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Abstract 

Colorectal cancer (CRC) is among the most common cancers and globally one of the deadliest. 

Treatments for this disease have been improving, increasing the survival rates for CRC patients. On 

the contrary, when the cancer progresses and metastasis occurs, the overall survival rates are quite 

low, reflecting the role of metastasis as the leading cause of death. CRC is a very heterogeneous 

disease that can be classified in various types depending on how it develops, and in which are involved 

many different pathways. Despite its complexity, CRC molecular mechanisms are each year being 

better understood, including events like cell proliferation, immune surveillance blockage, cell adhesion 

disturbances. These mechanisms may be related to cancer progression from primary to metastatic. 

Biomarkers are molecules found in tissue, blood, or stool samples and have been used to identify 

diseases like cancer. These markers have proved to be very beneficial in the aid of CRC treatment and 

other cancers. Despite that, the identification of reliable biomarkers for metastatic CRC remains poor, 

mainly biomarkers that predict metastasis development. Here we uncovered promising biomarkers in 

early stages that reflect the tumour potential to evolve from primary to metastasis. Bioinformatic 

analyses were conducted with transcriptomic data to investigate gene expression differentiation, gene 

sets enrichment, and to create a predictive model. Genomic data was also analysed to find correlations 

between mutations and metastasis occurrence, although this last step was inconclusive. The most 

differential expressed genes found have been also identified to be related to metastasis in other studies 

and the same happened with some of the enriched pathways. The predictive model had an insufficient 

efficacy but revealed to be promising. Here we showed the impact that gene expression analysis can 

have in the important field of biomarker research and the need of future studies with this type of data. 

 

Keywords: colorectal cancer, metastasis, biomarker, transcriptomic, prediction 
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Resumo 

O Cancro colorretal (CRC) é o terceiro cancro mais comum no mundo e o segundo mais mortífero. A 

sua heterogeneidade tem sido um dos maiores obstáculos na medicina de tratamento de pacientes com 

CRC. Este tipo de cancro pode desenvolver-se em diferentes zonas do trato gastrointestinal e crescer a 

partir de várias vias biológicas mostrando o quão desafiante é aprofundar o nosso conhecimento na 

formação e desenvolvimento deste. Apesar destes desafios, ao longo dos anos, os mecanismos por trás 

do CRC têm vindo a ser melhor compreendidos e, em conjunto com os avanços na tecnologia, 

nomeadamente na área das ómicas como genómica, transcriptómica, epigenómica e outras, o resultado 

dos tratamentos de pacientes com CRC tem vindo a melhorar, aumentando as taxas de sobrevivência. 

Isto tem acontecido graças à incorporação de biomarcadores nos procedimentos e decisões aquando do 

tratamento de pacientes com CRC. Biomarcadores são moléculas que podem ser detetadas em 

amostras de tecidos das células, no sangue e nas fezes que permitem a identificação de condições 

patológicos como o caso de cancros. Estas assinaturas biológicas têm vindo a ser muito utilizadas na 

medicina no âmbito de diagnosticar doenças, fazer prognósticos do desenvolvimento das doenças e 

prever a resposta, positiva ou negativa, de pacientes a tratamentos específicos. Apesar destes avanços 

biológicos e tecnológicos, o aparecimento de metástases continua a ser a maior causa de mortes em 

pacientes de CRC. A metástase, definida como a última fase de desenvolvimento do cancro, acontece 

quando células do tumor primário se propagam para outras zonas/órgãos onde levam à formação de 

um tumor secundário. Para que tal aconteça, estas células têm de sobreviver aos diversos sistemas de 

defesa e de controlo que o corpo humano possui, refletindo a importância em perceber os mecanismos 

que permitem o alastramento e sobrevivência destas. Apesar do grande esforço e foco em estudos 

investigarem e perceberem melhor os fatores que levam ao aparecimento de metástases, o nosso 

conhecimento destes continua superficial. Biomarcadores relacionados com metástases também têm 

vindo a ser descobertos aos poucos e a ser também incorporados na escolha de terapias na cura do 

cancro, mas, contrariamente aos melhores resultados que têm vindo a ser obtidos no tratamento de 

tumores primários, tratamentos aquando do aparecimento de metástases continuam pouco eficazes. 

Um dos pontos mais focados, em pacientes em fases iniciais de CRC, é descobrir fatores envolvidos 

no desenvolvimento de tumor primário para secundário/metastático que permitam prever o potencial 

de que os pacientes de CRC têm, ou não têm, de vir a sofrer desta ocorrência. Apesar de promissora, a 

descoberta deste tipo de marcadores tem sido escassa devido ao quão desafiante é obter dados neste 

contexto. Grandes quantidades de amostras têm de ser recolhidas nos estágios iniciais da doença e os 

pacientes têm de ser monitorizados durantes longos períodos de tempo, falando de vários anos, para 

controlar se ocorreu ou não o aparecimento/desenvolvimento de metástases e, só então, proceder à 

análise.  

Neste estudo foram analisados dados de pacientes de CRC nos estágios II e III, os quais foram 

acompanhados durante 3 anos para se controlar se ocorreu metastização ou não. Estes dados vieram do 

Hospital Santa Maria e foram obtidos pela equipa médica do doutor Luís Costa. Next Generation 

Sequencing (NSG) foi utilizada para gerar estes dados, mais especificamente RNA-seq a qual permitiu 

a sequenciação do RNA para produzir dados do transcriptoma e whole exome sequencing (WES) que 

permitiu a sequenciação do exoma. Os dados de transcriptoma foram utilizados para fazer análises 

bioinformáticas de discrepâncias na expressão de genes entre amostras que metastizaram e amostras 

que não o fizeram. Inicialmente foram feitas análises exploratórias dos dados dos pacientes e da 

expressão dos genes. A análise de diferenças na expressão de genes também levou a investigar se 

havia enriquecimentos em vias biológicas. Para tal foram utilizadas duas bases de dados de vias 

biológicas, uma relacionada com o reactoma e outra com cancros. Por fim, com os dados de RNA-seq, 

foi desenvolvido um classificador capaz de distinguir, com base nos valores das expressões dos genes, 
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se uma amostra metastizou ou não, com o intuito de utilizar este programa em dados de outras 

instituições de modo a perceber quais amostras eram identificadas com potencial risco de metastizar. 

Os dados do exoma permitiram descobrir mutações entre as amostras de pacientes onde houve 

metástase e as em que tal não aconteceu. Mutações como SNPs e CNVs foram analisadas pois tem 

sido comprovada a relação destes tipos de mutações com doenças como cancros.  Testes estatísticos 

foram corridos para investigar a possível relação destes tipos de mutações com o desenvolvimento de 

metástases. 

A análise de expressão diferencial resultou em 166 genes diferencialmente expressos (DEGs), dos 

quais 94 foram regulados negativamente e 72 regulados positivamente. Destes DEGs foram 

selecionados os 20 mais significativos para analisar individualmente a dispersão dos níveis de 

expressão ao longo das 149 amostras. Alguns destes genes têm sido estudados em outros artigos como 

potenciais biomarcadores de metástase em CRC.  

A análise de vias biológicas enriquecidas foi brevemente explorada, mas no entanto, as vias resultantes 

mostraram-se interessantes pois estavam relacionadas com mecanismos de controlo do ciclo celular, 

apoptose, transporte membranar, e outras vias que têm sido conectadas com o desenvolvimento de 

metástases.  

O classificador deparou-se com algumas barreiras devido à diferença de amostras de metástase em 

comparação com as de não metástase. Todavia, desempenhou a classificação com uma eficácia de 

valores entre 60%-65%, que apesar de não ser muito alta, mostrou ser uma abordagem promissora. 

A relação entre as mutações e as metástases revelou-se sem significância a nível estatístico. No 

entanto, existiu uma aparente possibilidade de haver relações entre estes pois a chance de mutações em 

alguns genes estarem conectadas ao aparecimento da metástase foi maior que a estarem conectadas ao 

não aparecimento. 

Este estudo deparou-se com alguns obstáculos. Primeiro, os dados vieram de uma só instituição. 

Dados da mesma natureza vindos de outras instituições são necessários para validar estas análises, no 

entanto, este tipo de dados é raro devido às dificuldades que compromete a obtenção dos mesmos, 

referidas anteriormente. Segundo, a discrepância entre o número de amostras de metástase e as 

amostras em que o cancro não metastizou dificultou as diversas análises feitas neste projeto. Terceiro, 

este estudo centrou o foco na análise de expressão diferencial dos genes, explorando superficialmente 

o campo das vias biológicas e das mutações, campos estes que se têm mostrado importantes na 

procura de biomarcadores no auxílio da luta contra o cancro. Quarto, a fase de desenvolvimento que se 

encontra o tumor revelou ter uma possível relação com uma maior ocorrência de metástases, 

mostrando que, futuramente, estudos focados entre CRC II e CRC III podem aprofundar o nosso 

entender no tópico das metástases e trazer novas visões de possíveis biomarcadores.   

Concluindo, aqui foi relevada a importância que tecnologias ómicas, nomeadamente transcriptómica e 

genómica, têm no mundo da medicina e o impacto que podem fazer na luta contra o cancro. Alguns 

dos genes diferencialmente expressos revelaram-se como potenciais biomarcadores do 

desenvolvimento de tumor primário para secundário ou metástase. As vias biológicas enriquecidas são 

um campo promissor para melhor compreensão dos mecanismos por trás da proliferação e 

disseminação das células cancerígenas. A combinação de análises de transcriptoma com análises de 

genoma revela ser uma mais valia na descoberta de biomarcadores, fortalecendo o potencial de 

biomarcadores encontrados em ambas as duas técnicas. Futuros estudos são necessários para averiguar 

o potencial destas descobertas, principalmente devido ao facto de haver uma enorme escassez deste 

tipo de dados que, no entanto, revelam ter uma extrema importância na luta contra o cancro, 

principalmente o cancro colorretal. 

