11 → m2

22, m2
22 → m2

11, m2
12 →

(
m2

12
)∗
,

λ1 → λ2, λ2 → λ1, λ5 → λ∗5, λ6 → λ∗6, λ7 → λ∗7,

Yd1 → Y ∗d2, Yd2 → Y ∗d1, Yu1 → Y ∗u2, Yu2 → Y ∗u1, Ye1 → Y ∗e2, Ye2 → Y ∗e1,

v1 → v2, v2 → v1, tan β → 1/ tan β, α→ α− π/2. (3.73)

Here we have listed the most general transformation in the 2HDM – which also applies
for the IDM.

We can obtain the masses by substituting Equation 3.71 into the scalar potential, resulting
in

m2
h = v2λ1,

m2
H = 1

2v
2λ̄345 +m2

22,

m2
A = 1

2v
2λ345 +m2

22,

m2
H+ = 1

2v
2λ3 +m2

22, (3.74)

where λ345 ≡ λ3 + λ4 + |λ5| and λ̄345 ≡ λ3 + λ4 − |λ5|. Here we have used the vacuum
minimisation condition (Equation 3.72) to eliminate m2

11. Notice that λ2 is not related
to the masses at all, while λ1 and mh are decoupled from the other masses and are only
related to each other.

In doing this substitution, we also justify our assumption that the physical states appear
in the doublets, as in Equation 3.71. Note that the conventions for the scalars differ
in the IDM. In the 2HDM we had two CP-even scalars that were mixed together via
cos (α− β), and a CP-odd scalar A. There is nothing to differentiate the CP-even scalars
apart from their mass, so we picked a convention where mh < mH . This is different in
the IDM since h is Z2-even while H and A are both Z2-odd. Therefore, we do not have

15It should be clarified – we are not saying that the choice of whether fermions couple to Φ1 or Φ2 is
equivalent. Only that that we are free to choose which is the inert doublet and which is the SM-like
doublet. In either case fermions couple to the SM-like doublet.
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mh < mH in general. In fact, h just corresponds to the SM Higgs – by which we mean
that it has identical couplings to all SM particles. The λ1 parameter just corresponds
to the SM Higgs coupling, λ. Furthermore, while H and A are relatively CP-odd, their
actual CP-state is arbitrary since there are no A-fermion or H-fermion interactions that
could determine it. We can consider the IDM to have two separate CP symmetries.

We can also derive equations to calculate the couplings from the masses. These are given
by

λ1 = m2
h/v

2,

λ3 = 2
(
m2
H+ −m2

22
)
/v2,

λ4 =
(
m2
H +m2

A − 2m2
H+

)
/v2,

λ5 = −
∣∣∣m2

H −m2
A

∣∣∣ /v2. (3.75)

We can also find the scalar-scalar and scalar-gauge couplings by substituting Equation
3.71 into the scalar potential and scalar KED respectively. These couplings are much
simpler for the IDM, compared to the 2HDM, and we therefore list all of them in Table
3.8. Here we notice that all h-DM couplings depend on either λ3, λ345, or λ̄345, and all
DM-DM interactions depend on only λ2. We do not list the scalar-fermion couplings
since they are just the same Higgs-fermion couplings in the SM.

Since the IDM has an exact Z2 symmetry, the lightest Z2-odd particle must be stable.
This may be either H, A or H+. Since we would like this to be a DM candidate, we
must reject points where H+ is the lightest of the three. Such a charged DM candidate
interacts with photons and therefore would not be dark! We may take either H or A as
the DM candidate, however the choice is arbitrary since the two particles switch roles
roles under λ5 → −λ5. To avoid this redundancy, we take H to be the DM candidate
and fix λ5 < 0. This results in mH < mA and mH < mH+ . This is the reason why we
used the absolute value of λ5 in the previous equations.

In the IDM we have 5 free parameters, which we may choose to be λ2, . . . , λ5 and m2
22.

The λ1 and m2
11 parameters are constant since these are related to SM-like Higgs mass

which was measured to be 125 GeV, while v corresponds to vSM with an experimental
value of 246 GeV.
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C [hhh] 6iλ1v

C [hhhh] 6iλ1

C [hHH] iλ345v

C [hhHH] iλ345

C [hAA] iλ̄345v

C [hhAA] iλ̄345

C
[
hH+H−

]
iλ3v

C
[
hhH+H−

]
iλ3

C [HHHH] 6iλ2

C [AAAA] 6iλ2

C
[
H+H−H+H−

]
4iλ2

C [HHAA] 2iλ2

C
[
HHH+H−

]
2iλ2

Scalar-Scalar

C
[
AAH+H−

]
2iλ2

C [hZµZv] −igmW ηµv

C
[
hW+

µ W
−
v

]
−igmW ηµv

C [hhZµZv] ig2

2 ηµv

C
[
hhW+

µ W
−
v

]
ig2

2 ηµv

C [HHZµZv] ig2

2 ηµv

C
[
HHW+

µ W
−
v

]
ig2

2 ηµv

C [AAZµZv] ig2

2 ηµv

C
[
AAW+

µ W
−
v

]
ig2

2 ηµv

C
[
H+H−ZµZv

]
2ie2 cot (2θW )ηµv

C
[
H+H−W+

µ W
−
v

]
ig2

2 ηµv

C
[
H+H−AµAv

]
2ie2ηµv

C
[
H+H−AµZv

]
−2ie2 cot2 (2θW )ηµv

Scalar-Gauge

C
[
H±AW∓µ Av

]
±1

2g
2 sin (θW )ηµv

Table 3.8: Scalar-scalar and scalar-gauge couplings in the IDM. We do not list the
Goldstone or ghost couplings here but they can be found in Ref [14].
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Constraints

We outline the theoretical and experimental constraints on the THDMs below. Theo-
retical constraints determine whether a given set of parameters leads to a valid theory,
whereas experimental constraints determine how favourable the parameters are based on
experimental evidence.

4.1 Theoretical Constraints

4.1.1 Vacuum Stability

The lowest-energy state in a QFT is known as the vacuum state and corresponds to the
minimum of the potential. The potential of our theory must have a global minimum so
that a stable vacuum exists. In this section we derive the conditions required for a stable
vacuum.

Weak versus strong stability conditions

Given a 2HDM potential with some parameter values, vacuum stability requires that
it is bounded from below in all regions of field space. Since our 2HDM potential is
a polynomial function of the fields Φi, vacuum stability can be guaranteed simply by
requiring that the potential is positive as the fields go to infinity for all directions in field
space. This is easier to analyse if we use a radial parameterisation of our potential [51],
given by

|Φ1| = r cos γ, |Φ2| = r sin γ, Φ†2Φ1
|Φ1| |Φ2|

= ρeiθ, (4.1)
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where we use the following ranges for our radial parameters

r ≥ 0, γ ∈ [0, π/2] , ρ ∈ [0, 1] , θ ∈ [0, 2π) . (4.2)

In this notation, the potential takes the form

V = r2V2 + r4V4, (4.3)

where

V2
(
m2
ij

)
= m2

11r
2 cos2 γ +m2

22r
2 sin2 γ − 2m2

12r
2 cos γ sin γρ cos θ (4.4)

V4 (λi) = 1
2λ1 cos4 γ + 1

2λ2 sin4 γ + λ3 cos2 γ sin2 γ + λ4ρ
2 cos2 γ sin2 γ

+ λ5ρ
2 cos (2θ) cos2 γ sin2 γ + 2λ6ρ cos θ cos3 γ sin γ + 2λ7ρ cos θ cos γ sin3 γ.

(4.5)

Assuming that V4 (γ, ρ, θ) 6= 0, the quartic term will dominate as r →∞, and the vacuum
will be stable if V4 > 0. This is known as the strong stability requirement [37]. If V4 = 0
for some direction in field space, we still have a stable vacuum so long as V2 > 0. We
can write these conditions as

min
{γ,ρ,θ}

V4 (λi) > 0 or min
{γ,ρ,θ}

V4 (λi) ≥ 0, min
{γ,ρ,θ}

V2
(
m2
ij

)
> 0. (4.6)

In what follows, we shall only check the strong stability requirement. This means that
we are being overly restrictive.

Stability conditions using the radial parameterisation

While the full stability condition requires checking the minimum with respect to all
directions of field space, we can derive some very simple conditions by checking specific
field directions [51]. For example

V4 (γ = 0) = 1
2λ1 > 0, (4.7)

V4 (γ = π/2) = 1
2λ2 > 0, (4.8)

V4 (ρ = 0) = 1
2λ1 cos4 γ + 1

2λ2 sin4 γ + λ3 cos2 γ sin2 γ > 0, (4.9)
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V4 (ρ = 1, θ = π/2) = 1
2λ1 cos4 γ + 1

2λ2 sin4 γ + (λ3 + λ4 − λ5) cos2 γ sin2 γ > 0. (4.10)

The third and fourth conditions are both minimised for tan2 γ =
√
λ1/λ2 and thus the

conditions on our parameters are

λ3 > −2
√
λ1λ2 , λ3 + λ4 − λ5 > −2

√
λ1λ2. (4.11)

So far we have not assumed a specific 2HDM potential. Now consider a potential where
λ6, λ7 = 0. In this case the quartic terms become

V4 (λi) = 1
2λ1 cos4 γ + 1

2λ2 sin4 γ + λ3 cos2 γ sin2 γ

+ λ4ρ
2 cos2 γ sin2 γ + λ5ρ

2 cos (2θ) cos2 γ sin2 γ, (4.12)

which can be written as

V4 = λ1 cos4 γ+λ2 sin4 γ+Λ cos2 γ sin2 γ > 0, Λ ≡
(
λ3 + λ4ρ

2 + λ5ρ
2 cos (2θ)

)
. (4.13)

Recognising that this takes the same form as Equation 4.9, this leads to the condition

Λ > −2
√
λ1λ2, (4.14)

and therefore we have
λ3 + λ4 − |λ5| > −2

√
λ1λ2. (4.15)

While these are necessary conditions for vacuum stability, we still have not proven
whether they are sufficient since we did not consider all directions in field space. It
turns out that these conditions (Equations 4.7, 4.8, 4.11, and 4.15) are sufficient for the
Z2-symmetric model. We prove this using a different approach in Appendix F. For the
general 2HDM, we still need three more sets of conditions arising from the boundaries
cos θ = ±1, ρ = 1. Unfortunately, these do not have a simple form [52].

4.1.2 Vacuum meta-stability

We also require the VEV to correspond to the global minimum, rather than a local
minimum. If a deeper vacuum exists then we have the possibility of quantum tunnelling
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to the true vacuum, leading to a phase transition. The conditions for multiple normal
minima are1

m2
11 + k2m2

22 < 0, x2/3 + y2/3 ≤ 1, (4.16)

where

k = (λ1/λ2)1/4 ,

x = 4km2
12

m2
11 + k2m2

22

√
λ1λ2

λ345 −
√
λ1λ2

, (4.17)

y = m2
11 − k2m2

22
m2

11 + k2m2
22

√
λ1λ2 + λ345√
λ1λ2 + λ345

. (4.18)

Then if more than one minimum exists, the inequality

D = m2
12
(
m2

11 − k2m2
22
)

(tan β − k) < 0, (4.19)

can be used to determine if our VEV corresponds to the deepest minimum. In other
words, if D < 0, our vacuum is meta-stable.

4.1.2.1 Vacuum stability in the IDM

The vacuum stability constraints given above are not applicable to the IDM. The problem
stems from the fact that there is only a single vacuum minimisation condition (c.f.
Equation 3.72). Re-deriving these expressions for the IDM yields

m2
22 <

R m2
11
√
λ1/λ2, if |R| < 1,

m2
11
√
λ1/λ2, if R > 1,

where
R ≡ λ345/

√
λ1λ2. (4.20)

The absence of a charge-breaking vacuum is guaranteed by

λ4 − |λ2| < 0. (4.21)
1we only have the possibility of tunnelling between normal minima.



Chapter 4 Constraints 62

This is a sufficient but not necessary condition for the vacuum to be neutral. A neutral
vacuum can also be achieved for positive λ4− |λ2|. However, in this case the lightest DM
candidate will be the charged scalar, which we do not consider in this thesis anyway.

4.1.3 Perturbativity of the couplings

When calculating observables we rely on perturbation theory, which assumes that the
matrix elements can be written as a series that gets progressively smaller at larger orders
of the couplings λi, and thus allows us to consider only the leading terms.

If |λ/4π| ≥ 1 then the series does not converge (it is known as strongly coupled), and
the perturbation theory is not valid. Even for values less than 1, the series may still not
converge, or we may not have enough terms for our approximation to be valid. When
multiple couplings are present, the cut-off is lower, but a suitable value is not obvious, so
we use a conservative value of 1. This leads to a limit on the 2HDM generic couplings
given by

|λi(mZ)| < 4π, i = 1, . . . , 7. (4.22)

This is enforced in the generic basis by the parameter ranges (at least for the input scale
which we set to mZ). We may improve this constraint further by considering all 4-scalar
couplings. This leads to the constraint

∣∣∣Cϕiϕjϕkϕl ∣∣∣ < 4π, ϕi = h0, H0, A0, H+, H−. (4.23)

Extending this constraint to the Yukawa sector leads to the requirement that all Yukawa
couplings are less than

√
4π.

4.1.4 Perturbativity of the scalar masses

When we renormalise the 2HDM spectrum, we have the running scalar masses calculated
at Qin = mZ as well as the pole masses. To ensure that the corrections to the masses
remain perturbative, we place an upper limit. The pole mass for some scalar φ is given
by

mφ = mφ(mZ) + Σ(mφ), (4.24)
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where mφ(mZ) is the running mass and Σ(mφ) contains the corrections. We choose a
cut-off such that the corrections are less than half the running mass, i.e.

Σ(mφ) < 1
2mφ(mZ). (4.25)

4.1.5 S-Matrix Unitarity

Given some initial state |i〉 we determine the final state |f〉 using the scattering operator
|f〉 = S |i〉 , and we obtain the scattering matrix elements via Sfi = 〈f |S| i〉. We require
probability current to be conserved, and therefore that Sfi is unitary. If unitarity is
violated, then the theory is non-perturbative, and some high-energy new physics must
appear to restore the unitarity. We assume that the 2HDM is weakly coupled and
therefore unitarity should be satisfied at all orders.2 To derive the unitarity conditions
[52–55], we first separate the scattering operator as: S = I + iT and write the amplitude
T as a sum of partial waves, i.e.

Tfi (s, t, u) =
∞∑
l=0

16π (2l + 1) al (s)Pl (cos θ). (4.26)

Here s, t, u are the Mandelstam variables3, Pl (x) is the l-th Legendre polynomial and al
are called the partial wave amplitudes.4 We shall only consider 2-particle to 2-particle
scattering processes. Now, the differential cross-section for a two-body elastic scattering
process is given by

dσ

dΩ = 1
64π2s

|T |2 . (4.27)

Using the orthogonality relation for the Legendre polynomials, we can solve for the
cross-section. The result is

σ = 16π
s

∞∑
l=0

(2l + 1) |al|2 . (4.28)

The optical theorem, given by
2In a strongly-coupled theory the S-matrix contributions may be arbitrarily large, but cancel in the

full sum.
3Given by s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2.
4a0 is called the S-wave amplitude.
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σ = 16π
s

∞∑
l=0

(2l + 1) Im (al) , (4.29)

relates the cross section to the forward scattering amplitude. Combining this with the
previous expression for the scattering cross-section, we get

|al|2 = Im (al) , ∀l,

Re (al)2 + Im (al)2 = Im (al) , ∀l. (4.30)

This is nothing but the equation of a circle with radius 1
2 and centre (0, 1/2). We see

that at leading order (where Im(al) = 0)

|Re (al)| <
1
2 . (4.31)

Starting from our original equation and using orthogonality of the partial waves, we can
solve for al (s), leaving us with

al (s) = 1
32π

∫ 1

−1
d (cos θ)Pl (cos θ)M (s, t, u). (4.32)

We shall only consider the tree-level J = 0 s-wave amplitude in the high-energy limit.
We can show that the s-wave amplitude takes the form

a0 (s) = 1
16π

[
Q + T 12

h T 34
h

1
s−M2

h

− 1
s

(
ctT

13
h T 24

h + cuT
14
h T 23

h

)
ln

(
1 + 2

m2
h

)]
. (4.33)

The first term in the brackets is the contribution of the quartic coupling to the amplitude,
the second is the contribution of the s-channel diagram and the third term is the
contribution from the t and u channels. In very high energy collisions, it can be shown
that the dominant contribution is the one which is mediated by the quartic coupling,
Q. Those contributions mediated by trilinear couplings are suppressed on dimensional
grounds. Hence, the unitarity constraint reduces to the following constraint on the
quartic coupling

|Q (S1S2S3S4)| ≤ 8π. (4.34)
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We can construct a scattering matrix with a variety of processes and consider the
unitarity requirement for each of these. We shall consider all four-scalar couplings in
the 2HDM. Deriving the four-scalar couplings in the mass basis in terms of λi, α, β is
very-complicated. As shown by [56] making a clever choice of basis makes the process
much simpler5, enabling us to derive analytic expressions for the constraints on λi. The
S-matrix eigenvalues take the form

Λeven
21± = 1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4 |λ5|2

)
,

Λodd
21 = 1

16πλ3 + λ4,

Λodd
20 = λ3 − λ4,

Λeven
01± = 1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
,

Λodd
01± = λ3 ± |λ5| ,

Λeven
00± = 1

2

(
3 (λ1 + λ2)±

√
9 (λ1 − λ2)2 + 4 (2λ3 + λ4)2

)
,

Λodd
00± = λ3 + 2λ4 ± 3 |λ5| , (4.35)

where we have used the notation from Ref [57] (which also applies for complex λ5). The
unitarity constraint is implemented simply by requiring that each eigenvalue is less than
8π.6

In our code we consider eigenvalues at next-to-leading-order (NLO) where the unitarity
constraint is |a0 − i/2| ≤ 1/2. These were taken from [58]. We also include the wave-
function corrections, and gauge coupling & Yukawa corrections from [59–61]. The NLO
unitarity constraint is much stronger than LO.

4.2 Collider Constraints

Particle collider experiments use electromagnetic fields to propel charged particles to
high energies, where they are then smashed into a stationary target or a beam in the

5To see how, first observe that that the Lagrangian is invariant under the symmetries: Z2 : Φ2 → −Φ2,
CP : Φ→ Φ†, Yπ : Φi → eiπ/2Φi, and G : Φi → eiπσ2/2Φ†i . Rather than constructing two particle states
out of h,H,A,H±, G±, G0, an easier approach is to construct a basis of eigenstates of the aforementioned
symmetries, since the S-matrix would be block diagonal in this case (with 9 blocks) [56].

6Note that this LO unitarity constraint is not necessary when using the perturbativity constraint,
since the scalar couplings are also limited by the perturbativity constraint. But in that case, they were
limited to 4π – making perturbativity more restrictive.
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opposite direction. If enough energy is available, the particles may produce exotic heavy
particles which are then detected via their decay signatures [2, 62].

In recent years, the main goal of these experiments has been to search for the SM Higgs
boson. The Large Electron-Positron Collider (LEP) was the largest lepton collider ever
built. It was dismantled in 2001 to make space for the LHC. Although it did not discover
the Higgs boson, it did place a lower bound on the Higgs mass of 114 GeV. The Tevatron
experiment, which was active up until 2011, also excluded various mass regions. The
Large Hadron Collider (LHC), which primarily collides proton beams, is the largest
particle collider ever built. The Higgs boson was first detected in 2012 by the ATLAS and
CMS detectors at the LHC. The mass was determined to be 125 GeV, and limits have
been placed on its couplings. So far, no significant deviation from the SM predictions has
been observed. However, there still remains a possibility that it is part of an extended
scalar sector of some BSM theory.

4.2.1 Higgs production and decay at particle colliders

Higgs searches at particle colliders detect processes like X → h → Y where X are a
set of particles that interact to produce a Higgs boson and Y are the decay products.
Only the decay products are seen by the detector itself. At hadron colliders, the
main production channels are: gluon-gluon fusion (ggF ), vector boson fusion (V BF ),
associated production with a vector boson (V H) and associated production with top
quarks (tth). Examples of leading-order diagrams are given in Figure 4.1.7

Important decay products include: γγ, WW , ZZ, Zγ, gg, ττ , cc, µµ, and bb. Note
that the decays to γγ and Zγ occur at 1-loop level (see Figure 4.2) and are therefore
suppressed. But they are still important due to the low backgrounds in the γ channels.

The fermion-scalar and gauge-scalar couplings determine the values of the cross-sections
and decay rates for the above processes. The reduced couplings for all 2HDM types were
given in Tables 3.7 and 3.5. In Equation 3.60, we showed that these couplings depend on
two parameters at tree-level: tan β and cos (β − α). The parameters m2

12 and mH+ also
enter due to loop effects. Since the SM is in excellent agreement with the experimental
data, we expect reduced couplings involving h to be close to 1 while those involving H
to be close to zero.

The couplings are also directly related to the mass of the particle involved, so heavier
particles have stronger couplings to the Higgs boson. For example, the htt coupling is

7In hadron colliders, partons (quarks and gluons) are involved in the initial state, since these are
found inside protons. We need information about the position and momentum distribution of such
partons within their parent hadron, which are obtained from parton distribution functions.
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(a) Gluon-gluon fusion: gg → h
(b) Associated production with top quarks: qq → tth

(c) Vector boson fusion: qq → qq∗h

(d) Associated production with a gauge boson: gg → hZ

(e) Associated production with a gauge
boson: qq → hV

(f) Associated production with a single top quark: qq →
tbh

(g) Associated production with top
quarks: gg → tth

(h) Associated production with a top and W: gb→ tWh

Figure 4.1: Leading order diagrams for the Higgs production channels [2].

Figure 4.2: Leading order diagrams for the Higgs loop decay channels.
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Figure 4.3: Production cross-sections at 13 TeV (left) and branching ratios (right) of
an SM-like Higgs boson for different channels as a function of its mass [3].

far more important than huu. Of course, it is also important that the particular channel
provides a clean signal free from background processes.

Figure 4.3 shows the cross-sections and BFs of an SM-like Higgs as a function of its mass.
These can be applied to h and H in the 2HDM, although we must re-scale these by the
appropriate reduced Yukawa couplings.

When dealing with collider observables, we often make the assumption that the production
and decay modes are independent (called the narrow width approximation) and thus the
rate of a given channel can be factorised as

µXY ≡
σ [X → h]exp. BR [h→ Y]exp.

σ [X → h]SM BR [h→ Y]SM , (4.36)

where ‘exp.’ indicates an experimental value. The denominator implies that this is
normalised to the SM rate. This quantity, known as the signal strength, characterises the
collider yields for some process. Since the SM is a good fit to current experimental data,
the signal strengths are close to 1. Collider experiments often report results in the form
of Higgs signal strength measurements (and correlations) for a variety of processes.8

More recently, an alternative measurement called the Simplified Template Cross Section
(STXS) became available during run 2 of the LHC. The STXS concept was developed
in order to simultaneously maximise the experimental sensitivity and minimise the
theoretical uncertainty of the measurements. They are defined in mutually exclusive
regions of phase space, called bins. The binning provides isolation (which channel) of
possible BSM effects. We shall make use of both signal strengths and STXS measurements
in our global fits.

8We cannot measure the cross-section and branching fraction separately without additional assump-
tions, hence why we must fit the full signal strength.
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4.2.2 HiggsBounds and HiggsSignals

We use the HiggsBounds v5.8.0 [63] package to provide 95% exclusion bounds on a variety
of BSM scalar processes using data from LEP, Tevatron and the LHC. HiggsBounds first
determines the analysis with the tightest exclusion limit for each parameter point for
the model under investigation. Then the parameter point is tested against the observed
bound of this analysis, and only this analysis. The test is passed if none of the scalar
bosons in the BSM theory are excluded. HiggsBounds will then report whether the
parameter point is excluded and which analysis was applied.

We use the HiggsSignals v2.5.0 [64] package to compare model predictions of the observed
125 GeV Higgs to experiment. This uses three contributions to the total lnL which
are based on: i) combined LHC run 1 results, ii) latest results from the

√
s = 13TeV

analyses, and iii) results presented in the form of Simplified Template Cross Sections
(STXS). HiggsSignals also takes into account the signal efficiencies and correlations of
theoretical and experimental uncertainties. It fits both the signal rate observables and
the mass measurements.

Both HiggsBounds and HiggsSignals have already been interfaced in GAMBIT and are
part of the ColliderBit module (which we discuss later). They both use a set of model-
independent inputs. This consists of the number of neutral scalars, and for each scalar,
the mass, total decay rate, branching ratios into a selection of final states and cross
sections. The cross sections are provided in the form of effective couplings (HiggsSignals
will calculate the cross sections by a re-scaling of corresponding SM quantities).

4.3 Electroweak constraints

Constraints on the electroweak sector include measurements of the anomalous magnetic
moment of the muon [65], W -boson mass [66], and electric dipole moment of charged
leptons. But in this work, we focus on corrections to the gauge boson propagators.

M. Peskin and T. Takeuchi developed three parameters, called S, T and U, to characterise
the corrections to the gauge boson propagators [67] (known as oblique corrections). They
are constructed such that they are equal to zero in the SM in order to highlight the
influence of new physics. Their current experimental values are close to zero, hence the
SM is not challenged. They are defined as

S ≡ 4e2

α

d

dq2

[
Π33

(
q2
)
−Π3Q

(
q2
)]
|q2=0,
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T ≡ e2

α m2
W sin2 θW

[Π11 (0)−Π33 (0)] ,

U ≡ 4e2

α

d

dq2

[
Π11

(
q2
)
−Π33

(
q2
)]
|q2=0, (4.37)

where Πxy
(
q2) represents the self-energies of the electroweak gauge bosons Z and Y with

4-momentum qµ. The subscript i represents the Wi field and the subscript Q represents
the B field. In defining these oblique parameters, a subtraction of the SM contributions
is made. Their general impact is as follows:

• The S parameter is sensitive to the presence of new heavy fermions and provides a
good constraint of composite Higgs models

• The T parameter measures the violation of the custodial symmetry, which is a
residual symmetry of the Higgs sector, and is sensitive to additional scalars.

• The U parameter is only sensitive to changes in the W± boson decay width and
hence is generally less constraining than the two other oblique parameters.

They are applicable only when the following criteria are met:

i. the electroweak gauge group is the same as the SM i.e., SU(2)L ⊗ U(1)Y ,

ii. any new particles must have suppressed light fermion couplings in comparison to
gauge boson couplings,

iii. the scale of new particles is much greater than the electroweak scale.

