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ABSTRACT

In the community‑based model of open source software (OSS) development, OSS

projects are built andmaintained by developers that voluntarily contribute their skills,

knowledge, and time, thus making them dependent on their continued participation.

Therefore, the question of how projects can attract and retain developers is of major

concern for their sustainability. OSS projects are embedded into a complex network

of technical interdependent projects that emerges from building upon and reusing

existing software components. In these so‑called software ecosystems, the issue

of sustained participation is not only a concern of a single project but also other

dependent projects. However, the role and influence of these interdependencies

between projects have so far been neglected by Information Systems researchers.

This dissertation thus asks: How do technical interdependencies in software ecosystems

influence the sustainability of open source software projects?

To answer this question, this dissertation consists of three independent empirical stud‑

ies that focus on three aspects of how technical interdependencies influence devel‑

oper participation and thus contribute to the sustainability of open source projects:

(1) the ability to attract developers, (2) the influences on developers’ participation de‑

cision, and (3) the retention of developers in a project. This dissertation finds that OSS

projects attractmore developerswhen depending on other projects and their ability to

retain developers increases with the number of shared developers with other techni‑

cal interrelated projects. Furthermore, the participation decisions of developers are

also positively influenced by these technical relations.

Together, these studies contribute to the body of knowledge ondeveloper participation

by highlighting the role of technical interdependencies for the overall sustainability

of open source projects.
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CHAPTER 1

DISSERTATION OVERVIEW

1.1 Introduction

This dissertation focuses on open source software (OSS) development in software

ecosystems and the sustainability of OSS projects and their communities. OSS has

become famous through the success and wide adoption of projects such as the Linux

kernel, Apache web server, or Google’s Android operating system. OSS projects have

found their way into modern digital infrastructures and organizations, with recent

estimates suggesting that OSS software functions as the foundation of 80‑90% of any

software today (Nagle, 2019; Nagle et al., 2020).

OSS projects have two main characteristics that differentiate them from traditional

software development projects. The first characteristic of OSS projects is their license

model that allows organizations and developers to use, review, change, and distribute

the source code, and, second, their community‑based development approach, which

is contrary to traditional commercial software development (Raymond, 1999; von

Krogh & Spaeth, 2007). This approach represents a “private‑collective” model of

innovation where developers are rewarded by collectively writing and sharing code

(von Hippel & von Krogh, 2003). Software produced following this approach is often

even superior to software developed in a traditional fashion (Mockus et al., 2002).

In the community‑based model of software development, the success of OSS projects

relates to the growth and sustainability of their communities (von Krogh et al., 2003).

The sustainability of OSS projects, that is their ability to exhibit long‑term develop‑

ment andmaintenance activity (Chengalur‑Smith et al., 2010), relies on the continuous

participation of developers who are voluntarily contributing by committing code, re‑

porting or fixing bugs, or helping other (Roberts et al., 2006; Setia et al., 2012). Hence,
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Chapter 1 Dissertation Overview

attracting and keeping developers is the foundation of sustainable development (But‑

ler, 2001; Chengalur‑Smith et al., 2010), with most OSS projects failing because they

are unable to leverage the necessary developer resources (Fang & Neufeld, 2009).

1.2 Problem Statement and Research Question

As developers and their voluntary participation are key resources in OSS development,

research has investigated what motivates developers to contribute their time, skills,

and knowledge to a project. Studies have thereby focused on individual developer fac‑

tors, such as enjoyment (Shah, 2006), learning and skill development (von Krogh et

al., 2003), career advancements (Lerner & Tirole, 2002), or attachment to the project

(Maruping et al., 2019), and project characteristics, such as license restrictions (Stew‑

art et al., 2006), organizational sponsorship (Shah, 2006; Stewart et al., 2006), or the

modularity of the project’s codebase (Baldwin & Clark, 2006). More recently, studies

have also focused on network‑related characteristics that emerge through social rela‑

tions between developers and affiliations of developers with multiple projects. They

found that, for example, previous collaborations influence a developer’s participation

decision (Hahn et al., 2008), and central projects in an affiliation network profit from

increased developer attention (Hahn et al., 2008) and access to developer resources

(Grewal et al., 2006; Sojer & Henkel, 2010).

However, these studies primarily focus on the individual developers or projects,

thereby neglecting the environment of a project. This is important because a project’s

environment also affects its sustainability (Chengalur‑Smith et al., 2010; Valiev et

al., 2018). Modern OSS development is organized in so‑called software ecosystems,

that is interdependent projects and communities emerging on a common technol‑

ogy platform (e.g., programming languages), which allows them to create, share,

and reuse software components (Bogart et al., 2021), which are reusable pieces of

software code (Kikas et al., 2017). As the reuse of software components has been a

common practice in OSS development (Haefliger et al., 2008; Sojer & Henkel, 2010),

2



Chapter 1 Dissertation Overview

modern programming languages introduced various tools that ease the process of

integrating and publishing software components, such as dependency managers and

online registries (Cox, 2019). The resulting dependencies have been identified as

an issue in OSS development (Nagle et al., 2020), because they can lead to technical

and organizational problems that are harmful to the quality and functioning of the

individual project and the entire ecosystem (Cataldo et al., 2009; Cox, 2019; Decan et

al., 2019).

Despite the importance of organizing OSS development in software ecosystems (Bog‑

art et al., 2021) and the increasing emergence of technical interdependencies between

projects through recombination and reuse of existing software components (Bogart

et al., 2016; Cox, 2019; Howison & Crowston, 2014; Singh et al., 2011), Information

Systems research integrating these technical interdependencies is, to the best of our

knowledge, scarce. This is problematic as OSS projects are no longer independent

units but dependent on others and therefore have to consider their role in the software

ecosystem (Bogart et al., 2021; Jansen et al., 2009). This means that now concerns and

issues related to sustaining participation are no longer limited to a single OSS project

(Chengalur‑Smith et al., 2010) but affect all other dependent projects within the soft‑

ware ecosystem (Valiev et al., 2018). Thus, these technical interdependencies should

be considered to achieve a holistic socio‑technical perspective on OSS projects, their

communities, and their sustainability.

To close this gap, this dissertation investigates three core aspects of sustaining partic‑

ipation in OSS projects and the role that technical interdependencies play in software

ecosystems: (1) the attraction of new developers, (2) the influence on a developer’s

participation choice, and (3) the retention of already contributing developers. To sum‑

marize, this dissertation addresses the following overarching research question:

How do technical interdependencies in open source software ecosystems influence

developer participation?

To answer this research question, I conducted three empirical studies each focusing

3
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on a different aspect of developer participation. First, as OSS projects frequently fail

to ever achieve traction and thus fail soon after their initiation (Chengalur‑Smith et al.,

2010; Fang & Neufeld, 2009; Stewart et al., 2006), the attraction of developers to join

and contribute to the project has become a major issue in OSS projects (Butler, 2001;

Crowston et al., 2003). Thus, OSS projects require access to the pool of developer re‑

sources in their environment (Butler, 2001; Wang et al., 2013) and compete for these

resourceswith other projects (Setia et al., 2020;Wang et al., 2013). Howaproject’s posi‑

tion in the software ecosystem reflected by its technical interdependencies increases

its legitimacy and importance and enables access to the pool of developer resources

is the focus of the first study.

Second, while prior research has shown that social relations and connections are im‑

portant antecedents of developers’ participation decisions, studies have overlooked

the role of technical interdependencies as an influencing factor, which is the focus

of the second study. Projects might profit from the number and nature of technical

interdependencies in becoming more attractive by allowing developers to focus on

more rewarding and challenging tasks (Haefliger et al., 2008) and providing opportu‑

nities for developers seeking reputation gain and visibility in the community (Hu et

al., 2012). Furthermore, as developers tend to support other projects that depend on

their projects (Bogart et al., 2016) or that they use themselves (Shah, 2006), technical

interdependencies should reflect this behavior.

Third, besides attracting developers, keeping them involved over time is also impor‑

tant for the sustainability of an OSS project (Crowston et al., 2003; Markus et al., 2000).

AsOSS developers simultaneouslywork onmultiple projects (Grewal et al., 2006; Singh

et al., 2011), that results in developer overlap between projects competing for their

time and attention. Previous studies showed that this overlap can lead to either com‑

petitive ormutualistic effects (Barnett &Carroll, 1987), which influence a project’s abil‑

ity to retain developers. Thus, the third study focuses on developer overlap between

projects with technical interdependencies resulting in communities characterized by

shared goals, challenges, and problems and its influence on sustained participation.

4
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1.3 Structure of Dissertation

This dissertation is a cumulative work and addresses the overarching research ques‑

tion in three independent but interrelated empirical studies. These studies investi‑

gate (1) the influence of dependencies on developer attraction, (2) the influence of

dependencies on developers’ participation decisions, and (3) the influence of interde‑

pendencies in technological niches on developer retention. Table 1.1 summarizes the

included studies and their current status. All data, analyses, and associated files are

available in an open science repository1.

In the following, I will briefly summarize each study and provide an outlook for the

remaining chapters of this dissertation.

Table 1.1. Overview of Studies

Study 1 Study 2 Study 3

Title The Influence of
Dependency Networks
on Sustained
Participation in Open
Source Software
Ecosystems

The Role of
Dependency Networks
in Developer
Participation
Decisions in Open
Source Software
Ecosystems: An
Application of
Stochastic‑Actor
Oriented Models

Sustaining Open
Source Software
Projects: An
Ecological Perspective
on Technological
Interdependencies in
Software Ecosystems

Addressed
Aspect

Influence of Project’s
Position in
Dependency Network
on Developer
Attraction

Influence of Project
Dependencies and
Network Effects on
Developer
Participation
Decisions

Influence of
Developer Overlap in
Technological
Interdependent
Communities on
Developer Retention

Research
Design

Quantitative Network
Analysis Using
Longitudinal Digital
Trace Data and
Bayesian Multilevel
Modeling

Quantitative Network
Analysis using
Longitudinal Digital
Trace Data and
Stochastic
Actor‑Oriented
Modeling

Quantitative Network
Analysis Using
Longitudinal Digital
Trace Data and
Bayesian Multilevel
Modeling

1https://osf.io/h5qud/?view_only=dde3e51dfcdb414fae62df6a8ffaeb21
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Chapter 1 Dissertation Overview

Study 1 Study 2 Study 3

Status of
Research

Published in the
Proceedings of the
43rd International
Conference on
Information Systems
(ICIS) in 2022

Published in the
Proceedings of the
56th Hawaii
International
Conference on System
Sciences (HICSS) in
2023

Submitted to MIS
Quarterly in April 2023

The first study, presented in Chapter 4, draws from a resource‑based and ecological

viewon sustainable online communities to investigate howanOSSproject’s position in

the software ecosystem’s dependency network enables it to leverage these dependency

relations to attract developers. OSS research has neglected these technical interdepen‑

dencies so far, as studies adopting a network perspective on OSS development in large

focused on the social relations between developers and projects (e.g., Grewal et al.,

2006; Hahn et al., 2008; Maruping et al., 2019; Singh et al., 2011). This study closes this

gap by focusing on the technical interdependencies between projects. It shows that

projects profit from integrating other software components, resulting in upstream de‑

pendencies, but do not profit from their importance for the ecosystem reflected by

their downstream dependencies.

The second study, presented in Chapter 5, aims at investigating the influence of tech‑

nical interdependencies on the antecedents of developers’ participation decisions.