Palavras-chave: cancro colorretal, metástase, biomarcador, transcriptómica, previsão   
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1 Introduction 

Colorectal cancer (CRC) is one of the most common cancers and one of the top causes of cancer-

related deaths becoming a worldwide health emergency. Surgery to remove the primary tumour is the 

most relevant and curative approach to treat CRC and with the creation of more effective treatments 

with better prognosis boosted by biomarkers has increased the five-year survival to 80% of the 

patients with stages I to III CRC (Siegel et al., 2020). This shows that still 20% experience tumour 

recurrence highlighting the significance of creating biomarkers to identify those patients who may 

benefit from post-operative treatment intensification. Furthermore, patients in the stage IV have a 

survival rate of approximately 13%, which reveals that metastasis has a great negative impact in CRC 

mortality (Siegel et al., 2020). Cancer-specific biomarkers have shown to be crucial for cancer 

diagnosis, prognosis, treatment, and prevention. Despite the emerging number of biomarkers identified 

for CRC, such as PTCH1, STK31, and SPAG9, none are currently routinely employed for clinical use 

(Kanojia, Garg, Gupta, Gupta, & Suri, 2011; You et al., 2010; Zhong et al., 2017). Therefore, it is 

crucial to thoroughly investigate biomarkers and develop straightforward strategies to incorporate 

them into preventative, therapeutic, monitoring, and prognostic approaches. The use of genetic 

indicators to identify and predict CRC metastases would be very beneficial (Okita et al., 2018). 

Finding certain quantifiable chemicals linked to tumour aggressiveness would have significant clinical 

implications and open possibilities for determining CRC's early spread (Filip et al., 2020).  

 

1.1 Colorectal Cancer 

CRC represents two types of cancer, respectively colon and rectal cancers, and has revealed to be the 

most common and major cause of death in the gastrointestinal tract, being the third most common 

cancer in the world and the fourth most common in deaths related to cancer whereas lung, liver and 

stomach cancer are the only ones that exceed it (Siegel, Miller, & Jemal, 2019). In the intestinal 

mucosa, CRC can start as a polyp or as an adenoma, which is a benign tumour that has the capability 

to transform into a malign one over time. This progression and transformation of epithelial cells to 

cancer cells is caused by the progressive accumulation of genetic mutations or epigenetic alterations 

that affect specific pathways. Based on the CRC’s origin, it can be classified as sporadic or 

familial/hereditary (E. F. Fearon & Vogelstein, 1990). 

Sporadic CRC accounts for 70% of CRC cases and there is a proven association with environmental 

and dietary factors as excessive alcohol ingestion, smoking, reduced physical activity, sedentary life, 

diets with too much red meat and fats and low in fibre (E. R. Fearon, 1994; Marchand, Wilkens, 

Hankin, Kolonel, & Lyu, 1997). One of the major risk factors in sporadic cases is considered to be the 

age where the incidence significantly increases over the age of 40-50 years (Levin, Lieberman, 

Mcfarland, Andrews, & Brooks, 2008).  Familial CRC accounts for 30% of the cases, affecting people 

that have historical CRC in their family (Stoffel & Kastrinos, 2014). Inherited or genetic CRC 

categorization depends on the existence of colonic polyps (E. F. Fearon & Vogelstein, 1990; Lynch & 

de la Chapelle, 2003). Hereditary nonpolyposis CRC (HNPCC or Lynch syndrome) is the term used to 

describe diseases without polyposis. In the other hand, there are various terms for diseases with 

polyposis as familial adenomatous (FAP), MUTYH-associated polyposis (MAP), and others (E. R. 

Fearon, 1994; Umar et al., 2004; Wirtzfeld, Petrelli, & Rodriguez-bigas, 2001). Some pre-existing 

diseases can also be considered risk factors (Xie & Itzkowitz, 2008). 
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1.1.1 Molecular Pathways 

The mutations that play a critical role in the formation of colorectal carcinoma appear in oncogenes, 

genes related to tumour suppression and genes related to DNA repair mechanisms (E. F. Fearon & 

Vogelstein, 1990). There are three major pathways involved in CRC. One is the chromosomal 

instability pathway (CIN), which is the most common one representing the majority of CRC cases. 

CIN is responsible for triggering critical pathways in CRC tumorigeneses caused by activation of 

oncogenes such as KRAS, inactivation of tumour suppressor genes (TSGs) like the adenomatous 

polyposis coli (APC) and TP53 and causing loss of heterozygosity (S. D. Markowitz & Bertagnolli, 

2009; Pino & Chung, 2010). Another pathway is the microsatellite instability (MSI) characterized by 

the loss of DNA repair mechanisms usually due to mutations in mismatch repair genes (MMR). MSI is 

usually the indication of HNPCC cases (Geiersbach & Samowitz, 2011; Thibodeau, Bren, & Schaid, 

1993; Ward et al., 2001). The last pathway is the CpG island methylator phenotype (CIMP) where the 

main aspect is hypermethylation of oncogene promoters leading to loss of protein expression caused 

by genetic silencing (Lao & Grady, 2011; Ogino et al., 2009; Weisenberger et al., 2006).  

 

1.1.2 The Two Sides of Colorectal Cancer 

One way to categorize CRC can be related to the location of the primary tumour relative to the splenic 

flexure site, where it can be classified as right-sided if proximal or left-sided if distant (Bufill, 2016). 

In the right-side category are included the caecum, the ascending colon, and the transverse colon, and 

in the left-side the descending colon, the sigmoid colon, and the rectum. The sidedness of the cancer 

contributes for differences in pathogenesis, molecular pathways, and prognosis of CRC (Weiss et al., 

2011). Chromosomal instability is typically seen in left-sided CRC. Additionally, KRAS and p53 

mutations have been identified as being associated with left-sided CRC. Contrarily, right-sided CRC is 

frequently defined as having high levels of CpG island methylator phenotype (CIMP), B-Raf proto-

oncogene, serine/threonine kinase (BRAF) mutation, and microsatellite instability (MSI). Right-sided 

CRC patients have been reported to have bigger and advanced tumours (Glebov et al., 2003; Barry 

Iacopetta, 2002; Nawa et al., 2008). This reflects the importance and impact that the sidedness of the 

tumour can have on CRC patients’ treatment. 

 

1.1.3 Consensus Molecular Subtypes 

The Consensus Molecular Subtypes are a division/characterization of CRC groups focusing on the 

correlation between gene expression and epigenomic, transcriptomic, microenvironmental, genetic, 

prognostic, and clinical characteristics. The CMS1 subtype is immunogenic and hypermutated.  CMS2 

tumours are activated by the WNT-β-catenin pathway. CMS3 feature a metabolic cancer phenotype 

and CMS4 cancers have the worst survival and have a strong stromal gene signature. The Consensus 

Molecular Subtypes of CRC may better inform clinicians of prognosis, therapeutic response, and 

potential novel therapeutic strategies (Guinney et al., 2015). 

 

1.1.4 Stages 

Cancer can be described by stages where the criteria is based on how far the cancer has grown, 

location and size of the tumour, if it has reached nearby tissues and whether or not it has spread to 

lymph nodes or other organs. The stages vary from I to IV where stage I is called the early-stage 

cancer where the tumour has not spread and has not grown far into nearby structures. Stage II defines 

cancers which the tumour has grown larger deep into the tissue but has not spread. In stage III cancer 

has grown larger and deeper with the possibility of having spread to other tissues or lymph nodes. The 



3 

 

last which is stage IV represents cancers that have spread to other areas and organs, representing what 

is called metastasis (Gospodarowicz et al., 1998). 

 

1.1.5 Metastasis 

When a secondary tumour develops in a different tissue or organ than the one that has the primary 

cancer it is called metastasis and it is the final stage of cancer development (E. F. Fearon & 

Vogelstein, 1990; E. R. Fearon, 1994). This occurrence is the main cause of cancer mortality and why 

cancer treatment fails (Bozzetti, Doci, Bignami, Morabito, & Gennari, 1987; Manfredi et al., 2006; 

Misiakos, Karidis, & Kouraklis, 2011; Siegel et al., 2020). Although being a very focused theme in 

medicine studies and investigation, the knowledge about it is still poor or insufficient. For a cancer cell 

to go from the primary location and spread to a foreign organ or tissue it needs to survive some 

adversities as entering the bloodstream, circulate in blood vessels, being targeted by immune cells in 

the bloodstream, conditioned to blood vessels pressure, and adapt to the new environment (Massagué 

& Obenauf, 2016). All these factors need to be better understood to help in the advancement of cancer 

therapies. Metastasis is the final obstacle to create more efficient cancer treatments. However, the 

understanding of the dynamics behind metastasis evolution is a very hard topic which is contingent to 

the development of effective cancer therapies (Fares, Fares, Khachfe, Salhab, & Fares, 2020; Keum & 

Giovannucci, 2019; Sánchez-Gundín, Fernández-Carballido, Martínez-Valdivieso, Barreda-

Hernández, & Torres-Suárez, 2018).  

For this objective, studying gene expression levels and signalling pathways associated with CRC 

metastasis is one way to comprehend CRC evolution. Some pathways have already been identified to 

be related with CRC progression and metastasis, such as WNT/β-catenin, TP53, TGF-β/SMAD, 

Notch, VEGF, and JAKs/STAT3. Other alterations caused to the regulation of cellular mechanisms 

like cell cycle, transcription, apoptosis, and angiogenesis are important aspects to focus (Corvinus et 

al., 2005; Es et al., 2005; E. F. Fearon & Vogelstein, 1990; Guba, 2004; Klaus & Birchmeier, 2008; S. 

D. Markowitz & Bertagnolli, 2009; S. Markowitz et al., 2016; Pino & Chung, 2010). 

Cellular growth and stem-cell differentiation are both significantly influenced by the WNT pathway 

(Baeg et al., 1995). Changes in this pathway may be the cause of the formation of tumours (Christie et 

al., 2013). Weakened tight junctions are also linked to WNT pathway changes in CRC, which promote 

migration and metastasis by reducing cellular adhesion (Brocardo & Henderson, 2008). Although 

many other changes can also target this system, APC mutations are the primary genomic aberration in 

CRC connected to the WNT pathway. β-catenin and c-MYC are also involved in the WNT pathway 

(Miller & Randall, 1996; Rennoll & Yochum, 2015; Segditsas & Tomlinson, 2006).  