The additional scalars in the 2HDMs couple to the gauge bosons. Hence, there are
additional loop contributions to the W/Z boson self-energies that are not present in the
SM. The oblique parameters are unaffected by the Yukawa couplings at 1-loop order and
therefore are model independent.

Formulae for the oblique parameters can be found in Appendix C of [68]. We do not state
them here as they are rather complicated. But the main observation is that the 2HDM
contributions vanish when the mass splittings, mH −mA, mH −mH+ , or mA −mH+ ,
are zero. We demonstrate this for the simple case of the T parameter in the IDM [69],
which is given by

T = 1
32π2αv2

[
fc
(
M2
H+ ,M2

A

)
+ fc

(
M2
H+ ,M2

H

)
− fc

(
M2
A,M

2
H

)]
, (4.38)
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fc (x, y) ≡


x+y

2 −
xy
x−y log (xy ), x 6= y,

0, x = y.

Now we expand fc at x = y and insert two squared masses, resulting in

fc (x, y) ' (x− y)2

6y − (x− y)3

12y2 + (x− y)4

20y3 − . . .

fc
(
m2
A,m

2
B

)
≈ (mA −mB)2 (mA +mB)2

6m2
B

≈ 2
3 (mA −mB)2 . (4.39)

We find that mass splittings of the form (mA −mB)2 control the T parameter. Since
the experimental value is greater than zero (it is T = 0.1 ± 0.07) we end up with two
solutions for each mA − mB. The expressions for the S and U parameters are more
complicated but in all cases the mass splittings are important.

We compute the STU parameters using the 2HDMC program and fit them to the observed
values from the global electroweak fit, assuming mref

h = 125 GeV and mref
t = 172.5 GeV

[70] (see also [71]). These are given by

S = 0.04± 0.11 ,

T = 0.09± 0.14 ,

U = −0.02± 0.11 ,

(4.40)

with the following correlation matrix

Σ =


1.0 0.92 −0.68

0.92 1.0 −0.87

−0.68 −0.87 1.0

 . (4.41)

If we would like to consider new physics at the electroweak scale, we need to include an
additional 3 parameters: V, W, and X. Slightly above the electroweak scale we can use
the relations

S′ = S + 4s2
W c

2
WV + 4(c2

W − s2
W )X ,

T ′ = T + V ,

U ′ = U − 4s2
W c

2
WV + 8s2

WX .

(4.42)
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As we increase the energy of our NP scale, V , W , X → 0 and we recover the original
set of three oblique parameters S, T and U . Equation 4.42 is implemented in GAMBIT,
since 2HDMC provides all 6 parameters.

4.4 Flavour constraints

Each SM fermion carries a flavour quantum number that is preserved in strong and
electromagnetic interactions but violated in weak interactions. For example, the charged
leptons have an electron number, muon number and tau number. There are also similar
numbers for neutrinos. The electron number for some state is given by the number
of electrons minus the number of positrons. To be clear, the total lepton and quark
numbers are always conserved, but the numbers for separate particles are violated in
weak interactions.

Flavour physics studies flavour changing processes [72], where one flavour quantum
number is converted to another. In particular, it focuses on processes with a change
of generation. The CKM and PMNS matrices control how much flavour violation is
allowed in the SM. The off-diagonal elements determine the couplings between different
generations.

Because the CKM matrix is close to the identity, flavour changing interactions in the
quark sector are rare. Therefore, they are highly sensitive to new flavour changing
interactions in BSM theories. In the SM, the Wff interaction is a flavour-changing-
charged-current (FCCC). There are no flavour changing neutral currents (FCNCs) at
tree-level. We can of course combine two FCCCs to create an FCNC. However, these
FCNCs are loop suppressed.

In some types of 2HDMs, Higgs-mediated FCNCs may be permitted at tree level [73].
Since such interactions are tightly constrained by experiment and we chose to eliminate
them for this work (c.f. Section 3.7.4). The 2HDM also allows H+ mediated FCCCs, as
shown in Equation 3.59. We see that these interactions include the CKM matrix making
them appear similar to the SM. But there are also three major differences: i) there
are both left-chiral and right-chiral currents, ii) there is a dependence on the fermion
mass and iii) there is a tan β or cotβ factor that depends on the 2HDM type. Even
when below the energy scale of the H+, these charged scalars may appear off-shell in
loop diagrams. Due to the sensitive nature of such flavour changing currents, these
contributions may still be detected. Perhaps ironically, flavour physics often provides
better sensitivity to high-mass particles than from direct collider searches.
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4.4.1 Effective field theory

Flavour processes are calculated using an Effective Field Theory (EFT) framework.
Before continuing we provide a brief explanation of EFT [74].

We are often interested in processes below a given energy scale, M . For example, flavour
processes typically involve initial states with energy M < MW . Insufficient energy is
available to produce heavy states, such as H+. Yet these states may still appear ‘off-shell’
as virtual particles which contribute to flavour processes. Therefore, we cannot simply
ignore all states with masses above our energy scale M . However, we can make a great
simplification to our theory by encoding the effects of these heavy states into a set of
vertices. The operators that describe these vertices involve just the initial and final state
while the heavy state only influences the coefficient. We say that the heavy state has
been integrated out. It works since we are unable to resolve the heavy states directly.
There are two steps needed to build an EFT:

1. Power counting: when calculating an interaction, we find that it expands out in
terms of (1/M)n, where M is the energy of the state that we are integrating out.
When keeping only the non-negligible terms, we must decide how large to allow
n. This is called power counting. We can add additional terms to build a more
accurate EFT.

2. Matching: we end up with an effective Lagrangian that contains all relevant
operators but with unknown coefficients (called Wilson coefficients). We then need
to match this it to the original Lagrangian at the energy scale µ = M .

For example, in the effective Lagrangian below we have chosen a cutoff scale M = mW .

Leff = Lm<mWQED×QCD +
∑
i

Ci (µ)Oi (µ) (4.43)

Here Oi are the operators and Ci are the corresponding Wilson coefficients. The first
term encodes all physics below the scale mW and the second encodes physics at or above
the scale mW . The result of eliminating heavy particles is inevitably a non-renormalisable
theory, in which the effects of the heavy particles appear in operators with a dimension
higher than four.

Another familiar example is Fermi’s theory [75], which is a low-energy EFT for the weak
interaction. The Wilson coefficient, called Fermi’s coupling constant, is a function of the
W mass. The effective vertex is shown in Figure 4.4, or mathematically takes the form
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Figure 4.4: Fermi’s theory of the weak force [4].

OF = GF√
2

(p̄nēv + n̄pv̄e) . (4.44)

In our flavour fits, operators that we consider have the generic form

Oi =
(
ψ̄APRXψB

) (
ψ̄CX̃ψD

)
. (4.45)

where PR, PL are the right-chiral, left-chiral projection operators, ψA, ψB, ψC , ψD are 4
(possibly identical) fermions, and X is some product of the matrices: I, γµ, σµv, and
T a. We use the set of operators listed below [76], which are mostly focused on rare B
decays. The flavour observables are calculated purely from the Wilson coefficients [77],
which in turn depend on the theory under investigation.

O1 ≡ (s̄γµT aPLc) (c̄γµT aPLb) ,

O2 ≡ (s̄γµPLc) (c̄γµPLb) ,

O3 ≡ (s̄γµPLb)
∑
q

(q̄γµq) ,

O4 ≡ (s̄γµT aPLb)
∑
q

(q̄γµT aq) ,

O5 ≡ (s̄γµ1γµ2γµ3PLb)
∑
q

(q̄γµ1γµ2γµ3q) ,

O6 ≡ (s̄γµ1γµ2γµ3T
aPLb)

∑
q

(q̄γµ1γµ2γµ3T
aq) ,

O7 ≡
e

(4π)2mb (s̄σµvPRb)Fµv,

O8 ≡
g

(4π)2mb (s̄σµvT aPRb)Gaµv,

O9 ≡
e

(4π)2 (s̄γµPLb)
(
l̄γµl

)
,

O10 ≡
e

(4π)2 (s̄γµPLb)
(
l̄γµγ5l

)
. (4.46)
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ū1 d̄1 ū2 d̄2 ū3 d̄3

u1 π0 π+ D̄0 K+ T 0 B+

d1 π− π0 D− K0 T− B0

u2 D0 D+ ηc D+
s D̄0

c B+
c

d2 K− K̄0 D−s η T−s B0
s

u3 T 0 T+ T 0
c T+

s ηt T+
b

d3 B− B̄0 B−c B̄0
s T−b ηb

Table 4.1: Table of Mesons in the SM. Note that some of these mesons are mixed
together, in particular: π0 = 1√

2

(
ū1u1 − d̄1d1

)
, and η = 1√

6

(
ū1u1 + d̄1d1 − 2ū2u2

)
.

Here f = u, d, s, c, b, mb is the b mass, T a are the SU(3)C generators, and Fµv, Gaµv are
the photon / gluon field-strength tensors. We also have a similar set of primed operators
with PL ↔ PR. The effective Hamiltonian may be written

Heff = −4GF√
2
VtbV

∗
ts

10∑
i=1

(
Ci (µ)Oi (µ)− C ′i (µ)O′i (µ)

)
, (4.47)

where GF is Fermi’s constant, Vtb, Vts are two CKM matrix elements, µ is the energy scale
at which the calculation is being performed, Oi are local operators providing low-energy
descriptions of high-energy physics, and Ci are the Wilson coefficients for each operator.
Cross-sections for transitions from initial states i to final states f are proportional to
squared matrix elements |〈f |Heff | i〉|2.

4.4.2 Flavour Observables

In this work, we consider two types of flavour processes: meson decays and meson mixing.
Mesons are a bound state consisting of one quark and one antiquark. The symbols for
each meson are provided in Table 4.1. Flavour observables may be categorised as either
quark flavour violating (QFV) or lepton flavour violating (LFV) depending on which
flavour quantum numbers are violated. Most observables we consider are of the former
type.

The strongest flavour constraints tend to involve B-mesons, which include a bottom
quark and some other quark, with the most common type being the b→ s transition.9

Over the past decade, major experimental progress has been made using B factories such
as BaBar and Belle, and the Tevatron. Some measurements of flavour observables have

9The top quark decays very rapidly and has never been observed in a bound state. Hence, mesons
with top quarks are all hypothetical.
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Figure 4.5: Meson mixing example [5].

shown tensions with their predicted values in the SM. It is still unclear if these might
be accommodated by larger-than-expected QCD effects, statistical fluctuations, or some
combination thereof.

We consider some observables that test ‘lepton universality’, which is the property that
the couplings of leptons to all types of gauge boson are flavour-independent. To test
lepton universality, we take the ratio of two decay rates which are identical except with
a different lepton, for example

Br
[
B → K∗µ+µ−

]
/Br

[
B → K∗e+e−

]
. (4.48)

The branching ratios here are of course different since there is a mass dependence in
the phase space factor. But once this is accounted for, both should be the same. In the
2HDM, the H+ff couplings include a mass-dependence, which breaks lepton flavour
universality.

Meson mixing

Neutral mesons have the ability to oscillate between their matter and antimatter versions
via box-diagrams before they decay. We show an example with B-mesons in Figure 4.5
for the process

(
B ↔ B̄

)
→ D−π+. (4.49)

Up and down quantum numbers are not conserved, so this interaction can only be mediated
byW± bosons in the SM. In some meson mixing processes the matter/antimatter versions
have different masses or decay rates. For example, B mesons decay slightly faster than
B̄.
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Figure 4.6: Leading order diagrams for the B0
s → µ+µ− process [6].

Meson decays

Meson decays can be categorised according to the type of current; either FCNC or
FCCC, and according to their decay products; either fully leptonic (e.g. D± → µ±vµ),
semi-leptonic (e.g. → Kµ+µ−), or radiative (e.g. B → K∗γ). All flavour observables
used in our global fits will be listed later in Table 9.1. As an example, we show two
leading order diagrams for the B0

s → µ+µ− process in Figure 4.6.

Some decays, such as BR[B → K∗µ+µ−], exhibit large theoretical uncertainties of the
Wilson coefficients. There are a couple of approaches we take to translate these into
more useful observables. Firstly, following Ref [78], we may translate this decay into 12
angular functions I(a)

i and 12 CP-conjugate angular functions ¯
I

(a)
i . Here i and a together

count the twelve functions. We then construct the set of observables given below from
these angular functions,

S
(a)
i =

d
(
Γ + Γ̄

)
dq2

−1 (
I

(a)
i + ¯

I
(a)
i

)
,

A
(a)
i =

d
(
Γ + Γ̄

)
dq2

−1 (
I

(a)
i −

¯
I

(a)
i

)
. (4.50)

Note that these variables also depend on the energy at which they are evaluated. Another
observable, the K∗ forward-backward asymmetry, can also be written in terms of the
above observables as

AFB = 3
8
(
SS6 + SC6

)
. (4.51)

We also consider the K∗ isospin asymmetry (and its zero crossing) which is written in
terms of the widths as
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AI = Γ
(
B0 → K∗0µ+µ−

)
− Γ

(
B± > K∗+µ+µ−

)
Γ (B0 → K∗0µ+µ−) + Γ (B± > K∗+µ+µ−) . (4.52)

Another approach for dealing with the large Wilson coefficient uncertainties is to take a
ratio with other semi-leptonic processes. This is because the uncertainties mostly cancel.
As an example

RD = BR (B → Dτν̄τ )
BR (B → Dlv̄l)

,

R∗D = BR (B → D∗τ ν̄τ )
BR (B → D∗lv̄l)

, l = e, µ. (4.53)

In our global fits, we will using all of the observable types described above.

SuperIso and HEPLike

The GAMBIT module responsible for calculation of flavour observables is called FlavBit
[76]. It makes use of the SuperIso [79] and HEPLike [80] packages as backends. SuperIso
calculates the predicted values for the flavour observables while HEPLike translates these
into likelihoods by comparing with experimental data. The full set of Wilson coefficients
is calculated within GAMBIT [77] and provided as input into SuperIso. Although SuperIso
does include native 2HDM support, this feature was not used in our global fits.

4.5 Dark matter constraints

It is an astonishing fact that a majority of the mass-energy content of the universe is
not part of the SM. About 71% of the universe’s energy content is in the form of dark
energy, which we do not study in this thesis. Dark matter is the second most abundant
form of matter, at around 24%. This leaves only 5% for ordinary SM matter, making
DM 5 times more abundant [19].

The microscopic nature of DM is unknown, except for the fact that it does not interact
with photons. Initially it was believed that the missing mass in astrophysical observations
was made up of baryonic matter in the form of dark objects like brown dwarfs, primordial
black holes, and neutron stars. But these have since been ruled out as the main constituent
of dark matter. We briefly outline the key astrophysical and cosmological evidence to
support the existence of dark matter:
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Figure 4.7: Measurements of CMB anisotropies by Cobe, WMAP and Planck [7].

• Gravitational Lensing: Einstein’s theory of general relativity implies that mas-
sive objects distort spacetime, causing light to appear to bend around them.
Observations have been made of bright distant objects (such as blazars) whose light
passes through a lensing galaxy cluster. By studying the distorted image of the
distant source, we can infer the amount of mass within the cluster. What we find
is that the mass is much larger than what is inferred from the cluster’s luminosity.

• Cosmic Microwave Background: CMB radiation is observed as a near homo-
geneous blackbody spectrum with a temperature of 2.726K. But there are tiny
fluctuations in the radiance called anisotropies (shown in Figure 4.7). It turns out
that the spectrum can only be well described if one allows a cosmological constant
in Einstein’s field equations as well as cold dark matter. This results in the ΛCDM
(cold dark matter) model.

• Galaxy rotation curves: It turns out that the stars in the Milky Way are moving
too quickly compared to predictions based on the mass of visible matter (estimated
by the luminosity) and the galaxy should fly apart. Extra mass in the form of DM
is required to hold the galaxy together.

• Galaxy Clusters: Observations of galaxy clusters, such as the Coma cluster,
show that the individual galaxies in the cluster are moving too quickly based on
the observed amount of ordinary matter estimated using the luminosity.

Now we briefly outline how we believe the DM originated [81] – assuming thermal
production. The early universe was a hot plasma in which all particles were in thermal
equilibrium. As the universe expanded and cooled, the first hydrogen atoms were formed
300,000 years after the Big Bang in an event called recombination. The universe became
transparent, liberating the photons which we observe today as the cosmic microwave
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background (CMB) radiation. Due to the expansion of the universe, the photons appear
redshifted.

Assuming that DM does interact with ordinary matter via the weak force, DM may
also be in thermal equilibrium in the early universe. As the universe expanded and
cooled, there were not enough interactions to maintain thermal equilibrium. The time at
which the thermal equilibrium was lost is called freezeout. After freezeout, the comoving
number density of DM-particles remains roughly constant. In other words, the number
density of DM decreases only due to the expansion of the universe.

The density of a specific particle species remaining at the time of freezeout is known as
the relic density, denoted ρDM. We often convert this to the density parameter defined
by: ΩDM ≡ ρDM/ρcrit, where ρcrit is the critical energy density at which the geometry of
the universe is flat (which we believe to be the case).

The exact moment or temperature of freeze-out is calculated by equating the reaction
rate to the Hubble rate. The evolution of its number density dn/dt is governed by the
Boltzmann equation. If DM instead remains in thermal equilibrium, then the abundance
decreases exponentially. The main variable that determines the relic density is 〈σvrel〉,
where σ is the DM annihilation cross-section and vrel is the relative velocity. A larger
annihilation cross section means that we can maintain thermal equilibrium for longer (at
lower DM densities). The abundance will continue to fall exponentially until thermal
equilibrium is lost. Hence, a higher cross section leads to a lower relic density. This is
illustrated in Figure 4.8.

There are 3 types of detection methods: indirect, direct and collider. These are illustrated
in Figure 4.9 [82]. Indirect detection experiments look for the products of DM-DM
annihilation, direct detection experiments look for energy deposited on regular matter
in SM-DM interactions and collider experiments aim to produce DM using high-energy
SM-SM interactions, which is detected as missing momentum.

4.5.1 Dark matter collider constraints

Since DM is assumed to consist of stable, neutral particles, it would appear as missing
energy at collider experiments [83]. Searches are based on detection of the visible
counterpart such as jets and/or charged leptons. It is unknown whether sufficient energy
is available to produce DM at current or future colliders. The most commonly used DM
searches at the LHC are:
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Figure 4.8: Thermal freezeout of Dark Matter [8].

Figure 4.9: Methods for dark matter detection [9].

• Mono-jet searches: If a pair of DM particles can be produced from pp collisions,
it should also produce one or more QCD jets from initial state radiation. So, we
may search for jet events with a high missing transverse momentum.

• Mono-V searches: DM may also be produced together with a vector boson which
is radiated by a quark in the initial state. While the corresponding production
cross-section is significantly smaller than for the QCD radiation, the process is
much cleaner and can be searched for with higher sensitivity.
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Figure 4.10: Lower bounds on the spin-independent DM-nucleon cross section as a
function of DM mass for a variety of direct detection experiments. The yellow line is

the neutrino floor. [10].

• Invisible Higgs decays: If the DM mass is less than half the SM Higgs boson
mass, it may be possible to produce pairs of DM particles in Higgs decays.

4.5.2 Dark matter direct detection

Since DM is believed to be everywhere in the universe, it should be travelling through
any detection apparatus on Earth at all times. It may occasionally bump into the nucleus
of a detector atom and deposit some energy via weak currents [11]. The detection rate
depends on the local DM abundance. Limits are placed on either the spin-independent
or spin-dependent DM-nucleon cross-section, depending on which type of current the
detector is sensitive to. Figure 4.10 displays the limits for a variety of detectors.

It is believed that DM energies are in the range of 1-100 keV. In contrast, natural
radioactive elements emit MeV-scale energies. Hence, direct detection experiments must
be thoroughly shielded from radioactive elements. Experiments must be placed deep
underground to shield them from cosmic rays. There are a few ways to detect DM
interacting with ordinary matter depending on how it deposits its energy:

• Inelastic scattering: the nucleus of an atom is excited into a higher energy state
which then decays via photon emission.
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Figure 4.11: The various type of direct detection experiments [11].

• Phonons: the event appears as a vibration in the crystal lattice of the detector
which can be measured using a thermometer.

• Ionisation: an electron gains enough energy to escape the pull of the nucleus. A
small electric field pushes the electron to a detector.

• Scintillation: an electron absorbs enough energy to climb to a higher energy state.
After a short time, the electron loses this energy and emits a photon which can be
collected by photomultipliers and converted into an electric signal.

Noble gas detectors, such as XENON1T, PandaX and LUX, use a large volume of noble
gas as the detection medium and observe both scintillation and ionisation simultaneously
for each event. Other detectors, such as CRESST, EDELWEISS and EURECA, detect
phonons released by the dark matter interacting with low temperature crystals. Figure
4.11 summarises the different types of direct detection experiments.

4.5.3 Dark matter indirect detection

DM annihilations throughout the universe produce SM particles (such as gamma rays,
photons and neutrinos) which can be detected on Earth [84].

- Gamma Rays: DM annihilations may produce pions which then decay into gamma
rays. Alternatively they may produce electrons and positrons which then produce
additional gamma rays, X-rays and radio waves via Bremsstralung, inverse Compton
and synchrotron emission. The Fermi-LAT telescope has been searching for gamma
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rays from the galactic centre and dwarf galaxies that orbit the Milky Way. An
excess has been found in the galactic centre which may be explained by DM.
Alternatively it may also by due to pulsars. Gamma ray methods require knowledge
of the DM distribution and velocity, which is not very well known. This leads to
extra nuisance parameters that we need scan over.

- Neutrinos: Massive celestial bodies, like the Sun and the Earth, moving through
the dark halo can gravitationally trap DM particles in their cores. In equilibrium,
the annihilation rate would equal half the capture rate. Neutrinos from WIMP
annihilations can escape and be searched for by neutrino telescopes. Detection
typically involves a large volume of water or ice. The neutrinos interact with
water molecules in the detector to create charged leptons. Muons are particularly
important here as they leave a clean signal of Cherenkov radiation. This can be
used to determine where the neutrino originated.

- CMB: Measurements of the CMB anisotropies provide an estimate of the DM relic
abundance [85] (along with estimates of the abundance of ordinary matter, and
dark energy). Currently Planck provides by far the most precise measurement
which is: ΩPlanck

DM h2 = 0.1184± 0.0012 [86]. In our study we enforce the DM relic
density measurements as an upper limit, rather than a prediction. This is because
the IDM may be embedded in a more complete model of the universe and thus
there could be other DM candidates that provide the remaining relic density.



Chapter 5

Parameter inference and scanning

In previous chapters we described a variety of 2HDMs, and the theoretical and experi-
mental constraints that we apply to them. Now we would like to know how these shape
the 2HDM parameter space. Two key questions that we may want to answer are: (i)
“given a set of models, which of these best fits the data?”, and (ii) “for a given model,
which regions of its parameter space best fit the data?”. In this work we shall focus on
the second question. We now outline the statistics [87, 88] and tools [12, 89] needed to
answer this.

5.1 Parameter inference

Our BSM theories include a set of unknown parameters; for example, the Type-I/Type-II
2HDMs have 6 parameters (or 7 if we allow the SM-like Higgs mass to be varied) and the
IDM has 5 parameters. We would like to estimate the best values of those parameters
and determine the uncertainty of these estimates.

Suppose we have N physics observables and M measurements of each. The physics
observables are denoted x ≡ {x1, . . . , xN} and could include things like the branching
ratio for B → K∗µ+µ− or the Higgs signal strength for a vector-boson fusion production
mode that decays into two photons. If we need to discuss individual measurements of
these observables, then we add a second index: xij . In this notation the mean, variance
and covariance take the form1

1What we list here are actually estimators known as the sample mean, sample variance and sample
covariance. However, the distinction won’t be important.
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µxi = 1
N

N∑
k=1

xik,

σ2
xi = 1

(N − 1)

N∑
k=1

(xik − µxi)
2 ,

Σxixj = 1
(N − 1)

N∑
k=1

(xik − µxi)
(
xjk − µxj

)
. (5.1)

Now suppose that we have a model with P parameters, θ ≡ {θ1, . . . , θP }. We denote the
(joint) probability density function (PDF) for our observables p(x|θ). If the observables
are independent then we can split this up as a product of PDFs of each individual
observable, i.e.

p (x|θ) =
n∏
i=1

p (xi|θ). (5.2)

In what follows, we need to consider the PDF as a function of the parameters rather
than of the value of the measurements x. In other words, we will switch the role of the
dependent and independent variables. In this case we don’t have a true PDF since

∫
dθ p(θ) 6= 1 for fixed x, (5.3)

whereas a true PDF must be normalised to 1. To avoid confusion, we rename it as the
‘likelihood’ function and give it the symbol L. Most of the time we do not actually know
an analytical form of the likelihood. But we can calculate it for discrete values of the
parameters. By taking enough samples throughout a given range for each parameter, we
can construct an estimate of the likelihood as a function of the parameters.

Before we find the best combinations of parameters, we should first define exactly what
we mean by this. There are two philosophically distinct ways of posing the question
depending on our choice of statistical framework:

1. Frequentist Statistical Framework: How probable is it that we would have
observed the data that we did if a model and a specific combination of its parameters
were true?

2. Bayesian Statistical Framework: How probable is it that a model with a
specific combination of its parameters is true, given the data that we observed?
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Parameter λ1 λ2 λ3 λ4 λ5 m2
12 tan β

Min 0 0 −4π −4π −4π −106 0
Max 4π 4π 4π 4π 4π 107 100

Table 5.1: Parameter ranges in the generic basis.

In this work, we will only be using a frequentist framework. Note that in a frequentist
framework it is not valid to ask whether the model with a given set of parameters is true
since we do not have any repeatable experiments to test this. We only have one universe,
and in that universe the parameters have a particular value.

5.2 Parameter Ranges

We need to sample the likelihood function in order to reconstruct its mathematical
form. We can only do this for a finite range of each parameter. Therefore, we need to
first justify the parameter ranges that we select. Tables 5.1, 5.2 and 5.3 display the
parameter ranges used for the generic, physical and a Hybrid basis respectively.2 We
justify these as follows; firstly, perturbativity requires that the absolute value of all
couplings is less than 4π. This applies to both the generic basis and the Higgs basis
couplings: |λi| < 4π, |Λi| < 4π, i = 1, . . . , 7. Vacuum stability leads to the requirement
that λ1 > 0, λ2 > 0,Λ1 > 0, and Λ2 > 0, thus giving a stricter lower bound for these
parameters. Our conventions for α and β (see Section 3.8) lead to the parameter ranges:
cos (β − α) ∈ [−1,+1], sin (β − α) ∈ [0, 1], and tan β ≥ 0. All physical masses are, of
course, required to be positive. The upper limit of masses is arbitrary, although we select
a value that is not too far beyond the reach of experimental constraints.