While previous studies identified individual (e.g., Hu et al., 2012; Lerner & Tirole,

2002; von Hippel & von Krogh, 2003), project (Baldwin & Clark, 2006; Shah, 2006; e.g.,

Stewart et al., 2006), and social factors (e.g., Grewal et al., 2006; Hahn et al., 2008;

Oh & Jeon, 2007) as important antecedents of participation decisions, again, they

overlooked technical relations and connections. This study adopts a dynamic network

modeling approach utilizing stochastic actor‑orientedmodels (SAOMs, Snijders, 1996)

to test the influence of technical relations and connections on developer participation

decisions. The findings show that developers tend to engage in a project if they

worked on another technically interrelated project before.

6
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The third and last study, presented in Chapter 6, draws from organizational ecology

theory (Hannan & Freeman, 1989) and investigates OSS communities emerging

around interdependent projects in technological niches (Podolny et al., 1996; Podolny

& Stuart, 1995) and the effect of shared developers between these projects on devel‑

oper retention, that is a project’s ability to keep developers involved in the long‑term.

Previous studies have found ambiguous effects of member overlap (e.g., Wang et

al., 2013; Zhu, Kraut, et al., 2014) resulting from either competitive or mutualistic

dynamics (Barnett & Carroll, 1987). This study shows that in a project’s technological

niche, which we conceptualize as communities defined by their technical interdepen‑

dencies, the effect of developer overlap is mutualistic, thereby increasing its ability

to retain developers.

All studies are the result of collaboration with my supervisor team. Table 1.2 shows

the contributions of each participating researcher to the respective study following

the Contributor Roles Taxonomy (CRediT)2.

Table 1.2. Contributor Roles

Study 1 Study 2 Study 3

Mario Müller Conceptualization,
Methodology,
Software, Validation,
Formal Analysis,
Investigation, Data
Curation, Writing ‑
Original Draft,
Writing ‑ Review &
Editing
Visualization,
Project
Administration

Conceptualization,
Methodology,
Software, Validation,
Formal Analysis,
Investigation, Data
Curation, Writing ‑
Original Draft,
Writing ‑ Review &
Editing,
Visualization,
Project
Administration

Conceptualization,
Methodology,
Software, Validation,
Formal Analysis,
Investigation, Data
Curation, Writing ‑
Original Draft,
Writing ‑ Review &
Editing,
Visualization,
Project
Administration

Christoph
Rosenkranz

Writing ‑ Review &
Editing, Supervision

Writing ‑ Review &
Editing, Supervision

Writing ‑ Review &
Editing, Supervision

Markus
Weinmann

Validation,
Supervision

Supervision Validation,
Supervision

2https://www.elsevier.com/authors/policies‑and‑guidelines/credit‑author‑statement
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Chapter 1 Dissertation Overview

The remainder of this dissertation is structured as follows. Chapter 2 presents and

summarizes related work on OSS sustainability and technical interdependencies in

software ecosystems. Chapter 3 describes the research design of the three empirical

studies. Chapters 4, 5, and 6 contain the studies of this dissertation. Chapter 7 summa‑

rizes the findings and contributions and discusses this dissertation’s limitations and

future research directions. Chapter 8 closes this dissertation with a brief conclusion.
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CHAPTER 2

RESEARCH BACKGROUND

2.1 Sustainability of Open Source Software Projects

OSS development is a community‑based model of software development where soft‑

ware is produced by a decentralized community of distributed developers who col‑

laborate via online platforms without traditional hierarchies (Fang & Neufeld, 2009;

Lindberg et al., 2016). The community consists mostly of unpaid developers who vol‑

untarily contribute to a project (Crowston, 2011; Roberts et al., 2006), even though

more recently commercial organizations started to assign employees to help in OSS

projects (von Krogh et al., 2012). To ensure sustained development, OSS projects rely

on the continuous participation of their communities (Gamalielsson & Lundell, 2014;

Mockus et al., 2002; Roberts et al., 2006; Shah, 2006).

Despite the success stories of popular OSS projects such as the Linux kernel, most

projects fail to keep their community engaged and thus cannot sustain development

activity over time and are often abandoned soon after their initiation (Chengalur‑

Smith et al., 2010; Fang & Neufeld, 2009; Stewart et al., 2006). To succeed, OSS

projects need to keep their communities healthy by continuously attracting new and

retaining already participating developers (Butler, 2001; Crowston et al., 2003). The

sustainability of their communities is therefore closely related to the success of OSS

projects (von Krogh et al., 2003), as without the community, sustained development of

the project is not possible (Roberts et al., 2006). Without sustained development, the

project also risks losing the interest of users (Subramaniam et al., 2009), which in turn

negatively impacts the development activity (Stewart et al., 2006). Hence, the issue of

how OSS projects can sustain the participation of their developers has become one

major theme in research on the sustainability of OSS projects (Chengalur‑Smith et
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al., 2010; Curto‑Millet & Corsín Jiménez, 2022; Fang & Neufeld, 2009; Gamalielsson &

Lundell, 2014) as well as online communities (Bock et al., 2015; Butler, 2001; Oh et al.,

2016; Ridings &Wasko, 2010; Sun et al., 2012).

In the existing literature, three streams emerge that investigate the antecedents of

developer participation. The first stream focuses on the individual’s motivation that

drives participation. This includes fun or enjoyment (Shah, 2006), learning and devel‑

oping skills (von Hippel & von Krogh, 2003), or increasing reputation (Hu et al., 2012;

Wasko & Faraj, 2005) and career advancements (Lerner & Tirole, 2002) leading to in‑

trinsic and extrinsic motivation (von Krogh et al., 2012).

The second stream focuses on project characteristics, such as organizational sponsor‑

ship (Spaeth et al., 2015; Stewart et al., 2006), license choice (Gamalielsson & Lundell,

2014; Stewart et al., 2006), governance structures (Markus, 2007; Shah, 2006; West &

O’mahony, 2008), quality controls (Ho & Rai, 2017), task complexity (Sun et al., 2012),

or amodular codebase (Baldwin&Clark, 2006), that influence a developer’smotivation

to join a community. Furthermore, a project needs to signal its legitimacy to become

attractive to developers. As the number of capable and available developers is limited,

OSS projects are competing with other projects for these developer resources (Setia

et al., 2012; Wang et al., 2013). Therefore, the project needs to be attractive for new

developers to join and existing developers to stay (von Krogh et al., 2003). Important

indicators of a project’s legitimacy are, for example, the size of its community (Butler,

2001; Chengalur‑Smith et al., 2010) and its community activity (Butler, 2001; Setia et

al., 2020).

The third stream focuses on social dynamics and relational effects that emerge

through developer collaborations and affiliations within and between projects.

Studies found that a project’s position in affiliation networks influences its success

and ability to attract developers (Grewal et al., 2006). Also, it reduces uncertainty

about how to contribute and thereby helps in attracting developers (Maruping et al.,

2019). Furthermore, a project’s position allows it to better access available resources
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in the ecosystem (Sojer & Henkel, 2010) and signals higher quality (Grewal et al.,

2006; Setia et al., 2020), thereby increasing a project’s attractiveness. In addition,

research has found that previous collaborations with a project’s initiator increase the

likelihood of joining (Hahn et al., 2008). A developer’s decision to remain involved

is also influenced by other developers in the community as well as the leadership

style (Oh & Jeon, 2007) and the strength of emotional ties between members (Bock et

al., 2015). Research also found that the response from the community to developers’

contributions influences their continued participation (Zhang et al., 2013). Another

important aspect is that situated learning and identity construction leads to sustained

participation (Fang & Neufeld, 2009). In addition, studies found that social capital

plays an important role in sustained contributions (Wasko & Faraj, 2005).

In sum, althoughvarious antecedents of adeveloper’s participationdecisionhavebeen

studied, existing research falls short in incorporating the technical interdependencies

that exist betweenOSSprojects in software ecosystemsand the resultingdynamics and

effects. To solve this shortcoming, this dissertation focuses on these technical inter‑

dependencies and their influence on developer participation.

2.2 Software Ecosystems and the Emergence of Dependency
Networks

A popular phenomenon within OSS development and software engineering is the

emergence of software ecosystems (Bosch, 2009; Messerschmitt & Szyperski, 2003).

Software ecosystems, analogous to biological ecosystems, involve a network of

interdependent software components maintained by geographically dispersed com‑

munities of collaborating contributors (Decan et al., 2019). These communities are

built around a common technology platform (such as a programming language) and

allow developers to collaborate, share, and leverage existing software components to

create new software more efficiently (Bogart et al., 2021). An example of a software

ecosystem is the JavaScript programming language, which has a large and active
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community of developers who contribute to a growing library of software components

(also called packages), which are reusable pieces of code that can be included in other

projects and applications (Kikas et al., 2017). Software components are therefore

closely related to the concept of a module inmodular system design (Baldwin & Clark,

2000).

Through the availability of online collaboration tools, version control, dependency

managers, and software component registries, organizing work in software ecosys‑

tems has become increasingly popular in OSS development (Bogart et al., 2021; Cox,

2019; Decan et al., 2019). The trend towards organizing OSS development in software

ecosystemshighlights a shift away from the individual project towards its environment

and inherent relations (Hanssen, 2012) and allows the development of functionality

outside the focal project (Bosch, 2009). By adopting principles from modular system

design (Baldwin & Clark, 2000) and making the development process and activities

transparent (Cataldo & Herbsleb, 2010), software ecosystems thereby enable the co‑

ordination of large numbers of developers that contribute interdependent software

components to the software ecosystem (Jacobides et al., 2018). Thus, software ecosys‑

tems are critical for innovation (Jacobides et al., 2018), reducing development time and

costs (Bosch, 2009; vonHippel & vonKrogh, 2003), and ensuring the sustainability and

longevity of software projects (Valiev et al., 2018).

However, the software ecosystem’s stability depends on the balance between its soft‑

ware components and their dependencies, with changes to one software component

potentially resulting in cascading effects through the entire ecosystem (Bogart et al.,

2016). Dependencies emerge dynamically through the common practice of reusing

software components in other projects during the development process (Cataldo et

al., 2008; Haefliger et al., 2008), resulting in the project being dependent on the soft‑

ware component to function properly (Valiev et al., 2018). For instance, a web appli‑

cation might depend on a database management system to store and retrieve data,

which is available as a separate software component in the ecosystem. Thus, software

ecosystems can be seen as self‑organizing systems that emerge and evolve through the
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addition and combination of already available software components (Arthur, 2009).

To understand the emergence and evolution of software ecosystems, the technical

interdependencies and their changes can be conceptualized as networks of comple‑

mentary and substitutable software components (Funk & Owen‑Smith, 2017). These

dependency networks consist of the software components and their dependency rela‑

tions (Kikas et al., 2017). Furthermore, the dependency relations can be further dis‑

tinguished between upstream dependencies and downstream dependencies (Valiev et al.,

2018). From the perspective of a focal component, upstream dependencies emerge as

the result of reuse by the focal component, whereas downstream dependencies result

from other components in the software ecosystem depending on the focal component

(Valiev et al., 2018).