As the primary cell-cycle checkpoint and one of the most significant tumour suppressor genes, TP53 

absence can promote the growth of tumours by enabling uncontrolled proliferation. Encoding the 

proteins that control the cell cycle, DNA repair, senescence, and apoptosis, is referred to as the 

“guardian of the genome” (Levine, 1997). Loss of p53-mediated apoptotic pathways is a crucial factor 

in the development of malignant tumours from adenomas (Sigal & Rotter, 2000). TP53 alterations are 

reported in the majority of CRC cases (Smith et al., 2002).     

 

1.2 Next Generation Sequencing 

In the last decades, Next Generation Sequencing (NGS) has been improving and providing better and 

faster data for genomic research. NGS creates the opportunity to have the entire genome sequenced 

within a day, surpassing the conventional methods used that would take a long time. NGS is a parallel 

sequencing technology that sequences millions of DNA fragments multiple times to provide high dept 

and accurate data. These fragments are mapped against a reference genome to ensemble the entire 
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genome or parts of it. There are a lot of different technologies and areas for potential use of NGS like 

clinical research, microbiology, ontology and more.  

Improvements in the omics areas have helped to better understand the biological processes in cancer. 

These areas of research include genomics, transcriptomics, and epigenomics. 

RNA sequencing (RNA-seq) has been progressing over the past years. With Next Generation 

Sequencing, RNA-seq has expanded the understanding of many diseases providing biological 

information at the molecular level and allowing to profile the transcriptome. Thus, RNA-seq has been 

used in studies on cancer properties, on differential gene expression and biomarkers discovery, 

contributing to many fields of research, especially cancer research (Hematol et al., 2020; Leblanc & 

Marra, 2015; H. Xu, Wang, Song, Xu, & Ji, 2019).  

Whole exome sequencing (WES) is another sequencing technique that focuses only on mRNA coding 

regions (exons). WES is a less expensive method than whole genome sequencing, that provides DNA 

information to investigate genetic alterations, like mutations such as singular nucleotide 

polymorphisms (SNPs) which can affect the gene’s function when present within a gene or in a 

regulatory region near a gene, giving valuable insights in the knowledge of genetic disorders and 

diseases as cancers (Liang et al., 2012; Rabbani, Tekin, & Mahdieh, 2014).  

Furthermore, combining gene expression with gene mutation data has been proven to improve 

prediction accuracy, revealing the benefits of incorporating multiple data types (Gerstung et al., 2015; 

Matos et al., 2019).  

 

1.2.1 Biomarkers 

Along the years the term “biomarker” has had different definitions in which the easier one could be to 

call it a biological marker. A more precise definition could be “a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” (“Biomarkers and surrogate endpoints: 

preferred definitions and conceptual  framework.,” 2001). With the advancements in technology and 

science, proteomic and genomic analysis have become biological measurements that can also be 

considered as biomarkers. Biomarkers are useful for various applications in the treatment of cancer 

and can be categorized as diagnostic, prognostic, or predictive biomarkers. They can be used to assess 

the risk of a disease, monitor and predict the progression of the disease, and predict the response to 

treatment. There is a wide range of biomarkers, which can include, among other things, proteins (such 

as an enzyme or receptor), nucleic acids (such as a microRNA or other non-coding RNA), antibodies, 

and peptides. Gene expression, proteomic, and metabolomic signatures are a few examples of the 

types of modifications that can also be considered biomarkers (Griffiths et al., 2002).  

 In order to be evaluated non-invasively and serially, biomarkers can be found in the circulation 

(whole blood, serum, or plasma), excretions or secretions (stool, urine, sputum, or nipple discharge), 

or they can be tissue-derived, in which case a biopsy or specialized imaging is necessary. Genetic 

biomarkers can be somatic and found as mutations in DNA taken from tumour tissue, or they can be 

inherited and found as sequence differences in germ line DNA recovered from whole blood, sputum, 

or buccal cells. Due to the critical role that biomarkers play at all stages of disease, it is important that 

they undergo rigorous evaluation, including analytical validation, clinical validation, and assessment 

of clinical benefits, before they are integrated into routine clinical care. 

In simpler words, a biomarker is a biological component that can be used to track the presence or 

development of a certain disease or its therapeutic outcome/effects. High sensitivity, specificity, and 

safety are just a few of the crucial qualities that biomarkers must have. They also need to be simple to 

measure, helpful for making a precise diagnosis, and safe (Diamandis, 2010). 
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1.2.2 Metastasis Biomarkers 

The primary cause of death in cancer is metastasis which shows the preeminent importance of 

discovering metastasis biomarkers to aid cancer treatment (Ferlay et al., 2010). Different sites of 

metastasis and different subtypes of CRC require different treatments which impact patients’ survival 

outcomes (Hart & Fidler, 1980; Toraih et al., 2021). Advances in our understanding on the 

mechanisms behind cancer metastasis and in technology have allowed the finding and incorporation of 

metastasis related biomarkers in targeted treatment, improving the overall survival rates of late-stage 

patients (Brinton, Brentnall, Smith, & Kelly, 2012; Oh & Joo, 2020). One area of particular interest is 

the determination or prediction of the dissemination potential that a tumour has. Thus, it would be of 

tremendous benefit for cancer therapy to identify biomarkers capable of predicting the occurrence of 

metastases and even the sites of metastasis (Peixoto et al., 2023). Although promising, these types of 

biomarkers are poorly investigated due to the challenging and demanding procedure to obtain data for 

these analyses. Large cohorts need to be gathered at the initial stages of cancer before any treatments 

and the patients need to be followed for a long period of time, several years, to assess if there will 

occur metastasis.  

 

1.3 Biomarkers in Colorectal Cancer 

As time goes by, our knowledge and understanding of CRC characteristics has been improving, 

providing the possibility to discover more biomarkers that aid the treatment of CRC patients 

improving survival rates. CRC biomarkers should be simple to quantify, extremely sensitive and 

specific, reliable, and easy to reproduce. Despite the continuous discovery of potential new 

biomarkers, only a few are used clinically (Oh & Joo, 2020). Next are described recent biomarkers for 

diagnosis, prognosis, and prediction in CRC. 

 

1.3.1 CRC Diagnostic Biomarkers 

Tissue Biomarkers 

Cytokeratins (CKs) The intracytoplasmic cytoskeleton of epithelial tissue contains keratin proteins 

called CKs). Staining patterns of CKs have revealed to be good for diagnosis of CRC metastasis 

especially the CK7-/CK20+ pattern (CK20 is detected in the normal gland cells of the colonic mucosa 

and in contrast CK7 isn’t present) (Bayrak, Haltas, & Yenidunya, 2012; Bayrak, Yenidünya, & Haltas, 

2011). 

Caudal type homeobox2 (CDX2) CDX2 is responsible for coding a protein involved in the regulation 

of normal cell differentiation in the GI tract and tumour suppression in the colon. High expression 

levels of CDX2 were found correlated with the development of CRC but also with other types of 

cancer so it can be useful when combined with other biomarkers (Moskaluk et al., 2003; Werling, 

Yaziji, Bacchi, & Gown, 2003). 

Special AT-rich sequence binding protein2 (SATB2) SATB2 has shown positive expression in 95% 

of metastatic CRC revealing it usefulness as a diagnostic marker (Moh et al., 2016; Perez Montiel et 

al., 2015). 

Cadherin 17 (CDH17) Cadherins maintain tissue structure since they are cell-cell adhesion molecules 

and are reported to be expressed in 96%-100% in primary CRC and 100% in metastatic CRC 

(Gumbiner, 1996; Panarelli, Yantiss, Yeh, Liu, & Chen, 2012; Su, Yuan, Lin, & Jeng, 2008). 

Telomerase A ribonucleoprotein that adds TTAGGG repeats onto telomeres to maintain them (Shay, 

Zou, Hiyama, & Wright, 2001). Upregulation of telomerase allows cancer cells to bypass pathways 
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responsible for DNA damage response. A telomerase study reported 95% sensitivity and specificity in 

CRC (Roig, Wright, & Shay, 2009). 

GPA33 (A33) Expressed in the stomach, colon, small intestine, and epithelial cells, A33 has shown to 

be expressed in practically all CRC (Garinchesa et al., 1996). A study revealed A33 to have high 

sensitivity as CDX2 to CRC and higher specificity which shows its potential as a diagnostic biomarker 

(N. A. C. S. Wong et al., 2017). 

 

Blood Biomarkers 

Circulating cell-free DNA (cfDNA) In tumour cells there is presence of larger fragments of cfDNA 

(Jahr et al., 2001). Measuring the ratio of DNA fragments works as quantification of cfDNAs and has 

shown useful to CRC diagnosis with sensitivity levels of 73%-90% and specificity of 85%-97% (El-

Gayar, El-Abd, Hassan, & Ali, 2016; Hao et al., 2014). 

MicroRNA (miRNA) MiRNA are small noncoding RNAs with 18-25 bp that bind to mRNA to 

regulate gene expression (Mitchell et al., 2008). MiRNAs are highly stable in the blood and 

monitorization of groups of different miRNAs (mi-21, mi-320a and mi-423-5q) have shown high 

levels of specificity and sensitivity for CRC (Z. Fang et al., 2015). 

Long noncoding RNA (lncRNA) Involved in many biological processes including differentiation, 

immunological responses, chromosome dynamics, and epigenetic regulation, lncRNAs have been 

reported to be associated to more than 150 human diseases such as leukemia, breast cancer, and colon 

cancer (Gong, Tian, Qiu, & Yang, 2017). HIF1A-AS1, CRNDE-h, NEAT1, ZFAS1, and GAS5 are 

lncRNAs revealing promising results and potential to be used as diagnostic biomarkers of CRC (C. 

Fang et al., 2017; Gong et al., 2017; L. Liu et al., 2018; T. Liu et al., 2016; Peng, Wang, & Fan, 2017). 