The limits are the upper bound of tan β and both the upper and lower bound of m2
12.

Both are more difficult to justify. Firstly, the upper limit of tan β is not well constrained
but we shall see that values above 50 do not lead to any new/interesting phenomenology.
The parameter m2

12 contributes to the mass of all scalar bosons through the term
m̄ ≡ 2m2

12/ sin (2β) – which suggests a rough scale of this parameter. But we cannot
obtain a strict requirement, hence a larger than ideal parameter range is used.

The GAMBIT software, which we use to run our parameter scans, provides functionality
to control the sampling density of each parameter throughout its range. We use a flat
sampling density for

∣∣m2
12
∣∣ less than 10, 000 GeV2 since this tends to lead to appropriate

masses for our scalars. Outside of this range, we set the sampling density to fall off
logarithmically, which allows us to explore a larger region without degrading performance.

2These are the bases that we use in our parameter scans. We do not list the SM parameters here,
but they are all fixed to their experimental values.
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Parameter mh mH mA mH+ sin (β − α) m2
12 tan β

Min 0 0 0 0 0 −106 0
Max 3000 3000 3000 3000 1 107 100

Table 5.2: Parameter ranges in the physical basis.

Parameter mh mH Λ4 Λ5 Λ7 cos (β − α) tan β
Min 0 0 −4π −4π −4π −1 0
Max 3000 3000 4π 4π 4π 1 100

Table 5.3: Parameter ranges in a hybrid basis.

5.3 Frequentist inference

To infer the values of the parameters, we find an estimator, denoted θ̃, of the true
parameter values θ0. We choose the estimator to be the θ-value which maximises the
likelihood (called the maximum likelihood estimator (MLE)). The estimator is itself a
random variable since it depends on the random data points. If we were to repeat our
experiment, we would get a slightly different θ̃ each time; i.e., there exists a PDF of the
estimated parameters – which we denote g

(
θ̃|θ0

)
. The uncertainty of our estimated

parameters is related to the spread of θ̃ values. But as the number of data points
increases, θ̃ approaches θ0. In this limit, it can also be shown that the PDF for θ̃
approaches a normal distribution centred at θ0.

To summarise the uncertainty of our estimators, we calculate confidence intervals for
each parameter. A confidence interval is defined to be a interval which is expected to
contain the true parameters θ0 a fixed portion of the time. For a single parameter, θ,
[a, b] is a confidence interval at the confidence level CL if3

P (a ≤ θ0 ≤ b) = CL. (5.4)

Here the bounds of this region are random variables that depend on the data, whereas
the value we are trying to bound is fixed. Obtaining the exact confidence interval can
be done using the Neyman construction and requires that we estimate the sampling
distribution. This method is rather complicated. But if we can assume that the PDF for
the parameters, g

(
θ̃
∣∣∣θ) is Gaussian distributed then, for a fixed confidence level CL, a

and b can be found using the simplified formulae
3Note that this definition is not unique as we can always expand the lower bound while shrinking

the upper bound such that the confidence level remains fixed. In practice, we use the central confidence
interval, meaning that P (a ≤ θ0) = P (θ0 ≥ b).
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a = θ̃ + σ
θ̃
Φ−1

(1 + CL

2

)
,

b = θ̃ − σ
θ̃
Φ−1

(1 + CL

2

)
. (5.5)

Here Φ−1 is the inverse of the cumulative distribution for g
(
θ̃
∣∣∣θ) (which we take to be a

Gaussian distribution centred at θ̃ and with a standard deviation of σ
θ̃
).

The above formula can easily be extended for multi-dimensional confidence regions of a
vector of parameters. Now consider that we may want to plot a confidence interval/region
in a lower dimensional space of parameters than the full set of parameters. Since we only
have a finite number of samples to represent the likelihood, we need to divide up the
parameter space into bins. We would then like to find an appropriate value to represent
the likelihood for each bin. For frequentist statistics, this is just the maximum likelihood
value throughout the entire set of points within each bin.4 This process is called profiling.

5.4 Chi-squared test statistic

The χ2 statistic summarises how well a set of observables fit the model predictions. Many
physics packages report a χ2 value rather than the likelihood, so we also describe it here
and how it is related to the likelihood. Given a set of observables with mean µ1, . . . , µN ,
we define χ2 as

χ2 =
N∑
i=1

N∑
j=1

(
µi − µthi

)
Σ−1
ij

(
µj − µthj

)
, (5.6)

where µth1 , . . . , µthN are the theoretical values derived using our model, and Σ−1 is the
inverse of the covariance matrix. A χ2 value of 0 represents a perfect fit and χ2 increases
away from 0 as the measurements deviate further from the expected values. Assuming
that we have N independent observables that are all normally distributed, it can be
shown that the χ2 value is χ2-distributed. This distribution takes the form

χ2 (x; k) =
1
2 (x/2)(k/2)−1 e−x/2

Γ (k/2) , (5.7)

4This will usually be a large number since we only bin over a one or two dimensional space of
parameters.



Chapter 5 Parameter inference and scanning 90

with the number of degrees of freedom, k, equal to N −M . For our parameter scans,
we must convert the χ2 value to a likelihood. It turns out that the χ2 value is, to good
approximation, proportional to the logarithm of the likelihood5

lnL = −1
2χ

2. (5.8)

It is easy to see why in the case of independent normally distributed observables since

lnL =
N∑
i=1

lnN (xi : µi, σi) ∝
N∑
i=1
−(xi − µi)2

2σ2
i

= −χ
2

2 . (5.9)

5.5 Scanner performance

Using the methods previously described we can sample a model’s parameter space,
calculate the likelihood for each sample and use this to determine the MLEs and a set
of confidence regions. However, it turns out that parameter sampling itself is a major
obstacle for two reasons: (i) the total parameter space is extremely vast in comparison
to the size of the “good” regions where the likelihood is high, (ii) calculation of each
point is computationally expensive. Hence, we need to develop techniques for efficient
parameter sampling.

First, we investigate how we can more intelligently make a selection of points to sample.
Perhaps the simplest approach is to define a uniformly spaced grid of points over the
parameter ranges that we specify. We could also just randomly sample a set number of
points within the specified parameter ranges. But neither of these approaches use the
information from previously sampled points to help determine where the good regions
of parameter space may lie. Alternatively, there are several sophisticated parameter
sampling algorithms which make use of the likelihood from previously sampled points.
Some examples include Markov Chain Monte Carlo (MCMC), Differential Evolution
(DE), nested sampling, and ensemble Monte Carlo. The algorithm we choose depends on
the statistical framework we are using. Estimation of the Bayesian posterior requires
integration of the likelihood in various directions.6 To maximise the accuracy of this
integration we need the sampling density to be approximately proportional to the
likelihood itself. This can be achieved using MCMC samplers. For frequentist statistics,
we are more interested in “peak finder” samplers since our MLEs are just the peak of
the likelihood function. We would also like an algorithm that can handle multimodal

5This is a result of Wilk’s theorem.
6For frequentist statistics we instead must profile the likelihood in various directions.
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likelihood functions and ensure sufficient sampling density around the peaks. For this
task, DE is an appropriate sampling algorithm. The details of the algorithms are beyond
the scope of this work. In the case of DE, it essentially works by iteratively improving
upon a set of maxima based on an evolutionary process. Further details can be found in
Ref [89].

After selection of an appropriate sampling algorithm, the next improvement is to use the
logarithm of the likelihood rather than the likelihood itself. Assuming we have a set of
independent measurements (see Equation 5.2) the total logL is given by the sum

logL (θ) =
n∑
i=1

logL (θi) . (5.10)

There are two key reasons to do this (a) it aids sampling algorithms since the gradient
of logL is generally more consistent over the full parameter range and (b) since the
likelihood is constructed by multiplying many typically very small components together,
we find that the result would underflow if we did not do this.

Another problem we encounter is that theoretical constraints are a binary yes/no for a
given point rather than a likelihood. Suppose that, for example, we have a parameter
λ which must be less than λmax. One way to translate this to a likelihood is using the
hard-cutoff defined by

L (λ) =

1, if λ < λmax,

ε if λ ≥ λmax.
(5.11)

Here ε is chosen to be very small so that points are rejected by the sampler when the
constraint is not met. However, this provides no information to help guide the scanner
towards the valid region. To improve performance, we instead use the soft-cutoff given
by

L (λ) =
√

2
πσ2 ×


1, if λ < λmax,

exp
(
−1

2

(
λ−λmax

σ

)2
)
, if λ ≥ λmax.

(5.12)

This is known as a half-normal likelihood function. In this case we must remove the
invalid points for λ ≥ λmax during the plotting stage, otherwise our theoretical constraints
will appear to have smooth boundaries. Our sampling algorithms will give up on points
when a likelihood component is too small.7 Hence, we should choose σ large enough

7In practice, the scanner gives up when lnL reaches a large negative number such as −107.
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Figure 5.1: A histogram showing the number of samples along cos(β − α) (left) and
the number of samples in the cos(β − α) vs. tan(β) plane (right). To produce these
plots a 1, 000, 000 point, random, tree-level scan was run using a Matlab script. This
was done in the generic basis with the parameter ranges given in Section 5.2. Basic
theoretical constraints were applied – these are, vacuum stability, leading-order unitarity,
mass positivity and perturbativity of the generic couplings (leaving a total of 35, 603

valid points).

so that the scanner can still find sufficient valid points near the cutoff. We do not
want σ to be too large, otherwise we will end up calculating the experimental likelihood
components for many points that will be eliminated during the plotting stage. In general,
the experimental constraints are more expensive to calculate, so we should avoid doing
so where possible.

Sampling density is also a major problem for frequentist statistics as some regions
of parameter space may be very difficult to reach (e.g. because they require severe
fine-tuning of parameters).8 Often using a different basis will allow easier exploration
of these regions while other regions become more difficult. For example, it is easy to
satisfy the theoretical constraints in the generic basis but difficult to explore the tan β
vs. cos (β − α) plane. The reverse situation is true for the physical basis. This is shown
in Figure 5.1.

We explore this problem further in Section 7 where we define a hybrid basis that allows
for better exploration of certain regions. We may also want to combine scan results using
different bases or use targeted scans where we only sample a narrow region of parameter
space that is difficult to explore, thus dedicating more points for this region.

8In Bayesian statistics this is less of an issue since we will be integrating over the parameter space
which is small for these regions.
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Computational Software

In this section we describe the GAMBIT and GUM software. Extensions to both tools
were made for this study to improve the existing implementation of the 2HDM and to
provide support for the IDM (See Sections 7 and 13). Hence, we provide some details
about how each tool works.

6.1 The GAMBIT software

The Global And Modular Beyond-the-Standard-Model Inference tool (GAMBIT) is an
open-source software package for performing parameter scans of physics models [12, 90].
Since new physics may be observed from a number of experimental sources (including
simultaneously from multiple sources) it is important that we use global fits, where all
constraints are applied simultaneously. GAMBIT achieves this by providing a modular
system, where new constraints and interfaces to external packages (known as backends)
can be added effortlessly. A GAMBIT scan works as follows:

1. The user runs GAMBIT using the command, ./gambit -f yaml_files/my_yaml_file.yaml,
where my_yaml_file is an input file to control the GAMBIT scan. The file specifies
which physics model to scan, the sampling algorithm to use, and which likelihood
components and observables to calculate.

2. The GAMBIT core analyses the input file and enables the requested model. It
then determines which module functions can provide the requested quantities,
considering only those that are compatible with the given model. All dependencies
of these module functions are considered. This may include other module functions
or backend functions. GAMBIT constructs a directed acyclic graph of module
functions to be called in a particular order.
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Figure 6.1: Schematic representation of a GAMBIT scan (image from [12]).

3. Control is then passed to a module within GAMBIT called ScannerBit. This employs
the statistical sampling algorithm requested by the user. It calls the module
functions in the appropriate order to collect samples of the model’s parameter
space. It is also capable of improving performance dynamically by changing the
execution order whenever this is allowed.

4. The requested quantities are all outputted by the printer system which is configured
by the .yaml file. For example, the user can request for GAMBIT to save the output
in the HDF5 format. The output includes the set of likelihoods and observables for
each sampled point.

The process is depicted in Figure 6.1. An example .yaml file for the 2HDM is provided
in Appendix B. We now provide a summary of how the GAMBIT software itself works.
After this, we outline further additions to GAMBIT generated by the GUM software.

6.1.1 Models

Models in GAMBIT are a set of named parameters and are used to represent the input
parameters of physics models. These are intended to be sampled by some scanning
algorithm. Their physical meaning is defined entirely by how they are used within module
functions. Models can be declared as children of existing models, which implies that
there exists a mapping from the child parameter space to some subspace of the parent
space. Each child model comes with a function that defines the transformation required
to take a parameter point in its space to a corresponding point in the parent parameter
space. During a scan, the model’s ancestry will be activated and all models will be
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scanned simultaneously. Models can also be declared as friends of other models, which
allows for links between family trees. A translation function must be provided to map
the parameter space between the two models. Friend models can be used to explore
the parameter space in different bases.1 GAMBIT will automatically use the necessary
translation functions, allowing use of module functions even if it has not been explicitly
allowed for the model being scanned.

A model file is provided for each type of 2HDM, and also for each basis (including the
physical, generic and hybrid bases). In practice, all parameters are converted to the
generic basis before running the scan using a set of friend/parent translation functions.2

6.1.2 Backends

Backends are external tools that GAMBIT links to dynamically at runtime, in order to
compute various physical observables and likelihoods. They consist of two parts: (1)
the external packages, which provide the functionality and (2) the GAMBIT frontend
functions for interfacing with these packages. The frontend functions are declared within
GAMBIT, including the function signature and a capability. For the 2HDM, we use
the 2HDMC [52], HiggsBounds [63], HiggsSignals [64], SuperIso [91], and HEPLike [80]
backends. Furthermore, for the IDM we also use SPheno [92], micrOMEGAs [93], gamLike,
DDCalc and DarkSUSY [94].

6.1.3 Modules

Modules, also known as ‘bits’, group together related pieces of code – each providing a
set of module functions to the user. A module function calculates a [capability, type]
pair. The capability is an identifier that specifies what the function calculates, and
may be an observable, likelihood component, or some intermediate quantity. Module
functions specify dependencies on models, backends and other capabilities. During a scan
each module function is tested for compatibility with the active model; incompatible
functions are disabled. Module functions are identified that can provide the requested
quantities (specified in the input file), and other module functions are identified to fulfil
their dependencies. Such dependencies are defined in terms of capabilities, not specific
functions. This allows them to be modular, keeping the use of a module function’s result

1Note that use of a different basis is equivalent to setting a multi-dimensional prior on our original
basis.

2These use tree-level relations.
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completely independent of its identity. The sections below outline the modules used in
our GAMBIT scans.3

ScannerBit

ScannerBit [89] is responsible for sampling the model’s parameter space. Parameter
ranges are specified in the input file, where the user may also specify a “prior” for each
parameter to control the sampling density throughout the parameter range. ScannerBit
provides interfaces to external scanning and optimisation packages. Random and grid
scanners are built-in, while external scanning algorithms include Markov Chain Monte
Carlo (MCMC), differential evolution and nested sampling. Unlike the physics modules
described below, ScannerBit does not consist of module functions.

SpecBit

The SpecBit [95] module has three different functions, which we describe below:

- Spectrum Generation: The main function of SpecBit is calculation of spectrum
information. This includes the pole masses and running couplings/masses at some
given energy scale. The full spectrum is stored in a Spectrum class and this gets
passed around to various module functions to access it. The Spectrum class consists
of three components: (i) SMInputs, (ii) LE SubSpectrum, and (iii) HE SubSpectrum.

• SMInputs is a simple structure that stores SM input parameters as doubles.
Some masses are given at their pole while others are given at a set energy
scale in the MS-scheme (according to the SLHA2 [96] conventions). These
are used by external spectrum generators for matching RGEs at low energy.

• The low-energy / high-energy SubSpectra are derived classes that wrap some
external spectrum generator (or a simple tree-level generator inside GAMBIT).
SubSpectra store a subset of the spectrum at a particular scale and support
running the spectrum to a different scale.

The low-energy SubSpectrum stores quark and lepton masses and their couplings
with gauge bosons (i.e. just the QED⊗QCD EFT). We use the softsusy::QedQcd

spectrum generator, which is part of the SOFTSUSY [97] package, to perform RGE
running. QedQcdWrapper is the SubSpectrum class that wraps this. BSM parameters
and masses are stored in the high-energy SubSpectrum. In practice this is the only

3There is also a NeutrinoBit module for neutrino observables and a CosmoBit module for cosmological
observables but we do not use these in our scans.
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SubSpectrum that we need to access throughout our code. We use a FlexibleSUSY [98]
spectrum generator to run the 2HDM spectrum.4 The SubSpectrum wrapper is called
THDMSpec<MI> and is defined in THDMSpec_head.hpp. There is also a tree-level 2HDM
SubSpectrum called THDMSimpleSpec. The tree-level calculations are first performed
in THDMSpec_basis.hpp and are then fed to THDMSimpleSpec, which simply returns the
values.

So far we have only described the standard GAMBIT Spectrum class but to enable
compatibility with 2HDMC, a new class called THDM_spectrum_container was created
that extends Spectrum. This class is filled in using the backend convenience function,
init_THDM_spectrum_container_CONV. This copies the members of Spectrum and the
yukawa_type into the THDM_spectrum_container and automatically overrides 2HDMC ’s
internal spectrum with the one calculated by GAMBIT. It also overrides 2HDMC ’s
SM parameters with those from SMInputs. Rather than using the standard Spectrum

class, we will be mainly using THDM_spectrum_container.

- HiggsCouplingTable: SpecBit is also used to fill a table containing all effective
reduced couplings between scalars and other particles5 (scalars, fermions and gauge
bosons). To do this we use the 2HDMC backend.6 We also include the scalar decay
rates in this structure, which are calculated by DecayBit.

- Theoretical Constraints: All theoretical constraints are included in the main SpecBit
file. These are directly coded in GAMBIT based on the references provided in Section
4.1.

DecayBit

Particle decay calculations are handled by the DecayBit [95] module, after accepting the
masses and couplings of particles from SpecBit. For each particle in the theory we fill a
DecayTable::Entry class with the total decay width and all branching ratios. The full set
of DecayTable::Entrys are then stored in a DecayTable class. We use 2HDMC to calculate
the decays, but also added an interface to CalcHEP during development of the IDM.
Both backends have been confirmed to give consistent results. We do not calculate the
uncertainties on these decays as they are not yet used by our calculations.

4FlexibleSUSY requires the generic couplings λ1, . . . , λ7, m
2
12 at the user-defined scale Qin. It requires

tan β at the scale of mt. Inputs are in the MS-scheme. FlexibleSUSY then calculates the gauge couplings
as well as v1, v2,m

2
11,m

2
22 and the Yukawa couplings at the scale mZ . Finally it calculates scalar masses

in the DR-scheme at the scale Qin = mZ and also the pole masses.
5In reality, only the couplings between scalars and photons, hiγγ and hiZγ, are effective couplings,

and these are always approximated using decay rates.
6There is also an option to approximate all couplings using only the decay rates. To do this one

applies the following formula: ChAB ≈ Γ(h)
ΓSM (h)

BF (h→AB)
BFSM (h→AB) .
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PrecisionBit

PrecisionBit [95] has multiple functions. Firstly, it provides constraints from the elec-
troweak sector. BSM contributions to electroweak observables are often important since
these are known with high experimental precision. In our scans we include constraints
from measurements of the oblique parameters (STU), which are calculated using 2HDMC
(although they can also be calculated by SPheno). Further work is still being done to
add a W -boson mass constraint. The muon anomalous magnetic moment and electric
dipole moments are also available for the 2HDM but are not yet used in our global fits.
PrecisionBit also provides so-called SM nuisance likelihoods.7 While we do allow the
Higgs mass, mh, to be varied, we shall use HiggsSignals to constrain this instead.

ColliderBit

Likelihoods for Higgs physics based on searches at the LHC, LEP and Tevatron colliders
are available in ColliderBit via the HiggsSignals and HiggsBounds backends (c.f. Section
4.2). ColliderBit also provides Monte Carlo event simulations of signals at ATLAS and
CMS for the specific model under investigation. We do not use this functionality, however,
since it is computationally expensive, and since collider data has also been provided for
generic Higgs searches which is more directly relevant for the 2HDM.

DarkBit

DM likelihoods are provided by the DarkBit [99] Module. A calculation of the DM
relic abundance is provided by the micrOMEGAs backend along with predictions of
the spin-independent and spin-dependent DM-nucleon cross-sections. Direct detection
likelihoods are provided by DDCalc, and indirect detection likelihoods are provided by
nulike (neutrinos) and gamLike (gamma rays). A constraint for the DM relic density
is provided within GAMBIT and can be used as either a measurement or an upper
bound based on the options in the .yaml input file. DarkBit stores properties of the DM
candidate in a ProcessCatalog class, including its mass, spin, electric charge and various
2-to-2 cross-sections with other particles in the theory. The cross-sections are calculated
using CalcHEP.

7These are likelihoods for various SM parameters. We might vary them within their experimentally
allowed ranges when this has an impact on other important observables, but in doing so we also need a
constraint for the SM-parameter.
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6.2 The GUM software

Although adding a new model to GAMBIT is largely formulaic, it is still error prone and
requires substantial knowledge of the GAMBIT software. Hence, the GAMBIT Universal
Model Machine (GUM), was created for automatically generating the code required to
implement a new model in GAMBIT based on Lagrangian-level inputs [100]. We will
be using GUM to generate the IDM rather than the methods previously used for other
2HDMs. It works as follows:

1. The user calls GUM with the command: ./gum models/MyModel.gum. The input file
describes which Lagrangian level package to use (Feynrules or SARAH), the model
to use within that package, the WIMP candidate if any, and the outputs to write
into GAMBIT (SPheno / Pythia / CalcHEP / micrOMEGAs / Vevacious).

2. GUM then opens an interface to either Feynrules or SARAH via the Wolfram
Symbolic Transfer Protocol (WSTP), and loads the model file that the user has
requested.

3. GUM ensures that the outputs are valid based on the other options provided and
calls a variety of sanity checks built-in to Feynrules and SARAH.

4. GUM extracts all particles, masses, parameters and relevant code outputs from the
SARAH/Feynrules file and enumerates all code changes to be written into GAMBIT.
It writes them into a ‘.mug’ file which enables them to be removed later if the user
wishes to do so.

5. Finally the code changes (in the form of patches) are written into GAMBIT allowing
use of the new model and its constraints within GAMBIT. GUM also provides a
sample .yaml input file.

6.2.1 Under the hood

The outputs that GUM generates depend on the options provided by a .gum input
file. In our case (for the IDM), we will be using a SARAH model and will include the
SPheno output with loop-decays, and also outputs for DarkBit, CalcHEP and micrOMEGAs
(note that CalcHEP is required for micrOMEGAs). While GUM is written in python,
we are able to communicate with SARAH via a C++ wrapper that uses the Wolfram
Symbolic Transfer Protocol (WSTP) to communicate with Mathematica. After the
SPheno spectrum generator is generated, a set of patches are applied for compatibility
with GAMBIT. For example, any calculations that are not used by GAMBIT are commented
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out for performance reasons, and any attempt to write files to disk must be removed. A
new initialisation subroutine is added to ensure that SPheno starts out in the same state
before each point is calculated. Further patches were added for this study to extract
the Wilson coefficients from SPheno, as will be explained in Chapter 13. Further details
about the specific amendments that GUM makes to GAMBIT are listed below:

- Backends: If SPheno output is requested, a new Backend called model_name_SARAH-SPheno

is added. This includes code from the original SPheno, additional code generated
by SARAH for the specific model, and a set of patches generated by GUM which
are applied during the build stage. GUM also generates interfaces (frontends)
to the backends so that they can be accessed within GAMBIT using its modular
capability system. Some backends in GAMBIT work for generic BSMs, and only
require amendments to the relevant GAMBIT module functions so that they provide
the appropriate inputs for the new model. These include Vevacious, CalcHEP,
micrOMEGAs, Pythia, HiggsBounds and HiggsSignals.

- Models: GUM creates a new model file in the GAMBIT models directory, which just
includes a minimal set of input parameters to be varied for a scan. Code for any
new particles is also added to the GAMBIT particle database, and code for the new
model to the GAMBIT models database.

- SpecBit: New files are added in the GAMBIT specbit directory for the new model.
The appropriate wrappers onto the GAMBIT Spectrum class are added. The ca-
pability get_new_model_spectrum_SPheno is added to get the spectrum via a backend
requirement.8

- DarkBit: If the user specifies a WIMP candidate for a model then GUM will write a new
source file for the model in DarkBit. If the user requests CalcHEP output, then a
new module function, TH_ProcessCatalog_new_model, providing the Process Catalogue
is written. All computations of indirect detection and relic density likelihoods in
DarkBit make use of the Process Catalogue. If micrOMEGAs output is requested
then GUM adds an entry to the module function RD_oh2_Xf_MicrOmegas, which enables
the relic density calculator. GUM also provides an interface to the module function
DD_couplings_MicrOmegas for use in DDCalc for computing likelihoods from direct
detection experiments.

- DecayBit: Whenever decay information is requested, GUM amends DecayBit.hpp/.cpp

files with decays of the new particles. There are actually two methods for getting the
new decays: (i) CalcHEP generated decays can be obtained via the usual all_decays

8If requested, GUM will also write code to SpecBit_VS.cpp to check vacuum stability using Vevacious.
However, this method is rather slow so we prefer to write our own model specific vacuum stability checks.
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capability. CalcHEP calculates tree-level decays for each new BSM particle, plus
new contributions to any existing particles. (ii) Alternatively, SPheno may be used
to calculate all decays at leading order (but with some important higher order
corrections) using the function all_new_model_decays_from_SPheno.9 In either case the
standard DecayTable class is returned containing a DecayTable::Entry to store the
decay information for each particle.