Research on dependency networks has investigated how they affect a project’s survival

(Valiev et al., 2018), how to deal with breaking changes in the ecosystem (Bogart et al.,

2016; Bogart et al., 2021), how the size of software ecosystems steadily grows (German

et al., 2013), which factors lead to upgrading dependencies and how developers dis‑

cuss the need and risk to do so (Bavota et al., 2015), and why developers use software

components that perform trivial tasks (Abdalkareem et al., 2020). Overall, research

highlights the need to carefully manage and analyze dependencies. Thus, research

on software ecosystems and emerging dependency networks has, to the best of our

knowledge, mostly focused on the technical and engineering‑related aspects, thereby

neglecting the social aspects of software development in general and the role of de‑

pendency networks in influencing developer participation in particular.

To summarize, the concept of software ecosystems reflects the complexities and chal‑

lenges involved in their development, management, and evolution and highlights the

importance of a holistic approachwhen investigatingOSSdevelopment by recognizing

the technical interdependencies between software components and projects. Thus,

this dissertation integrates the concept of software ecosystems to investigate their in‑

fluence on developer participation and the sustainability of OSS projects.

13



CHAPTER 3

RESEARCH DESIGN

This dissertation consists of three empirical studies on, as of today, one of the largest

software ecosystems bounded by the JavaScript programming language. The overar‑

ching theme of these studies is the focus on the technical interdependencies between

OSS projects in software ecosystems and their influence on developer participation.

Specifically, the three studies address the following research questions:

RQ1: What is the influence of a project’s technical dependencies in the

software ecosystem on its ability to attract developers?

RQ2: How do technical interdependencies influence a developer’s partici‑

pation decision in open source software ecosystems?

RQ3: What is the effect of developer overlap in technological niches on the

sustainability of open source projects in software ecosystems?

Following, this dissertation outlines the research approach and design chosen to an‑

swer these research questions. Specifically, it describes the research methods and

collected data and explains the theoretical foundations of the adopted network per‑

spective.

3.1 Strategy of Inquiry and Empirical Material

As each research question addresses various factors of technical interdependencies

and the resulting dependencynetwork on anoutcomeof developer participation, each

study adopts a quantitative research approach to test the derived hypotheses by exam‑

ining the relationship among different variables (Creswell, 2009). In study 1 and 3,

I used Bayesian multilevel regression models to estimate the hypothesized effects. I

chose multilevel models because they account for clustered data structures resulting
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from repeated measures (Gelman & Hill, 2007). In study 2, I estimated the effects of

the dependency network on developers’ participation decisions by applying SAOMs.

SAOMs are predictive models for dynamics networks enabling researchers to test var‑

ious mechanisms that influence the evolution of a network (Cornwell, 2015). I chose

these models because they allow the representation and statistical inference of net‑

work dynamics using observed longitudinal data (Snijders et al., 2010).

All three studies focus on the JavaScript programming language software ecosystem.

This empirical setting is suitable for three main reasons. First, choosing a common

programming language as the boundary condition is in line with my definition of soft‑

ware ecosystems, which emerge around a common technology platform such as pro‑

gramming languages. Second, in doing so, it also controls for knowledge‑related pref‑

erences of developers who specialize in a specific programming language. Third, a

common programming language is a suitable characteristic for a definitional focus

for network construction (Laumann et al., 1989), and defining boundary conditions

based on the programming language is common practice in OSS research adopting a

network perspective (e.g., Grewal et al., 2006; Singh et al., 2011).

Table 3.1 provides a summary of the studies’ research designs.

Table 3.1. Research Approaches

Study 1 Study 2 Study 3

Research
Approach

Deductive
hypotheses testing
via Bayesian
multilevel regression
model

Deductive
hypotheses testing
via stochastic
actor‑oriented model

Deductive
hypotheses testing
via Bayesian
multilevel regression
model

Empirical
Setting

Open source
software ecosystem
based on JavaScript
programming
language

Open source
software ecosystem
based on JavaScript
programming
language

Open source
software ecosystem
based on JavaScript
programming
language

Role of
Theory

Theory testing
through hypothesis
validation

Theory testing
through hypothesis
validation

Theory testing
through hypothesis
validation
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Study 1 Study 2 Study 3

Data
Sources

Longitudinal panel
data for 1,832
projects between
October 2020 until
January 2022; 7,328
observations and 5
snapshots of
dependency network
state

Longitudinal panel
data for 250 projects
and 1,172 developers
between February
and May 2021; 4
snapshots of
affiliation and
dependency network
state

Longitudinal panel
data for 2,283
projects between
January 2017 and
January 2019; 37,502
observations and 24
snapshots of
affiliation and
dependency network
state

Contribution Identification of
positive effect of
upstream
dependencies on
developer attraction
and no effect of
downstream
dependencies

Identification of
positive effect of past
participation in
interdependent
project on likelihood
to participate in focal
project

Identification of
mutualistic effect of
developer overlap in
technological niches
on developer
retention that
increases with
project age

All three studies use digital trace data, that is digital records of activities or events

involving information technologies (Berente et al., 2019). Digital trace data eliminates

various researcher‑inducedbiases (Lindberg, 2020) and thereby leads to increasing the

validity of findings (Grover et al., 2020). Furthermore, digital trace data is suitable to

integrate a temporal dimension into research (Lindberg, 2020). As networks grow and

change over time and thus change the underlyingmechanisms that drive participation

(Bock et al., 2015; Faraj & Johnson, 2011; Wang et al., 2013), a longitudinal approach

was in order.

I created the dataset by collecting and merging data from two main sources. First, I

collected data on available software components in the software ecosystem from the

npm registry, which is the online database for JavaScript packages provided andmain‑

tained by npm Inc.3. It provides information such as the related project repository,

version history, used software license, and dependencies to other projects for each

project. Second, I collected data on the development process and the involved devel‑

3https://www.npmjs.com/
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opers fromGitHub4, which is themost popular collaborative development platform to

date and is a rich source of data for OSS development (Kalliamvakou et al., 2016). After‑

ward, I combined both data sources bymatching the provided repository information

from the npm registry with the related software repository on GitHub.

For studies 1 and 2, I crawled the npm registry manually using automated data collec‑

tion processes. For study 3, I used the dataset from Libraries.io5 (Katz, 2020) because

of the limited availability of historical data and difficulties in identifying all potentially

relevant projects in the software ecosystem. Similarly, data from GitHub was not di‑

rectly collected from the system due to API restrictions and limited access to histori‑

cal data. In studies 1 and 2, I used archival data from GHArchive6 whereas I used the

dataset from GHTorrent7 (Gousios, 2013) in study 3.

3.2 Network Perspective on Open Source Software Development
and Software Ecosystems

To answer the three research questions, this dissertation adopts a network perspec‑

tive, which is common for studies investigating the OSS phenomenon (e.g., Grewal et

al., 2006; Peng et al., 2013; Singh et al., 2011; Tang et al., 2020). From this theoretical

perspective, OSS development canbeunderstood as a distributed systemof developers

and projects that are interconnected through relationships emerging from collabora‑

tions, knowledge exchange, and technical interdependencies.

In network theory, networks are represented as graphs that contain a set of nodes,

which can represent various types of actors (e.g., individuals, organizations, or

projects), and a set of edges, which can represent different types of relationships (e.g.,

friendship, collaboration, or employment) between the nodes (Borgatti & Halgin,

2011). Further, these graphs can be directed where the direction of the edge is

4https://www.github.com/
5https://www.libraries.io/
6https://www.gharchive.org/
7https://www.ghtorrent.org
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specified and represents the directionality of the relationship from the sender to the

receiver (Newman, 2018).

Another dimension in which networks differ is their mode, that is the number of dif‑

ferent sets of actors represented in the network (Wasserman & Faust, 1994). The pre‑

dominant types of networks are one‑mode networks, consisting of a single set of actors,

and two‑mode networks, consisting of two sets of actors or one set of actors and one set

of events (Faust, 1997; Wasserman & Faust, 1994). In two‑mode networks, edges are

only allowed between two distinct node types (Koskinen & Edling, 2012). Two‑mode

networks are often also referred to as affiliation or bipartite networks (Wasserman &

Faust, 1994).

In this dissertation, I utilized directed one‑ and two‑mode networks to represent OSS

projects and their technical interdependencies, and developer affiliations. To repre‑

sent the dependency network between projects, I used directed one‑mode networks

where nodes represented the software components or projects and edges reflected

the dependencies directed from the depending towards the dependent project. This

allowed me to differentiate a project’s interdependent projects as either upstream or

downstream dependencies (Valiev et al., 2018). To represent the relationship between

developers and projects, I used two‑mode networks. Here, the networks consisted of

two node sets for developers and projects with edges representing the participation

of a developer in a specific project. Figure 3.1 illustrates the two types of networks ap‑

plied in this dissertation, where orange circles represent projects and green diamonds

represent developers.

The following section briefly summarizes the data collection and analysis process for

each study in this dissertation. For detailed explanations, I refer to theMethod section

of the related study.
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(a) Dependency Network (b) Affiliation Network

Figure 3.1. Types of Networks

3.3 Empirical Studies on Technical Interdependencies

3.3.1 Influence on Developer Attraction

The first study investigates the first aspect of sustained participation and thereby in‑

vestigates the effect of a project’s position in the dependency network on its ability to

attract resources in the form of developers by asking what is the influence of a project’s

technical dependencies in the software ecosystem on its ability to attract developers?

The theoretical argument draws fromstudies and theories that suggest that actorswith

more connections in a network are perceived as more prestigious, have increased ac‑

cess to information and resources, and signal a higher quality (Borgatti & Foster, 2003;

Grewal et al., 2006; Newman, 2018; Setia et al., 2020). Thus, the study derives two

hypotheses and argues that the number of upstream dependencies, representing the

number of other projects the focal project depends on, and downstream dependen‑

cies, representing the number of other projects depending on the focal project, in

the software ecosystem have similar effects on a project’s perceived importance and

attractiveness and grants access to developers.

In the first step, the network construction started with the identification of software

components and related projects in the software ecosystem. In doing so, we identified
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an initial sample of 3000 software components, followed by adding additional compo‑

nents using the expanding selection approach by Doreian & Woodard (1992). This

approach is related to snowball sampling and starts with a fixed set of nodes and adds

further nodes that are connected to the initial sample (Marsden, 2005). Here, the tech‑

nical interdependencies between the components were utilized to collect connected

components and their projects. We repeated this process until no further projects

were identified.

The second step involved constructing the dependency network based on the final set

of components. The dependency networkwas operationalized as a directed one‑mode

network, where the nodes reflected the software components and the edges reflected

the technical dependencies between them. The state of the network was inferred us‑

ing the provided timestamped version history of each component which also included

the specific dependencies of each component version. Following this approach, we

created snapshots of the network state at the beginning of each quarter between Jan‑

uary 2021 and January 2022, which resulted in a total of 5 observations. In this study,

the concept of a node’s degree centrality was used to measure the position of the com‑

ponent in the network, which has been used in OSS research before (Daniel & Stewart,

2016; e.g. Grewal et al., 2006; Maruping et al., 2019; Singh, 2010). Furthermore, the

component’s degree centrality was differentiated between in‑ and out‑degree, reflect‑

ing a component’s up‑ and downstream dependencies.

In the third step, we accumulated the data generated from the network snapshots with

the development activities derived from the related components’ repositories. We ap‑

plied various exclusion criteria to the sample to ensure that the components were still

under development and that development activities could be related to a particular

component because often components share the same repository. The final dataset

consisted of 1,832 components and 7,328 component‑quarter observations.

In the fourth and final step, we specified a series of Bayesian multilevel regression

models to test the effects of interest. In doing so, we started with a baseline model
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and subsequently added the variables of interest. We estimated each model using R

and the package brms (Bürkner, 2017, 2018).