Insulin-like growth factor binding protein 2 (IGFBP-2) Malignancies of the ovary, colon, and 

prostate as well as other tumours have been associated with high levels of serum IGFBP-2 (Eiseman et 

al., 2007; el Atiq, Garrouste, Remacle-Bonnet, Sastre, & Pommier, 1994). IGFBP-2 sensitivity and 

specificity for early CRC is unsatisfactory but combining it with other biomarkers has shown 

promising value as a diagnostic biomarker (Liou et al., 2010; Renehan, Jones, Potten, Shalet, & 

O’Dwyer, 2000). 

 

Stool Biomarkers 

Guaiac fecal occult blood test (gFOBT) CRC mortality has been reduced by 11%-33% over the past 

years by using gFOBT as a screening test (Mandel et al., 1993). It has limitations in distinguishing 

upper gastrointestinal bleeding from lower or non-human heme from human heme (Kuipers, Rösch, & 

Bretthauer, 2013). 

Fecal immunochemical test (FIT) By detecting human globin with a human hemoglobin-scpecific 

immunoassay, FIT has high specificity and sensitivity than gFOBT (Ahlquist, Harrington, Burgart, & 

Roche, 2000; Zou, Harrington, Klatt, & Ahlquist, 2006). 

Stool DNA (sDNA) A multi-target stood DNA test for CRC called the Cologuard test revealed higher 

sensitivity than the last two tests but also a higher rate of false positives (Imperiale et al., 2014; 

Imperiale, Ransohoff, Itzkowitz, Turnbull, & Ross, 2004). 

 

1.3.2 CRC Prognostic Biomarkers 

Tissue Biomarkers 

BRAF BRAF gene from the RAF family, has been associated with the development of CRC when 

mutations are present and has been used as a predictor of sporadic CRC (Aprile, Macerelli, Maglio, 
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Pizzolitto, & Fasola, 2013; Fransén et al., 2004; R. Wong & Cunningham, 2008). BRAF mutations 

have also been related to bad prognosis and bad response to the anti-EGFR therapy (Kalady et al., 

2012; Sartore-Bianchi et al., 2009). 

MSI CRC patients with MSI have shown to have low aggressivity and good prognosis representing 

better outcome. Several studies support that MSI tumours indicate a bad response to 5-fluorouracil (5-

FU) adjuvant chemotherapy but, in the other hand, a good response to irinotecan (Bacher, Flanagan, 

Smalley, & Nassif, 2004; Geiersbach & Samowitz, 2011; B Iacopetta & Watanabe, 2006). 

CIMP Studies have shown that CRC patients with CIMP-/CIMP- high have better prognosis than 

CIMP+/CIMP- high (Jia, Gao, Zhang, Hoffmeister, & Brenner, 2016). 

APC Most sporadic CRC cases and FAP have an association with APC (Carethers & Jung, 2015). 

Cytoskeletal integrity, motility, cellular proliferation, and apoptosis are associated with the WNT 

signalling pathway in which APC has an important role by regulating β-catenin. Rising the levels of β-

catenin can influence cell proliferation since it also causes an expression increase of c-myc (Narayan 

& Roy, 2003). Consequently, APC mutations can be responsible for the unregulated transcription of 

many oncogenes and it has been reported that these mutation and high miR-21 are associated with 

poor survival (T.-H. Chen et al., 2013). 

P53 Mutations in the TSG p53 have been associated with the majority of CRC cases (Lech, 

Słotwiński, Słodkowski, & Krasnodębski, 2016). Being responsible to repair damaged DNA or induce 

apoptosis, p53 is a key factor in the cell cycle and in suppressing tumours (Carethers & Jung, 2015). 

Some studies have revealed the prognostic value of p53 mutations in CRC patients (Allegra et al., 

2003; Russo et al., 2005; Westra et al., 2005), but others have reported no indication of a prognostic 

role (Petersen, Thames, Nieder, Petersen, & Baumann, 2001; Popat et al., 2006). 

SMAD4 The TGF-β superfamily signalling pathway is associated with the TSG SMAD4 and 

mutations in this gene are linked to cell differentiation, proliferation, cell migration, and apoptosis 

(Nikolic et al., 2011; Y. Xu & Pasche, 2007). SMAD4 mutations are reported in 30%-40% of CRC 

cases and loss of SMAD4 has been associated with poor survival revealing it’s potential value as a 

prognostic biomarker (Riggins, Kinzler, Vogelstein, & Thiagalingam, 1997; Salovaara et al., 2002; 

Voorneveld, Jacobs, Kodach, & Hardwick, 2015). 

 

Blood Biomarkers 

CEA Patients with stage II or III CRC are recommended to do CEA tests every 3 months post-surgery 

(Locker et al., 2006). CEA levels have been reported to be strongly correlated to CRC patient 

outcomes (Park et al., 1999). Two studies revealed a significant association between preoperative CEA 

levels and prognosis in CRC patients where it occurred metastasis to the liver (Fong, Fortner, Sun, 

Brennan, & Blumgart, 1999; Nordlinger et al., 1996). 

Neutrophil-to-lymphocyte ratio (NLR) Neutrophilia is linked to systemic inflammation, whereas 

lymphopenias is linked to impaired cell-mediated immunity (Grivennikov, Greten, & Karin, 2010). 

NLR has been investigated as a marker for immune responses to diverse stressful situations (Zahorec, 

2001). Elevated levels of NLR have been reported to be associated with shorter overall survival after 

treatment in primary cases and also patients with liver metastasis (Tang et al., 2016; Tsai, Su, Leung, 

Lai, & Liu, 2016). 

Circulating free DNA (cfDNA) Poor survival and high probability of recurrence have been 

associated with higher cfDNA concentrations. Postoperative metastasis/recurrence rates have been 

reported to be considerably greater when there were detected APC, KRAS and p53 mutations. 
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1.3.3 CRC Predictive Biomarkers 

Tissue Biomarkers 

KRAS, NRAS In metastatic CRC patients, mutations in the KRAS gene have been used as biomarker 

of bad response to the anti-EGFR (epidermal growth factor receptor) antibody-based therapy (Chang 

et al., 2016; De Roock et al., 2010). In addition, mutations in NRAS (a gene related to KRAS), also 

shows a negative response to the anti-EGFR therapy showing the usefulness of using extended RAS 

(KRAS and NRAS) as negative biomarkers predicting the outcome of anti-EGFR therapy (Cercek et 

al., 2017; Schirripa et al., 2015; Sforza et al., 2016). 

BRAF BRAF has shown potential to be beneficially used in anti-EGFR antibody therapy as a 

predictive biomarker, but it still lacks sufficient evidence(Rowland et al., 2015). 

PIK3CA Some studies have reported the potential of PIK3CA as a predictive biomarker for anti-

EGFR therapy in colon cancer (Perrone et al., 2009; Sartore-Bianchi et al., 2009), while other studies 

have reported that it has no potential, leaving this marker with inconclusive and indecisive results, and 

in the need of future investigation (Karapetis et al., 2014). 

 

Blood Biomarkers 

Cell-free DNA cfDNA concentrations have been found to decrease after primary treatment (resection 

and chemoradiotherapy), however, when there is recurrence or no treatment response, cfDNA levels 

show a significantly high increase (Spindler, Pallisgaard, Andersen, Brandslund, & Jakobsen, 2015; 

Zitt et al., 2008). 

 

Some other potential biomarkers that are emerging are the location or sidedness, the consensus 

molecular subtype (Puccini, Seeber, & Berger, 2022). Left and right-side CRC have shown result in a 

different tendency for the metastasis location. Right sided CRC patients tend to have peritoneal 

carcinomatosis while left sided tend to have lung or liver metastasis (Benedix et al., 2010). As said 

before, the choice of treatment plans for CRC patients can be considerably improved by the 

identification of suitable biomarkers. The majority of these markers can inform doctors about the 

disease's general prognosis and therapy outcome. Although many molecular biomarkers have been 

discovered lately with good and promising results, they are not yet used in medical practice. This 

happens because most of the studies have small sample sizes or are retrospective analysis of a unique 

marker, resulting in lack of resolution and reproducibility. Data interpretation and analysis continue to 

be difficult tasks. Data obtained frequently lack proper definition and validation, making them 

unreliable for use in clinical settings. Additionally, it is challenging to quantify and evaluate the 

obtained data due to the lack of consistent methods and standardized endogenous controls. Despite all 

of these real drawbacks, a lot of work is being put into this problem, and the use of biomarkers in the 

diagnosis and prognosis of CRC as well as in the creation of individualized and targeted therapies has 

a bright future (Malki et al., 2021; Mármol et al., 2017). 

 

1.4 Thesis Objectives 

Metastasis remains the main cause of cancer death revealing the importance carried by the challenging 

studies in this field. CRC is a very heterogeneous disease which makes its comprehension even more 

difficult. Progress to better understand metastatic CRC biological mechanisms is needed to find more 

and better biomarkers to help the treatment outcome in CRC patients. Although many studies are 

trying to find prognostic and predictive biomarkers, the search for factors in early-stage CRC that may 

influence metastasis occurrence remains poor. 
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In this study we aim to unveil promising biomarkers of metastatic potential and build a predictive 

model for CRC metastasis occurrence. Gene expression profiling, using transcriptomic data (RNA-

seq) and genomic data (WES) from a Portuguese institution, will be done to discover discrepancies 

between primary CRC and metastatic CRC patients. RNA-seq data will be used to find differential 

expressed genes which will be used in gene set enrichment analysis to explore potential pathways with 

impact in CRC metastasis. The differential expression values will also be the data used for the 

predictive model. Statistical tests will also be conducted in the genomic data to search for possible 

relations between gene mutations and metastasis occurrence.  
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2 Materials and Methods 
The development of the current project was performed with R and RStudio (version 4.1.1) which is a 

software often used for statistical computing and graphics production. R is complemented by packages 

with a variety of statistical and graphical resources good for data manipulation, analysis, and 

visualization. In this case, to accomplish the objectives said previously, I mostly used Bioconductor 

which is an open-source software for bioinformatics available in R and has packages for various types 

of analysis of biological data.  