- ColliderBit: New interfaces to HiggsBounds and HiggsSignals are added by GUM (using
outputs from SARAH) for the study of Higgs physics at particle colliders. The
interfaces are already mostly model independent – the main model-dependent step
is filling out the HiggsCouplingsTable with all Higgs coupling/decay information for
the specific model. GUM also supports adding interfaces to Pythia however these
are not required for the 2HDM.

6.2.2 Further details about SARAH and SPheno

SARAH [101, 102] is a Mathematica package for analysing any renormalisable QFT
model. It calculates all vertices, mass matrices, tadpole equations, one-loop corrections
for tadpoles and self-energies, and two-loop RGEs. The Lagrangian-level theory is
provided by a symbolic Mathematica input file. This includes (i) global symmetries, (ii)
local symmetries, (iii) matter fields/superfields, (iv) the Lagrangian, (v) field rotations
and (vi) descriptions of each particle in the theory (such as the output name, charge,
and PDG code). SARAH also includes outputs for a variety of other physics tools. These
include:

• Feynman rules in the UFO format for use by matrix element generators.10

• Outputs for Vevacious to check vacuum stability.

• Outputs for HiggsBounds/HiggsSignals for calculation of Higgs observables from
collider experiments.

• Outputs for micrOMEGAs for calculation of DM observables.

• Generating code for calculation of Wilson coefficients and flavour observables.

• Generating a spectrum generator based on SPheno.
9We prefer the SPheno method here as it is more model specific.

10These UFO files encode information about the particles, the parameters and interaction vertices for
a given model.
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These outputs are then used by GUM to provide support from within GAMBIT. The
SPheno output is worth elaborating on. SPheno was originally a tool for calculating SUSY
spectra and decays, along with a limited set of flavour and electroweak observables [92].
The out-of-the-box SPheno code is largely modular and model independent, which enables
SARAH to generate the remaining model-specific Fortran code compatible with the rest
of SPheno. This means that a SPheno-based spectrum generator can be generated for
any model that SARAH supports, including non-SUSY models. The SARAH-generated
SPheno has the ability to calculate decay widths, cross-sections, anomalous magnetic
moments of leptons, and a wide variety of observables from flavour physics. When adding
the IDM to GAMBIT, we will use a SARAH-generated SPheno, rather than FlexibleSUSY
(which was used for the other 2HDMs), as our spectrum generator.

6.2.3 FlavorKit and custom operators

While the SARAH-generated SPheno can be used for the study of flavour observables,
all information about the underlying Wilson coefficients as well as the calculation of
the flavour observables had been originally hard-coded into SARAH. This meant that it
was not easy to extend it with new observables and operators. To solve this problem,
SARAH was extended with a new tool called FlavorKit [13]. This includes a variety of
new Wilson coefficients in a general symbolic form, and code snippets for calculating
flavour observables (a total of 20 of them by default) – both of which can be translated
into a complete Fortran code as part of the SPheno output. New operators can also be
added using another Mathematica-based extension called PreSARAH. This uses FeynArts
and FormCalc to derive the generic form factors at tree and 1-loop levels.11 While Wilson
Coefficients are model-dependent, it is possible to derive generic expressions for them –
which SARAH then matches to the specific spectrum and interaction Lagrangian for any
arbitrary model. The entire process is depicted in Figure 6.2.

The Wilson coefficients calculated by SPheno may then be used to cross check those
calculated in GAMBIT. They may also be used to calculate flavour observables in the
IDM, which are yet to be studied – though, the BSM contributions are expected to be
small due to the lack of any new flavour-changing currents in the IDM (only loop effects
contribute). Finally, the WCs are needed for the DD_rel_WCs_flavscheme capability which
is used for the IceCube dark matter likelihoods.

11Note that it is limited to 4-fermion or 2-fermion plus 1 boson operators.
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Figure 6.2: Schematic representation of FlavorKit. The user defines new operators.
Then PreSARAH calculates the Wilson coefficients in a generic form using FeynArts and
FormCalc and creates the necessary input files for SARAH. Later SARAH matches these

to the specific model and converts the results into Fortran code. [13].
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GLOBAL FITS OF THE 2HDM



Chapter 7

Contributions to the 2HDM in
GAMBIT

7.1 Bases and sampling density

Sampling density is a major problem for frequentist statistics as some regions of parameter
space may require severe fine-tuning of parameters. Many HPC hours are wasted trying
to scan these hard-to-reach regions, or worse yet, the missing parameter regions may be
mistaken as a feature. Often using a different basis will allow easier exploration of these
regions while other regions become more difficult.1

In this section we introduce two new bases and show how they perform in comparison to
the traditional physical and generic bases. Both bases were implemented in GAMBIT,
but for the purposes of studying sampling density the tree-level 2HDM has been re-
implemented in MATLAB.2 This includes the basis transformations, and LO unitarity,
simple perturbativity, and vacuum stability constraints.

The generic (Z2-eigenstate) basis is governed by 3 mass-squared parameters and 5
dimensionless parameters. We can trade two of the mass-squared parameters for v and
tan β. Since we know experimentally that v = 246 GeV we can eliminate one parameter.
Hence, there are 7 real parameters to vary in parameter scans. The main problem with

1In Bayesian statistics, this is not a problem since these regions have a low volume of parameter
space and therefore when we integrate over them, the contributions are small. A well-known problem
with Bayesian statistics is that it sensitive to the choice of prior. There is no good way to select a prior
for our parameters, hence usually a flat prior is assumed – regardless of the basis choice. Hence, Bayesian
statistics is sensitive to the choice of basis. Frequentist statistics, on the other hand, does not have this
flaw.

2The code is available here: https://github.com/Alex0125698/THDM_sampler. The reason for this
is because the performance of MATLAB is around 3000 times better than GAMBIT (without the
experimental constraints) since various inefficiencies are avoided.

https://github.com/Alex0125698/THDM_sampler
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Figure 7.1: Sampling density of the generic couplings using the generic basis with all
theoretical constraints applied.

this basis is that we do not specify the experimentally known Higgs mass (125 GeV), and
therefore most points will be invalid. Also note that m2

12 is not a good choice of parameter
as there is no good argument to provide an upper and lower bound. In practice, we use
a logarithmic prior to scan a large region for this parameter.3

Another common choice is the physical basis which includes tan β, cos (β − α), mh, mH ,
mA, and mH+ plus one additional parameter which is usually chosen to be m2

12 or
λ5. Since we have included the Higgs mass in this basis, we only need to scan over 6
parameters. It may seem like this basis would therefore be easier to sample, but in fact
the opposite it true. To see why, consider

(
m2
H+ −m2

A

)
= v2

2 (Z5 − Z4) = v2

2 (λ5 − λ4) ≈ v2λ,(
m̄2 −m2

A

)
= v2λ5,

3Note that m2
12 can usually be replaced with m̄ – which is limited by perturbativity.
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Figure 7.2: Sampling density of the generic couplings using the physical basis with all
theoretical constraints applied.

(
m2
H sin2 (β − α)−m2

A

)
= v2Z5 −m2

h cos2 (β − α). (7.1)

These can be derived using the Equations in Appendix E. We see that the perturbativity
constraints (which require couplings to be of order O(4π)) provide strong limits on the
mass splittings. In Figure 8.3 of Chapter 8 we shall find that the unitarity constraint
provides an even stronger limit. Therefore, for arbitrary values of the mass parameters,
most points will not satisfy the theoretical constraints. This last relation would of course
give a limit on

(
m2
H −m2

A

)
for the limit cos (β − α)→ 0. However, we can also derive

another relation from Equation E.4 which looks like

(
m2
H −m2

A sin2 (β − α)
)

= v2
(
2λ+ λ5 sin2 (β − α)

)
. (7.2)

Here we have picked the maximum scenario by assuming that the couplings are inde-
pendent, and that each are of order λ ≈ O(4π). When combined with Equation 7.1, we
find
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Figure 7.3: Sampling density of the generic couplings using the hybrid Higgs basis
with all theoretical constraints applied.

(
m2
H −m2

A

)
= 1

1 + sin2 (β − α)
(
v2λ

(
3 + sin2 (β − α)

)
−m2

h cos2 (β − α)
)
. (7.3)

Here the contribution from m2
h is no more than 1252 GeV2 and thus the squared mass

splitting is strongly limited by perturbativity, even away from the alignment limit.

In a first attempt to improve scanner performance, a new mass_diff basis was created.
This is similar to the physical basis except that we use mA, m2

H −m2
A, and m2

H+ −m2
A

as parameters. Another basis called the hybrid_Higgs basis was also added which includes
mh, mH , tan β, cos (β − α), and 3 Higgs couplings as input parameters (based on [47]).
The parameter ranges for each basis were provided in Tables 5.1, 5.2, and 5.3. In Table
7.1 the failure rates are provided for each constraint/basis combination. The Higgs
mass constraint checks that the value of mh is within 5 GeV of the experimental value.
If we were to ignore this requirement, the generic basis would out-perform the rest
with the hybrid_Higgs being about 100 times worse. With the Higgs mass constraint
included, the hybrid_Higgs performs the best in this test with the generic, physical_diff,
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hybrid_Higgs generic mass_diff physical
Perturbativity 98.6 % 1.6 % 99.95 % 99.9975 %
Mass positivity 9.9 % 2.84 % 8.33 % 0 %
Vacuum stability 65.7 % 55.9 % 98.2 % 98.2 %
Vacuum meta-stability 36.2 % 0.23 % 14.9 % 10.5 %
LO unitarity 99.28 % 81.5 % 99.97 % 99.9984 %
Higgs mass 125 GeV 0 % 99.69 % 5.9 % 0 %
All theory 99.958 % 95.3 % 99.9977 % 99.99989 %
All theory + Higgs mass 99.958 % 99.979 % 99.9979 % 99.99989 %

Table 7.1: Failure rates for each theoretical constraint for each basis. The Higgs mass
constraint here enforces the Higgs mass to be within 5 GeV of the experimental value.
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Figure 7.4: Theoretical constraints in the generic basis. Note that colours are the
same as the above plots.

and physical bases, providing 1/2, 1/20, and 1/400 times the number of valid samples
respectively. Note that while the mass_diff basis outperformed the physical basis, it
was not particularly successful since the theoretical constraints were still violated too
frequently.

Of course, these failure rates do not tell the whole story. We must also consider the
sampling density in various planes on interest. Figures 7.1, 7.2, and 7.3 display the
sampling density of the generic couplings. To produce these, we used 108 random samples
of the parameters for each basis. We see that the hybrid_Higgs basis provides the best
sampling of λ2 whereas the generic basis struggles with λ2 > 2.

Figures 7.4, 7.5, and 7.6 display a set of benchmark plots for each basis. We see that
only hybrid_Higgs was able to adequately sample the cos (β − α) vs tan β plane, while the
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Figure 7.5: Theoretical constraints in the physical basis. Note that colours are the
same as the above plots.
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Figure 7.6: Theoretical constraints in the hybrid Higgs basis. Note that colours are
the same as the above plots.

generic tends to stick to the alignment limit and mass_diff basis struggles with tan β > 10
Overall, most planes are best explored using the hybrid_Higgs basis. One exception is for
masses larger than 3000 GeV where the generic basis is now favoured. However, since we
have mH as a parameter in the hybrid_Higgs basis it is not difficult to just run targeted
scans for these regions. Having both cos (β − α) and tan β as input parameters is also a
significant advantage for the hybrid_Higgs basis, since this allows us to run targeted scans
in the plane of interest for collider experiments. Another important factor is that the
Higgs mass constraint is provided by HiggsSignals, which runs quite slowly compared
to the theoretical constraints. This is a huge advantage for any basis in which we can
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fix the range for mh since the points that violate theoretical constraints are ruled out
quickly, whereas points with the wrong Higgs mass take much longer to be eliminated.

7.2 Changes to the 2HDM implementation in GAMBIT

Originally, the 2HDM implementation in GAMBIT was developed by a former Ph.D.
student, Filip Rajec [103], based on the existing MSSM implementation. We have
continued development of the 2HDM by adding new features, fixing bugs, and improving
performance.

As discussed in Section 7.1, new bases were added to the existing 2HDM implementation
to help achieve sufficient sampling density in all planes of interest. The mass_diff and
hybrid_Higgs bases were mentioned previously. A third basis, named hybrid_Higgs2, was
also added. This is the same as hybrid_Higgs except that we swap the mH parameter for
mH+ . This latter basis was most frequently used in our scans as it assists in sampling
the tan β versus mH+ plane, which is important for flavour observables. These bases
for were added for all 2HDM types. The full GAMBIT model name includes the 2HDM
type, the basis name and a suffix to indicate if it uses a FlexibleSUSY spectrum generator.
For example, THDMI_hybrid_Higgs2atQ is the Type-I 2HDM in the hybrid_Higgs2 basis with
FlexibleSUSY, while THDMII_physical is the Type-II 2HDM in the physical basis without
FlexibleSUSY.

Some minor modifications to experimental likelihoods have been made. In particular,
the user can now select which analyses to use for the HiggsSignals likelihood using the
input option HS_analysis.4 The STU electroweak constraint has been split into multiple
capabilities so that user can select a capability to provide the predictions for the S, T,
and U parameters. At the time of writing, the 2HDM predictions are provided by either
2HDMC or SPheno. These predictions can also now be printed. The all_BFs capability,
which is used to print the BFs, now includes an option, print_as_widths, to print them
as decay widths instead of BFs. Another option, print_BF_error, was added to print the
uncertainties of the BFs or widths. Further options have also been added to exclude
specific particles or processes.

A new capability, higgs_scenario_LogLikelihood_THDM, was added to eliminate points cor-
responding to either the hidden-Higgs or regular-Higgs scenarios, depending on the
exclude_Higgs_higgs input option. If set to True, then this excludes the hidden Higgs
scenario, otherwise it excludes the regular Higgs scenario. Note that in order to success-
fully scan the hidden-Higgs scenario, the user must use a basis which includes the mH

4The allowed options are: -1 (all), 0 (LHC run 1), 1 (latest signal strengths), and 2 (latest STXS
measurements).
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parameter and set this close to the SM-like Higgs mass, otherwise very few points will be
found. The regular Higgs scenario is generally easier to sample.

Some performance improvements were also necessary. An important speedup came from
a new input option to check a basic set of theoretical constraints prior to spectrum
generation (namely perturbativity and LO unitarity). This is possible since some
theoretical constraints depend only on the couplings at the input scale.

Furthermore, a new option was added to the GAMBIT core that would allow the re-
maining point calculation to be skipped if the likelihood falls below a threshold. This
threshold is module dependent and ideally set much lower for SpecBit compared to the
experimental modules ColliderBit and FlavBit. The problem being addressed here is that
some experimental constraints (especially the flavour likelihoods) take significantly longer
to run than the spectrum generation, and typically have a much smaller impact on the
total likelihood. Therefore, unless the likelihood from the theoretical constraints is above
a certain threshold, it is better to guide the scanner with just the theoretical constraints
alone. It may seem like skipping some likelihoods would lead to incorrect results, but the
thresholds are set well below the global maximum likelihood and therefore these points
are not visible on the plots anyway.5 This change gave a 10 times performance boost
when all flavour constraints were turned on.

Finally, we note that there were previously some inconsistencies with the 2HDM con-
vention for β − α. The code has now been updated to use the 2HDMC conventions:
sin (β − α) ∈ (−1,+1) and cos (β − α) ∈ (0,+1). If required, the used can easily switch
to a different convention during the plotting stage. The results presented in this thesis
use an alternative convention where: cos (β − α) ∈ (−1,+1) and sin (β − α) ∈ (0,+1).

5One may also be concerned about the likelihood jumping near the thresholds. Typically the theoretical
likelihoods are orders of magnitude lower than the experimental constraints (typically lnL ≈ −105 versus
lnL ≈ −101 respectively) so these jumps are relatively small. Furthermore, the scanner we use is robust
against these jumps since it does not use derivatives.



Chapter 8

Theoretical Constraints in the
2HDM

Finally, we begin our presentation of the results for the softly-broken Z2-symmetric
2HDMs. For brevity, only a small subset of all plots is presented in these chapters.

We begin with the theoretical constraints. Scans were done at tree-level, while results for
a loop-level spectrum will be provided in Chapter 12. This is because more testing has
been done at tree level and there are hints of some bugs with the FlexibleSUSY generated
spectrum. We only present results for the Type-II 2HDM here since the theoretical
constraints are independent of the 2HDM type. Scans are done in the hybrid_Higgs,
hybrid_Higgs2, generic, higgs, and physical bases – each using a variety of parameter
ranges. A total of 26 parameter range/basis combinations were merged into the final
dataset. This ensures that all planes of interest are adequately sampled. We restricted
the SM-like Higgs mass to the interval (115, 135) GeV, which will be further constrained
by HiggsSignals later. The Hidden-Higgs scenario was excluded for these scans and will
be presented separately in Chapter 11.

Since theoretical constraints are a binary “yes/no” for each point (rather than a likelihood)
we show availability plots. Later when we consider experimental constraints, we show
95% confidence regions. Theoretical constraints involve inequalities of some combination
of generic (or Higgs) couplings. Therefore λi versus λj plots provide an ideal benchmark.
Results are given in Figures 8.1 and 8.2.

The constraints are: (i) vacuum stability (including meta-stability), (ii) leading-order
unitarity, (iii) perturbativity of all 4-scalar couplings and (iv) perturbativity of the
Yukawa couplings. These were described in Section 4.1. Since Yukawa perturbativity
provides no significant restriction of most planes, we do not include a separate contour
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Figure 8.1: 1D and 2D availability plots of the theoretical constraints in planes of the
generic couplings.

for this but do still include it in the combined theoretical constraint. Its main effect is to
provide a lower bound on tan β. For some theoretical constraints, the parameter ranges
are unbounded in some directions. It is not practical to take parameters up to infinity
and therefore we still include the generic perturbativity limits λi < 4π in each theoretical
constraint.

The generic couplings are not particularly intuitive since they are describing the interac-
tions of the Higgs doublets in the high energy universe – before electroweak symmetry
breaking. Therefore we provide a set of benchmark plots in Figure 8.3 which will also be
used for the experimental constraints.1 The reasons behind these parameter choices are
as follows:

1After completing the results, a bug was identified that caused a region on the
√
M2

22 verses mH+

plot to become available and also caused some strange behaviour on
√
M2

22 versus log (tan β). No other
plots were affected. These plots should look more like the loop-level results on Figure 12.2.
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Figure 8.2: 1D and 2D availability plots of the theoretical constraints in planes of the
Higgs couplings.

• H+ is important for flavour observables since the charged scalar contributes to the
FCCCs in a similar manner to W+. The mass is important since it determines how
“easily” we can produce a charged scalar – a smaller mass implies that the phase
space is larger, hence the contribution to the Feynman amplitude is larger.

• tan β is also important for flavour observables since it determines the strength
of the mH+-fermion interactions. It is also related to the neutral scalar-fermion
interactions and thus is important for collider observables.

• cos (β − α) is important since is determines the hV V and HV V coupling strengths
used in collider observables and is also related to the neutral scalar-fermion couplings.
When combined with tan β, the latter couplings are fully determined.
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Figure 8.3: 1D and 2D availability plots of the theoretical constraints in planes of the
benchmark parameters.

•
√
M2

22 is a measure of the decoupling limit. When M2
22 � v2, the scalar masses

mH+ ,mA, and mH are significantly larger than the SM-like Higgs mass, mh.2

• mA −mH+ is one of three mass splittings which are constrained by measurements
the STU electroweak observables.

Notice that even without any experimental constraints imposed, cos (β − α) is pushed
towards 0 as M2

22 is increased. This is because in the decoupling limit, we can show that
cos (β − α) ≈ −v2Λ6/M2

22. Also notice that strong limits are already imposed on the
mass splittings. The largest value of mH+ −mA is roughly 1000 GeV, but this becomes

2The heavy scalar masses can be written m2
X = M2

22 + v2f(Λi) where f(Λi) is some function of the
Higgs basis couplings.
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stricter at larger masses. This behaviour was anticipated from Equation 7.1, with the
first given again below

(
m2
H+ −m2

A

)
= v2

2 (λ5 − λ4) . (8.1)

We can also write this as

(mH+ −mA) = v2

2
(λ5 − λ4)

(mH+ +mA) . (8.2)

Now assuming the masses are large, we can take (mH+ +mA) ≈ 2
√
M2

22. Thus, the
mass splittings have an approximate 1/mass fall-off in the high mass limit. The exact
limit depends on the restriction on λ5 − λ4 which comes from the theoretical constraints.
Finally, notice that the log (tan β) versus mH+ and log (tan β) versus cos (β − α) planes
are completely open. Therefore, there are no theoretical limits on the scalar-fermion and
scalar-boson couplings within our parameter ranges.



Chapter 9

Experimental Constraints in the
2HDM

In this chapter we highlight the individual effects of the experimental constraints. Note
that in all cases theoretical constraints are also included. Results are presented as profile
likelihoods ratios, as explained in Section 5. The 1D plots show the profile likelihood
ratio, L/Lmax, on the vertical axis with three dotted horizontal lines representing the
confidence levels 1σ (68.3%), 2σ (95.4%), and 3σ (99.7%) from top to bottom respectively.
The 2D plots show either (i) a 95.4% CL contour or (ii) a colour scale with the profile
likelihood ratio values shown on a colour bar. Note that 95.4% CL corresponds to
L/Lmax = 0.046 for 2D plots.

Care must be taken when comparing with other results as most often a Bayesian framework
is assumed where the other parameters are marginalised over rather than profiled out.
The two approaches give different looking results, and their statistical interpretation also
differs.

9.1 Electroweak constraints

The electroweak sector observables we consider are the oblique S, T, and U parameters
which test loop corrections to the W and Z boson propagators, as explained in Section
4.3.1

1The code also includes a likelihood for the anomalous magnetic moment of the muon. However, this
constraint tends to push the couplings outside of the perturbative limits and is hence not well explained
by the Z2-symmetric 2HDMs (it can be explained by the general 2HDM). We don’t consider constraints
from precision measurements of mW since predictions of this quantity do not yet exist in the GAMBIT
framework.
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Figure 9.1: 1D and 2D profile likelihood ratio plots of the STU oblique constraints in
planes of the angles and mass-splittings.

Just like the theoretical constraints, the electroweak observables are model independent.
Hence, we only display results for the Type-II 2HDM. The expressions for the STU
parameters in the 2HDM depend on the mass splittings: mH −mA, mH+ −mA and
mH+ −mH . Thus, the ideal benchmark plots for these constraints are mass splitting
planes. We show these in Figure 9.1. In the simplified example from Equation 4.39, we
found that there are actually two solutions for the mass splittings. Likewise, we see two
regions that are separated by an invisible line in the mass splitting versus mass splitting
planes. Notice that the two regions have approximately the same shape but are rotated
180o about the centre of the plots.

The two regions may also show up on other planes of interest. For example, they are barely
visible on the generic coupling planes in Figure 9.2. We shall discuss this point further
in the combined fits. When plotted against other parameters, the mass-splittings are not
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Figure 9.2: 1D and 2D profile likelihood ratio plots of the STU oblique constraints in
planes of the generic couplings.

limited significantly below the theoretical limits. In fact, the theoretical constraints set a
stronger limit for

√
M2

22 above 1000 GeV (we shall see an example of this later in Figure
10.6).

Figure 9.3 shows the plots of the STU parameters, although these are done at low
sampling density. The 2HDM can quite comfortably fit the experimental values from
Equation 4.40.

9.2 Collider constraints

Collider constraints limit the Higgs signal rates measured at particle collider experiments.
In particular, HiggsBounds provides upper bounds on the signal rates of additional
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Figure 9.3: 1D and 2D profile likelihood ratio plots of the STU oblique constraints in
planes of the S, T, and U parameters.

scalars while HiggsSignals fits the observed SM-like Higgs boson signal rates against
experimental results. The results are shown in Figures 9.4 and 9.5 for Type-I and Type-II
respectively. We show separate contours for the following likelihoods: (i) HiggsBounds,
(ii) HiggsSignals (run1), (iii) HiggsSignals (SS), HiggsSignals (STXS), and (iv) combined
collider likelihoods. Here SS and STXS are the LHC run 2 signal strengths and simplified
template cross-sections respectively – both of which were explained in Section 4.2. To
avoid double-counting, the combined collider likelihood only includes the STXS and not
SS for the run 2 LHC data.

We see that cos (β − α) is constrained to be close to 0. In this limit, known as the
alignment limit, the Higgs-gauge couplings are SM-like for all 2HDM types (c.f. Table
3.5). The scalar-fermion couplings are model-dependent (c.f. Table 3.7), although in
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Figure 9.4: (Type-II) 1D and 2D profile likelihood ratio plots of the collider constraints
in planes of the benchmark parameters.

either case only depend on the cos (β − α) and tan β parameters.2 We can write these
couplings as

∆k1 = cosα
sin β − 1 =

√
1− cos2 (β − α) + cos (β − α)

tan β − 1

≈ −1
2 cos2 (β − α) + cos (β − α)

tan β , (9.1)

∆k2 = − sinα
cosβ − 1 =

√
1− cos2 (β − α)− cos (β − α) tan β − 1

2This is only true at tree level since we may also have loops containing heavy scalars. Such
contributions are small, and we don’t consider them in our scans.
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Figure 9.5: (Type-I) 1D and 2D profile likelihood ratio plots of the collider constraints
in planes of the benchmark parameters.

≈ −1
2 cos2 (β − α)− cos (β − α) tan β. (9.2)

Here, ∆k2 is the (deviation of the) reduced hdidi and heiei coupling in the Type-II
2HDM, while all other reduced hff couplings are equal to ∆k1 (for both Type-I and
Type-II). Since the SM is a good fit to collider data, both reduced couplings are close to
0. This may happen when cos (β − α) is close to 0, or due to cancellation of the above
terms. The latter case leads to the special arm regions on Figure 9.4 but these disappear
in the combined fit. The arm above cos (β − α) = 0 corresponds to tan β = 2/ cos (β − α)
while the arm below corresponds to tan β = −1

2 cos (β − α).

Notice that ∆k1 gets larger at low tan β while ∆k2 gets larger at high tan β. Since the
Type-I 2HDM only involves ∆k1, the parameter space remains open at large tan β where
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the Type-I scalar-fermion couplings are SM-like. This is of course ignoring the effects
of the effective hγγ and hgg couplings which eventually cause the parameter space to
close at high tan β. In the Type-II 2HDM, which depends on both ∆k1 and ∆k2, the
parameter space is forced to the alignment limit at both high and low tan β, and is
slightly open somewhere in the middle. In the Type-II 2HDM there is no true SM-like
limit for the scalar-fermion couplings.