3.3.2 Influence on Developers’ Participation Decisions

The second study investigates the dynamics in an affiliation network of developers

and projects and asks how do technical interdependencies influence a developer’s partici‑

pation decision in open source software ecosystems? Thus, it focuses on the formation of

the affiliation network between developers and projects by focusing on the individual

developer’s participation decision.

The study derives four hypotheses from the literature on developer participation. The

derived hypotheses are then tested using SAOMs. We argue that these technical con‑

nections play an important role in developers’ participation decisions.

In the first step, based on the data collected in study 1, 250 projects were randomly

selected from the dataset and the participating developers were identified. Here, only

developers with at least 5 activities during the observation from February until May

2021 were selected, which resulted in 1,172 developers. The reduction of the dataset

was necessary to make the amount of data feasible for the application of SAOMs. The

observation period was selected because it reduced time heterogeneity and kept the

amount of change between two subsequent periods at an acceptable level.

In the second step, we constructed a two‑mode affiliation network with projects and

developers as two distinct node types and edges between them reflecting a developer’s

participation in the project. Again, network snapshots were created at the beginning

of each month during the observation resulting in a total of 4 observations. We chose

a monthly period duration because the statistical models require the network change

to be within a certain range. The amount of network change between each period was

checked using Jaccard coefficients for tie changes, which were between 0.45 and 0.51

and therefore suitable for themodel (Conaldi et al., 2012). The total observation period

of four months also corresponds to a typical release cycle in OSS development (Hahn
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et al., 2008)

In the third step, SAOMs (Snijders, 1996, 2001) were applied to analyze the network

change using the R package RSiena (Ripley et al., 2022). For a complete introduction to

this type of model and detailed explanations of the statistics and assumptions, please

see Snijders et al. (2010). In short, SAOMs are predictivemodels for dynamic networks

that enable researchers to test endogenous and exogenous effects that influence the

network’s evolution (Cornwell, 2015). Model developmentwas conducted via a forward

selection of effects following guidelines by Snijders et al. (2010) andRipley et al. (2022).

During this process, we checked the resultingmodels for convergence. Afterward, the

models were validated by performing a backward selection process.

3.3.3 Influence on Developer Retention

The third study focuses on the competition of projects for developers in software

ecosystems and its effect on their sustainability by asking: what is the effect of developer

overlap in technological niches on the sustainability of open source projects in software

ecosystems?

This study draws from theories of organizational ecology (Hannan & Freeman, 1989)

and adopts the concept of technological niches (Podolny et al., 1996; Podolny & Stuart,

1995) defined as communities in the ecosystem bounded by their technical relation‑

ships. The study argues that the number of shared developers (i.e., developer overlap)

with other projects in the technological niche has a mutualistic effect (Barnett & Car‑

roll, 1987) and therefore leads to increasing developer retention.

In this study, we used secondary data from the datasets from Libraries.io (Katz, 2020)

and GHTorrent (Gousios, 2013). First, the dataset from Libraries.io includes data from

different software ecosystems’ package managers (e.g., npm for JavaScript, Maven for

Java, or pip for Python) and holds information about the published software compo‑

nents, their release histories, and interdependencies. Second, GHTorrent archives the

event histories of OSS projects hosted on GitHub by monitoring GitHub’s public event
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timeline.

In the first step, we identified all projects from the Libraries.io dataset that were part

of the JavaScript ecosystem. For these projects, we collected all relevant data monthly

fromJanuary 2017until January 2019. Asmanyprojects in thedataset hada lowactivity

or were inactive (Kalliamvakou et al., 2016), we applied various filters to only select

active and legit projects. After this process, the final data set consisted of 2,403 projects

and a total of 41,909 project‑month observations.

Secondly, we created a one‑mode network reflecting the technical interdependencies

between the projects and a two‑mode affiliation network representing the relation‑

ship between developers and the projects for each period. In the affiliation network,

we created an edge between a developer and a project when the developer had par‑

ticipated in the project during that specific period. This step resulted in a total of 24

snapshots for each of the two networks.

The third step involved the calculation of the respective measurements by utilizing

both networks as well as the version and dependency history, and development activ‑

ities of each project.

The fourth and final step included the model specification for the Bayesian multilevel

regression. Again, we used R and the brms package to estimate the models and tested

each model for convergence and robustness.

23



CHAPTER 4

 THE INFLUENCE OF DEPENDENCY NETWORKS ON
DEVELOPER ATTRACTION IN OPEN SOURCE

SOFTWARE ECOSYSTEMS

Mario Müller
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Abstract
Open source software projects rely on the continuous attraction of developers and
therefore access to the pool of available developer resources. In modern software
ecosystems, these projects are related through technical dependencies. In this
study, we investigate the influence of these dependencies on a project’s ability
to attract developers. We develop and test our hypothesis by observing the de‑
pendency networks and repository activities of 1832 projects in the JavaScript
ecosystem. We find that dependencies to other projects have a positive effect on
developer attraction while we did not find an effect of dependencies from other
projects. Our study contributes theoretically and practically to the understand‑
ing of developer attraction and highlights the role of technical interdependencies
in software ecosystems.

Published in the Proceedings of the 43rd International Conference on Information
Systems (ICIS) in 2022
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4.1 Introduction

Open source software (OSS) is becoming increasingly important for andwithin firms and

their information technology (IT) infrastructures (Aksulu & Wade, 2010; Crowston et

al., 2007; Nagle, 2019). Recent estimates suggest that up to 80‑90% of any current soft‑

ware is now based on OSS (Nagle et al., 2020). While OSS has been shown to offer

several benefits and advantages to firms compared to proprietary software (Aksulu &

Wade, 2010), this increasing reliance on OSS comes also with downsides. One key is‑

sue is that, in comparison to software developed andmaintained by organizations, OSS

projects heavily rely on communities of distributed developers (Roberts et al., 2006),

and therefore, have to sustain these communities to ensure continuous development

(Gamalielsson & Lundell, 2014). Without continuous development, OSS projects be‑

come vulnerable to security issues or even risk breaking altogether (Bogart et al., 2016).

This issue becomes evenmore problematicwhen considering complete software ecosys‑

tems of OSS, that is, collections of interdependent software components (Decan et al.,

2019), where continuedmaintenance and development are critical not just for a single

OSS project but for the ecosystem as a whole (Cox, 2019; Valiev et al., 2018).

However, manyOSS projects fail tomaintain sustained development activity over time

or are abandoned soon after their initiation (Chengalur‑Smith et al., 2010; Fang &

Neufeld, 2009; Stewart et al., 2006). To avoid these problems and remain viable, the

attraction and retention of developers in the community has become a major issue in

OSS projects (Butler, 2001; Crowston et al., 2003). Several studies have identified vari‑

ous project characteristics and signals that indicate the attractiveness and legitimacy

of a project, and thus increase its capabilities to attract developers. For example, the

size of a project’s community is an important indicator of a project’s legitimacy (Butler,

2001; Chengalur‑Smith et al., 2010) as well as the general community activity (Butler,

2001; Setia et al., 2020). Since OSS projects exist in a virtual environment of distrib‑

uted developers that collaborate via online platforms without traditional hierarchies

(Lindberg et al., 2016), one stream of research has investigated the relationships be‑
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tween and affiliations of developers to understand the network‑related characteristics

that influence developer participation choice. For example, a developer’s decision to

participate in an OSS project has been shown to be influenced by previous collabora‑

tions with the project owner (Hahn et al., 2008). More recently, Maruping et al. (2019)

showed that centrality in a communication network reduces the uncertainty of devel‑

opers about how to contribute to a project and therefore helps in attracting developers.

While these studies focus on the social relationships and affiliations of developers in

projects and communities as factors influencing developer attraction, the technical in‑

terdependencies between OSS projects largely have been neglected so far. Today, OSS

projects are almost always situated in larger software ecosystems of interdependent

projects. In software ecosystems, dependencies arise through the reuse of established

projects, which are available as packaged software components, that are integrated

into new OSS projects (Decan et al., 2019), which is a common practice in OSS to re‑

duce cost and time (Haefliger et al., 2008). In modern programming languages, the ef‑

fort to reuse or publish projects has decreased through the availability of dependency

management tools and registries, which resulted in an increase in this practice (Cox,

2019). Hence, first studies have identified these dependencies between projects as a

major issue forOSSprojects because theyneed to be carefullymanaged andmonitored

to avoid breaking changes or security issues (Bogart et al., 2016; Valiev et al., 2018).

Furthermore, when reusing projects available in a software ecosystem, dependent

projects rely on the continued development and maintenance of the reused project

by its creator. Specifically, this is important for studies of sustainability because now

concerns and issues related to the sustained participation not only apply to the focal

OSS project (Chengalur‑Smith et al., 2010) but also to its dependent projects within

the software ecosystem (Valiev et al., 2018). Thus, projects with a central position in

the network of dependencies should be able to leverage these dependency relations

with other projects to sustain their development by continuously attracting develop‑

ers. Hence, we ask the following research question: “What is the influence of a project’s

technical dependencies in the software ecosystem on its ability to attract developers?”
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To answer our research question, we draw from the resource‑based as well as the eco‑

logical view on sustainable online communities (Butler, 2001; Chengalur‑Smith et al.,

2010; Wang et al., 2013) and theorize that more connected OSS projects within a soft‑

ware ecosystem (i.e., the dependency network) are able to attractmore developers. To

test this proposition, we adopt a network perspective and analyze projects in the de‑

pendencynetwork of a largeOSS ecosystem. Adopting anetworkperspective allowsus

to investigate a project’s position and embeddedness within the dependency network

that emerges from its dependency relations. We observe the dependency network

and its projects over a period of one year. With the gathered data, we run a Bayesian

multilevel regression model to estimate the effect of a project’s embeddedness in the

dependency network on its ability to attract developers. We find that upstream depen‑

dencies, which are created by the focal project through the reuse of other projects in

the ecosystem, increase a project’s ability to attract developers. However, we also find

evidence that this is not the case for downstream dependencies, which result from

other projects being dependent on the focal project. These findings contribute to our

understanding of sustained participation inOSS projects, whichhelps organizations to

make informed decisions on the adoption of OSS and thereby avoid challenges result‑

ing from abandoned projects (Chengalur‑Smith et al., 2010). From a theoretical point

of view, we introduce the importance of technical interdependencies of modern OSS

projects to fully understand the dynamics driving sustained participation.

The remainder of this paper is structured as follows. In Section 2, we provide an

overview of related work on sustained participation in OSS and dependency networks

in software ecosystems. In Section 3, we develop our theoretical model. Section 4 de‑

scribes our research design. Subsequently, in Section 5, we present the results of our

analysis. Finally, we discuss our results, implications, and limitations in Section 6.
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4.2 Related Work and Theoretical Background

4.2.1 Open Source Software Sustainability and Developer Attraction

OSS projects are usually undertaken by a decentralized community of developers who

collaborate via development platforms to produce the software (Fang&Neufeld, 2009).

These projects rely on the continuous participation of their community (Roberts et al.,

2006; Shah, 2006), which makes the sustainability of their communities essential for

the long‑term sustainability and success of thewhole project (Gamalielsson&Lundell,

2014). Consequently, it is no surprise that sustained participation is a major topic in

studies on OSS sustainability (Curto‑Millet & Corsín Jiménez, 2022).

To be sustainable, OSS projects need to maintain a certain quantity of developers by

continuously attracting and retaining developers (Butler, 2001; Crowston et al., 2003).