 

2.1 Sample Information 

A total of 154 CRC samples were collected from Santa Maria Hospital by Dr. Luís Costa’s team. 

Paired normal mucosa from each patient was taken from more than 2 cm away from the tumour. These 

patients did not receive any type of chemo or radiotherapy prior to sample collection and were 

supervised for at least 3 years to register if there were metastasis occurrence or not. For each patient 

there is medical information about gender, age, the stage of the cancer, the CRC consensus molecular 

subtype (CMS), if the patient died, if there were metastasis, the location of the first tumour, including 

the side, the locations of the metastases and the number of metastases. Within this 154, there were 36 

patients where metastasis occurred. From all these patients there was transcriptomic (RNA-seq) and 

genomic (WES) data from the primary tumour (when disease was first detected and before any 

treatment). RNA-seq data had 5 replicates which makes a total of 31 metastatic patients in 149. 

 

2.2 Sample Metadata 

The information for each patient was imported to the R environment in table format. The table 

contained the information for each patient said before such as CMS, stage, metastasis occurrence, 

metastasis location and others, as shown for a few samples in Table 1. This data was summarized into 

another table using the R package gtsummary (version 1.5.0) with the objective to compare the 

metastatic samples versus the not metastatic. By doing this we could have a first impression if there 

was from the beginning a bias for the metastatic samples or even, if it was significative, a possibility to 

encounter promising biomarkers. 

 

Table 1 - CRC patients information 

 

 

2.3 Transcriptomic 

2.3.1 RNA-seq Counts Matrix 

The dataset used for the majority of this project was a matrix containing the read counts representing 

the gene expression levels, resulted from RNA-seq. Whole transcriptome sequencing was conducted 

with Illumina technologies creating reads libraries. From the RNA-sequencing reads, kallisto (Bray, 

Pimentel, Melsted, & Pachter, 2016) was used to estimate the transcript abundances and lastly the 

values were normalized to counts per millions creating the counts matrix. The counts matrix reflects 

sample id cohort group organ stage isdead gender age sidedness PrimMet MetPot CMS PrimLocationMetLocationMetNumber

CR011.1 CR011 CR011.1 cohort1 PM rectum II Alive F 58 left primary MetastaticUnknown left lung 1

CR018.1 CR018 CR018.1 cohort1 PNM colon II Dead F 73 right primary NonMetastaticCMS3 right NA 0

CR020.1 CR020 CR020.1 cohort1 PNM rectum II Dead M 77 rectum primary NonMetastaticCMS2 rectum NA 0

CR022.1 CR022 CR022.1 cohort1 PNM rectum III Dead M 78 rectum primary NonMetastaticCMS4 rectum NA 0
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for each sample, how many times a gene/transcript is read. Kallisto does transcript quantification in a 

faster way known as pseudoalignment which consists in skipping the alignment step by selecting the 

transcripts that a read is compatible with to quantify the transcript. The resulting matrix was composed 

by 154 columns representing the CRC patients and by 60564 rows representing genes. A sample of the 

table can be observed in Table 2.  

 

Table 2 - Counts Matrix (gene expression): each row represents a gene and each column a patient. 

 

 

2.3.2 Principal Component Analysis 

High-dimensionality data such as in gene expression makes sample visualization challenging and 

restricts straightforward data exploration. PCA is a statistical algorithm that reduces the 

dimensionality of the data while preserving the majority of its variation. It achieves this reduction by 

locating the principal components, or directions, along which the data's variation is greatest. Each 

sample can be represented by fewer numbers rather than the values for thousands of variables by 

utilizing a small number of components. Then, after the samples have been displayed, it will be simple 

to visually compare the samples to see if they can be grouped. PCA increases the interpretability of the 

data revealing the dispersion and relations between the variables (Everitt & Howell, 2005). 

PCA was conducted for the transcriptomic data (counts matrix) resulted from the RNA-seq. The 

sample’s characteristics of interest to investigate their distribution was the metastatic potential and the 

CMS. For this purpose, it was used the R packages PCAtools (version 2.4.0) and EdgeR (version 

3.34.1). First the data was normalized using the functions calcNormFactors and cpm from the EdgeR 

package. After normalization, the PCA is conducted with the PCAtools’ function called pca with the 

expression data and the parameter of metadata being the clinical data for each patient. PCA 

visualization was performed with PCAtools where the variables of interest, metastatic potential, and 

CMS groups, were selected for colour distribution. The 5 metastatic sample duplicates were also 

highlighted to check for batch effects. 

 

2.3.3 Gene Expression Analysis 

As described in (Y. Chen, McCarthy, Robinson, & Smyth, 2014; Love, Huber, & Anders, 2014) and at 

https://github.com/dsobral/ADER, a differential expression analysis usually starts with a “raw” read 

counts matrix for all genes of each sample. The first step is normalizing the counts due to differences 

in the number of reads per sample. Commonly, for a sample, each gene count is divided by the total 

number of millions of reads of that sample, resulting in counts per million (cpm). Applying a statistical 

test for differential expression comes after normalization. The majority of these widely used 

techniques are based on derivations of the binomial distribution because sequencing data is based on 

discrete counts. The negative binomial distribution appears to suit the normalized gene expression 

distribution the best for the majority of studies. Since low expressed genes vary more in terms of 

percentage of gene expression and highly expressed genes vary more in terms of absolute value, it is 

evident that this variation is gene dependant (fold change). Low expressed genes are more likely to 

have differential expression if one only considers fold change and ignores variation. As a result, we 

CR011 CR018 CR020 CR022 CR024 CR029 CR032 CR034 CR035 CR036

ENSG000000000032957.326 6714.18 8677.356 3569.861 3076.456 1157.66 6524.564 2070.543 3331.298 2117.907

ENSG0000000000530.00005 19.00002 5 101 63 1 22 27 28.00001 9

ENSG000000004192532.262 1793.999 2500.996 2818.005 1392.997 662 2608.996 975.9998 1536.995 1281

ENSG000000004572714.55 1743.124 1693.93 1893.208 1882.172 1281.943 1433.87 2574.681 2440.526 2093.085

ENSG000000004601362.385 1244.688 1287.829 1009.855 1128.146 451.4109 884.0978 1246.465 1096.56 1008.664

ENSG00000000938116 435.9996 415.0008 765.9993 158 835.9993 426.0006 534.9994 481.0001 2100.001

https://github.com/dsobral/ADER
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must precisely measure variation per gene. However, the number of replicates we often have is small 

and insufficient for precise parameter estimate. Therefore, we must devise a method for creating such 

estimates, and to do so, we require specific tools. The parameters of the distribution and their variance, 

or how much the (normalized) counts vary between the various samples, must be estimated after 

normalization. To do normalization, calculate variance, and run statistical tests for differential 

expression, there are numerous free programs available. The R packages DESeq2 and Edger are the 

most widely used and have shown to perform well in most situations.  

The normalization considering the median of the gene expression ratio is applied by DESeq while 

EdgeR employs a comparable, albeit more complex, methodology using the trimmed mean of M-

values (or TMM in short). The log fold change (M-value) between any sample and a reference sample 

is assumed by TMM to be about 0 for most genes. Genes with extreme M-values and extreme absolute 

expression values (A) are deleted (trimmed) from the normalization factor computation, and genes 

with lower variance are given a higher weight. EdgeR and DESeq2 employ the method of binning 

genes with comparable expression and fitting a curve to estimate variances under the assumption that 

genes with similar expression have similar variances. The estimated mean difference in gene 

expression across groups of samples is then updated using the parameter that was used to build the 

curve as a baseline. Finally, the variance is rescaled by making it constant at all bin levels under the 

presumption that the majority of genes do not express themselves differentially. Then, we check each 

gene for differential expression and calculate the test's likelihood. Since we examine a large number of 

genes, some genes may receive favourable p-values by random chance. We must therefore perform 

multiple test corrections. The number of tests multiplied by each p-value is one approach (a method 

called Bonferroni correction). However, this is excessively rigid, and we frequently end up with 

nothing presented differently. The most used technique is Benjamin-Hochberg, which decreases the 

false discovery rate by applying a correction proportionate to the ranking of the p-value. Filtering out 

the genes with extremely low expression across all samples is another method for reducing the number 

of tests improving the analysis’s speed. 

 

Firstly, three tests were conducted with three different packages, namely EdgeR, DESeq2 (version 

1.32.0), and limma (version 3.48.3). This packages work with the reads count matrix from the CRC 

patients, and a vector with the condition variables, metastatic and not metastatic, following a typical 

workflow to identify DEGs with RNA-seq data performing normalization, estimating variance, and 

performing statistical tests for differential expression. 

• EdgeR started by filtering with the filterByExpr function to remove genes with 

extremely low counts before normalizing the data using the trimmed mean of M-

values (TMM) technique. After normalization it estimated variance for each gene (see 

introduction). For the differential analysis, the quasi-likelihood F-test was next 

applied.  

• Limma-voom, the filtering and normalization steps are the same as in EdgeR. The 

normalized and filtered count matrix was then transformed using the voom algorithm, 

and the lmFit and eBayes functions were used to do the differential analysis.  

• Lastly, for DESeq2, the filtering step was done manually removing the genes that 

didn’t have at least a total of 10 reads. The variance estimation was done as explained 

in the introduction, the differential analysis was performed by the DESeq function, 

and the results are generated by the results function.  

The selection of DEGs was based on the false discovery rate threshold less than 0.05 (FDR < 0.05).  

The definitive differential gene expression analysis was conducted mixing the step of filtering lowly 

expressed genes using the filterByExpr function from EdgeR with the differential analysis performed 
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with DESeq2. As the genes were represented by their code and not their names, a file with the 

respective names for each code was imported to the environment and for each gene code it was 

matched the corresponding name. The resulting table from the differential analysis was ordered in 

ascending order by the adjusted p-value, to have the most differential expressed genes in the top of the 

table for further analysis. The results from both gene expression analyses were cross-referenced to 

verify DEGs similarity. 