The exclusion bounds from HiggsBounds are not visible here as they also depend on
the masses of the heavy scalars. We need smaller masses of mH / 600 GeV before this
constraint becomes visible. Note that the high tan β region away from the alignment
limit is not constrained by HiggsBounds despite how the plot looks – this region is finely
tuned and hence difficult to sample.

9.3 Flavour Constraints

In the Z2-symmetric 2HDMs, extra FCCCs are provided by the charged Higgs, H+.
This adds additional contributions to flavour observables at leading order. The flavour
observables are calculated with SuperIso using the Wilson coefficients as inputs, as de-
scribed in Section 4.4. The Wilson coefficients depend on the Yukawa couplings which,
for Z2-symmetric 2HDMs, are fully determined by the tan β parameter (c.f. Equation
3.59), although there is a model-dependence (c.f. ΓdA in Table 3.6). We include a total of
18 flavour likelihood components listed in Table 9.1. The SL likelihood actually includes
11 observables: Br [B → Dτ vτ ] /Br [B → Dlvl], Br [B → D∗τ vτ ] /Br [B → D∗lvl],
Br [B → D e ve] /Br [B → Dµvµ], Br [B → Dµ vµ], Br [B → D∗µ vµ], Br [B → Dτ vτ ],
Br [K± → µ± vµ] /Br [π± → µ±vµ], Br [D±s → τ± vτ ], Br [D±s → µ± vµ], Br [D± → µ± vµ],
and Br [D± → τ± vτ ]. The name is shorthand for ‘semi-leptonic’ although in reality
only half of these observables are semi-leptonic while the remainder are fully leptonic.
Notice that these all involve FCCCs, while all other observables in Table 9.1 involve
FCNCs. In our plots we have renamed this combination to “D,K,B → D combo”. We
show individual flavour constraint plots for each model in Figures 9.6 and 9.7.

The RK and RK∗ observables are given by the ratios

RK ≡ Br
[
B → Kµ+µ−

]
Br [B → Ke+e−] , RK∗ ≡ Br

[
B → K∗µ+µ−

]
Br [B → K∗e+e−] . (9.3)

Since most decay rate observations are close to the SM-predictions we expect to see
SM-like behaviour. In all models, the H+ūiPLdj coupling is proportional to cotβ and
we therefore expect to see a lower bound for tan β when this coupling becomes too large.
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Figure 9.6: (Type II) 1D and 2D profile likelihood ratio plots of the individual flavour
constraints against mH+ and log (tan β).

In the Type-I 2HDM, the H+ūiPRdj coupling is also proportional to cotβ. This leads
to an SM-like limit when tan β → ∞ – where both couplings vanish. In the Type-II
2HDM, this latter coupling is instead proportional to tan β and therefore both high and
low tan β are expected to be excluded by flavour constraints.3 In both models we have
an SM-like limit for mH+ →∞ where the heavy scalars are decoupled from the SM.

Some constraints may favour a different region to the SM scenario when the corresponding
observables show an excess over the SM. This different region is required to fit the excess.
We can see some examples in the above results. But the excess is small enough such that
the combined flavour fits favour an SM-like scenario.

Besides tan β, the mass of the charged Higgs strongly influences how large the 2HDM
corrections to the decay rates are.

3Although the scenarios differ since H+ūPLd includes a mui factor while H+ūPRd includes a mdi

factor making the former more impactful.
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Figure 9.7: (Type I) 1D and 2D profile likelihood ratio plots of the individual flavour
constraints against mH+ and log (tan β).

The combined flavour fits are provided in Figures 9.8 and 9.9. In both models, a lower
bound of tan β is set at around 1, and becomes larger at low mH+ . This is stronger than
the Yukawa perturbativity limit.

Only the Type-II 2HDM sets a lower bound for mH+ . This is because in Type-I we still
obtain SM-like behaviour for large tan β.

The Type-II B → Xsγ observable provides an unusually high mH+ limit of around 1.1
TeV at the 95% confidence level. This is around 300 GeV higher than other works, such
as [68]. The reason is still under investigation. It has been confirmed that the behaviour
is coming from the SuperIso backend rather than GAMBIT.

The Type-II behaviour for the RK observable is unusual as it peaks far outside the
plot. We do not scan such large tan β values but the results can be found in [68]. In
their work, the RK observable was excluded from the combined fits as it seems to be
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GAMBIT Name Observable

B2Xsnunu Br [B → Xsv̄v]

Bc_lifetime Γ [B]

SL D,K, B → D Combo

b2sgamma Br [B → Xsγ]

B2Kstargamma Br [B → K∗γ]

Bs2phimumuBr Br [Bs → ϕµµ]

RK RK

RKstar RK∗

B2mumu
(Atlas,LHCb,CMS)

Br
[
B → µ+µ−

]
B2KstarmumuBr_LHCb Br [B → K∗µµ]

B2KmumuBr_LHCb Br [B → Kµµ]

Bu2KstarmumuAng_LHCb_2020 Ang [Bu → K∗µµ]

B2KstarmumuAng
(Atlas,CMS,LHCb_2020,Belle)

Ang [B → K∗µµ]

Table 9.1: flavour observables used in the 2HDM scans. Here ‘Br’ means branching
ratio and ’Ang’ means angular observables. Note that there are actually 3 likelihoods
for Br [B → µ+µ−] for the 3 experiments listed. Likewise there are 4 likelihoods for

Ang [B → K∗µµ].

incompatible with the other flavour constraints (although it was also mentioned that
it did not significantly alter the combined fits). In our fits all flavour observables are
included, and thus the lower bound for mH+ may be slightly larger than other works.

For the combined flavour fits, the lower bound for mH+ in the Type-II model was 1.1
TeV at the 95% confidence level. Although not shown here, it was found to be 200GeV
lower when the RK observable is excluded.

Since the Type-II 2HDM gives a rather large lower bound for mH+ , we can begin to see
the effects on other planes. Firstly, most of the mH+ versus cos (β − α) plane is excluded.
Since the theoretical constraints limit the value of cos (β − α) at large masses, we also
have a severe restriction of cos (β − α) which is competitive with the collider constraints.
The limits on the mass splittings can also be seen clearly in Figure 9.10. We shall have
more to say about this for the global fits.
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Figure 9.8: (Type-II) 1D and 2D profile likelihood ratio plots of the combined flavour
constraints in planes of the benchmark parameters.
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Figure 9.9: (Type-I) 1D and 2D profile likelihood ratio plots of the combined flavour
constraints in planes of the benchmark parameters.
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Figure 9.10: (Type-II) 1D and 2D profile likelihood ratio plots of the combined flavour
constraints in planes of the angles and mass-splittings.
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Global fits of the 2HDM

In this chapter, we present results with all constraints turned on simultaneously in
Figures 10.1 (Type-II) and 10.2 (Type-I). The best-fits points and a 95% confidence
interval for all parameters are provided in Tables 10.1 and 10.2.

Starting with Type-II, in Figure 10.1 we see that the lower bound for mH+ has remained
at 1.1 TeV at the 95% confidence level, while the best fit is at 1.8TeV. The limit is set
by the flavour observables while the electroweak and collider observables have no impact.
The lower limit of tan β is at around 1.7, and the peak is 15, which are again set by the
flavour observables.

We see that both flavour and collider constraints have a large impact on the cos (β − α)
versus tan β plane, as anticipated in the previous section. We are left with a very narrow
strip of available parameter space. The peak value of cos (β − α) is set to 0.0027 with a
95% confidence interval of -0.0016 to 0.02. The large lower bound for mH+ also limits
the mass splittings (as a result of the theoretical constraints). In the mA −mH+ planes
we can just make out two regions above and below zero. These correspond to the two
solutions for the electroweak constraints.

Now looking at Figure 10.2, we see that the mass-splittings are constrained to be close
to zero, within a small circle. This is a result of the flavour and theoretical constraints.
Hence, we have now localised the two regions that were set by the electroweak constraint
to be within this small circle. These regions are now more easily distinguished on other
planes of interest since they no longer cover such a large region and are less likely to
overlap.

The results in Figure 10.3 are also interesting. So far, we did not discuss the important
role of λ2. It can be shown that in the limit tan β →∞ we have mh = v2λ2 and thus λ2

corresponds to the SM Higgs coupling. Meanwhile, mH = m2
12 tan β. These limits can be
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Parameter Best Fit 95% CI

λ1 2.9 0.0024 to 7.4
λ2 0.24 7.9e-05 to 0.44
λ3 10.9 -1.05 to 12.5
λ4 -9.46 -12.2 to 10.8
λ5 0.82 -5.0 to 3.7
mh 125.12 124.64 to 125.54
mH 1800 1000 to 3000
mA 1740 1100 to 2960
mH± 1830 1160 to 2970
tanβ 15 1.7 to 77
α -0.065 -0.51 to -0.012
Λ1 0.2586 0.2564 to 0.2697
Λ2 2.9 0.009 to 4.2
Λ3 10.9 -1.06 to 12.7
Λ4 -9.47 -12.2 to 10.8
Λ5 0.82 -5.0 to 3.7
Λ6 -0.14 -0.91 to 0.13
Λ7 -0.04 -3.0 to 0.8
sin(β − α) 0.99999622 0.99980528 to 1.0
cos(β − α) 0.0027 -0.0016 to 0.02√
M2

22 1400 7.4 to 2800
mH −mA 14 -110 to 51
mH −mH+ -73 -150 to 65
mA −mH+ -87 -113 to 117

Table 10.1: (Type-II) Best fit points and 95% confidence intervals for the combined
fit.
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Figure 10.1: (Type-II) 1D and 2D profile likelihood ratio plots of the combined fit in
planes of the benchmark parameters.

derived by starting with the mixing matrices in Equation 3.32. In this scenario we have
the second doublet becoming SM-like with h1 ≈ h and v2 ≈ v. Therefore, any constraint
that sets a lower bound for tan β will also push λ2 to the SM value of λ = m2

h/v
2 = 0.259.

Note that if we had chosen a convention where the additional scalars appear in the
second doublet rather than the first (as we do for the IDM), then we would instead have
an upper bound for tan β due to the experimental constraints and λ1 now corresponds
to the SM quartic Higgs coupling in the limit tan β → 0. Also note that in the Higgs
basis, we always have Λ1 as the SM-like quartic coupling.

Figure 10.4 shows the physical basis parameters. We see lower bounds for mH and mA

of 900 GeV. This is due to the lower bound on mH+ discussed previously along with the
restrictions on the mass splittings from the theoretical constraints. Finally, in Figure
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Parameter Best Fit 95% CI

λ1 3.1 0.00019 to 5.6
λ2 0.26 0.00015 to 0.88
λ3 -0.61 -1.2 to 12
λ4 5.2 -12 to 12
λ5 -5.0 -6.26 to 5.48
mh 125.06 124.66 to 125.57
mH 220 150 to 2990
mA 590 91 to 3000
mH± 210 94 to 3000
tanβ 58 2.2 to 100
α -0.038 -0.42 to 0.037
Λ1 0.2582 0.2564 to 0.3928
Λ2 3.14 0.00114 to 4.24
Λ3 -0.61 -1.2 to 13.0
Λ4 5.2 -12.0 to 12.0
Λ5 -5.0 -6.26 to 5.39
Λ6 0.01 -1.0 to 0.6
Λ7 -0.061 -1.8 to 1.4
sin(β − α) 0.999779 0.98657 to 1.0
cos(β − α) -0.02 -0.2 to 0.1√
M2

22 250 1.9 to 2900
mH −mA -372 -417 to 280
mH −mH+ 15 -290 to 290
mA −mH+ 390 -270 to 430

Table 10.2: (Type-I) Best fit points and 95% confidence intervals for the combined fit.

10.5 we show the bounds on the generic couplings. We can also see the effect of the
SM-like Higgs collider constraints on the 1D h plot, where we notice that only a small
region near 125.1 GeV is available. We can clearly see two distinct regions in the λ3 and
λ4 planes. These correspond to the two solutions of the electroweak constraints.

Now we describe the Type-I 2HDM. Starting with Figure 10.6 there is no clear lower
limit on mH+ . But if we zoom in, it turns out that the collider constraints impose a
lower bound of about 90 GeV. Meanwhile tan β has a lower bound of 2.2 due to flavour
constraints (about the same as Type-II). We see that the flavour constraints still have
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Figure 10.2: (Type-II) 1D and 2D profile likelihood ratio plots of the combined fit in
planes of the angles and mass splittings.

an impact on the cos (β − α) versus log tan β plane up to tan β = 10, after which only
the collider observables have any impact. We see a much broader range for cos (β − α),
compared to Type-II.

In Figure 10.7, we see that there is no significant constraint of the mass-splitting planes in
the Type-I 2HDM apart from the electroweak constraints. The lower bounds for the scalar
masses are also quite low at 150, 91 and 94 for mH , mA, and mH+ respectively. In fact,
as shown on Figure 10.8, the peak likelihood happens at relatively low masses – around
220, 590, and 210 GeV respectively. Both the collider and electroweak observables have
a slight preference for this low mass region while flavour constraints have no preference.
Finally, in Figure 10.9, we see that the constraints on the generic couplings have a similar
structure compared to Type-II, but the peaks of λ3 and λ4 are on the opposite side.
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Figure 10.4: (Type-II) 1D and 2D profile likelihood ratio plots of the combined fit in
planes of the mass parameters.
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Figure 10.5: (Type-II) 1D and 2D profile likelihood ratio plots of the combined fit in
planes of the generic couplings.
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Figure 10.6: (Type-I) 1D and 2D profile likelihood ratio plots of the combined fit in
planes of the benchmark parameters.
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Figure 10.7: (Type-I) 1D and 2D profile likelihood ratio plots of the combined fit in
planes of the angles and mass splittings.
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Figure 10.8: (Type-I) 1D and 2D profile likelihood ratio plots of the combined fit in
planes of the mass parameters.
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Figure 10.9: (Type-I) 1D and 2D profile likelihood ratio plots of the combined fit in
planes of the generic couplings.
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Hidden-Higgs scenario in the
Type-I/Type-II 2HDMs

We now present our results for the hidden-Higgs scenario in the Type-I and Type-II
2HDMs. Recall that in this scenario the heavier CP-even scalar, H, is assumed to be
SM-like, by which we mean that it has a mass of 125 GeV. We then have an additional
light scalar, mh < 125 GeV, that so far has evaded detection. Collider experiments have
confirmed that the 125 GeV scalar has couplings that are compatible with the SM Higgs
boson. Hence, to satisfy collider constraints, we must have SM-like couplings for the 125
GeV scalar. As before, these results are provided at tree-level.

11.1 Theoretical Constraints

The theoretical constraints are shown in Figure 11.1. We see that the available regions
are somewhat different compared to the regular Higgs scenario. In particular, the λ1

versus λ2 plane is far more restricted and λ5 is has an upper bound of just 1. Figure
11.2 shows our usual benchmark planes. Here we see a crucial difference compared to
the regular Higgs scenario – there is a strict upper limit of the charged Higgs mass
mH+ of just 700 GeV. Similarly, we also have the restriction mA < 700 GeV. This is
a result of the limits on the mass splittings from Equation 7.1. As before, log (tan β)
and cos (β − α) are completely open prior to experimental constraints (apart from the
Yukawa perturbativity limit).
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Figure 11.1: (HHS) 1D and 2D availability plots of the theoretical constraints in
planes of the generic couplings.

11.2 Experimental Constraints

Results for the STU electroweak constraints are displayed in Figure 11.3. Since mH is
now fixed to the SM prediction, we consider mass splittings with mh as a replacement,
i.e. mh −mA and mh −mH+ .

As before, there are two allowed regions. However, part of the plot appears to be cut off
since it failed to satisfy theoretical constraints. This results in a stronger lower bound for
mA −mH+ while the bounds for mh −mH+ and mh −mA are weaker and actually no
better than theoretical constraints alone. In Figure 11.4, we find that the hidden Higgs
scenario has no trouble fitting the experimental values of the S, T, and U parameters
from Equation 4.40.
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Figure 11.2: (HHS) 1D and 2D availability plots of the theoretical constraints in
planes of the benchmark parameters.

The collider results are given in Figures 11.5 and 11.6 for Type-II and Type-I models
respectively. Here we see a major difference compared to the regular Higgs scenario –
cos (β − α) must now be close to ±1 rather than 0.

The reason is clear when we examine the HV V couplings which were given in Table 3.5.
We find that the HV V coupling is proportional to sin (β − α) rather than cos (β − α).
Therefore the SM-like scenario corresponds to cos (β − α) = ±1. The reduced Higgs-
fermion couplings (c.f. Table 3.7) also differ for H and now take the form

∆k1 = sinα
sin β − 1 =

√
1− sin2 (β − α)− sin (β − α)

tan β − 1

' −1
2 sin2 (β − α)− sin (β − α)

tan β , (11.1)
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Figure 11.3: (HHS) 1D and 2D profile likelihood ratio plots of the STU oblique
constraints in planes of the angles and mass-splittings.

∆k2 = cosα
cosβ − 1 =

√
1− sin2 (β − α) + sin (β − α) tan β − 1

' −1
2 sin2 (β − α) + sin (β − α) tan β. (11.2)

Here, ∆k2 is the (deviation of the) reduced Hdidi and Heiei coupling in the Type-II
2HDM, while all other reduced Hff couplings are equal to ∆k1 (for both Type-I and
Type-II). These are SM-like for sin (β − α) = 0 or, in the case of Type-I, when tan β →∞.
Additional solutions may arise when the terms approximately cancel, which can be seen
in Figure 11.5, but these disappear in the combined collider fit.

In the Type-II 2HDM there is a single peak for tan β of 6.4, while there are two peaks in
Type-I at 1 and 15. We can also see that Type-I collider results favour low mH+ while
Type-II results show no preference.
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Figure 11.4: (HHS) 1D and 2D profile likelihood ratio plots of the STU oblique
constraints in planes of the S, T, and U parameters.

The combined flavour fits are provided in Figures 11.7 (Type-II) and 11.8 (Type-I). We
include the same flavour observables which were listed in Table 9.1. In general, the
flavour constraints are very similar to the standard Higgs scenario. This is because the
H+-fermion couplings remain the same in the HHS (they depend on only tan β and
cotβ). But, crucially, we now we have a strict upper bound for mH+ due to theoretical
constraints.

In the Type-II 2HDM regular Higgs scenario we had a lower bound for mH+ of 1000 GeV.
This conflicts with the upper bound set by theoretical constraints. In Figure 11.7, we can
see that the flavour constraints just push mH+ to the highest value allowed, which is 620
GeV. In the Type-I 2HDM, the mH+ versus log (tan β) plane is much more open and is
similar to the regular Higgs scenario. There is no conflict with theoretical constraints
here.
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Figure 11.5: (Type-II HHS) 1D and 2D profile likelihood ratio plots of the collider
constraints in planes of the benchmark parameters.

Unlike the regular Higgs scenario, there is no restriction on cos (β − α) due to flavour
constraints, but the value of tan β does get a lower bound of about 16 for both Type-I
and Type-II.

11.3 Global Fits

Finally, we present the global fits for the Hidden Higgs scenario. The best-fits points
and a 95% confidence interval for all parameters are provided in Tables 11.1 and 11.2.

Starting with Type-II and looking at the mA −mH+ versus mH+ plane in Figure 11.9,
there is only a tiny region where collider, electroweak and flavour constraints are satisfied
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Parameter Best Fit 95% CI

λ1 0.0519 0.0519 to 3.69
λ2 0.2566 0.2562 to 0.2615
λ3 12.3 10.4 to 12.5
λ4 -6.34 -6.39 to -5.32
λ5 -5.97 -6.05 to -4.81
mh 90 66 to 98
mH 124.75 124.49 to 125.52
mA 609 547 to 612
mH± 618 561 to 620
tanβ 6.4 4.21 to 11.5
α -1.417 -1.776 to -1.417
Λ1 0.2453 0.2453 to 0.2593
Λ2 0.05034 0.05034 to 3.632
Λ3 12.3 10.4 to 12.5
Λ4 -6.33 -6.35 to -5.31
Λ5 -5.96 -6.02 to -4.80
Λ6 0.0357 0.000329 to 0.0357
Λ7 -0.00445 -0.3200 to -0.00445
sin(β − α) 0.3039 0.0 to 0.3039
cos(β − α) -0.953 -1.0 to -0.953√
M2

22 83.3 16.9 to 85.0
mh −mA -519 -527 to -455
mh −mH+ -528 -531 to -469
mA −mH+ -9.2 -23.0 to -1.2

Table 11.1: (Type-II HHS) Best fit points and 95% confidence intervals for the
combined fit.
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Parameter Best Fit 95% CI

λ1 3.69 0.00528 to 4.32
λ2 0.259 0.2536 to 0.2606
λ3 0.01 -0.4 to 10
λ4 1.3 -6.5 to 5.1
λ5 -1.2 -6.0 to -0.3
mh 96.5 62.9 to 100.0
mH 125.2 124.6 to 125.7
mA 290 160 to 610
mH± 73 65 to 620
tanβ 15.0 7.3 to 100
α -1.55 -1.66 to 1.53
Λ1 0.2576 0.2504 to 0.2598
Λ2 3.66 0.00768 to 4.23
Λ3 0.02 -0.4 to 10.0
Λ4 1.4 -6.5 to 5.1
Λ5 -1.2 -6.0 to -0.29
Λ6 0.0094 -0.016 to 0.028
Λ7 -0.24 -0.42 to 0.034
sin(β − α) 0.09 0.0 to 0.26
cos(β − α) -0.9959 -1.0 to -0.96, 0.96 to 1.0√
M2

22 43 4.5 to 170
mh −mA -190 -540 to -66
mh −mH+ 23.1 -544 to 28.9
mA −mH+ 220 -62 to 480

Table 11.2: (Type-I HHS) Best fit points and 95% confidence intervals for the combined
fit.
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Figure 11.6: (Type-I HHS) 1D and 2D profile likelihood ratio plots of the collider
constraints in planes of the benchmark parameters.

simultaneously. We get a prediction for mH+ of 618 GeV, with a 95% confidence interval
of 561 to 620 GeV.

There was a lot of difficulty in adequately sampling this scenario. The plots presented here
contain over 4 million samples, yet the available region still appears patchy. Interestingly,
the cos (β − α) ≈ 1 region is eliminated when both collider and flavour constraints are
combined, leaving cos (β − α) ≈ −1. The preferred value of log (tan β) was 6.4.

In Figure 11.11, we see that λ3 is pushed above 10.4. Such a large coupling would likely
be eliminated when we consider the NLO unitarity constraint. The preferred values
of the remaining masses are: mh = 90GeV and mA = 550GeV which are also rather
precisely determined.
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Figure 11.7: (Type-II HHS) 1D and 2D profile likelihood ratio plots of the combined
flavour constraints in planes of the benchmark parameters.

In the Type I 2HDM, the parameter space is much more open due to the lack of a strict
lower bound on mH+ from any experimental constraints. There was a preference for
mH+ = 73 GeV, and both +1 and −1 are available for the parameter cos (β − α).

The lower peak for log (tan β) that was visible in the collider constraints has been
eliminated by the flavour constraints, so we are left with a single peak at tan β = 15.
The remaining masses have the preferred values: mA = 290 GeV and mh = 97 GeV.
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Figure 11.8: (Type-I HHS) 1D and 2D profile likelihood ratio plots of the combined
flavour constraints in planes of the benchmark parameters.
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Figure 11.9: (Type-II HHS) 1D and 2D profile likelihood ratio plots of the combined
fit in planes of the benchmark parameters.
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Figure 11.10: (Type-II HHS) 1D and 2D profile likelihood ratio plots of the combined
fit in planes of the mass parameters.
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Figure 11.11: (Type-II HHS) 1D and 2D profile likelihood ratio plots of the combined
fit in planes of the generic couplings.
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Figure 11.12: (Type-I HHS) 1D and 2D profile likelihood ratio plots of the combined
fit in planes of the benchmark parameters.
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Figure 11.13: (Type-I HHS) 1D and 2D profile likelihood ratio plots of the combined
fit in planes of the mass parameters.
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Figure 11.14: (Type-I HHS) 1D and 2D profile likelihood ratio plots of the combined
fit in planes of the generic couplings.



Chapter 12

Preliminary results for
Type-I/Type-II 2HDMs with
FlexibleSUSY

We briefly discuss parameter scans with the FlexibleSUSY spectrum generator at 2 loop
level. As inputs, FlexibleSUSY accepts the λ1, . . . , λ7, tan β, and m2

12 parameters. Here
tan β is provided at the scale of mt while the remaining parameters are provided at the
input scale, which is set to mZ . All parameters are in the MS-scheme. FlexibleSUSY
then calculates the running masses at the input scale, along with the pole masses. The
generic couplings presented in the results are provided at the input scale while the masses
are provided at their pole.

12.1 Theoretical Constraints

The theoretical constraints are presented in Figures 12.1 and 12.2. The included con-
straints are similar to the ones used for tree-level scans; namely, vacuum stability
(inclusive of vacuum meta-stability), S-matrix unitarity, and perturbativity. However,
the unitarity constraint is done at NLO and includes wave-function, gauge coupling and
Yukawa corrections. This is far more restrictive than the LO unitarity constraint that
was used previously.

The theoretical constraints are model dependent due to the yukawa_corrections that are
included in the NLO unitarity constraint, and also due to the running of the couplings,
which differs between each model. However, this dependence is minor and therefore we
only present the theoretical constraints for Type-II. These constraints are checked at two



Chapter 12 Preliminary results for Type-I/Type-II 2HDMs with FlexibleSUSY 161

0.0

0.2

0.4

0.6

0.8

1.0

λ
1

68.3% CL

95.4% CL

99.7% CL

0.0

2.5

5.0

7.5

10.0

λ
2

0.0

0.2

0.4

0.6

0.8

1.0

68.3% CL

95.4% CL

99.7% CL

−10

0

10

λ
3

0.0

0.2

0.4

0.6

0.8

1.0

68.3% CL

95.4% CL

99.7% CL

−10

0

10

λ
4

0.0

0.2

0.4

0.6

0.8

1.0

68.3% CL

95.4% CL

99.7% CL

0 5 10

λ1

−10

0

10

λ
5

0 5 10

λ2

−10 0 10

λ3

−10 0 10

λ4

−10 0 10

λ5

0.0

0.2

0.4

0.6

0.8

1.0

68.3% CL

95.4% CL

99.7% CL

theory

perturbativity

unitarity

vacuum stability

Figure 12.1: 1D and 2D availability plots of the theoretical constraints in planes of
the generic couplings.

energy scales: mZ and 1 TeV. It is assumed that if the constraint is satisfied at both
scales then it is also met at all intermediate scales. For scanning purposes, the worst of
the two likelihoods is used, i.e.

lnL = min
(

lnL(mZ), lnL(1TeV)
)
. (12.1)

Perturbativity checks on the loop corrections to the scalar masses are also applied, as
explained in Section 4.1.4. This is not shown as a separate contour but instead included
in the combined theoretical constraint.