To do so, they require access to the pool of potentially available developer resources

in the environment (Butler, 2001; Wang et al., 2013), thereby competing with other

projects in the ecosystem for a limited number of unpaid, motivated, and skilled de‑

velopers (Setia et al., 2020;Wang et al., 2013). Hence, OSS projects need to demonstrate

their attractiveness and legitimacy through project‑related characteristics and signals

to gain developers’ attention (Curto‑Millet & Corsín Jiménez, 2022).

Several such characteristics and signals have been investigated in the literature. For

instance, sustained development has been shown to keep users interested in a project

(Subramaniam et al., 2009); in return, user interest has a positive effect on the develop‑

ment activity (Stewart et al., 2006), which creates a virtuous circle between sustained

development and user interest. Moreover, having users interested in the project en‑

hances developers’ motivation to participate in a project, which leads to increased de‑

velopment activity (Stewart et al., 2006). It is also well‑known that developer pool size

influences a project’s ability to attract resources in the formof developers in the future

(Chengalur‑Smith et al., 2010). With an increased developer pool size, the available re‑

sources to the project increase and thereby its potential to attract more developers in
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the future (Bock et al., 2015; Butler, 2001; Chengalur‑Smith et al., 2010).

In addition to these characteristics, previous studies have also investigated the influ‑

ence of relationships between developers and projects that emerge through collabo‑

ration among developers. The resulting networks grow and change over time in on‑

line communities (Faraj & Johnson, 2011; Wang et al., 2013), which changes the un‑

derlying mechanisms that drive continuous participation of their members (Bock et

al., 2015). To study these emerging networks in the context of OSS development, IS

scholars intensively used (social) network theory. For instance, studies have investi‑

gated the affiliation networks between projects and developers and their influence on

success (Grewal et al., 2006), incentives of network formation (Singh & Tan, 2010), or

cooperation between developers (Hahn et al., 2008). Important findings highlight that

more central projects have an increase in developer attention (Hahn et al., 2008) and

also better access to network knowledge (Mallapragada et al., 2012; Singh et al., 2011)

and resources (Sojer & Henkel, 2010). Moreover, projects benefit from their network

position in terms of access to resources (Grewal et al., 2006). However, these studies

have focused on the relationships and connections that emerge through social inter‑

actions between developers and, therefore, ignore the technical interdependencies

between OSS projects that emerge in software ecosystems.

4.2.2 Software Ecosystems and Dependency Networks

Software ecosystems are “large collections of interdependent software components that

are maintained by large and geographically distributed communities of collaborating

contributors” (Decan et al., 2019). A software component, or package, is thereby de‑

fined as a “reusable code or set of components that can be included in other applica‑

tions by using dependency management tools” (Kikas et al., 2017). We refer to those

packaged software components as projects through this paper.

The reuse of projects is common practice in OSS development, saves developers time,

and helps to implement proven solutions (Haefliger et al., 2008; von Hippel & von
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Krogh, 2003). The emergence of dependency management tools further facilitated

reuse by easing the process of publishing own software as a reusable dependency and

adding dependencies from the software ecosystem to a project (Cox, 2019). As the

name implies, adding a project as a dependency to an OSS project makes it dependent

on that component (Bogart et al., 2016).

In the context of modular design and component‑oriented development, a depen‑

dencymeans that a project cannot function without the other projects it then depends

on (Valiev et al., 2018). Considering the software ecosystem and its dependency

relations as a whole, we can therefore distinguish between upstream and downstream

dependencies. From the perspective of the focal project, an upstream dependency

emerges when the focal project itself adds dependencies to other projects to its

codebase (Valiev et al., 2018). Downstream dependencies are therefore the result of

other projects depending on the focal projects (Valiev et al., 2018). Taken together,

the projects and their dependency relations then form a dependency network (Kikas et

al., 2017).

Some initial studies in social computing have investigated dependencynetworks in the

context of OSS. For example, Valiev et al. (2018) investigated the influence of a project’s

position in the dependency network on its general probability of survival. They show

that a project’s position in the dependency network significantly impacts project sur‑

vival in the form of sustained project activity and argue that this also influences the

project’s access to developers in the ecosystem (Valiev et al., 2018). However, they do

not investigate the latter hypothesis. Furthermore, havingmore dependents has been

found to increase access to development resources (Sojer & Henkel, 2010; Valiev et

al., 2018). However, these studies do not answer the crucial question if the project’s

position actually helps in attracting developers.
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Figure 4.1. Research Model

4.3 The Influence of Dependencies on Developer Attraction

In this study, wepropose that a project’s embeddedness in the dependencynetwork, as

reflected by upstream and downstream dependencies, influences its ability to attract

developers to participate. In summary, we propose that both up‑ and downstream

dependencies increase a project’s ability to attract developers. Figure 4.1 summarizes

our research model.

From a network perspective, scholars have studied the network embeddedness of an

actor, that is its connections with other network actors, which is associated withmore

access to information and resources, and signaling more prestige (Borgatti & Foster,

2003; Newman, 2018). In the context of OSS projects, it has been shown that a project

with higher embeddedness is perceived as more important and signals a higher qual‑

ity (Grewal et al., 2006; Setia et al., 2020). Hence, these projects should benefit from

higher developer attention (Hahn et al., 2008) and better access to network knowledge

(Mallapragada et al., 2012; Singh et al., 2011) and resources (Grewal et al., 2006; Sojer

& Henkel, 2010). We argue that a project’s embeddedness in the dependency network

also signals a project’s importance in the software ecosystem and grants access to de‑

veloper resources through its upstream and downstream dependencies.

Upstreamdependencies arisewhen the focal project reuses other projects that have been
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made available as packaged software components in the software ecosystem (Valiev et

al., 2018). The reuse of projects allows developers to save time and build upon proven

solutions (Haefliger et al., 2008; von Hippel & von Krogh, 2003). Thus, it enables devel‑

opers to focus on tasks that they actually like toworkon (Haefliger et al., 2008), because

basic functionality is mostly provided by the upstream dependency. Furthermore, it

decreases a developers perceived participation cost, which influences a developers

participation choice (Butler et al., 2014). This is because the number of upstream de‑

pendencies indicates that functionality is provided by other projects and therefore

parts of the project are maintained by others outside the focal project (Haefliger et al.,

2008). Therefore, we argue that projects with extensive reuse of projects, reflected in

a larger number of upstream dependencies, become more attractive for developers.

Hence, we propose:

H1: An increase in the number of upstreamdependencies increases the attraction

of developers.

Downstream dependencies reflect the number of other projects in the ecosystem that

use the focal project as a building block (Kikas et al., 2017). Therefore, an increase in

downstream dependencies potentially grants the focal project access to the developer

resources of the dependent project. These developers, often referred to as ‘periph‑

eral developers’, are motivated to enhance the focal project for their own use (Setia

et al., 2012). They do so not only through bug detection but are also willing to solve

issues or create required features on their own (Shah, 2006). For example, they might

encounter problems during implementation for which they seek help by opening an

issue in the dependencies’ repository, find a bug, which they then report, or even pro‑

pose a fix by creating a pull request (Wang et al., 2020). Moreover, they might also

miss certain functionality that is then proposed or implemented. In general, due to

the downstream dependency, they are potentially invested in the functioning and sur‑

vival of the originating OSS projects of the downstream dependencies.

Furthermore, having many downstream dependencies potentially signals that
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a project is important in the ecosystem because many other projects rely on it.

Therefore, the number of downstream dependencies can be seen as an indicator

of a project’s popularity. Thus, we argue that a higher number of downstream

dependencies increases a project’s legitimacy and therefore, positively influences the

participation decision of developers. Taking all these arguments into consideration,

we propose:

H2: An increase in the number of downstream dependencies increases the attrac‑

tion of developers.

4.4 Research Methodology

4.4.1 Data and Network Construction

In our empirical study, we focused on the JavaScript ecosystem because it is one of the

largest OSS ecosystems and it is intensively using dependencies (Decan et al., 2019).

We leveraged two different data sources to cover both the evolution of the ecosystem’s

dependency network as well as the development activities related to each project. The

meta and dependency data for each project was collected from the npm registry8. The

development activity data was collected from the related GitHub repositories fromOc‑

tober 2020 until January 2022, which resulted in 10,968 hours of event logs. Due to

the GitHub API restrictions, we utilized the collected event archives from GHArchive9.

Unfortunately, some event logs weremissing from GHArchive during the observation.

In total, missing data accounted for 225 hours of event logs, which is about 2% of the

total hours of included event logs. We linked both datasets bymatching the repository

URLs available in the project metadata with the related repository.

In network studies, setting boundary conditions for the network is important (Mars‑

den, 2005). To reduce the number of projects and thereby make the size of the

8https://registry.npmjs.org/
9https://www.gharchive.org/
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network feasible for the analysis, we started the network construction by identifying

3000 projects from Libraries.io’s list of top ranked projects10 in March 2022. As our

boundary specification and sampling strategy, we followed the expanding selection

approach by Doreian & Woodard (1992). This approach starts with a fixed set of

nodes in the network and adds further nodes linked to the set (Marsden, 2005). In

doing so, we started with the 3000 identified projects as our initial set of nodes and

added further projects to the set that had been listed as a dependency in any of the

initial set’s projects between 2019 and 2022. This time restriction allowed us to avoid

adding abandoned projects to the network while still having a broad timespan for

observations and being able to identify the most relevant projects in the ecosystem.

Furthermore, we only included those projects listed as a runtime dependency (which

is required to run the software) and excluded projects needed only during the devel‑

opment process. We repeated this process for every newly identified project which

allowed us to identify all relevant projects further down the dependency tree. In total,

following this approach, we identified and collected data of 12678 projects.

Based on the dependencies of the total amount of identified projects, we constructed

the dependency network. We observed the network between January 2021 and Jan‑

uary 2022 at the beginning of each quarter and created snapshots of its state at each

observation point. This resulted in a total of 5 observation points. Each snapshot was

created by first creating an ego‑networks for each project (ego) by identifying its recent

version and collecting its related dependencies (alters). Afterward, we combined all

created ego‑networks into a whole‑network, which can be constructed from egocen‑

tric network data when egos are densely sampled (Marsden, 2005), which is applicable

in our case due to the used sampling technique. Finally, we reduced the networks to

their largest components, that is the largest subset of nodes in the network that are

connected by one or more paths (Newman, 2018), to focus on the most important and

used projects in the ecosystem.

For our analysis, we selected all projects from the reduced network that met our cri‑

10https://libraries.io/search?order=desc&platforms=npm&sort=rank
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teria. First, projects needed to be already created at the start of our observation and

present in the network in each period. Second, we selected only projects with at least

one developer participating in each period to remove abandoned or feature‑complete

projects without further development activity. Fourth, some projects consist of mul‑

tiple smaller projects that can be used independently of each by other projects and

hence have their own dependencies, while sharing the same repository. Tomake sure

that the observed development activity was related to a specific project, we excluded

these projects from our observations. After this process, our final data consisted of

1832 projects. For these projects, we then collected the related development activities

from the retrieved event logs.

4.4.2 Variables and Measures

As our dependent variable, wemeasure developer attraction similar to previous studies

(e.g., Chengalur‑Smith et al., 2010) by comparing all developers that participated in the

project in period t with those in the previous period t‑1. Thus, developer attraction is

equal to the number of developers that participated in period t but not in period t‑1.