 

2.3.4 Gene Expression Visualization  

To increase the specificity and significance of the discovered DEGs they were filtered by the 

following conditions of log2FC and adjusted p-value: |log2FC| > 1 and padj < 0.05. The R package 

EnhancedVolcano (version 1.10.0) was used to visualize DEGs expression levels and distribution in a 

volcano plot, using the results from DESeq2.  

Heatmaps and boxplots were used to represent the gene expression distribution of some of the most 

relevant DEGs by all the patients. From the DESeq2 analysis it is possible to identify the 20 most 

differential expressed genes. The heatmap was created with the R function heatmap.2 and the boxplot 

with the ggplot2 package which both receive the matrix with the gene expression levels for all patients 

of the desired genes. 

 

2.3.5 Gene Set Enrichment Analysis 

GSEA is a method used to evaluate expression data in the level of gene sets or pathways. It identifies 

the gene sets that are over-represented in a large group of genes, usually between two different 

conditions. These sets are created a priori based on biological information whereas the genes share 

common properties. By identifying pathways and processes contrary to single-gene methods, this 

technique eases the interpretation of large-scale experiments. GSEA has demonstrated to give insights 

in cancer-related data sets revealing its importance in biomedical research (Subramanian, Tamayo, 

Mootha, Mukherjee, & Ebert, 2005). 

This method works with the gene expression values of each gene which represent a ranking system. 

GSEA can be divided in three main steps. First it starts by calculating the enrichment score (ES) to 

measure the extent to which a gene set is overrepresented at either the top or bottom of the entire 

ranked list. For each gene set, GSEA basically goes through the ranking list of genes and does a 

running-sum statistic increasing each time it encounters a gene that belongs to that gene set and 

decreasing otherwise. The final ES is then determined in relation to this null distribution. Lastly the 

estimated significance level is adjusted for multiple hypothesis testing. To consider the size of the set 

the ES is normalized for each gene set resulting in a normalized enrichment score (NES). In the end it 

is determined the false discovery rate (FDR) by comparing the tails of the observed and null 

distributions for the NES. FDR represents the estimated probability that a set constitutes a false 

positive discovery (Subramanian et al., 2005). 

Gene set enrichment analysis was conducted with the R package fgsea (version 1.18.0). From 

the DESeq2 analysis a ranking system was created with the values of log2FC of each gene. Reactome 

and cancer hallmarks were the gene sets selected for the gsea collected from https://www.gsea-

msigdb.org/gsea/index.jsp. Reactome was considered since it comprises the biological pathways for 

the human being.  The cancer hallmarks serve as an organizational framework for explaining the 

complexity of neoplastic disease. They include characteristics as maintaining proliferative signalling, 

avoiding growth inhibitors, avoiding cell death, allowing replicative immortality, generating 

angiogenesis, and triggering invasion and metastasis. The ten most enriched pathways, positively and 

negatively, are selected for visualization. Pathways enrichment was visualized with the R standard 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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function barplot. Gsea was executed twice, once for the reactome gene sets and another for the cancer 

hallmarks gene sets. 

2.3.6 Prediction Analysis of Microarrays 

PAM is a statistical technique that uses Nearest Shrunken Centroid Method with gene expression data 

for class prediction. From a set of genes, this method identifies which ones best characterize the 

classes. In this study, the class of interest will be metastasis occurrence. PAM creates an accurate 

classifier that can work as a predictive model (Hastie, Tibshirani, Narasimhan, & Chu, 2019). 

A classifier for metastatic potential was created using the pamr package (version 1.56.1). The 

normalized counts matrix representing the gene expression data was used by the program. A 

classification training for metastatic and not metastatic samples was executed with 70% of the 

samples. A threshold of 1.8 was manually selected by visualization of the training prediction efficacy 

while using a specific number of genes, shown graphically by a misclassification error plot. A test was 

performed for the other 30% data using the selected threshold and the information from the training 

step.  

The genes used by the classifier and the DEGs from the DESeq2 analysis were intersected. A boxplot 

was created with the common genes to visualize the expression levels distribution among all samples. 

 

2.4 Genomic 

Mutations (CNVs and SNPs) were analysed in the genomic data originated from whole genome 

sequencing between metastatic and not metastatic samples. Two datasets were used in this analysis, 

one with copy number variations and another with singular nucleotide polymorphisms as partially 

shown in Tables 3 and 4. Statistical tests were conducted for both datasets to search for significant 

relations between mutations and metastatic potential. With fisher.test function from R fisher’s tests 

were executed calculating p-values for each mutation types to validate the results. Lastly the p-values 

were adjusted for multiple testing using the p.adjust function from R with the false discovery rate 

(FDR) method. 

 

Table 3 – Copy number variations from CRC patients. 

 

 

Table 4 – Singular Nucleotide Polymorphisms from CRC patients. 

 

sample geneID geneName CNV

1 CR298 ENSG00000221643 SNORA77 3

2 CR298 ENSG00000212157 RNU6-1319P 3

3 CR298 ENSG00000284485 MIR205 3

4 CR298 ENSG00000201987 AL390119.1 3

5 CR298 ENSG00000207341 RNA5SP64 3

6 CR298 ENSG00000200139 RNU6-778P 3

7 CR298 ENSG00000206635 RNU6-1062P 3

8 CR298 ENSG00000207181 SNORA14B 3

9 CR298 ENSG00000252396 RN7SKP195 3

10 CR298 ENSG00000275213 AC096533.2 3

sample Chr Start End Ref Alt Gene.refGene ExonicFunc.refGene TUMOR_VAF alt_freq tumor_dp

CR011 chr1 12920192 12920192 G A PRAMEF7 nonsynonymous SNV 0.601 0.62579957 938

CR011 chr1 40161421 40161421 G A RLF nonsynonymous SNV 0.429 0.4416476 437

CR011 chr1 55057404 55057404 G A PCSK9 nonsynonymous SNV 0.595 0.59022556 798

CR011 chr1 65592742 65592742 T C LEPR nonsynonymous SNV 0.16 0.16494845 582

CR011 chr1 1.54E+08 154323029 C T AQP10 nonsynonymous SNV 0.543 0.54864253 1768

CR011 chr1 1.59E+08 158626216 T G SPTA1 nonsynonymous SNV 0.154 0.15471698 795
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3 Results 
The R code for all the upcoming results is available at https://github.com/v-fiori/CRC-Metastasis-

Dissertation. 

3.1 Sample Data Exploration 

A total of 149 CRC patients were studied and for each one it was collected information such as age, 

gender, cancer stage, metastatic potential, tumour locations and others (see methods). Patient’s data 

was explored as shown in Table 5 dividing two major groups, 31 metastatic and 118 not metastatic. 

Some characteristics revealed a tendency and possible relation with the presence of metastasis. Stage 

cancer III, with a percentage of 65% showed a higher incidence of metastasis than stage II with only 

35%. The consensus molecular subtypes had two groups, CMS2 and CMS4, with higher percentage 

levels of metastasis, respectively 39% and 35%, and one group, CMS1, with a very low percentage of 

6.5%. Another factor with opposite values was the organ of the primary tumour, whereas 81% of the 

metastatic samples were in the colon and only 19% in the rectum. The sidedness of the tumour 

revealed no differences in the metastatic individuals, but in the not metastatic ones the right side had a 

much bigger incidence of 61% versus the 27% in the left side.  

 

Table 5 – CRC patient’s data overview (metastatic versus not metastatic). Which test is conducted (Fisher’s or Chi-squared) 

is unidentifiable since it is automatically done by the gtsummary package.  

 

  

https://github.com/v-fiori/CRC-Metastasis-Dissertation
https://github.com/v-fiori/CRC-Metastasis-Dissertation
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3.2 Transcriptomic 

PCA  

Clusters, outliers, and trends were explored with principal component analysis and are displayed in 

Figure 1. This graph demonstrates that there isn’t a clear separation between the metastatic and not 

metastatic samples. Nevertheless, it can be observed a high concentration of the metastatic group in 

the upper quadrants of the plot with a higher number in the left one. The duplicates were highlighted 

to investigate the possibility of batch effect but as shown in the picture, almost all duplicates are 

proximal except for CR438. This could be to an error in one of the transcriptomic readings or 

procedures. On the other hand, a clear division in the CMS groups is noticeable in Figure 2, mostly of 

CMS1 and CMS2. Since the various subtypes are defined by expression levels of genes or pathways 

this division is expectable. Some samples had unknown CMS which creates a little mix in the groups. 

 
Figure 1 – Metastatic samples distribution in the PCA analysis. 

 
Figure 2 – CMS distribution in the PCA analysis. 
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DEGs Initial Tests 

Next, we tested three different packages (EdgeR, DESeq2, limma-voom) to decide the best methods 

for differential expression analysis with this data. EdgeR was the first and, from a total of 60564 

genes, FiltByExp removed the lowly expressed ones and resulted in 36962 genes. EdgeR executed the 

differentiation analysis in 36962 genes and resulted in 562 DEGs, being 127 down regulated and 435 

up regulated as shown in Figure 3.  

 
Figure 3 – Differential expressed genes distribution from EdgeR. 

DESeq2 differential analysis resulted in fewer DEGs compared to EdgeR and the overall genes used 

was higher. The filtering step to remove the genes with less than 10 reads derived in 56710 genes for 

differential analysis which resulted in 319 DEGs. The differential expressed genes dispersion can be 

observed in Figure 4. As for the limma-voom test no DEGs were identified so that assessment is not 

represented graphically and limma-voom was excluded from this analysis.  

 
Figure 4 – Differential expressed genes distribution from DESeq2. 

When the three tests were finished, we evaluated which package was best for this analysis. EdgeR had 

a good filtering step but ended in a great unbalance between down regulated and up regulated genes 
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which is unusual. In the other hand, DESeq2 results were more balanced but the low expressed genes 

removed were very few. Removing low expressed genes is important because they can affect the 

outcome as they work as noise and removing them can also improve the speed of the differential 

analysis. Thus, our findings suggested that combining both packages using the FiltByExpr function 

from EdgeR for the filtering step and DESeq2 to estimate the variations and do the differential testing 

would contribute to optimal results. 