In Figure 12.1, we first notice that the available parameter space for the couplings is
smaller and closer to zero compared to the tree level results in Figure 8.1. In the combined
theoretical constraint, all couplings are constrained to be less than 5. In the benchmark
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Figure 12.2: 1D and 2D availability plots of the theoretical constraints in planes of
the benchmark parameters.

planes from Figure 12.2, we notice a few changes: (i) the restriction on cos (β − α) is
much stronger for masses above 500 GeV, (ii) the allowed range of the mass-splittings is
much smaller, and (iii) the parameter space towards the bottom-right of the

√
M2

22 vs.
mH+ plane has disappeared. Observation (ii) would imply that the flavour constraint
would indirectly cause a strong limit on cos (β − α) – possibly stronger than the collider
constraints.

Furthermore, some of the planes are not well sampled. In particular, high log (tan β)
for the cos (β − α) vs. log (tan β) plane and also bottom-right/top-right corners of the
log (tan β) vs. mH+ plane. These regions are highly fine-tuned, and despite multiple
targeted scans, some parameter space is still missing (they were much worse before doing
these targeted scans).

Some strange behaviour is seen on the mA −mH+ vs. mH+ plane. We notice a poorly
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Figure 12.3: 1D and 2D profile likelihood ratio plots of the electroweak constraints in
planes of the mass-splittings.

sampled region above the main region. This is a result of the way FlexibleSUSY is
calculating the pole masses. It did not happen in the tree-level results from Figure 8.3,
nor does it happen if we plot the running masses instead. The reason why FlexibleSUSY
is doing this is still under investigation at the time of writing.

12.2 Experimental Constraints

The STU electroweak constraints are displayed on Figure 12.3. Again, these are almost
model independent, so we just provide results for the Type-II 2HDM. The plotted ranges
are the same as the tree-level results in Figure 9.1, but only a small circle of parameter
space is available. This is because theoretical constraints now provide much stronger
bounds on the mass-splitting planes. We can still see the two STU solutions. The



Chapter 12 Preliminary results for Type-I/Type-II 2HDMs with FlexibleSUSY 164

0.0

0.2

0.4

0.6

0.8

1.0

L/
L m

a
x

68.3% CL

95.4% CL

99.7% CL

−1

0

1

2

lo
g

(t
an
β

)

0.0

0.2

0.4

0.6

0.8

1.0

68.3% CL

95.4% CL

99.7% CL

−0.50

−0.25

0.00

0.25

0.50

co
s(
β
−
α

)

0.0

0.2

0.4

0.6

0.8

1.0

68.3% CL

95.4% CL

99.7% CL

0

1000

2000

3000

√
M

2 2
2

[G
eV

]

0.0

0.2

0.4

0.6

0.8

1.0

68.3% CL

95.4% CL

99.7% CL

0 1000 2000

mH± [GeV]

−500

0

500

m
A
−
m
H

+
[G

eV
]

0 2

log (tan β)
−0.5 0.0 0.5

cos(β − α)
0 2000√

M2
22 [GeV]

−500 0 500

mA −mH+ [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

68.3% CL

95.4% CL

99.7% CL

theory

HiggsBounds

HiggsSignals (run1)

HiggsSignals (SS)

HiggsSignals (STXS)

Figure 12.4: 1D and 2D profile likelihood ratio plots of the collider constraints in
planes of the benchmark parameters.

STU constraints provide an upper bound for mA −mH+ that is slightly stronger than
theoretical constraints alone. But the bound on mH −mH+ and mH −mA is no better.

Collider results are given in Figures 12.4 and 12.5 for the Type-II and Type-I 2HDM
respectively. These look very similar to the tree-level results. This is expected since there
are no theoretical limits on the cos (β − α) vs. tan β plane – which are the parameters
relevant for collider observables. We also see some poor sampling density in Figure 12.5.
This is expected since the collider constraints run much slower than theory/electroweak
constraints and these planes are also much harder to sample compared with tree level.

We did not run flavour or combined fits for the FlexibleSUSY generated spectrum, but
for the Type-II 2HDM, we expect the cos(β − α) parameter to be forced closer to zero
once the flavour constraints are included. The lower bounds for mH and mA should also
be higher due to the tighter restrictions on the mass splittings.
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Figure 12.5: 1D and 2D profile likelihood ratio plots of the collider constraints in
planes of the benchmark parameters.
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Chapter 13

Implementation of the IDM in
GAMBIT

Initially, GUM was used to generate the code required to implement the IDM in GAMBIT.
A new .gum input file was written with the appropriate options (see Appendix C for
details). We chose to use SARAH, rather than Feynrules, since the former has the ability
to generate a loop-level, SPheno-based spectrum generator and also expressions for the
Wilson coefficients. We used the existing Lagrangian-level IDM model files from the
SARAH package with some minor changes that are given in Appendix C. GUM is still
relatively new software so various additions and bug fixes were necessary.

Firstly, modifications were made to extract the Wilson coefficients from SPheno. As
explained in Section 6.2.3, SARAH already has the ability to generate code for calculat-
ing Wilson coefficients using FlavorKit. These are needed for calculation of flavour
observables and the DD_rel_WCs_flavscheme capability which is used for the IceCube
dark matter likelihoods. The SPheno subroutine, CalculateLowEnergyConstraints (in
Observables/LowEnergy_MODEL.f90), is used to calculate all Wilson coefficients, flavour observ-
ables and electroweak observables. The latter is included in the default SPheno package,
while the former two are added by SARAH. We added three new options to the .gum

↪→ input files: GetWilsonCoefficients, GetFlavorObservables, and GetElectroweakObservables,
which tell GUM to extract the Wilson coefficients, flavour observables and electroweak
observables from SPheno respectively. A capability for each WC/observable is then added
to GAMBIT and also the example .yaml input file that gets generated by GUM. This .yaml

file can then be used to run a GAMBIT parameter scan with flavour and electroweak
constraints.

The electroweak observables include the STU parameters, anomalous magnetic moments
of charged leptons and electric dipole moments of charged leptons. These capabilities do
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appear to be working correctly but are not yet used – we prefer 2HDMC’s calculation of
the STU parameters. Unfortunately, there is a bug in the WC calculations and therefore
these capabilities are not yet used in our scans.

While modifying GUM, one problem we faced is that running SARAH is extremely slow,
taking up to 30 minutes depending on the model and input options. This made debugging
extremely difficult. Because we do not often need to change the SARAH model file, GUM
was modified to automatically save all the SARAH outputs to a file. On the next run, the
user can use the command line option --usecache to automatically use the saved SARAH
outputs rather than calculating them from scratch. The rest of GUM only takes a few
seconds to run, so this saves up to 30 minutes each time.

Some changes were also made to the CalcHEP outputs. There are actually two separate
installations of CalcHEP used in GAMBIT. The first one is the usual CalcHEP backend
while the second is part of the micrOMEGAs backend. Originally, GUM generated entirely
separate code to set the input parameters for each CalcHEP version. This has now been
changed so that the input code is the same, making it easier to maintain. Unfortunately,
it is difficult to decouple CalcHEP from micrOMEGAs so two installations of CalcHEP will
remain for now. An extra check has been added to ensure all CalcHEP model parameters
are accounted for – if not an error is thrown.

Unfortunately, there were also problems with the CalcHEP model files generated by
SARAH. Hence, we took a different approach where GAMBIT will generate its own CalcHEP
model files automatically. A new capability was added called calchep_model_GAMBIT. This
generates a set of model files which accept couplings as inputs rather than the model
parameters. It depends on another new capability called coupling_table, which is used to
get all the couplings of a GAMBIT model. For the 2HDM, most couplings are calculated
using the 2HDMC backend. The Goldstone and SM couplings were coded manually. On
the first run the coupling_table along with the particles for the model determine how
the CalcHEP model files are generated. After this calchep_model_GAMBIT only assigns the
parameters. These capabilities may be easily extended to work with other models.

One challenge we faced was finding the appropriate Lorentz factor for each vertex. Our
solution involved, firstly, using a default Lorentz factor based on the spin of each particle
in the vertex. These are listed in Table 13.1. This will not work for effective couplings such
as hZZ and hγγ (which are needed because CalcHEP only considers tree-level diagrams,
while these important couplings only occur at loop-level). To solve this problem, there is
a model-dependent override for the Lorentz factor when it differs from the default value.

The CalcHEP frontend has been overhauled. Firstly, the CalcHEP model file is specified
using a capability so that multiple model files can be used for the same GAMBIT model. In
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Coupling type CalcHEP Lorentz factor

hhh, hhhh 1
ffh 1

V V h (m1.m2)

V hh (-m1.p2+m1.p3)

ff /V G(m3)

V V V

(p1.m3*m1.m2-p2.m3*m1.m2-
p1.m2*m1.m3+p3.m2*m1.m3+p2.m1*m2.m3-

p3.m1*m2.m3)

V V V V (2*m1.m2*m3.m4-1*m1.m3*m2.m4-1*m1.m4*m2.m3)

Table 13.1: Default Lorentz factors used for the generated CalcHEP model files. Here
h, f and V represent generic spin-0, spin-1/2 and spin-1 particles respectively. The
terms in the Lorentz factor have the following meaning: p1,p2,. . . represent particle
momenta, m1,m2,. . . represent Lorentz indices (i.e. ηµ1 , ηµ2 , . . .) and G(m1), G(m2),

. . . represent gamma matrices (e.g. γµ1 .)

particular the user may select either calchep_model_GAMBIT or calchep_model_IDM for the IDM.
One problem in the previous implementation is that it required the use of particle names
from the CalcHEP model files rather than the GAMBIT names. Therefore a translation
was done within DecayBit and DarkBit when the CalcHEP backend convenience functions
were being called. In the new version, only the GAMBIT names are required for these
convenience functions, thus hiding the implementation details of the CalcHEP models.
The translation is done automatically in the CalcHEP frontend based on the current
model files.

The IDM implementation in GAMBIT was initially generated by GUM with an interface to
a SPheno spectrum generator. However, we found that the pole masses were not consistent
with expectations.1 Hence, we also implemented a tree-level spectrum generator – which
is used for our scans of the IDM. The existing 2HDMC interface has been updated to
support the IDM – which is used for calculation of the couplings and decay rates.

The theoretical constraints for the IDM were also implemented. Note that the 2HDM
theoretical constraints will not work (other than the LO unitarity constraint), so we need
separate constraints for the IDM.

Because the IDM uses a different convention from the typical Type-I 2HDM (as explained
in Section 3.9), a new function was added to switch between the two conventions, based
on the expressions in Equation 3.73. Initially this was done due to the code not being

1They differed from the tree-level expressions by hundreds of GeV and the mass hierarchy also differed.
Increasing the tree-level mH+ did not usually result in an increase for the SPheno pole mass.
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compatible with the IDM conventions. This was eventually fixed, but we still used this
function to check that results in both conventions are consistent.

Finally, a new physical basis for the IDM was added consisting of the following parameters:
mh, mH , mA, mH+ , λ2, and λ345.



Chapter 14

Theoretical Constraints in the
IDM

We now turn to the IDM, starting with just the theoretical constraints. We use a physical
basis to perform our parameter scans, which includes the following parameters: mh,
mH , mA, mH+ , λ2, and λ345. The parameter ranges are given in Table 14.1. Unlike
the 2HDM, there is no true decoupling limit since the theory becomes non-perturbative
as mH ,mA,mH+ → ∞. However, masses as high as 104 are still permitted. To save
computer hours we do not scan the entire mass range here (the high mass region is not
touched by experimental constraints anyway). We did not use any hybrid bases here.
The IDM is somewhat easier to sample in the physical basis since it has only 5 free
parameters – two of which are couplings. We did, however, include 11 parameter range
combinations to ensure that all planes of interest are sufficiently well sampled.

We only present tree level results here. An interface to SPheno with a loop-level spectrum
generator has been setup, but the pole masses are not consistent with expectations and
still need further investigation.

Parameter Range
mh 124.1 to 126.1
mH 10 to 3000
mA 10 to 3000
mH+ 10 to 3000
λ2 0 to 12.57
λ345 -12.57 to 12.57

Table 14.1: Parameter ranges used for the IDM.
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Figure 14.1: (IDM) 1D and 2D availability plots of the theoretical constraints in
planes of parameters taken from set A.

We use the standard IDM notation where H is a Z2-odd scalar, while h is Z2-even and
corresponds to the SM Higgs boson. This differs from the standard 2HDM notation
where H is assumed to be the heavier CP-even scalar while h is a lighter CP-even scalar.
As mentioned in Section 3.9, all h couplings with fermions and gauge bosons are exactly
SM-like, and thus we have h = hSM with λSM = λ1. We consider two sets of parameters
for our plots given by

(A) λ2, λ3, λ345, log (mH), log (mA), log (mH+),

(B) log
√
m2

22, mH −mA, mH −mH+ , mA −mH+

The couplings λ2, λ3, λ345 are chosen since they represent the DM-hSM , H+-hSM and
DM-DM couplings respectively (see Table 3.8). The mass splittings provide a good
benchmark for the STU electroweak observables. We plot the logarithm of the masses to
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Figure 14.2: (IDM) 1D and 2D availability plots of the theoretical constraints in
planes of parameters taken from set B.

highlight the low-mass region, which is constrained by both collider and direct detection
constraints as we show later.

Recall that H and A are relatively CP-odd but their actual CP-state is arbitrary since
there are no SM-DM interactions that could determine it. We may take either H or A
as the DM candidate, however the choice is arbitrary since the two particles switch roles
under λ5 → −λ5. To avoid this redundancy, we take H to be the DM candidate and fix
λ5 < 0. Therefore we require that mH < mA and mH < mH+1.

The theoretical constraints we consider are: vacuum stability, vacuum meta-stability,
leading-order unitarity, and perturbativity and are given in Figures 14.1 and 14.2. We

1This is not enforced in the parameter ranges since GAMBIT does not have the ability to set one
parameter range relative to another. Instead, it is enforced when we fix the sign of λ5. Therefore, the
input parameters mH and mA may be swapped when the spectrum is generated. This is not a problem
since the input parameters are not used anywhere after this.
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also eliminate any points with a charged vacuum or charged DM candidate (in all cases).
This latter requirement [48] is enforced by

λ4 − |λ5| < 0. (14.1)

We observe that large values of λ345 at small masses violate vacuum meta-stability, and
that the mass-splittings are small when the masses are large. The DM-DM coupling, λ2,
has an upper bound of 9 due to unitarity. When comparing with the 2HDM results we
need to take into account the swapped conventions. For example we can see a resemblance
between λ2 vs λ3 (IDM) and λ1 vs. λ3 (2HDM Figure 8.1).
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Experimental Constraints in the
IDM

In this section we highlight the individual effects of the experimental constraints. We
begin with the STU electroweak constraints in Figure 15.1. As usual, the mass-splitting
planes provide the ideal benchmark. Previously in the 2HDM, we found two separate
regions for the STU constraints in the mass-splitting planes (c.f. Figure 9.1). But in the
IDM, we find that part of the original plot is cut off; partly due to theoretical constraints
and also because we require mH < mA. Fits of the S, T, and U parameters are shown in
Figure 15.2. We see that the IDM cannot quite produce the experimental value for the S
parameter (of 0.4) simultaneously with the T and U parameters. This is because a region
in the middle of the S versus T plot has been eliminated by the theoretical constraints.

The collider results are provided in Figure 15.3. Since the fermion and gauge boson
couplings with h are SM-like at tree-level, they automatically satisfy collider constraints
within the experimental uncertainty. But there are still two processes that are relevant
for IDM Higgs searches at the LHC: h → HH and h → γγ (via H+). The former is
kinematically open when mh > 2mH and leads to an invisible branching ratio. This
results in a lower bound mH of 63 GeV. The exception is when λ345 and λ3 are close to
zero (less than 0.02), since these determine the hHH/hAA and hH+H− couplings. In
this scenario, the DM sector is decoupled from the SM.

The precision measurements of theW± and Z decay rates require that: mH+mH+ > mW ,
mA +mH+ > mW , mH +mh > mZ , and 2mH+ > mZ . This limits the charged scalar
mass mH+ > 70 GeV. For mA < 100 and mH < 80 GeV, there is only a narrow surviving
region of mA −mH < 8 GeV. Outside this region is excluded by the LEP data since it
would lead to a visible di-jet or di-lepton signal. We find that the collider constraints
give a small preference for λ345 < 0, λ2 < 0 and masses near 160 GeV.
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Figure 15.1: (IDM) 1D and 2D profile likelihood ratio plots of the STU electroweak
constraint in planes of parameters taken from set B.

The relic density of our DM candidate, H, depends on the parameters mH , mA, mH+ ,
and λ345. Figures 15.4 and 15.5 give us an idea of how it varies as a function of mH

and λ345. Here we consider partially degenerate masses mA = mH+ = mh + ∆ where
∆ = 1 and 100 respectively for each figure. As discussed in Section 4.5, a larger DM
annihilation rate leads to a lower relic density. The features of these plots are explained
as follows:

• There are two dips nearmH = 45 GeV corresponding to the resonances forHA→ Z

and HH+ →W+. These processes are independent of λ345. It disappears in the
∆ = 100 GeV plot since in this case mH +mA � mZ and mH +mH+ � mW .

• The sharpest dip occurs at mH = 65 GeV and corresponds to DM annihilation
into the Higgs boson: HH → h. This is the same in both figures with the relic
density reaching below 10−6.
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Figure 15.2: (IDM) 1D and 2D profile likelihood ratio plots of the STU electroweak
constraint in planes of the S, T, and U parameters.

• We have a wider shallow dip at 80-90 GeV which corresponds to the HH →W+W−

and HH → ZZ annihilation channels.

• We have a small dip at 125 GeV due to the HH → hh annihilation channel. This
only happens for large λ345 since this also happens to be the hhHH coupling.

• For ∆ = 1 GeV, the effective co-annihilation of scalars keeps the DM density below
the Planck limit for mH < 65 GeV. For ∆ = 100 GeV, the co-annihilation is
suppressed and the relic density is below the Planck limit only for large values of
λ345.

• For large mH co-annihilation becomes less important than HH → V V . In particu-
lar, the couplings with the longitudinal components are important. This coupling
is equal to λ̄345 or λ3 for HHWW or HHZZ respectively.
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Figure 15.3: (IDM) 1D and 2D profile likelihood ratio plots of the collider constraints
in planes of parameters taken from set A.

• For small mass splittings, λ̄345 ≡ λ3 + λ4 − |λ5| and λ3 are small. This leads to a
small annihilation cross-section 〈σv〉 which decreases with growing mH . Eventually
this causes a relic density above the Planck limit.

• For large mass splittings, the annihilation cross-section remains larger and therefore
the relic density remains below the Planck limit for large mH .

Measurements of the CMB taken by the Planck experiment have determined that the
DM relic density has a value of 0.120 ± 0.001. We apply this constraint as an upper
bound so that other DM candidates may provide the remaining relic density. In isolation,
the relic density constraint is not significant, but it has more impact in the global fits we
consider later.



Chapter 15 Experimental Constraints in the IDM 179

Figure 15.4: (IDM) The relic density, ΩDMh2, as a function of the DM mass, mH , for
various λ345 values with ∆ = 1.

Figure 15.5: (IDM) The relic density, ΩDMh2, as a function of the DM mass, mH , for
various λ345 values with ∆ = 100.

The DD experiments place lower bounds on the spin-independent DM-nucleon couplings.
These are calculated by micrOMEGAs and given to DDCalc to calculate Direct Detection
likelihoods. The couplings are re-scaled by RΩ ≡ ΩDM/ΩPanck

DM to take into account H
representing only part of the total DM density. The experiments included are: XENON
1T (2018), LUX (2016), LUZ-ZEPLIN (2022), PandaX 4T (2021), PandaX (2017/2016),
DarkSide 50 (2017), CRESST II (2015), CRESST III (2018), CDMS (2014), SIMPLE
(2014), and PICO (2017). Direct detection experiments tend to constrain the low-mH

region where RΩ σSI is high. Separate contours for each experiment are displayed in
Figure 15.6 along with the combined DM fit.

There are currently 3 GAMBIT indirect detection likelihoods that are compatible with
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Figure 15.6: (IDM) 1D and 2D profile likelihood ratio plots of the dark matter
constraints in planes of parameters taken from set A. Here Ωh2 is the Planck upper
bound on the relic density and LZ is short for LUX-ZEPLIN. Note that the banding
along the λ345 axis is not a real feature. It is caused by having several targeted scans
along this axis. The parameter becomes increasingly finely tuned towards 12 so this

setup is necessary.

the IDM. These are lnL_FermiGC, lnL_HESSGC, and lnL_FermiLATdwarfs. The first two fit the
gamma ray measurements from the galactic centre while the last fits the gamma ray
measurements from dwarf galaxies.

The galactic centre measurements have shown a gamma ray excess that may be explained
by DM. However, it has been shown that pulsars are just as likely to be the cause. To
be conservative, we choose to exclude these likelihoods. We found that the constraints
from the FermiLAT measurements of dwarf galaxies have a very minor effect and are
not competitive with DD experiments. Therefore, we do not show a separate contour
for this constraint, but it is included in the combined DM fit. We also do not display
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separate contours for the CRESST, CDMS and SIMPLE experiments since their effect
is very minor but they are included in the combined fit. We can see that the recent
LUX-ZEPLIN (LZ) and PandaX results provide the strongest constraints.

Looking at the λ345 vs log (mH) plane we see that much of the low mass region is
eliminated except when λ345 is close to zero (where the h-DM couplings are small). This
is due to the larger DM-nucleon cross-section. There is an exception when mH = 63 GeV,
where the relic density is low (due to HH → h annihilations). There is also a small
bump at the HA→ Z / HH+ →W+ resonance near 45 GeV. The effect on the other
planes is minor, but we can see that λ3 > 0 for most of the low mH region and other
masses also have a lower bound of 63 GeV except when λ345 and λ3 are close to 0. For
larger DM masses, the direct annihilation into WW , ZZ, and HH pairs opens, and the
relic density drops further, making direct detection experiments insensitive to this region.
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Global fits of the IDM

Finally, we present the global fits for the IDM. The best-fit values for all parameters are
provided in Table 16.1.

Starting with parameter set A in Figure 16.1, we see that the available regions are
dictated mainly by the dark matter direct search constraints and look similar to the
DM fits from Figure 15.6. In the case of log (mH+) vs. log (mA), the STU electroweak

Parameter Best Fit 95% CI

λ1 0.2583 0.2564 to 0.2602
λ2 3.34 0 to 8.38
λ3 7.95 -1.0 to 12.5
λ4 -8.56 -12.4 to 0.752
λ5 -0.0468 -6.35 to 0
λ345 -0.66 -1.40 to 5.82
mh 125.1 124.7 to 125.6
mH 2022 12 to 2162
mA 2023 64 to 2185
mH± 2086 13 to 2200
m2

22 4109000 -40780 to 4670000
m2

11 -7830 -7886 to -7772
mH −mA -0.7 -533 to 0
mH −mH+ -64 -541 to -0.2
mA −mH+ -63 -103 to 201

Table 16.1: (IDM) Best fit points and 95% confidence intervals for the combined fit.
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Figure 16.1: (IDM) 1D and 2D profile likelihood ratio plots of all constraints in planes
of parameters taken from set A.

constraint is more important. To see why, we refer to the mH −mH+ vs. mA −mH+

plane in Figure 15.1. Here the STU constraint forces mA−mH+ to be near zero for most
of the parameter space, hence why mA and mH+ appear to be roughly proportional.

The low mass region is poorly sampled and in particular there is a lower bound for mH of
58 at the 68% CL with only a few points below this at the 95% CL. This restriction is due
to the combination of the relic density and collider constraints. The other masses have
similar behaviour – mH+ and mA have lower bounds of 107 and 64 GeV, respectively
when just above the 95% CL line with a few points below this that are available at the
95% CL. The tiny low mass region that is still available requires λ345 ≈ λ3 ≈ 0 and either
mH ≈ mA or mH ≈ mH+ .

Now moving to parameter set B, in Figure 16.2 we find that collider and dark matter
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Figure 16.2: (IDM) 1D and 2D profile likelihood ratio plots of all constraints in planes
of parameters taken from set B.

constraints have little effect on the mass-splittings, while the STU constraints remain as
the most important. We see that one of the ‘arms’ set by the STU constraints is not well
sampled. This is because much of this arm corresponds to the low mass region, which
is almost entirely eliminated. However, it can likely still be improved using additional
targeted scans of this region. We also give a plots for parameter set A versus parameter
set B in Figure 16.3.

It is also interesting to examine how the relic density varies over the parameter space.
We show log (ΩDMh

2) on the Z-axis in Figure 16.4, where we choose to display the value
at the maximum likelihood point in each bin. We can clearly see that the Planck limit of
log (ΩDMh

2) < 0.92 has been applied. The blue regions correspond to mH = 63 GeV,
otherwise the relic density is mostly above 10−3.
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Figure 16.3: (IDM) 1D and 2D profile likelihood ratio plots of all constraints for
parameter set A against B.

Although we did not focus on this scenario, one would find that there is a low mass
region where mH ∈ (50, 80) GeV and a high-mass region where mH > 400 GeV. In
the high-mass region the masses, mH , mA, and mH+ , are near degenerate. This results
in suppressed decay rates for A and H+. An interesting phenomenon occurs when
mH+ −mH / 0.2 GeV. The charged scalar would decay slowly enough to leave tracks in
the detectors of collider experiments – but they would disappear part-way.
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Figure 16.4: (IDM) The logarithm of the relic density at the maximum likelihood
point in planes of parameters taken from set A. This is shown on the Z-axis for 2D plots

and the y-axis for 1D plots.
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Conclusions

We explored the Z2-symmetric IDM and two softly-broken Z2-symmetric 2HDMs, namely
the Type-I and Type-II 2HDMs. The latter two have interesting new flavour phenomenol-
ogy while the former provides a DM candidate.