In line with earlier work on participation in traditional information system develop‑

ment, we define participation as “the behaviors, assignments, and activities” during

the development process (Hartwick & Barki, 1994). Accordingly, we counted as par‑

ticipation writing comments related to issues or pull requests, opening issues or pull

requests or changing their status (e.g., from open to closed), and pushing commits to

the repository. To do so, we identified and counted the unique user accounts that were

involved in any of these activities from the event logs. Thereby, we explicitly excluded

user accounts labeled as bots in our data.

Upstream and downstream dependenciesweremeasured by analyzing a project’s ego net‑

work derived from the complete dependency network for each observation snapshot.

Each ego network was represented as a directed graph with a node’s (project’s) out‑

going ties representing its upstream dependencies and its incoming ties representing
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its downstream dependencies. Therefore, we measured the number of upstream and

downstream dependencies by calculating the in‑ and outdegree centrality (Freeman,

1979). This measure can be applied to egocentric networks because the egocentric

network for a node by definition includes all alters of ego, which leads to identical

measures for both ego‑ and whole‑networks (Marsden, 2002).

We controlled for known factors with an impact on developer attraction (Chengalur‑

Smith et al., 2010; Crowston et al., 2003; Gamalielsson & Lundell, 2014) such as devel‑

oper pool size, community interest, release activity, project age, and organizational

ownership. Developer pool size was counted by collecting all developers that partici‑

pated in a period applying the same procedure as for developer attraction. Community

interest was measured as the number of stars given to the project’s related repository

in a period, which was derived from the event logs. Release activity was measured by

counting the number of version releases of a project during the observation period.

The version history was gathered from the npm data, which includes timestamps for

each version release allowing us to count the releases during a specific period. Pre‑

release versions such as release candidates, beta, and alpha releaseswerenot included.

Project age was measured by calculating the number of months between the project’s

creation date and the date of the respective observation. For organizational ownership,

we constructed a dummy variable indicating if the project’s repository is owned by an

organizational account.

Moreover, we also considered including the project’s license. Previous studies showed

that license choice plays a huge role in influencing, for example, development activity

(Subramaniam et al., 2009) and also attracting developers (Santos et al., 2013; Stewart

et al., 2006). Therefore, we categorized the used licenses in our dataset by their level

of restrictiveness (Lerner & Tirole, 2005) and followed Santos et al. (2013) by includ‑

ing also a category for dual licenses. However, we found that 98.1% of the projects in

our dataset used a permissive license. Therefore, we did not include the license type

as a variable in our analysis. We also considered controlling for user interest oper‑

ationalized by the number of downloads for each project. However, downloads are
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highly correlated with the number of downstream dependencies because the more

downstream dependencies a project has, the more projects potentially download it

regularly. Therefore, we refrained from adding downloads as a measure of user inter‑

est to ourmodel. Table 4.1 provides a summary of our used variables including a brief

description of their operationalization and Table 4.2 reports the related descriptive

statistics.

Table 4.1. Variable Definitions

Variable Description

Developer
Attraction

The number of developers that participated in the project in
period (t) but not in the previous period (t‑1).

Upstream
Dependencies

The number of projects the focal project depends on in the
observed network in period (t).

Downstream
Dependencies

The number of other projects depending on the focal project in
the observed network in period (t).

Developer Pool
Size

The number of developers that participated in the project in
period (t).

Community
Interest

The number of developers staring the project’s repository in
period (t).

Release Activity The number of version releases of a project in period (t),
excluding release candidates, alpha and beta versions.

Project Age The number of months from the project’s creation date until the
end of period (t).

Organizational
Ownership

Dummy variable indicating if the project’s repository is owned
by an organizational account.

Table 4.2. Descriptive Statistics for Selected Variables (N = 1,832 × 4)

Variable Mean Median St. Dev. Min Max

Developer Attraction 16.40 4 54.38 0 1073
Upstream Dependencies 4.94 2 7.78 0 89
Downstream Dependencies 5.21 1 18.15 0 428
Developer Pool Size 19.80 6 63.66 1 1290
Community Interest 98.26 16 824.38 0 66,913
Release Activity 1.53 0 4.20 0 103
Project Age 71.59 72.23 29.48 6.28 132.43
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4.5 Results

4.5.1 Dependency Network Evolution

Table 4.3 provides descriptive statistics for the total observed dependency network.

The size of the largest component in the dependency network increases from 10,779

projects in January 2021 to 11,186 at the end of 2021. This shows that many new

projects were created that year that depend on another project in the network. Also,

even though new projects are introduced into the ecosystem and the number of

dependencies increases over time, the network’s density, that is, the proportion of

possible dependency links actually created and an indicator for the connectedness of

the network, constantly decreases and is close to zero. That indicates a sparse network

where most of the possible edges are not present (Newman, 2018). Furthermore,

the largest dependency tree in the network, which is represented by the network’s

diameter, is stable overall but in the first observation. Also, the average dependency

tree depth for each project, which is the average path length, is relatively stable. The

average degree of a project, which is a measure of the average number of dependency

links a project is involved in, decreases over time.

Table 4.3. Descriptive Statistics for Largest Component in Dependency Network

Observ. Nodes Edges Density Network Avg. Path Avg. Degree
Date Diameter Length

𝑡0 2021‑01 10779 35082 0.000302 14 3.332 6.509
𝑡1 2021‑04 10900 34997 0.000294 13 3.283 6.418
𝑡2 2021‑07 10983 35119 0.000291 13 3.204 6.395
𝑡3 2021‑10 11048 35133 0.000288 13 3.202 6.360
𝑡4 2022‑01 11186 35505 0.000284 13 3.192 6.348

Figure 4.2 exemplarily shows the ego‑network’s evolution of the project “ember‑auto‑

import”11 in the observed dependency network over time. Due to its large size, we

refrain from displaying the whole network. The figure includes the project itself, its

11https://github.com/ef4/ember‑auto‑import
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direct neighbors, and the dependencies between them. To illustrate, in t4, the network

consists of 32 upstream, 9 downstream dependencies, and 96 edges, which is higher

than the number of nodes. This is due to ego’s dependencies also having dependency

relations between each other. Compared to the network state in t2, 1 upstream de‑

pendency was added and 3 removed, and 8 downstream dependencies were added,

which resulted in 39 added dependency relations and 11 removed. These changes

in upstream and downstream dependencies of the focal project as well as the depen‑

dency relationships between its dependencies show how changes related to a single

project affect a large number of other projects in the ecosystem.

(a) 𝑡 = 0 (b) 𝑡 = 2 (c) 𝑡 = 4
Figure 4.2. Exemplary Evolution of an Ego‑Network

Note: Thenetworks represent the ego‑network of the project “ember‑auto‑import”, colored in red in cen‑
ter position, at three observation points. Orange nodes are upstream‑ and green nodes are downstream
dependencies of ego. Edges between the nodes indicate dependency relations with arrows indicating
the direction. Added nodes and edges are highlighted through increased line width. Removed nodes
have decreased opacity.

4.5.2 Model Specification

Wespecified aBayesianmultilevel regressionmodel to estimate the effect of a project’s

dependencies on developer attraction. A multilevel model allows for clustered data

structures, which are present in the case of repeated measurements belonging to the

same project (Gelman & Hill, 2007). Thereby, it allows for varying intercepts for each

project in our dataset. We choose a negative binomial (gamma‑Poisson) posterior dis‑

tribution because our outcome variable is count data and previous analysis showed

overdispersion. This distribution takes this additional variation due to unobserved in‑
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fluences into account (McElreath, 2020). Furthermore, initial analyses showed that

all predictors, but project age were not normally distributed and were highly right‑

skewed. Therefore, we performed log‑transformation and added 1 to account for ze‑

ros to avoid biased parameter estimates (Gelman&Hill, 2007). The variable for project

age was mean‑centered.

We used a log‑link function, which is the typical link function used for count data (Gel‑

man et al., 2014). For our priors, we used weakly informative priors as suggested by

McElreath (2020). Hence, we defined the prior for the intercept as a normal distrib‑

ution with a mean of 0 and a standard deviation of 10. For all coefficients and the

standard deviations, we set the priors to 𝑁(0, 1), and for the shape parameter of the

gamma‑poisson distribution to 𝛾(0.01, 0.01). We conducted the estimations using R

and the brms package (Bürkner, 2018). Markov chainMonte Carlo (MCMC) simulations

were applied to draw samples from the posterior distribution. We used 4 chains with

4,000 iterations (2,000 warmup, 2,000 sampling) to achieve convergence. All chains

converged, were well‑mixed (�̂� = 1.00), and of sufficient size (effective sample size ESS

> 700). In each model, we found some observations with Pareto k‑values > 0.7, which

indicates a high influence on the model. Hence, we refitted the models for each influ‑

ential observation by removing it from the data and checked the models’ prediction

accuracy using leave‑one‑out cross‑validation (LOO), which is recommended in case

of weak priors and influential observations (Vehtari et al., 2017).

During our analysis process, we specified a series of regressionmodels. We started by

estimating a baselinemodel including all control variables and the random effect with

a varying intercept to account for our repeated measure data structure. Model 2 adds

the independent variables for up‑ and downstreamdependencies toModel 1. InModel

3, we built on Model 2 and additionally accounted for the fact that some projects are

owned by the same individual developer or organization. Hence, we included an addi‑

tional random effect with varying intercepts for the hierarchical structure of projects

being nested within owners to control for unobserved owner heterogeneity. In all

models, our dependent variable leads the other independent variables except project
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age by 1 period to account for reverse causality.

4.5.3 Regression Results

Table 4.4 shows the correlation matrix for our selected transformed variables as well

as the variance‑inflation (VIF) scores. All VIF scores are < 2, which indicates that mul‑

ticollinearity is not a problem, and no corrective measures are required (James et al.,

2021). The Pearson correlation indicates a strong positive association between devel‑

oper attraction and developer pool size in the next period (r = .60), and between devel‑

oper pool size and community interest (r = 0.73).

Table 4.4. Correlation Matrix

Variable VIF 1 2 3 4 5 6 7 8

1 Developer Attractiont – 1
2 Developer Pool Sizet‑1 1.26 .60 1
3 Community Interestt‑1 1.11 .42 .73 1
4 Release Activityt‑1 1.16 .25 .43 .20 1
5 Project Aget 1.02 .07 .13 .28 −.15 1
6 Organizational Ownership 1.04 .13 .19 −.00 .15 −.05 1
7 Upstream Dependenciest‑1 1.06 .18 .30 .13 .19 .02 .25 1
8 Downstream Dependenciest‑1 1.04 −.03 .02 .17 .00 .24 .01 −.22 1

In Table 4.5 we report the results of the estimated models. As indicated by the LOOIC

scores, model 3 including the random effect for the hierarchical structure performed

best. Therefore, we discuss the results for Model 3 in the following. In general, the

estimates for all models are robust.

Our first hypothesis predicted a positive effect of upstream dependencies on devel‑

oper attraction. The results support this hypothesis with a positive coefficient for up‑

stream dependencies (𝛽 = .12***; 95%‑CI: [.10, .15]). When interpreting the coefficient

and understanding its effect, it is important to consider that the variable has been

log‑transformed and we used a log‑link function. Thus, the coefficient needs to be

interpreted as the percent increase in the dependent variable for every 1% in the inde‑

pendent variable. For the coefficient of upstream dependencies, that translates into
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a 1% increase in upstream dependencies leading to a 0.12% increase in developer at‑

traction.