  

DEGs Final Analysis 

After the selection of the best method, we proceeded to do a final differential analysis. All genes were 

then subjected to a filtering step with the EdgeR FiltByExpr function. From a total of 60564 genes, 

23549 were considered lowly expressed and for this reason removed, remaining 36962 for the 

differential analysis as occurred in the first trial test for EdgeR. The search for differential expression 

conducted with DESeq2 resulted in 438 DEGs displayed in Figure 5. The plot highlights the names of 

the most significant DEGs and two vertical divisions can be observed in the log2FC values of 1 and -1 

and a horizontal division in p-value (-log10P) > 0.05. This delimitation was made to remove DEGs 

that had a very low level of differential expression causing a decrease in the number of DEGs to a 

final number of 166, of which 94 were down regulated and 72 up regulated. 

 
Figure 5 – Differential expressed genes distribution from EdgeR + DESeq2. 

The differential analysis resulted in a table with the respective data for all the genes used. This table 

represents the significance of each gene in terms of differential expression between metastatic and not 

metastatic samples. The most relevant columns produced by DESeq2 results are “GeneID”, “Base 

Mean”, “log2(FC)”, “StdErr”,”P-value”, and “P-adj” which represent, respectively, the identifier of 

the gene, the mean normalized counts of all samples (how much the gene is expressed), the log2(FC)  

(when positive, more expressed in one group than the other and reverse when negative), a measure of 

the confidence in the true value of the estimated log2FC, a value measure of how likely it is to obtain 

the observed log2(FC) by chance and lastly the p-value corrected for multiple testing. The adjusted p-

value was used to select the DEGs but all the other variables had to be considered to evaluate the 

significance and strenght of each gene in terms of expression differentiation.  
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Top DEGs Heatmaps 

We further proceeded to explore the gene expression distribution of the top 20 DEGs with a heatmap 

and a boxplot. The selected genes expression levels throughout the 149 samples, defined by the colour 

key, can be observed in Figure 8 and 9 for the top 20. As expected, in the heatmap, although existing 

some inconsistency along the expression values, up regulated DEGs showed a red pattern in the 

metastatic area whereas the down regulated showed a blue pattern in the same area compared to the 

not metastatic area. Consistently, the boxplot also represented the difference in expression levels for 

the respective down and up regulated DEGs. 

 
Figure 6 - Heatmap for the top 20 DEGs expression distribution throughout all patients.  

 

 
Figure 7 - Boxplot for the top 20 DEGs expression distribution throughout all patients. 
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GSEA 

The gene set enrichment analysis revealed some degree of enrichment in the gene sets selected and the 

most enriched pathways in both ways, negatively and positively, are demonstrated in the Figure 8 for 

the Reactome pathways and in Figure 9 for the Hallmark pathways. As expected, some pathways are 

cancer related like cell cycle checkpoints, DNA repair, formation and activation mechanisms, KRAS, 

ABC transporters and MYC targeted pathways. One interesting result were that the most positively 

enriched pathway in the Hallmark gene set was the epithelial mesenchymal transition (EMT). This 

very dynamic process converts epithelial cells into a mesenchymal phenotype, involving the disruption 

of cell-cell adhesion and cellular polarity, changes in cell-matrix adhesion, and remodelling of the 

cytoskeleton. Studies have related a link between EMT and metastasis since it can enhance mobility, 

invasion, and cancer treatment resistance of tumour cells (Nieto, Huang, Jackson, & Thiery, 2016; 

Tsubakihara & Moustakas, 2018). Another positively enriched result was the hedgehog signalling 

pathway which affects tissue polarity, cell differentiation, and proliferation and has been shown to 

contribute to the spread and invasion of some types of cancer (Yao et al., 2018). 

 
Figure 8 – GSEA with the Reactome dataset. 

 
Figure 9 – GSEA with the Hallmark dataset. 
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The DEGs found in the enriched pathways were the following: "ABCA12", "SAA1", "HSPA1A", 

"CXCR2", "CXCR1", "FPR1", "HSPA6", "FPR2", "MMP12", "LTF", "CXCL11", "CYP24A1", 

"CXCL10", "CCL19", "PLAAT4", "LYZ", "LPAR4", "SULT1E1", "GAS1", "CALB1", "H4C6", 

"PRSS2", "CCL13", "PTGDR", "GPC5", "MUC16", "CXCL8", and "DEFA5" for the Reactome 

dataset; "HSPA1A", "IDO1", "FPR1", "HAS1", "MMP12", "GZMA", "CLDN18", "GADD45B", 

"LTF", "SLC2A3", "GBP4", "CXCL11", "NRXN2", "DPYSL3", "CXCL10", "CCL19", "MYH4", 

"HLA-DRA", "MYH1", "FABP3", "CSF3R", "PRF1", "CR2", "IFNG", "AQP9", "GAS1", "HLA-

DRB1", "MT1E", "RBP4", "SOD3", "PRSS2", "IL1B", "CCL13", "PTGS2", "PRKCG", "CXCL8", 

"REEP1", and "NOS2" for the Hallmark dataset. The presence of these genes in the enriched gene 

sets, especially those that have been studied as to be related to metastasis, increases the importance on 

the possible impact that these DEGs may have in metastasis formation and their potential as 

biomarkers for CRC. 

 

Predictive Model 

Furthermore, to characterize samples with potential of metastasis occurrence, a classifier was 

assembled. A training step was conducted with 70% of the dataset and the errors rates in classifying 

the samples using different quantities of genes is shown in Figure 12. Due to a high imbalance 

between the number of metastatic and not metastatic samples the program could not classify any 

samples as metastatic from a certain number of genes used and would just classify everything as not 

metastatic which can be seen occurring from the 2.0 threshold mark.  

 
Figure 10 – PAM misclassification error graph with the training data. 

The threshold for the classifier was selected according to two parameters, the less misclassification 

error values and the smaller number of genes used. A threshold of 1.8 showed to give the classifier the 

best efficiency while using 313 genes and was used for testing in the train data with 70% of the 

samples and in the final test with the remaining 30% of the dataset. The classifications for the train 

study demonstrated an error rate of 0.385 for metastatic samples and an error rate of 0.349 for not 

metastatic resulting in a classifier with an overall error rate of 0.355. In the test for the remaining 30%, 

the classifier revealed an overall error rate of 0.37.  
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Lastly, the 166 DEGs from the differential analysis and the 313 genes used in the classifier were 

compared and another boxplot (Figure 13) was generated for a total of 29 common genes discovered. 

The genes found were the following: "AC130304.1", "ABCA12", "HSPA1A", "CRYAB", "IDO1", 

"LINC01871", "GZMA", "CXCL10", "RPL22L1", "LTF", "CXCL11", "HLA-DRB5", "APOL1", 

"LILRP2", "IFNG", "KLRC2", "LINC00158", "GRM7-AS3", "AP001962.1" "AC012615.2", 

"MAP1LC3P", "TFAP2A-AS1", "DRGX", "WFDC21P", "AC068658.1", "NOS2", "PPP2R2C", 

"SLC10A5P1", and "AC100814.2". The expression distribution of these 29 genes was analysed in 

Figure 13 where the values kept in accordance with the genes being up or down regulated. 

 

 
Figure 11 - Boxplot for the 29 common genes (PAMR + DESeq2) expression distribution throughout all patients. 

3.3 Genomic Mutations 

Due to the high difference in the samples and the large number of genes being analysed, when the p-

value adjustment was executed practically all values would go up to 1 or close by, becoming 

statistically irrelevant as observed in Table 6. In Table 7 there were only 3 genes, PRSS21, PRSS41 

and GP2, where the p-value after adjustment was still significative (<0.05). Despite the very low 

number of adjusted p-values with relevance, the raw p-values showed some potential of this type of 

analysis. The odds ratio (OR) represents the comparison between the chance of the mutated gene 

having impact in the metastatic samples and the chance of the mutated gene having impact in the 

samples without metastasis. An OR > 4 means that the chance of the mutated gene having impact in 

the metastatic samples is more than four times the chance of the mutated gene having impact in the 

samples without metastasis, reflecting the importance of genes with OR > 4. In the other hand, the 

PCLO gene has a OR < 0.25 which also reveals its importance, as it means that the chance of the 

mutated gene having impact in the metastatic samples is less than four times the chance of the mutated 

gene having impact in the samples without metastasis. 
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Table 6 – Statistical tests of the relation between metastasis occurrence and SNPs. “M_impact” represents how many 

samples with metastasis the mutated gene had impact; “M_no_impact” represents how many samples with metastasis the 

mutated gene had no impact; “NM_impact” represents how many samples without metastasis the mutated gene had impact; 

“NM_no_impact” represents how many samples without metastasis the mutated gene had no impact. 

 

 

Table 7 - Statistical tests of the relation between metastasis occurrence and CNVs. 

 

Genes M_impact M_no_impact NM_impact NM_no_impact p.value odds_ratio adj.p.value

6081 TNIP1 4 16 1 91 0.0034382 21.747144 1

2815 IRAK3 4 16 2 90 0.0090897 10.869948 1

3372 MAPKBP1 5 15 5 87 0.0155674 5.6675933 1

3819 NKX1-2 3 17 1 91 0.0176667 15.444605 1

5048 RRAGA 3 17 1 91 0.0176667 15.444605 1

2351 GIT1 4 16 3 89 0.0186867 7.2161008 1

3931 NTN5 4 16 3 89 0.0186867 7.2161008 1

4447 PLCH1 4 16 3 89 0.0186867 7.2161008 1

6515 WNT1 4 16 3 89 0.0186867 7.2161008 1

4808 RAG1 5 15 6 86 0.0251432 4.6843689 1

4257 PCLO 2 18 32 60 0.0324815 0.2106183 1

Genes M_cnv M_no_cnv NM_cnv NM_no_cnv p.value odds_ratio adj.p.value

42864 PRSS21 9 9 7 85 6.57E-05 11.6818883 0.0057172

42879 PRSS41 9 9 7 85 6.57E-05 11.6818883 0.0057172

29302 GP2 8 10 7 85 0.000357 9.39155313 0.0207312

27707 FAM230H 6 12 9 83 0.016594 4.52230789 0.6211229

16 AADACL2 3 15 2 90 0.030279 8.71225399 0.6211229
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4 Discussion 

A comprehensive exploration and analysis at genomic and transcriptomic levels was performed to 

study the relations between metastatic occurrence and genetic variants. Understanding these alterations 

and finding a correlation with the metastasis phenomenon can produce markers for clinical practice 

which brings interesting insights into the metastasis topic in human cancer disease for therapeutic 

methods, diagnostic procedures, and prevention tactics.  