The 2HDM was previously implemented in GAMBIT, but was further improved with
new features, bug fixes, and performance improvements. In particular, a variety of new
bases were implemented to improve sampling density in various planes of interest. The
hybrid_Higgs2 basis typically performed the best while the physical basis performed the
worst.

Global fits were done using GAMBIT, and separate plots were presented for each theoretical
and experimental constraint. In the 2HDMs, the theoretical constraints did not place
any restrictions on couplings or the charged-Higgs mass in the planes relevant for collider
and flavour observables. Further, there were no theoretical limits on the scalar masses.
There was, however, a restriction on the mass-splittings and the cos (β − α) parameter
at large masses.

The electroweak STU constraints restricted the mass-splitting versus mass-splitting
planes. There were two allowed regions of roughly the same shape but rotated 180
degrees about the centre. The overall restriction on the mass-splitting parameters was
slightly stronger than theoretical constraints alone, but only at low masses.

Only the collider and flavour constraints are model dependent. Firstly, the collider
constraints restricted the cos (β − α) versus tan β plane to be close to the SM-like limit.
In particular cos (β − α) was pushed close to zero. This restriction was stronger for
Type-II due to the lack of a true SM-like limit for the tan β parameter. In Type-I, the
lower limits for the additional scalars were set purely by the collider constraints; these
were mH > 150 GeV, mA > 91 GeV, and mH+ > 94 GeV.
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Extra FCCCs provided by the charged scalar, H+, resulted in contributions to the Wilson
coefficients which were used to calculate the flavour observables. A lower bound for tan β
of about 2 was found for both models; also a lower bound for mH+ of 1100 GeV was
found in the Type-II 2HDM. We commented that this was unusually high compared to
the current literature. For Type-II, we also observed a strong limit on cos (β − α) when
flavour and theoretical constraints were combined.

The combined fits showed similar behaviour to the separate experimental constraints.
However, for the Type-II 2HDM, both collider and flavour constraints give a restriction
on cos (β − α), and both were important when plotted against tan β. Furthermore,
the flavour constraints combined with theoretical constraints to give a much stronger
restriction on the mass splittings. In Type-II, limits on the mass-splittings combined
with the mentioned limit on mH+ resulted in lower bounds for the other scalar masses of
mA > 1100 GeV and mH > 1000 GeV.

Results for the hidden-Higgs scenario, where mH = 125 GeV and mh < 125 GeV, were
presented separately. The main difference was that the masses mA and mH+ have a
strict upper limit of 600 GeV set by the theoretical constraints. In the Type-II 2HDM,
we found that this conflicts with the lower bound for mH+ set by the flavour constraints,
resulting in mH+ pushed up to the maximum allowed value of 600 GeV. The other key
difference was that collider constraints pushed cos (β − α) towards ±1 rather than 0,
as this is the SM-like limit for the hidden-Higgs scenario. We found Type-II extremely
difficult to sample due to the highly restricted parameter space; meanwhile, the Type-I
parameter space was more open since the flavour constraints do not give a lower bound
for mH+ .

Preliminary results using the FlexibleSUSY spectrum generator at 2 loop level were
presented; the main difference being the much stricter restriction on the couplings due
to i) the NLO unitarity constraint, and ii) the fact that all theoretical constraints were
checked at both mZ and 1 TeV. The experimental constraints gave similar behaviour
to the tree-level results, except where the parameter space was limited by theoretical
constraints. We noticed that cos (β − α) was much more restricted at large masses. We
commented that when combined with flavour constraints, there is likely to be a tight
restriction on this parameter in the Type-II 2HDM.

The IDM implementation in gambit was initially generated by gum. Due to problems
with the generated CalcHEP model files, a new capability was added to GAMBIT to
generate them automatically. A tree-level spectrum generator was also added due to
problems with SPheno. The theoretical constraints were added, along with a new physical
basis to assist with parameter scans.
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For the IDM scans, we used the convention mH < mA – enforce by setting λ5 < 0, and
also eliminated points with a charged DM candidate. Theoretical constraints gave a
restriction on the DM-SM couplings, λ354, λ̄354 and λ2, at low mH , though the couplings
were opened up at higher masses. The STU electroweak constraints behave similarly to
the 2HDM with two solutions on the mass splitting planes. However, part of the plot was
cut by i) the theoretical constraints, and ii) the fact that mH < mA. There was a strong
lower bound for mA −mH+ set by these constraints. The collider constraints mainly
eliminated the low mH , mA, and mH+ regions, except when the SM-DM couplings were
close to 0. We found that the relic density of the DM candidate had a strong dip at
mH = 63 GeV with ΩDMh

2 < 10−6 corresponding to the HH → h annihilation channel,
with smaller dips for the HA → Z, HH+ → W+, HH → ZZ, and HH → W+W−

resonances. The DM direct detection constraints also restrict the low mH region, except
when either i) the SM-DM couplings were close to zero, or when ii) mH was close to
the Higgs resonance at 63 GeV. The recent LZ and PandaX experiments provide the
strongest constraints. The global fits were similar to the combined DD fit; the main
difference was from the combination of the relic density and collider constraints – which
eliminated much of the low-mass region even when the couplings were small.

To summarise, we ran global scans of three 2HDMs and translated the results into 2D
confidence regions and 1D confidence intervals at the 95% CL – which are expected to
contain the true parameter values 95% of the time. We may also like to know which
model is preferred and if they are good extensions of the SM in the first place. To answer
such questions, we would need to perform hypothesis tests and determine the p-values.
Although we did not perform such tests, we expect the Type-II HHS 2HDM to perform
poorly due to the conflict between flavour and theoretical likelihoods. Meanwhile, all
other models/scenarios have plenty of parameter space where all constraints are satisfied
simultaneously (with some of this corresponding to an SM-like limit). This is with the
exception of a few flavour constraints in the Type-II 2HDM which preferred a small
charged scalar mass – although these constraints exhibit an excess over the SM. At this
stage, it is unclear if any additional scalars exist, or what their masses would be. To
find out, we would either need a positive discovery of an additional scalar, or stronger
experimental constraints to eliminate more parameter space, leaving just a single region
for a given mass.

Outlook: Further testing of FlexibleSUSY and SPheno is in progress and the results
will be published when we are satisfied that they are working properly. Issues with the
SPheno Wilson coefficients and observables will be investigated, and once working will
be used as a cross-check. The remaining DM constraints will be tested, and we will also
consider scenarios where the IDM provides 100% of the relic abundance.
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Further Work: There are plenty more 2HDM scenarios to be considered. We did not
consider the other Z2-symmetric Type-X and Type-Y models. The fermiophobic limit in
the Type-I 2HDM, which is similar to the IDM, is yet to be investigated. The aligned
2HDM is another example where FCNCs are eliminated. The Type-III 2HDM, which
includes FCNCs, may offer a better explanation of anomalies in flavour observables,
although requires some fine-tuning. The most general 2HDM with CP-violation offers
further new phenomenology and may help explain the observed baryon asymmetry.
Another thing to consider is the possibility of a strong first order electroweak phase
transition, which may occur in the 2HDM.
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Modified Pippi plotting package

The Pippi plotting package is frequently used to plot GAMBIT results, however the
original version, developed by Pat Scott,1 was found to be inadequate. The software has
now largely been re-written with new features and improved performance. Some of the
key changes include:

• The ability to specify grid plots within the input file to be generated. All the plots
presented in this thesis made use of this feature.

• The ability to load an arbitrary number of datasets so that we can plot contours
from each on the same axes. This is used, for example, when we want separate
contours for flavour, electroweak and collider observables on the same plot.

• The ability to specify a folder rather than a single .hdf5 data file. All datasets
contained inside this folder are loaded and merged together before plotting the
results.

• The ability to automatically save the merged dataset and delete the original files.
This makes it unnecessary to merge the data beforehand and means we only have
to load the data once prior to plotting it.

• The ability to define new data columns which are then processed by a custom
python function to calculate them from existing columns.

• Names of data columns can now be any string. Previously, one had to number the
data columns, making it difficult to know what was actually being plotted.

The modified version of pippi can be found at https://github.com/Alex0125698/pippi.
An example input file is provided below. The new options are explained in the comments.

1See https://github.com/patscott/pippi.

https://github.com/Alex0125698/pippi
https://github.com/patscott/pippi
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; Example pip file by A.S. Woodcock

-------------------------------

---load stage------------------

; the datasets to extract datasteams from;

; (*) if multiple datasets are given then each will be binned and overlayed on the

↪→same plots

; in this case both share the same stream names (see below)

; Supports: .txt, .csv, .hdf5, .mat, a folder, or any archives of these (.zip .tar

↪→.tar.gz)

; in the case of a folder, all datasets contained within will be loaded and

↪→appended together

dataset_0 = ’data/THDMItree_theory/samples:/data’

dataset_1 = ’data/THDMItree_perturbativity/samples:/data’

dataset_2 = ’data/THDMItree_NLO/samples:/data’

dataset_3 = ’data/THDMItree_stability/samples:/data’

dataset_labels = {’theory’ ’perturbativity’ ’unitarity’ ’vacuum stability’}

; essentially just renames everything. Syntax: "custom name":"name within hdf5"

assign_to_pippi_datastream =

{

LogLike:’LogLike’

lam1:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::lambda1 dimensionless’

lam2:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::lambda2 dimensionless’

lam3:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::lambda3 dimensionless’

lam4:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::lambda4 dimensionless’

lam5:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::lambda5 dimensionless’

mh_pole:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::h0_1 Pole_Mass’

mH_pole:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::h0_2 Pole_Mass’

mA_pole:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::A0 Pole_Mass’

mHp_pole:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::H+ Pole_Mass’

tanb:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::tanb dimensionless’

alpha:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::alpha dimensionless’

M222:’#THDM_spectrum @SpecBit::get_THDM_spectrum_as_map::M22_2 mass1’

cba:’process’

mH_mA:’process’

mH_mHp:’process’

mA_mHp:’process’

}

; remove all points outside these ranges

data_ranges = {

lam1:{0,12.5} lam2:{0,12.5} lam3:{-12.5,12.5} lam4:{-12.5,12.5} lam5:{-12.5,12.5}

mh_pole:{20, 140} mA_pole:{20, 5000} mHp_pole:{20, 5000} mH_pole:{20, 5000}
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}

; delete all points which have an invalid likelihood

cut_invalid_likelihood = T

; as above but checks all loaded columns, not just the likelihood

cut_invlid_points = F

; write the loaded data back to a file (supports: .txt .hdf5 .mat)

output_load_stage = ’alldata.hdf5’

delete_old_files = T

; limit the number of points for improved performance

limit_point_count_to = ;3000000

-------------------------------

---processing stage------------

; enable the processing stage, can be skipped if we just want to count the number

↪→of points

enable_processing_stage = T

; provide the name of the function within pippi_processing perform the processing

↪→(see example)

processing_function_name = ’processA’

; write the processed data to a file

output_processing_stage = None

-------------------------------

---bin stage-------------------

; Note: binning will be done for all plots provided in the plot stage below

; enable the binning stage

enable_bin_stage = T

; likelihood_type = ... maybe easier to deal with it in processing section

log_likelihood_datastream = LogLike

multiplicity_datastream = None

prior_datastream = None

; set the default number of bins for 1D or 2D plots

default_bins_1D = 35

default_bins_2D = 100

; override the defaults for specific observables

number_of_bins_1D =
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number_of_bins_2D =

; interpolate the binned data for smoother/more accurate plots

; Options: step, linear-spline, cubic-spline

interpolation_method_1D = ’step’

interpolation_method_2D =

; how many times bigger the interpolated bin count should be

interpolation_scaling_1D = 1

interpolation_scaling_2D = 1

; write the binned data to a file

output_bin_stage = None

-------------------------------

---plot stage------------------

dataset_colorScheme_1D = {’grey_fill’ ’maroon_outline’ ’orange_outline’

↪→’blue_outline’ ’light_blue_outline’}

dataset_colorScheme_2D = {’grey_fill’ ’maroon_outline’ ’orange_outline’

↪→’blue_outline’ ’light_blue_outline’}

; enable the plotting stage

enable_plot_stage = T

; set countours for 1D plots

oneD_contour_levels = { 68.3 95.4 99.7 }

; set countours for 2D plots

twoD_contour_levels = { 95.4 }

; use loagarithmic axes for specific datastreams

use_log_scale =

; set the axis range for specific datastreams

axis_ranges = {

lam1:{-0.5,6} lam2:{-0.5,6} lam3:{-6,6} lam4:{-6,6} lam5:{-6,6}

Lam1:{-0.5,2} Lam2:{-0.5,4} Lam3:{-6,6} Lam4:{-6,6} Lam5:{-6,6} Lam6:{-4,4}

↪→Lam7:{-4,4}

}

; which datastreams to make 1D (histogram) plots out of

oneD_plots =

; which pairs of datastreams to make 2D (histogram) plots out of

twoD_plots =
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; create figures with multiple plots arranges into a grid

grid_plot_0 =

{

{ mHp_pole, None, None, None, None },

{ {mHp_pole,log_tanb}, log_tanb, None, None, None },

{ {mHp_pole,cba}, {log_tanb,cba}, cba, None, None },

{ {mHp_pole,sqrt_M222}, {log_tanb,sqrt_M222}, {cba,sqrt_M222}, sqrt_M222, None },

{ {mHp_pole,mA_mHp}, {log_tanb,mA_mHp}, {cba,mA_mHp}, {sqrt_M222,mA_mHp}, mA_mHp

↪→},

}

grid_plot_1 =

{

{ log_tanb, None, None, None, None },

{ {log_tanb,cba}, cba, None, None, None },

{ {log_tanb,mH_mA}, {cba,mH_mA}, mH_mA, None, None },

{ {log_tanb,mH_mHp}, {cba,mH_mHp}, {mH_mA,mH_mHp}, mH_mHp, None },

{ {log_tanb,mA_mHp}, {cba,mA_mHp}, {mH_mA,mA_mHp}, {mH_mHp,mA_mHp}, mA_mHp },

}

grid_plot_labels = { ’benchmarks’ ’anglesVmass’ ’anglesVangles’ ’lamVlam’

↪→’anglesVlam’ ’lamVmass’ ’massVmass’ ’LambVLamb’ ’LambVangles’ ’LambVmass’}

; names of each datastream in LaTeX format that are shown on plots

quantity_labels =

{

LogLike:’-lnlike’

lam1:’$\lambda_1$’

lam2:’$\lambda_2$’

lam3:’$\lambda_3$’

lam4:’$\lambda_4$’

lam5:’$\lambda_5$’

mh_pole:’$m_{h}$ [GeV]’

mH_pole:’$m_{H}$ [GeV]’

mA_pole:’$m_{A}$ [GeV]’

mHp_pole:’$m_{H^\pm}$ [GeV]’

tanb:’$\tan_{\beta}$’

cba:’$\cos(\beta-\alpha)$’

mH_mA:’$m_H-m_A$ [GeV]’

mH_mHp:’$m_H-m_{H^+}$ [GeV]’

mA_mHp:’$m_A-m_{H^+}$ [GeV]’

}

; draw the colorbas on 2D plots (adds just 1 to the side for grid polts)

draw_colorBars = T

; draw the best fit marker (or posterior mean marker)
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draw_best_fit_marker = T

; add a best fit legend entry

draw_best_fit_legend_entry = T

; reference point loation for 1D plots

reference_point_location_1D = None

; reference point loation for 2D plots

reference_point_location_2D = None

; reference point legend entries

reference_point_legend_entry_1D = None

; reference point legend entries

reference_point_legend_entry_2D = None

; extra legend entries

extra_legend_entries_1D = None

extra_legend_entries_2D = None

; credits line to be displayed above all plots

blame = None

; logo file to be added to all plots

logo_file = None

; locations of the legends and logo

legend_location_1D = ’default’

legend_location_2D = ’default’

legend_location_grid = ’default’

logo_location = ’default’

; the output file for plots where ’\$\$\$’ is substituted for the plot name. If

↪→None then plots are drawn to screen. Format .png or .pdf

; @@@ is substituted for the current date

output_plot_stage = ’plots_@@@/THDMItree/theory_\$\$\$.pdf’
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Example YAML input file

Here we provide a complete example of a YAML file for the 2HDM. This file can be used
for running a GAMBIT parameter scan and includes theoretical, flavour, collider, and
precision likelihoods.

##########################################################################

## GAMBIT configuration for the following ##

## ##

## Models: THDM, THDMI, THDMII, THDMLS, THDMflipped ##

## ##

## Includes all compatible likelihoods: ##

## theoretical, collider, electroweak, flavour ##

## ##

## Requires backends: ##

## thdmc, SuperISO, HiggsBounds, HiggsSignals, HEPLike ##

## ##

## Author: A.S. Woodcock ##

## Date: 22/JUL/2022 ##

## ##

##########################################################################

Parameters:

StandardModel_SLHA2: !import include/StandardModel_SLHA2_defaults.yaml

THDMII_hybrid_Higgs2atQ:

mh:

range: [123, 127]

prior_Type: flat

mHp:
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range: [140, 2500]

prior_Type: flat

cba:

range: [-0.55, +0.55]

prior_Type: flat

tanb:

range: [0.001, 70]

prior_Type: flat

Lambda4:

range: [-4, +5]

prior_Type: flat

Lambda5:

range: [-3, +4]

prior_Type: flat

Lambda7:

range: [-2, +2.5]

prior_Type: flat

lambda6:

fixed_value: 0.0

lambda7:

fixed_value: 0.0

Qin:

fixed_value: 91.1876 # = mZ

#################################

## PRINTER SELECTION ##

#################################

Printer:

printer: cout

#################################

## SCANNER SELECTION ##

#################################

Scanner:

use_scanner: random

scanners:

random:

plugin: random

point_number: 5000000

like: LogLike
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#################################

## OBSERVABLES / LIKELIHOODS ##

#################################

ObsLikes:

#-------------------------------------#

# THEORETICAL LIKELIHOODS #

#-------------------------------------#

# Checks that the LO or NLO scattering-matrix is unitary

- purpose: LogLike

capability: unitarity_LogLikelihood_THDM

function: NLO_unitarity_LogLikelihood_THDM

# Stability of the 2HDM Potential

- purpose: LogLike

capability: stability_LogLikelihood_THDM

# Perturbativity check on h0 mass loop-corrections

- purpose: LogLike

capability: light_scalar_mass_corrections_LogLikelihood_THDM

# Perturbativity check on heavy scalar mass loop-corrections

- purpose: LogLike

capability: heavy_scalar_mass_corrections_LogLikelihood_THDM

# enforces a mass range for all scalars

- purpose: LogLike

capability: scalar_mass_range_LogLikelihood_THDM

# Perturbativity check on lambdas and scalar couplings

- purpose: LogLike

capability: perturbativity_LogLikelihood_THDM

function: perturbativity_LogLikelihood_THDM

# perturbativity constraint on yukawas

- purpose: LogLike

capability: perturbativity_yukawas_LogLikelihood_THDM

#-------------------------------------#

# COLLIDER LIKELIHOODS #

#-------------------------------------#

# HiggsSignals 2.5.0 likelihood
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- purpose: LogLike

capability: LHC_Higgs_LogLike

function: calc_HS_2_LHC_LogLike

# HiggsBounds 5.8.0 likelihood

- purpose: LogLike

capability: LEP_Higgs_LogLike

function: calc_HB_5_LEP_LogLike

#-------------------------------------#

# PRECISION LIKELIHOODS #

#-------------------------------------#

# Constraint on the S, T, U parameters

- purpose: Observable

capability: oblique_parameters_LogLikelihood

function: get_oblique_parameters_LogLikelihood

#-------------------------------------#

# FLAVOR LIKELIHOODS #

#-------------------------------------#

# Bs2llp (Bs2mutau, Bs2tautau)

- purpose: LogLike

capability: Bs2ll_LogLikelihood

# B2Kllp (B2Kmue, B2Ktaumu, B2Ktautau)

- purpose: LogLike

capability: B2Kll_LogLikelihood

# B -> mu mu

- purpose: LogLike

capability: B2mumu_LogLikelihood_Atlas

sub_capabilities: [BRuntag_Bsmumu, BR_Bdmumu]

- purpose: LogLike

capability: B2mumu_LogLikelihood_LHCb

sub_capabilities: [BRuntag_Bsmumu, BR_Bdmumu]

- purpose: LogLike

capability: B2mumu_LogLikelihood_CMS

sub_capabilities: [BRuntag_Bsmumu, BR_Bdmumu]

# Bc lifetime

- purpose: LogLike

capability: Bc_lifetime_LogLikelihood

# RK and RKstarnunu

- purpose: LogLike

capability: B2Xsnunu_LogLikelihood
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# Tree-level leptonic and semi-leptonic B & D decay measurements

# (RD, RDstar, BDmunu, BDstarmunu, Btaunu, Rmu, Dstaunu, Dsmunu, Dmunu, Dtaunu, RDemu)

- purpose: LogLike

capability: SL_LogLikelihood

# b -> s gamma

- purpose: LogLike

capability: b2sgamma_LogLikelihood

# B -> K* gamma

- purpose: LogLike

capability: B2Kstargamma_LogLikelihood

# RK

- purpose: LogLike

capability: RK_LogLikelihood_LHCb

# RKstar

- purpose: LogLike

capability: RKstar_LogLikelihood_LHCb

# B -> K* mu mu Angular

- purpose: LogLike

capability: B2KstarmumuAng_LogLikelihood_Atlas

sub_capabilities: [FL, S3, S4, S5, S7, S8]

- purpose: LogLike

capability: B2KstarmumuAng_LogLikelihood_CMS

sub_capabilities: [P1, P5prime]

- purpose: LogLike

capability: B2KstarmumuAng_LogLikelihood_LHCb_2020

sub_capabilities: [FL, AFB, S3, S4, S5, S7, S8, S9]

- purpose: LogLike

capability: B2KstarmumuAng_LogLikelihood_Belle

sub_capabilities: [P4prime, P5prime]

# B -> K* l l Angular

- purpose: LogLike

capability: B2KstarellellAng_LogLikelihood_Belle

sub_capabilities: [P4prime, P5prime]

# B_u -> K* mu mu Angular

- purpose: LogLike

capability: Bu2KstarmumuAng_LogLikelihood_LHCb_2020

sub_capabilities: [FL, AFB, S3, S4, S5, S7, S8, S9]

# B -> K* e e angular low q2

- purpose: LogLike
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capability: B2KstareeAng_Lowq2_LogLikelihood_LHCb_2020

sub_capabilities: [FLee, AT_Re, AT_2, AT_Im]

# B -> K* mu mu BR

- purpose: LogLike

capability: B2KstarmumuBr_LogLikelihood_LHCb

# B -> K mu mu BR

- purpose: LogLike

capability: B2KmumuBr_LogLikelihood_LHCb

# Bs -> Phi mu mu BR

- purpose: LogLike

capability: Bs2phimumuBr_LogLikelihood

#################################

## OBSERVABLES ##

#################################

# entire 2HDM spectrum

- capability: THDM_spectrum

type: map_str_dbl

purpose: Observable

# 2HDM decay rates and branching ratios

- capability: all_BFs

purpose: Observable

###################################

## Likelihood/Observable Rules ##

###################################

Rules:

- capability: RK_LogLikelihood_LHCb

function: RK_LogLikelihood_LHCb

- capability: RKstar_LogLikelihood_LHCb

function: RKstar_LogLikelihood_LHCb

- capability: THDM_spectrum

type: map_str_dbl

options:

print_minimal_yukawas: true

- capability: decay_rates



Appendix B Example YAML input file 203

function: all_decays

- capability: all_BFs

function: get_decaytable_as_map

options:

skip_particles: [

↪→’H-’,’W+’,’W-’,’Z0’,’e+_2’,’e+_3’,’e-_2’,’e-_3’,’mu+’,’mu-’,’pi+’,’pi-’,’pi0’,’tau+’,’tau-’,’tbar’,’u_3’,’ubar_3’]

print_BF_error: False

print_as_widths: True

- capability: perturbativity_LogLikelihood_THDM

options:

check_other_scale: 1000

- capability: stability_LogLikelihood_THDM

options:

check_other_scale: 1000

check_metastability: true

- capability: unitarity_LogLikelihood_THDM

options:

check_other_scale: 1000

# options below only for NLO unitarity

check_correction_ratio: true

wave_function_corrections: true

gauge_corrections: true

yukawa_corrections: true

- capability: scalar_mass_range_LogLikelihood_THDM

options:

check_other_scale: -1

minimum_scalar_mass: 0

maximum_scalar_mass: 5000

- capability: Higgs_Couplings

function: THDM_higgs_couplings_2HDMC

- capability: prediction_b2sgamma

function: SuperIso_prediction_b2sgamma

- capability: prediction_B2mumu

function: SuperIso_prediction_B2mumu

- capability: B2KstarmumuAng_LogLikelihood_Atlas

function: HEPLike_B2KstarmumuAng_LogLikelihood_Atlas

options:

ignore_lowq2_bin: true
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- capability: B2KstarmumuAng_LogLikelihood_Belle

function: HEPLike_B2KstarmumuAng_LogLikelihood_Belle

options:

ignore_lowq2_bin: true

- capability: B2KstarmumuAng_LogLikelihood_LHCb_2020

function: HEPLike_B2KstarmumuAng_LogLikelihood_LHCb_2020

options:

ignore_lowq2_bin: true

- capability: B2KstarmumuBr_LogLikelihood_LHCb

function: HEPLike_B2KstarmumuBr_LogLikelihood_LHCb

options:

ignore_lowq2_bin: true

- capability: LHC_Higgs_LogLike

options:

# -1:all, 0:RUN1_SS, 1:LATEST_SS, 2:LATEST_STXS

HS_analysis: -1

#########################

# Logging setup

#########################

Logger:

redirection:

[Debug] : "debug.log"

[Default] : "default.log"

[DecayBit] : "DecayBit.log"

[PrecisionBit] : "PrecisionBit.log"

[ColliderBit] : "ColliderBit.log"

[SpecBit] : "SpecBit.log"

##########################

# Name/Value Section

##########################

KeyValues:

likelihood:

print_invalid_points: false

debug: false
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dependency_resolution:

prefer_model_specific_functions: true

use_old_routines: false

exceptions:

dependency_resolver_error: fatal

dependency_resolver_warning: non-fatal

core_warning: fatal

default_output_path: "runs/THDMI_HH"

debug: false



Appendix C

GUM and SARAH model files for
the IDM

The GUM and SARAH model files are best explained using an example. We provide the
files for the IDM below including additional comments within.