Based on our second hypothesis, we also expected a positive effect of downstream de‑

pendencies. However, we found no effect of the number of downstreamdependencies

on developer attraction with (𝛽 = .00; 95%‑CI: [‑.01, .02]).

In terms of the control variables, our results confirm the importance of previous vari‑

ables such as developer pool size (𝛽 = .63***; 95%‑CI: [.58, .67]). We also found positive

effects for community interest (𝛽 = .26***; 95‑CI%: [.24, .29]). Interestingly, compared

to previous findings, we found a negative effect of release activity in previous periods

(𝛽 = ‑.09***; 95%‑CI: [‑.11, ‑.06]). Also, in line with previous findings, we did not find an

effect of a project’s age on developer attraction (𝛽 = ‑.00; 95%‑CI: [‑.00, .00]). Lastly, we

found a positive effect of organizational ownership on developer attraction (𝛽 = .17***;

95%‑CI: [.11, .22]).

In summary, our results show a positive effect of upstream dependencies on devel‑

oper attraction supporting H1. Further, we did not find an effect of downstream de‑

pendencies on developer attraction. Therefore, H2 is not supported. Figure 4.3 plots

the posterior uncertainty intervals for each variable.

4.6 Discussion

4.6.1 Contributions to Research

With this study, we contribute to the literature on OSS project characteristics and sig‑

nals that lead to attracting developers. The continuous attraction of developers is one

of the major issues for OSS projects and is important for their sustainability (Curto‑

Millet & Corsín Jiménez, 2022). In this study, we investigated how a project’s depen‑

dencies in a software ecosystem affect its ability to attract developers. We argued that

more up‑ and downstream dependencies increase a project’s attractiveness and legit‑
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Table 4.5. Bayesian Multilevel Model Results

DV: Developer Attractiont

Model 1 Model 2 Model 3

Fixed Effects
Intercept −0.58∗∗∗ (0.03) −0.67∗∗∗ (0.03) −0.64∗∗∗ (0.03)
Developer Pool Sizet‑1 0.71∗∗∗ (0.02) 0.65∗∗∗ (0.02) 0.63∗∗∗ (0.02)
Community Interestt‑1 0.24∗∗∗ (0.01) 0.26∗∗∗ (0.01) 0.26∗∗∗ (0.01)
Release Activityt‑1 −0.09∗∗∗ (0.01) −0.10∗∗∗ (0.01) −0.09∗∗∗ (0.01)
Project Aget −0.00 (0.00) −0.00 (0.00) −0.00 (0.00)
Organizational Ownership 0.17∗∗∗ (0.02) 0.14∗∗∗ (0.02) 0.17∗∗∗ (0.03)
Upstream Dependenciest‑1 0.12∗∗∗ (0.01) 0.12∗∗∗ (0.01)
Downstream Dependenciest‑1 −0.00 (0.01) 0.00 (0.01)
Random Effects
𝜎Package 0.28∗∗∗ (0.02) 0.31∗∗∗ (0.02)
𝜎Repository Owner 0.26∗∗∗ (0.02)
𝜎Repository Owner/Package 0.22∗∗∗ (0.02)

𝑁Observations 7328 7328 7328
𝑁Packages 1832 1832 1832
𝑁Repository Owner 1016
LOOIC 39707.33 39518.62 39338.04
Estimation errors in parentheses; ∗ 90%, ∗∗ 95%, ∗∗∗ 99% of the convidence interval not including 0.

imacy and, therefore, increase its capability to attract developers. We empirically

tested these hypotheses using data collected by observing the dependency network

and repository activities of 1832 projects in the JavaScript ecosystem.

The results support our hypothesis of a positive effect of upstream dependencies (H1).

Prior studies have shown that, contrary to our findings, upstream dependencies have

a mixed impact on an OSS project’s probability of survival, without an overall signifi‑

cant negative effect (Valiev et al., 2018). Our findings provide reasoning for why this

may be the case, as attracting developers may well balance out negative effects such

as the creation of potentially more points of failure due to breaking changes. How‑

ever, despite this positive effect on developer attraction, we should not ignore the neg‑

ative aspects of intensive use of dependencies. Further studies need to investigate

both potentially negative and positive outcomes. In addition, other characteristics of

a project’s upstream dependencies might play an important role on their effect on de‑

veloper attraction, such as their development stage, activity level, and popularity. By
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Figure 4.3. Posterior Uncertainty Intervals

taking these additional characteristics into account, future research might be able to

resolve the reasons for the mixed impact.

Interestingly, we did not find a significant effect for downstream dependencies and

therefore no support for hypothesis (H2). This result is worrisome because it high‑

lights the problem of important projects in the ecosystem not benefiting from their

downstream dependencies: developers “build on the shoulder of giants”, but the foun‑

dation may be ignored or forgotten. We thus cannot support the argument that more

downstream dependencies lead to higher developer attraction. One possible explana‑

tion for our findings could be cognitive biases (Chattopadhyay et al., 2022), which lead

developers to prioritize their own OSS projects. Another explanation is that because

one of themain reasons developers reuse projects is that they do not have tomaintain

them (Haefliger et al., 2008), they do not get involved. Therefore, future research could

further investigate if developers affiliated with a downstream dependency of a reused

project actually donot participate or if themissing effect of thenumber of downstream
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dependencies can be explained by other project‑ or individual‑level factors.

Furthermore, our results support prior findings and further highlight the importance

of developer pool size in attracting new developers (e.g., Butler, 2001; Chengalur‑

Smith et al., 2010). However, this indicates that without considerable momentum

and a sufficient number of developers in the beginning, it becomes more difficult

for an OSS project to further grow its size. Here, as within so many other online

contexts, network effects are important. Surprisingly, and contrary to previous

studies that suggest a positive effect of activity on attraction (e.g., Butler, 2001;

Chengalur‑Smith et al., 2010), our results suggest that release activities in previous

periods decrease an OSS project’s ability to attract new developers in the following

period. We suspect that healthy release activities might signal to potential developers

a functioning, sustainable, and viable project. Therefore, they might not see the need

for their participation to keep the project alive and maintained ‑ in effect creating a

detrimental effect. In line with the findings of Chengalur‑Smith et al. (2010), we also

did not find an effect of a project’s age on developer attraction. In addition, our results

indicate that organizationally owned projects are able to attract more developers.

Organizational ownership has been shown to influence developers’ intrinsic as well

as extrinsic motivation to participate in a project (Lerner & Tirole, 2002; Spaeth et al.,

2015), which is reflected in its ability to attract developers.

We also contribute to studies on OSS projects and the role of the networks based on

relationships between and affiliations of developers on sustained participation (e.g.,

Hahn et al., 2008; Maruping et al., 2019; Oh & Jeon, 2007; Peng, 2019). We add to

this research by focusing on the role of the technical network in the form of technical

dependencies between OSS projects and highlighting the importance of dependency

networks in understanding developer participation. Indeed, OSS are socio‑technical

systems, and both the social network as well as the technical network should be inves‑

tigated together in future studies.
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4.6.2 Contributions to Open Source Software Development Practice

From a practical perspective, we provide several insights for OSS developers andman‑

agers. Our study indicates that using dependencies canmake a projectmore attractive

to developers. On the downside, OSS projects should not expect increased participa‑

tion by their downstream dependencies. However, the reuse of projects available as

packaged software components also has other benefits and drawbacks besides attract‑

ing developers, which we did not investigate. For example, using available projects

in the ecosystems saves time, implements a proven solution, and reduces code com‑

plexity and maintenance effort. However, all of this comes at the cost of increased

dependency management effort, the risk of breaking changes, and potential security

risks in terms of poor or stopped maintenance. This may well be dangerous for a

project’s survivability (Valiev et al., 2018). However, it is not clear if these effects may

not balance each other out. Future studies should investigate these potential benefits

and drawbacks together.

4.6.3 Limitations

As regards limitations, our study focused on a single software ecosystem, and only

a part of the overall ecosystem, due to our sampling strategy. Therefore, results

might differ in other ecosystems or even other parts of the JavaScript ecosystem.

Furthermore, this study used digital trace data, which implies several potential

problems related to validity (Howison et al., 2011), especially with data mined from

GitHub (Kalliamvakou et al., 2014). Specifically, due to the amount of required data

and API restrictions imposed by GitHub, we relied on the collected event archives

by GHArchive. Even though we conducted various reliability checks and followed

recommendations to ensure construct validity and avoid temporal mismatch (Howi‑

son et al., 2011), we cannot guarantee that the data is completely accurate. However,

since our derived constructs are mostly descriptive and the analyzed projects have

been carefully sampled, the available data can provide viable information about the
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projects’ environments (Kalliamvakou et al., 2014). The same problem emerges for

our second data source, the project metadata from the npm registry. Here, depen‑

dencies of a project are usually maintained by the developers themselves. Therefore,

dependencies could have been added to a project without actually using it in the code

or have been abandoned during the development process without properly removing

them from the metadata.

Furthermore, our study focused solely on the impact of dependencies on attraction.

However, there are also several negative aspects associated with dependencies, such

as an increase in inter‑project complexity and coordination, that have damaging ef‑

fects on sustained participation. Another potentially interesting avenue for future re‑

search is the dynamics between the dependency network and the social relations and

co‑membership of developers that lead to the formation and evolution of the depen‑

dency networks and how they shape the overall community.

In addition, our analysis only used the number of dependencies without differentiat‑

ing between the dependencies' characteristics. These differencesmight have an effect

on their influence on developer attraction. For example, dependencies with a larger

developer pool, greater popularity in the community, or more development activity

might have greater potential to attract developers. Hence, future research could take

these differences into account.

Finally, our measure for developer attraction does not provide information about the

actual relation of the developer with the project. Therefore, further studies could in‑

vestigate the question if participating developers actually have their own projects with

a dependency relation with the project. In addition, it might be of interest to find out

which actual dependencies or combinations of dependencies increase the attractive‑

ness of the project for potential developers.
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4.7 Conclusion

To conclude, our study theoretically and practically contributes to our understanding

of sustained participation in OSS by introducing and highlighting the role of the un‑

derlying technical dependency network in a software ecosystem. We hope that our

study motivates others to build on our findings and investigate the various avenues of

research that we pointed out. In essence, this requires a true socio‑technical lens on

OSS ecosystems. Future research should generalize and test our hypotheses in differ‑

ent software ecosystems.

4.8 Acknowledgements

Wewould like to thankMarkusWeinmann for his advice and support in the data analy‑

sis.

48



CHAPTER 5

THE ROLE OF DEPENDENCY NETWORKS IN
DEVELOPER PARTICIPATION DECISIONS IN OPEN

SOURCE SOFTWARE ECOSYSTEMS: AN
APPLICATION OF STOCHASTIC-ACTOR ORIENTED

MODELS

Mario Müller
University of Cologne

Christoph Rosenkranz
University of Cologne

Abstract
Open source software relies on the contributions of developerswho participate vol‑
untarily in projects. While prior research has investigated social characteristics,
relations, and connections that influence a developer’s participation, we argue
that the technical relations and connections of projects, which emerge through
dependencies between packages in software ecosystems, play a focal role in that
decision as well. We empirically test these assertions by applying stochastic actor‑
oriented models to an affiliation network in the JavaScript software ecosystem.
Our results show thatwhile the number of dependencies of a project does not influ‑
ence participation, developers are more likely to participate in projects to which
their own projects have dependency relations. This study thereby contributes to
the understanding of antecedents that influence developers’ participation deci‑
sions by highlighting the importance of project interdependencies in software
ecosystems.
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5.1 Introduction

Unlike software development in organizations, open source software (OSS) projects are

usually undertaken by a decentralized community of developers who collaborate via

development platforms to produce the software (Fang & Neufeld, 2009; Lindberg et

al., 2016). Often, these developers are not paid (Crowston, 2011; Roberts et al., 2006),

although a fraction is employed by companies specifically to help in OSS development

(von Krogh et al., 2012). Thereby, OSS projects depend on the continuous, voluntary

participation of distributed developers (Mockus et al., 2002; Roberts et al., 2006).