Exploring the clinical data of the 149 CRC patients we found some tendencies for metastatic 

occurrence. Metastasis occurred more in stage III than in stage II which makes sense since the higher 

the stage the more advanced is the tumour. The stage represents an important category as a potential 

confounding factor, which can influence the outcome of the analysis. Gene expression profiling 

between metastatic and not metastatic samples using stage as a confounding factor of the analysis 

and/or gene expression profiling between only stage III and stage II could bring new insights of which 

factors influence only the advance of the stages or the metastatic occurrence. In the CMS, two groups, 

2 and 4, showed a higher and similar percentage of metastasis incidence compared with the rest. 

Although having the highest number of metastatic samples (12), CMS2 was less significative for also 

having the highest number of not metastatic samples (40), while CMS4 had 15 not metastatic and 11 

metastatic. As said before, the CMS are divided by gene expression levels in different pathways, so 

these results can be related by some of these groups having pathways associated to metastasis and 

cancer evolution. On the contrary, CMS1 had the lowest percentage of metastatic frequency showing a 

negative relation with metastatic potential. The biggest difference was in the tumour primary location 

where the colon had 81% of the metastatic cases and the rectum only 19%. These differences in 

metastatic occurrence could be seen as potential biomarkers for CRC metastasis but they can only be 

considered as trends due to the low number of samples which result in low viability in a statistic level.  

We primarily explored the RNA-seq data by a PCA. When we highlighted the metastatic and not 

metastatic samples there wasn’t a clear division between the two which showed that at a genetic level 

there would be some difficulties in getting solid results. Highlighting the CMS groups revealed more 

clear divisions. Although this was a more beneficial result it was more expected as the CMS groups 

represent different levels of gene expression within CRC. Despite the unclear division and distribution 

of metastatic and not metastatic samples we performed further analysis to discover, even so, possible 

relations in transcriptomic level and metastatic occurrence. 

Various tests were conducted to do differential gene expression analysis evaluating which methods 

and R packages would work better to this type of analysis and data. EdgeR and DESeq2 were the only 

two considered since limma-voom resulted in no differential expressed genes. EdgeR produced the 

higher number of DEGs but with a big discrepancy between up and down regulated. DESeq2 resulted 

in a more solid up/down DEGs percentage but the filtering step was almost inexistent since it used 

almost all genes. Taking these two tests in consideration we decided that the optimal procedure would 

be combining the filtering step of EdgeR and the differential analysis of DESeq2. The final deferential 

expression analysis produced 438 DEGs that were also filtered to increase viability by excluding the 

very lowly differential expressed genes which resulted in a final value of 166 DEGs, with 94 under 

expressed and 72 over expressed.  

The 20 more significant DEGs were further analysed with heatmaps and boxplots to explore their 

expression distribution within all samples. These plots supported their selection as DEGs since their 

expression showed the respective difference for the high and low expressed genes.  

CRYAB, FPR1, FPR2, HSPA1A, GADD45B and PROK2 were among the up regulated top DEGs. 

These genes could be potential markers for CRC metastasis. When cells are harmed by heat shock, 

radiation, oxidative stress, and other insults, CRYAB predominantly acts as a molecular chaperone to 
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stop the aggregation and destruction of damaged unfolded proteins. This promotes cell survival and 

prevents apoptosis thus indicating that high expression of these gene could increase tumour cells 

resistance (Ness et al., 2021). G protein-coupled chemoattractant receptors called formyl peptide 

receptors (FPRs) are mostly expressed in phagocytic leukocytes. High expression of FPR1 and FPR2 

has been associated with tumour progression, migration, and invasion in CRC and other cancers (Shu-

qin Li et al., 2017; Xiang et al., 2016). HSPA1A works as a chaperone protein of LASP1 in the 

cytoplasm and is a member of the heat shock protein family A. It controls the folding of freshly 

translated proteins and keeps stabilized proteins from aggregating. High expression of HSPA1A and 

its interaction with LASP1 has been related to CRC proliferation, invasion and metastasis (Q. Chen, 

Wu, Qin, Yu, & Wang, 2020). GADD45B belongs to the growth arrest DNA damage-inducible gene 

family and has been shown to be essential for cell growth, DNA repair, and apoptosis. High 

expression of this gene has been related to tumour cell proliferation (Colorectal et al., 2018). PROK2 

is a secreted protein rich in cysteine that is expressed in the testis and small intestine. PROK2 has been 

related to be involved in vital physiological processes such as inflammation, tissue development, 

neurogenesis, angiogenesis, and nociception. Studies have associated PROK2 expression with tumour 

invasion and metastasis in CRC (Kurebayashi, Goi, Shimada, & Tagai, 2015; Yoshida, Goi, 

Kurebayashi, & Morikawa, 2018). 

GZMA, CXCL10, IDO1, SAA1, and ABCA12 were among the down regulated top DEGs. These 

genes could also be potential markers for CRC metastasis. Granzymes (GZMs) are proteins released 

by lymphocytes which have an important role in protecting our body from viral infections. Low 

expression of GMZA has been found to be related to metastasis occurrence due to its function in 

inflammatory processes suggesting that these proteins have anti-tumour properties and can be 

associated with good prognosis (Łukaszewicz-zaj & Sara, 2022). CXCL10 is an interferon-inducible 

protein that has been reported to decrease angiogenesis and boost cell-mediated immunity. Low 

expression of these gene has been linked to metastasis occurrence since it has been considered a good 

inhibitor of growth and spread of tumour cells (Jiang, Xu, & Cai, 2010; Kanegane et al., 1998; Sato et 

al., 2007; Sgadari et al., 1996). IDO1 produces an enzyme responsible in pathophysiological processes 

such as immunoregulation, antimicrobial, and antitumour defence which suggests that could be a 

relation with metastasis occurrence when this gene is lowly expressed (Id, Yamashita, Morine, 

Yoshikawa, & Tokunaga, 2021; Z. Liu et al., 2021). SAA1 encodes a protein member of the serum 

amyloid A family which is important in the response to tissue injury and inflammation and other 

processes. Upregulation of SAA1 in CRC has been related to promoting cell migration and invasion. 

Although in this study these gene is downregulated it should not be discarded as a potential biomarker 

since there is still uncertainty about the molecular process through which SAA1 promotes cancer cell 

invasion and migration (Sen Li, Cheng, Cheng, Xu, & Ye, 2021; Sudo et al., 2021). ABCA12 is a 

transmembrane transporter from the ABC transporter family that can activate the AKT pathway. This 

pathway contributes to tumour cells proliferation, invasion, and metastasis suggesting that high 

expression of the ABCA12 gene is connected to cancer metastasis (Rascio et al., 2021; Zheng et al., 

2022). In our case, ABCA12 lower expression could have been caused by possible errors in the 

sequencing reading, differences in the types and conditions that our samples were collected or could 

be a specific case to CRC that would need further investigation. 

GSEA had interesting results revealing enriched pathways related to cancer such as cell cycle 

checkpoints, DNA repair, and pathways related to metastasis like the activation of oncogenes such as 

KRAS, ABC transporters, MYC, EMT and Hedgehog. Several benefits distinguish GSEA from single-

gene approaches. Through the identification of pathways and processes, it makes it simpler to interpret 

a large-scale experiment. Researchers can concentrate on gene sets, which tend to be easier to 

understand and more reproducible, rather than high scoring genes (which can sometimes be poorly 
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annotated and may not be replicable). Deeper analysis and better understanding of enriched gene sets 

is a promising approach in the future. 

A classifier for metastasis occurrence was developed in this study with an overall efficiency of 63%. 

There were some interesting genes commonly used by the classifier and found in the differential 

expression analysis such as "ABCA12", "HSPA1A", "CRYAB", "IDO1", "GZMA", and "CXCL10", 

which were also described earlier as potential biomarkers by other studies revealing that would be 

interesting to better investigate these genes in the future. The huge unbalance between metastatic and 

not metastatic samples made it difficult for the program to execute the classification with lower 

numbers of genes which would be preferential for a more accurate performance. Nonetheless, with a 

larger dataset and further improvements, the classifier showed potential to be an interesting tool that 

could bring new insights in the medical field by identifying patients in danger of developing 

metastasis. 

The analysis conducted between metastasis occurrence and genetic mutations (CNV and SNP) 

revealed to be promising but inconclusive. Although the mutation analysis had some lack of statistical 

significance because of the high discrepancy in the types of samples, it revealed some grade of 

interesting results as the raw p-values showed a possibility to exist a correlation between the 

occurrence of metastasis and the existence of both CNV and SNP mutations. Genes that would show a 

high level of differential expression and mutations with statistical significance related to metastasis 

appearance would be strong potential biomarkers for the cancer therapy field showing the importance 

in combining both genomic and transcriptomic analysis. 

This study had some limitations. First, samples were from a single institution, meaning that further 

validation from multiples establishments are needed. Second, the number of samples was relatively 

small which compromised the efficacy of the various analysis conducted. Third, the study focused on 

gene expression levels and not so much on pathways enrichment. Thus, further analysis and 

exploration of this field could bring good insights. Lastly, the patients were followed for a duration of 

3 years which is not enough time to guarantee that there would not occur future metastasis in the 

patients that it did not happen. In conclusion, even with these obstacles, this study revealed some 

potential biomarkers for CRC metastasis prediction with transcriptomic data approaches and the 

possible value increase that can be brought by combining with genomic data. Therefore, future studies 

involving larger cohorts from different institutions, controlled for longer periods of time, are needed to 

verify and increase the robustness of these discoveries. 
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