## .gum (YAML) file for the Inert Doublet Model (IDM) in GUM

# -- the Mathematica package used, model name, plus package-specific info

math:

# Name of Mathematica package, either ’feynrules’ or ’sarah’

package: sarah

# Name of Model within that package. This will also be the name of the GAMBIT model.

model: Inert

# Lagrangian within the sarah file

lagrangian: LTotal

# -- PDG code for the annihilating DM candidate in the model

wimp_candidate: 35

# -- Outputs for GUM to hook up to GAMBIT

output:

# spectrum generator capable of computing one-loop masses and tree-level

# decay branching fractions in a variety of BSM models. The model-specific

# code is generated by SARAH

spheno: true

calchep: true

pythia: false

# computes the stability of the scalar potential for generic extended scalar sectors

vevacious: false

# for computing various DM observables for BSM models with WIMP candidates, such as

# the relic abundance, direct detection
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micromegas: true

# Options for outputs

output_options:

spheno:

IncludeLoopDecays: false

IncludeWilsonCoefficients: true

IncludeFlavorObservables: true

IncludeElectroweakObservables: true

The the main SARAH model file is given below. The remainder will be available on the
GAMBIT repository.

(* SARAH: a "spectrum generator" generator *)

Off[General::spell]

Model‘Name = "Inert_gum";

Model‘NameLaTeX = "Inert doublet Model";

Model‘Authors = "A.Woodcock, B.Herrmann, F.Staub";

Model‘Date = "2022-SEP";

(*-------------------------------------------*)

(* Particle Content*)

(*-------------------------------------------*)

(* Global Symmetries *)

(* format is 1: symmetry, 2: name *)

Global[[1]] = {Z[2], Z2};

(* Gauge symmetries & Gauge Fields *)

(* 1: Gauge field name *)

(* 2: Gauge group *)

(* 3: name of group *)

(* 4: corresponding coupling name *)

(* 5: is the group brken later *)

(* 6: Z2 rep *)

Gauge[[1]]={B, U[1], hypercharge, g1, False, 1};

Gauge[[2]]={WB, SU[2], left, g2, True, 1};

Gauge[[3]]={G, SU[3], color, g3, False, 1};

(* Matter Fields *)
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(* 1: name of matter field *)

(* 2: number of generations *)

(* 3: names of SU[2] doublet components *)

(* 4: the weak hypercharge *)

(* 5: the SU[2] rep *)

(* 6: the SU[3] rep *)

(* 7: the Z2 rep *)

(* NOTE: for SUSY models we have SuperFields instead of FermionFiolds and

ScalarFields *)

FermionFields[[1]] = {q, 3, {uL, dL}, 1/6, 2, 3, 1};

FermionFields[[2]] = {l, 3, {vL, eL}, -1/2, 2, 1, 1};

FermionFields[[3]] = {d, 3, conj[dR], 1/3, 1, -3, 1};

FermionFields[[4]] = {u, 3, conj[uR], -2/3, 1, -3, 1};

FermionFields[[5]] = {e, 3, conj[eR], 1, 1, 1, 1};

ScalarFields[[1]] = {Hd, 1, {Hd0, Hdm}, -1/2, 2, 1, 1};

ScalarFields[[2]] = {Hu, 1, {Hup, Hu0}, 1/2, 2, 1, -1};

(*----------------------------------------------*)

(* DEFINITION *)

(*----------------------------------------------*)

(* GaugeES -> Lagrangian with Gauge-symmetric eigenstates *)

(* EWSB -> Lagrangian with eigenstates after Gauge-symmetry breaking*)

(* these can be considered the mass eigenstates *)

NameOfStates={GaugeES, EWSB};

(* ----- Before EWSB ----- *)

(* Define the gauge-symmetric lagrangian *)

(* we only need to define the scalar potential and Yukawa sector *)

(* the fermion-gauge and gauge-gauge interactions derived via Gauge principle *)

DEFINITION[GaugeES][Additional]= {

{LagHC, { AddHC->True}},

{LagNoHC,{ AddHC->False}}

};

LagNoHC = -(MHD conj[Hd].Hd + MHU conj[Hu].Hu + Lambda1 conj[Hd].Hd.conj[Hd].Hd +
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Lambda2 conj[Hu].Hu.conj[Hu].Hu + Lambda3 conj[Hu].Hu.conj[Hd].Hd +

Lambda4 conj[Hu].Hd.Hu.conj[Hd]);

LagHC = -(Lambda5/2 Hu.Hd.Hu.Hd + Yd Hd.q.d + Ye Hd.l.e - Yu conj[Hd].q.u);

(* For the EWSB lagrangian, we redefine the gauge and fermion sectors *)

(* and define the VEVs *)

(* 1: the gauge eigenstates to be mixed *)

(* 2: the resulting EWSB state *)

(* 3: denotes matrix which diagonalises the mass matrix *)

DEFINITION[EWSB][GaugeSector] =

{

{{VB,VWB[3]}, {VP,VZ}, ZZ},

{{VWB[1],VWB[2]}, {VWp,conj[VWp]}, ZW}

};

(* ----- VEVs ---- *)

(* above here we have already defined all aspects of the model *)

(* but in practise we are interested in mass states after gauge symmetry breaking

*)

(* so we define the rotations to these mass states *)

(* we only list the neutral Higgs doublet components *)

(* since we don’t want a VEV for the charged components *)

DEFINITION[EWSB][VEVs]=

{ {Hd0, {v, 1/Sqrt[2]}, {G0, [ImaginaryI]/Sqrt[2]}, {hh, 1/Sqrt[2]}},

{Hu0, {0, 0}, {A0, [ImaginaryI]/Sqrt[2]}, {H0, 1/Sqrt[2]}} };

(* ---- Mixings ---- *)

(* what vector bosons, scalars and fermions mix among each other *)

(* 1: the gauge eigenstates to be mixed *)

(* 2: the resulting EWSB state *)

(* 3: denotes matrix which diagonalises the mass matrix *)

DEFINITION[EWSB][MatterSector]=

{ {{Hup, conj[Hdm]}, {Hp, ZP}},
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{{{dL}, {conj[dR]}}, {{DL,ZDL}, {DR,ZDR}}},

{{{uL}, {conj[uR]}}, {{UL,ZUL}, {UR,ZUR}}},

{{{eL}, {conj[eR]}}, {{EL,ZEL}, {ER,ZER}}}};

(* While SARAH works internally often with Weyl spinors, Dirac spinors are commonly

used by Monte-Carlo tools and also by SPheno. Therefore, we have to define the

relation between the two- and four-component fermions *)

DEFINITION[EWSB][DiracSpinors]={

Fd ->{ DL, conj[DR]},

Fe ->{ EL, conj[ER]},

Fu ->{ UL, conj[UR]},

Fv ->{ vL, 0}};
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Parameterisations of the 2HDM
scalar sector

This appendix lists the parameterisations of the 2HDM scalar potential commonly used
throughout the literature. We do so for the most general 2HDM that is consistent with
basic QFT principles and the SM gauge symmetry. Parameterisations are mathematically
equivalent, i.e., related through a set of definitions. However, symmetries are realised
differently in different notations (i.e. using different representations of the parameters).

Notation 1

This notation (based on [104]) is useful for studying symmetries and basis transformations.

V2HDM = µijΦ†iΦj + 1
2ΛijklΦ†iΦjΦ†kΦl, i, j, k, l ∈ {1, 2} (D.1)

Notation 2

This notation (based on [105]) shows all interactions amongst Higgs doublets explicitly.

V2HDM = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − (m2
12Φ†1Φ2 + H.c.)

+ 1
2λ1(Φ†1Φ1)2 + 1

2λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+ λ4(Φ†1Φ2)(Φ†2Φ1) +
[1

2λ5(Φ†1Φ2)2
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+ λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†2Φ2)(Φ†1Φ2) + H.c
]

(D.2)

It is related to Notation 1 via

m2
11 ≡ µ11, m2

12 ≡ −µ12, m2
22 ≡ µ22, λ1 ≡ Λ1111, λ2 ≡ Λ2222, λ3 ≡ Λ1221,

λ4 ≡ Λ1122, λ5 ≡ Λ1212, λ6 ≡ Λ1112, λ7 ≡ Λ1222. (D.3)

Notation 3

This notation is useful for analysing the vacuum structure.

V = Aix
i + 1

2Bijx
ixj (D.4)

xi ≡



Φ†1Φ1

Φ†2Φ2

Re
(
Φ†1Φ2

)
Im

(
Φ†1Φ2

)


, Ai ≡



m2
11

m2
22

Re
(
m2

12
)

Im
(
m2

12
)


, Bij ≡



λ1 λ3 2λ6 0

λ3 λ2 2λ7 0

2λ6 2λ7 2 (λ4 + λ5) 0

0 0 0 2 (λ4 − λ5)


(D.5)

Notation 4

This notation, called the Minkowski spacetime parameterisation, (based on [35]) is useful
for studying the existence and number of minima of the scalar potential.

V = −Mµr
µ + 1

2Λµvrµrv (D.6)

Λµv ≡
1
2



(λ1 + λ2) /2 + λ3 Re (λ6 + λ7) −Im (λ6 + λ7) (λ1 + λ2) /2

Re (λ6 + λ7) λ4 +Re (λ5) −Im (λ5) Re (λ6 − λ7)

−Im (λ6 + λ7) −Im (λ5) λ4 −Re (λ5) −Im (λ6 − λ7)

(λ1 + λ2) /2 Re (λ6 − λ7) −Im (λ6 − λ7) (λ1 + λ2) /2− λ3


(D.7)
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Mµ ≡ (M0,Mi) ≡
(
−1

2
(
m2

11 +m2
22
)
, Re

(
m2

12
)
, Im

(
m2

12
)
,
1
2
(
m2

22 −m2
11
))

(D.8)

rµ ≡



Φ†1Φ2 + Φ†2Φ2

−2Re
(
Φ†1Φ2

)
−2Im

(
Φ†1Φ2

)
−Φ†1Φ2 + Φ†2Φ2


(D.9)

Note that contravariant and covariant components here are related via a Minkowski
matrix. The reason why it is called the Minkowski spacetime parameterisation is apparent
once we consider basis transformations. Following our discussion from Section 3.4, we
need to first generalise the basis transformation to the full GL(2, C) group 1,2 via the
modification of the scalar KED given by [34]

TScalar = Kµρ
µ, where: ρµ ≡ (∂αΦa)† σµ (∂αΦa) , σ0 ≡ 1, and Kµ is arbitrary.

(D.10)

Our usual scalar KED from Equation 3.5 corresponds to Kµ = (1, 0, 0, 0). The GL(2, C)
basis transformation,

Φ′a = NabΦb, where N ∈ GL(2, C), (D.11)

induces a corresponding O(1, 3) transformation on rµ and Mµ, and an O(1, 3)⊗O(1, 3)
transformation on Λµv – hence justifying why we had named it the Minkowski spacetime
parameterisation. Note that the possible values of rµ do not map out the full Minkowski
space since it can also be proven that rµrµ > 0. This property is useful when deriving
the vacuum stability conditions. The transformations can be written as

r′µ = Rµvrv, M ′µ = RµvMv, Λ′µv = RµαRvβΛαβ, (D.12)
1This is the most general group of 2× 2 matrix transformations.
2Note that only the SL(2, C) subset of GL(2, C) contains non-trivial transformations since multipli-

cation of all the fields by the same real nonzero constant can be compensated for by a re-scaling of all
observables.
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where:

Rij ≡
1
2 Tr

{
(N †σiNσj)

}
∈ SO(3),

R0µ ≡ Rµ0 ≡ δµ0. (D.13)
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Basis conversions

Unless stated otherwise, all equations are derived for the general 2HDM with λ6, λ7 6= 0
but assume a normal / CP-violating minimum (i.e. not for the C-violating minimum).

E.1 Generic to Higgs

Λ1 = λ1 cos4 β + λ2 sin4 β + 1
2λ345 sin2 (2β) + 2 sin (2β)

[
cos2 βλ6 + sin2 βλ7

]
,

Λ2 = λ1 sin4 β + λ2 cos4 β + 1
2λ345 sin2 (2β)− 2 sin (2β)

[
sin2 βλ6 + cos2 βλ7

]
,

Λ3 = 1
4 sin2 (2β) (λ1 + λ2 − 2λ345) + λ3 − sin (2β) cos (2β) (λ6 − λ7) ,

Λ4 = 1
4 sin2 (2β) (λ1 + λ2 − 2λ345) + λ4 − sin (2β) cos (2β) (λ6 − λ7) ,

Λ5e
−2iχ = 1

4 sin2 (2β) (λ1 + λ2 − 2λ345) + λ5 − sin (2β) cos (2β) (λ6 − λ7) ,

Λ6e
−2iχ = −1

2 sin (2β)
(
λ1 cos2 β − λ2 sin2 β − λ345 cos (2β)

)
+ cosβ cos (3β)λ6 + sin β sin (3β)λ7

Λ7e
−2iχ = −1

2 sin (2β)
(
λ1 sin2 β − λ2 cos2 β + λ345 cos (2β)

)
+ cosβ cos (3β)λ7 + sin β sin (3β)λ6

(E.1)

E.2 Higgs to Generic

The Higgs basis to Generic basis translations were obtained using MATLAB’s symbolic
toolbox. The code is located here: https://github.com/Alex0125698/THDM_basis_

translations.

https://github.com/Alex0125698/THDM_basis_translations
https://github.com/Alex0125698/THDM_basis_translations
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λ1 = −
(

2Λ2 − 2Λ1 + cos 2β(Λ345 − 6Λ2 − 3Λ1)− 4(Λ1 − Λ2) cos 4β − 3Λ1 cos 6β − Λ3 cos 6β

− Λ4 cos 6β − Λ5 cos 6β + 5Λ6 sin 2β + Λ7 sin 2β + 3(Λ6 + Λ7) sin 6β
)
/(4(2 cos 2β + cos 6β))

λ2 = −
(

2Λ1 − 2Λ2 + cos 2β(Λ345 − 6Λ2 − 3Λ1) + 4(Λ1 − Λ2) cos 4β − 3Λ1 cos 6β − Λ3 cos 6β

− Λ4 cos 6β − Λ5 cos 6β + 5Λ6 sin 2β + Λ7 sin 2β + 3(Λ6 + Λ7) sin 6β
)
/(4(2 cos 2β + cos 6β))

λ3 =
(

Λ6 − 3Λ7 + 6(Λ6 − Λ7) cos 4β + (Λ6 + Λ7) cos 8β + 2Λ2 sin 4β + 2Λ3 sin 4β

− 2Λ4 sin 4β + Λ1 sin 8β − 2Λ5 sin 4β + 3Λ3 sin 8β − Λ4 sin 8β − Λ5 sin 8β
)
/(4(sin 4β + sin 8β))

λ4 =
(

Λ6 − 3Λ7 + 6(Λ6 − Λ7) cos 4β + (Λ6 + Λ7) cos 8β + 2Λ2 sin 4β − 2Λ3 sin 4β

+ 2Λ4 sin 4β + Λ1 sin 8β − 2Λ5 sin 4β − Λ3 sin 8β + 3Λ4 sin 8β − Λ5 sin 8β
)
/(4(sin 4β + sin 8β))

λ5 =
(

Λ6 − 3Λ7 + 6(Λ6 − Λ7) cos 4β + (Λ6 + Λ7) cos 8β + 2Λ2 sin 4β − 2Λ3 sin 4β

− 2Λ4 sin 4β + Λ1 sin 8β + 2Λ5 sin 4β − Λ3 sin 8β − Λ4 sin 8β + 3Λ5 sin 8β
)
/(4(sin 4β + sin 8β))

λ6 =
(

Λ6/4 + Λ7/4 + cos 2β(Λ6/2 + Λ7/2)− ((Λ6 − 3Λ7) cos 4β)/4 + (Λ1 sin 2β)/4− (Λ2 sin 2β)/4

− (Λ2 sin 4β)/4 + (Λ3 sin 4β)/4 + (Λ4 sin 4β)/4 + (Λ5 sin 4β)/4
)
/(cos 2β2 + cos 2β(2 cos 2β2 − 1))

λ7 = −
(

Λ6/4 + Λ7/4− cos 2β(Λ6/2 + Λ7/2)− ((Λ6 − 3Λ7) cos 4β)/4− (Λ1 sin 2β)/4 + (Λ2 sin 2β)/4

− (Λ2 sin 4β)/4 + (Λ3 sin 4β)/4 + (Λ4 sin 4β)/4 + (Λ5 sin 4β)/4
)
/(cos 2β2 − cos 2β(2 cos 2β2 − 1))

(E.2)

For the Z2-symmetric models with λ6, λ7 = 0 we can use the much simpler expressions
provided below.

λ1 = (3Λ1)/4 + Λ2/4−
(

Λ1/4− Λ2/4− cos 2β(Λ1/2− Λ2/2) + (Λ6 sin 4β)/2
)
/ cos 2β2

λ2 = (3Λ1)/4 + Λ2/4−
(

Λ1/4− Λ2/4 + cos 2β(Λ1/2− Λ2/2) + (Λ6 sin 4β)/2
)
/ cos 2β2

λ3 = Λ2/2 + Λ3/2− Λ4/2− Λ5/2− Λ7 cot 2β

λ4 = Λ2/2− Λ3/2 + Λ4/2− Λ5/2− Λ7 cot 2β

λ5 = Λ2/2− Λ3/2− Λ4/2 + Λ5/2− Λ7 cot 2β (E.3)
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E.3 Generic to Physical

Conversion from the generic basis to physical basis (see Ref [39]).

m2
A = m̄2 − v2

2 (2λ5 + λ6 cotβ + λ7 tan β)

m2
H+ = m2

A + v2

2 (λ5 − λ4)

m2
h = m2

A cos2 (β − α) + v2(λ1 cos2 β sin2 α+ λ2 sin2 β cos2 α− 2λ345 cosα cosβ sinα sin β

+ λ5 cos2 (β − α)− 2λ6 cosβ sinα cos (β + α) + 2λ7 sin β cosα cos (β + α))

m2
H = m2

A sin2 (β − α) + v2(λ1 cos2 β cos2 α+ λ2 sin2 β sin2 α+ 2λ345 cosα cosβ sinα sin β

+ λ5 sin2 (β − α) + 2λ6 cosβ cosα sin (β + α) + 2λ7 sin β sinα sin (β + α))

tan (2α) = 2m2
12/v

2 − λ345 sin (2β)
2m2

12/v
2 cot (2β)− λ1 cos2 β − λ2 sin2 β

(E.4)

E.4 Physical to Generic

Conversion from the physical basis to generic basis (see Ref [39]).

λ1 = m2
H cos2 α+m2

h sin2 α−m2
12 tan β

v2 cos2 β
− 3

2λ6 tan β + 1
2λ7 tan3 β

λ2 = m2
H sin2 α+m2

h cos2 α−m2
12 cotβ

v2 sin2 β
+ 1

2λ6 cot3 β − 3
2λ7 cotβ

λ3 =
(
m2
H −m2

h

)
cosα sinα+ 2m2

H+ sin β cosβ −m2
12

v2 sin β cosβ − 1
2λ6 cotβ − 1

2λ7 tan β

λ4 =
(
m2
A − 2m2

H+
)

cosβ sin β +m2
12

v2 sin β cosβ − 1
2λ6 cotβ − 1

2λ7 tan β

λ5 = m2
12 −m2

A sin β cosβ
v2 sin β cosβ − 1

2λ6 cotβ − 1
2λ7 tan β

m2
11 = − 1

2 cosβ
(
m2
H cosα cos (β − α)−m2

h sinα sin (β − α)
)

+m2
12 tan β

m2
11 = − 1

2 sin β
(
m2
h cosα sin (β − α) +m2

H sinα cos (β − α)
)

+m2
12 cotβ (E.5)

E.5 Higgs to Physical

Conversion from the Higgs basis to physical basis (see Ref [47]).
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m2
H+ = Y2 + 1

2Λ3v
2

mA = Y2 + v2

2 (Λ3 + Λ4 − Λ5)

m2
H,h = 1

2

(
m2
A + (Λ1 + Λ5) v2 ±

√(
m2
A + v2 (Λ5 − Λ1)

)2 + 4v4Λ2
6

)

cos (β − α) = − Λ6v2√(
m2
H −m2

h

) (
m2
H − Λ1v2)

sin (β − α) = |Λ6| v2√(
m2
H −m2

h

) (
Λ1v2 −m2

h

) (E.6)

E.6 Physical to Higgs

Conversion from the physical basis to Higgs basis (see Ref [47]). For the general 2HDM
the expressions are,

Λ1 = 1
v2

(
sin2 (β − α)m2

h + cos2 (β − α)m2
H

)
,

Λ4 = Λ5 + 2
v2

(
m2
A −m2

H+

)
,

Λ5 = 1
v2

(
sin2 (β − α)m2

H + cos2 (β − α)m2
h −m2

A

)
,

Λ6 = 1
v2

((
m2
h −m2

H

)
sin (β − α) cos (β − α)

)
. (E.7)

The remaining Higgs basis parameters are obtained easily for a Z2-symmetric 2HDM.
These are

m̄2 ≡ 2m2
12/ sin (2β),

Λ7 = Λ6 + 2 cot (2β)
(

Λ5 + 1
v2

(
m2
A − m̄2

))
,

Λ2 = Λ1 + 2 (Λ6 + Λ7) cot (2β),

Λ3 = Λ1 + 2Λ6 cot (2β)− (Λ6 − Λ7) tan (2β)− Λ4 − Λ5. (E.8)
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Vacuum stability using the
Minkowski parameterisation

We can also write the potential using the Minkowski space-time parameterisation. Here
the positivity condition implies that Λµv is positive-definite inside and on the future
light-cone (i.e. that Λµvr

µrv > 0 inside LC+ for all rµ, rv). It turns out that this is
equivalent to the following conditions (see Appendix A of ref [34] for proof):

i Λµv can be diagonalised by an SO (3, 1) transformation (with the diagonalised matrix
having real eigenvalues).

ii Λ0 > Λ1,Λ2,Λ3, where Λ ≡ Λµρgρv in the basis where Λµv is diagonal.

iii Λ0 > 0

For the general 2HDM, the restrictions that arise on the parameters are very complicated.
However they become very simple when λ6,7 = 0. In this case, the parameter matrix
takes the form

Λµv = 1
2



1
2 (λ1 + λ2) + λ3 0 0 −1

2 (λ1 + λ2)

0 λ4 +Re λ5 −Im λ5 0

0 −Im λ5 λ4 −Re λ5 0

−1
2 (λ1 + λ2) 0 0 1

2 (λ1 + λ2)− λ3


. (F.1)

One can show that a SO(3, 1) transformation diagonalises this matrix if and only if:
λ1 + λ2 > |λ1 + λ2|, leading to
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λ1 > 0, λ2 > 0. (F.2)

The diagonalised matrix then takes the form

Λµv = 1
2



√
λ1λ2 + λ3

λ4 + λ5

λ4 − λ5
√
λ1λ2 − λ3


, (F.3)

and the remaining conditions on the eigenvalues lead to

λ3 +
√
λ1λ2 > 0, λ3 + λ4 − |λ5|+

√
λ1λ2 > 0. (F.4)

Notice that these are the same inequalities that we derived using the radial parameteri-
sation, although this time we have proven that they are sufficient. Note that these only
apply for λ6,7 = 0. For the most general stability conditions, see ref [32].



Appendix G

Spontaneous CP-violation

So far we have just been assuming a normal VEV from Equation 3.27, which led to the
minimisation conditions in Equation 3.30. Note that the normal VEV was just a special
case of the more general CP-breaking VEV. In this section we will derive a more general
set of conditions that ensure that our vacuum does not spontaneously break CP. The
general (CP-breaking) VEVs are denoted

〈
0
∣∣∣ϕ0
i

∣∣∣ 0〉 = vi√
2
eiξi , i = 1, 2. (G.1)

Since ξi 6= 0 corresponds to VEVs with an imaginary component, it may seem like it
would lead to spontaneous CP-violation. However, it may still be possible to render both
VEVs real via an appropriate basis transformation – leading to a CP-conserving vacuum.
The minimisation conditions for our general VEVs are

m2
11 = m2

12 tan β cos ξ − 1
2v

2(λ1 cos2 β + (λ3 + λ4 + λ5 cos (2ξ)) sin2 β

+ 3λ6 sin β cosβ cos ξ + λ7 sin2 β tan β cos ξ),

m2
22 = m2

12 cotβ cos ξ − 1
2v

2(λ2 sin2 β + (λ3 + λ4 + λ5 cos (2ξ)) cos2 β

+ 3λ7 sin β cosβ cos ξ + λ6 cos2 β cotβ cos ξ),

m2
12 sin ξ = 1

2v
2
(
2λ5 sin β cosβ cos ξ + λ6 cos2 β + λ7 sin2 β

)
,

(G.2)
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where ξ ≡ ξ2 − ξ1. The last equation becomes trivial when sin ξ = 0 and we just recover
the usual minimisation conditions for a normal VEV – which is CP-conserving. For
sin ξ 6= 0, the latter equation leads to

cos ξ =
m2

12 − 1
2λ6v2

1 − 1
2λ7v2

2
λ5v1v2

. (G.3)

Clearly if the following condition is met, we don’t get a solution for cos ξ

∣∣∣∣m2
12 −

1
2λ6v

2
1 −

1
2λ7v

2
2

∣∣∣∣ ≥ λ5v1v2. (G.4)

Assuming our potential does indeed have a minimum then under this condition it must
correspond to sin ξ = 0 (and hence ξ = nπ). We are left with no/π relative phase
difference, and if any complex phase remains, it can be eliminated via a hypercharge
transformation Φi → eiξ1Φi, followed by a field transformation: Φ2 → (−1)n Φ2. This
yields real and non-negative VEVs.

For sin ξ 6= 0 where we are left with a complex phase, it may be possible to do a basis
transformation that renders the VEVs real. This can be accomplished without explicitly
considering all possible basis choices for the scalar fields by making use of the Higgs
basis.

It can be shown that if all Higgs basis parameters are real for some χ (c.f. Equation
3.61) then the corresponding VEVs are also real and CP-conserving [106]. Hence, based
on Equation 3.47, we arrive at a condition that ensures real VEVs exist given by

Im
(
Λ∗5Λ2

6
)

= Im
(
Λ∗5Λ2

7
)

= Im (Λ∗6Λ7) = 0. (G.5)

It is also possible to translate these back to the generic basis, although the resulting
conditions are much more complex so we do not list them here.
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