Previous research has therefore investigated what factors influence a developer’s deci‑

sion to participate in a project. In doing so, studies have focused on individual‑related

factors that lead to intrinsic and extrinsic motivations (von Krogh et al., 2012), as well

as project‑related factors, such as organizational sponsorship or license restrictions

(Stewart et al., 2006). Researchers also have taken the social structure of projects and

their community into account by applying techniques from social network analysis

(e.g., Grewal et al., 2006; Hahn et al., 2008; Oh & Jeon, 2007).

While prior research has shown that social relations and connections are important

antecedents of participation, existing studies have ignored another essential compo‑

nent: technical relations and connections, that is, dependencies that arise in software

ecosystems through the reuse of software packages (Decan et al., 2019; Haefliger et al.,

2008). We argue that these technical connections play an important role in developers’

participation decision due to four key reasons.

First, packages that are reused extensively by others are important for the health and

stability of the entire ecosystem, making them more attractive for developers who

want to gain reputation and become visible in the community (Hu et al., 2012). Sec‑

ond, by reusing packages, developers can work on tasks they actually enjoy working

on (Haefliger et al., 2008), therefore making packages with more reuse more attrac‑

tive for potential participants. Third, developers tend to support other projects that

depend on their provided package (Bogart et al., 2016). In some cases, the provided
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packages are even spun off from larger projects, which are then maintained by the

same developers (Valiev et al., 2018). Fourth, developers tend to participate in projects

that they use themselves (Shah, 2006), which is reflected in a dependency towards the

used package.

The aim of this study is to empirically test these assertions. To do so, we theorize the

role of dependency networks for developers’ decisions based onprior literature. Then,

we adopt a dynamic networkmodeling approach and analyze the affiliation network of

packages in a large OSS ecosystem over a period of four months. We apply stochastic

actor‑oriented models (Snijders, 1996) to investigate the effect of software dependen‑

cies on the evolution of affiliation networks between developers and OSS projects. We

find that while the number of up‑ and downstream dependencies of a project does not

affect its ability to attract participants, developers tend to contribute to projects that

are either up‑ or downstream dependencies of that particular project. These findings

contribute to the literature on developer participation in OSS projects by focusing on

the technical connections in the form of package interdependencies of OSS projects

in software ecosystems. This offers a more complete view than the prevailing focus

on social relations and connections only.

The remainder of this paper is structured as follows. In Section 2, we provide an

overview of related work on developer participation and dependency networks in OSS

ecosystems, and we develop our hypotheses. In Section 3, we describe our data col‑

lection process and network construction, and give a brief overview about stochastic

actor‑oriented models. In Section 4, we report the results of our analysis. Finally, in

Section 5, we discuss our results, implications, and limitations.
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5.2 Theoretical Background

5.2.1 Developer Participation in Open Source Software Projects

OSS development is driven by a decentralized community of developers that mostly

contribute voluntarily to projects and collaborate via online development platforms

and management software such as GitHub (Fang & Neufeld, 2009; Roberts et al.,

2006). OSS projects rely on the continuous participation of their communitymembers

(Roberts et al., 2006; Shah, 2006) and need to attract and retain developers (Butler,

2001; Crowston et al., 2003) in order to stay viable. Therefore, the question of what

motivates developers to participate in a particular OSS project has been central to OSS

research (Roberts et al., 2006).

Previous research has focused on individual characteristics of developers as well as

project‑related aspects that influence developers’ participation decisions, and vari‑

ous project‑ and individual‑related factors have been identified. For example, project

factors include license restrictions (Stewart et al., 2006), organizational sponsorship

(Shah, 2006; Stewart et al., 2006), and the modularity of a project’s codebase (Baldwin

& Clark, 2006). Individual factors that drive participation include fun or enjoyment

(Shah, 2006), learning and developing skills (von Hippel & von Krogh, 2003), or in‑

creasing reputation (Hu et al., 2012) and career advancements (Lerner & Tirole, 2002).

Moreover, due to the community‑based model of developing OSS and the importance

of social relations, connections, and structures (Grewal et al., 2006), researchers early

on have adopted a network perspective on OSS and have investigated the effect of net‑

work structures on participation. Related to the social network of developers, for ex‑

ample, previous collaborations with the project initiators increase the likelihood of

joining a project (Hahn et al., 2008), and the decision to remain involved in a project

is influenced by other neighboring developers (Oh & Jeon, 2007).

While these network studies highlight the importance of social interactions of develop‑

ers, they largely neglect the technical relations and connections in the formof package
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interdependencies between projects. In the following, we focus on these interdepen‑

dencies that arise in projects embedded in software ecosystems.

5.2.2 Dependency Networks in Software Ecosystems

OSS is not built from scratch but relies on reuse of code and already implemented

functionality (Haefliger et al., 2008; Sojer & Henkel, 2010). This functionality is typi‑

cally provided via packages, which are “reusable code or set of components that can be

included in other applications by using dependency management tools” (Kikas et al.,

2017). Modern programming languages ease the process of reuse by providing pack‑

agemanagers that allowdevelopers to publish anduse packaged software components

(Cox, 2019). Adding a package to a project creates a dependency relationship, making

the project dependent on the package to function (Bogart et al., 2016). This practice

results in so‑called software ecosystems, “large collections of interdependent software

components that aremaintained by large and geographically distributed communities

of collaborating contributors” (Decan et al., 2019).

From a package’s perspective, dependency relationships exist in two directions. In the

ecosystem, the package has other packages depending on it, so‑called downstream de‑

pendencies, and itmight also depend on other packages itself, which results in upstream

dependencies (Valiev et al., 2018).

The reuse of packages allows developers to save time and to implement proven so‑

lutions to their software (Haefliger et al., 2008; von Hippel & von Krogh, 2003). The

functionality provided by the reused package enables them to focus on tasks they ac‑

tually like to work on (Haefliger et al., 2008). Therefore, projects with extensive reuse

of packages, reflected in the number of upstream dependencies, should becomemore

attractive for developers, which leads to our first hypothesis:

H1a: Developers tend to participate in packages with more upstream dependen‑

cies.
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Furthermore, the number of downstream dependencies reflects the importance and

value of a package in the software ecosystem. This is because themore other packages

depend on the focal package, the higher the number of downstream dependencies,

which also makes it a proxy for a package’s user base (Valiev et al., 2018). Since one

driving factor of developer participation is the potential gain in reputation (Hu et al.,

2012), important and valued packages in the software ecosystem should becomemore

attractive to participate in. Hence, we propose:

H1b: Developers tend to participate in packages with more downstream depen‑

dencies.

However, dependencies can create issues in case of breaking changes (i.e., a change

in a package that potentially causes other packages to fail). In order to counter break‑

ing changes, package providers usually support and coordinate with their dependents

by announcing changes or helping to migrate to another version (Bogart et al., 2016).

Moreover, smaller packages are often split off from larger projects, which are then

maintained by the same developers (Valiev et al., 2018). Therefore, developers also

become affiliated with a package’s upstream dependencies. Hence, we propose:

H2a: Developers tend to participate in a package when they are also affiliated

with its upstream dependencies.

Furthermore, existing studies have shown that developers tend to participate in

projects that they use themselves (Shah, 2006). These developers, often referred to as

“peripheral developers”, are thereby motivated to improve the package for their own

use and are important for the quality assessment and enhancement of a project (Setia

et al., 2012). For example, developers participate by submitting bug reports or pull

requests to the dependent package (Setia et al., 2012). Hence, we propose that this

also holds true for the reuse of packaged software components:

H2b: Developers tend to participate in a package when they are also affiliated

with its downstream dependencies.
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5.3 Research Method

5.3.1 Data and Network Construction

In order to test our hypotheses, we focus on the JavaScript ecosystem, which is one of

the largest software ecosystems in the world (Decan et al., 2019). Data was collected

from two data sources to construct the dependency network between packages and

capture the development activities. Meta and dependency data was collected from

the npm registry12, whereas development activities were collected from GitHub for

the package‑related repositories. Due to API restrictions, we used the event archives

provided by GHArchive13. Both datasets were linked by matching repository URLs

provided in the packages’ metadata.

In network studies, setting boundary conditions is important (Marsden, 2005). For our

boundary specification and sampling strategy, we followed the “expanding selection”

approach (Doreian & Woodard, 1992), which starts with a fixed set of nodes and adds

further nodes linked to the initial set. Thus, we started our data collection with the se‑

lection of 3,000 packages identified from Libraries.io’s list of top ranked packages14 in

March 2022. Based on that initial set, we added packages to the set that were listed as a

runtime dependency between 2019 and 2022. This time restriction helped in avoiding

adding abandoned or by now irrelevant packages. The process was repeated for every

newly identified package which allowed us to identify all relevant packages further

down the dependency tree. In sum, this resulted in a total of 12,678 packages.

To reduce the number of nodes and thereby make the size of the network feasible for

the analysis, we performed additional steps for the selection of our final sample of

packages and related developers. First, we excluded all packages that shared a repos‑

itory with other packages to make sure that developer activities were specifically tar‑

geted at a particular package. Second, we checked for the development activity during

12https://registry.npmjs.org/
13https://www.gharchive.org/
14https://libraries.io/search?order=desc&platforms=npm&sort=rank
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the observation and only included packages with activity in every period. From the re‑

sulting set of packages, we randomly selected 250 packages. Third, we collected all de‑

velopers participating in the sampled packages and only included developers with at

least 5 activities (i.e., comments, commits, actions related to issues and pull requests)

during the observation. This resulted in a set of 1,172 developers.

Based on the selected packages and identified developers, we constructed the affilia‑

tion network between developers and packages. An affiliation network, also referred

to as two‑mode or bipartite network, is a graphwith two distinct node types (i.e., devel‑

opers and packages), where edges are only allowed between different types of nodes

(Koskinen & Edling, 2012). To construct the network, we collected all activities of the

selected developers towards the sampled packages for each observation period and

created edges between developer and package in case there existed an activity in the

particular period.15

We observed the affiliation network from February until May 2021. We opted for the

four‑month window to reduce time heterogeneity and keep the amount of change be‑

tween periods at a sufficient level for analysis, which is also consistent with previous

research (e.g., Hahn et al., 2008; Tang et al., 2020). Thereby, we created snapshots

of the network state at the beginning of each month. This resulted in a total of four

observations. Figure 5.1 shows the state of the affiliation network at the last obser‑

vation point. The layout was generated using the Fruchterman‑Reingold algorithm

(Fruchterman & Reingold, 1991).

5.3.2 Data Analysis

We applied stochastic actor‑oriented modeling (SAOM) (Snijders, 1996, 2001, 2005) by

using theRpackageRSiena (Ripley et al., 2022). In the following, webriefly summarize

the underlying assumptions behind SAOMs. For a detailed description, we refer to

Snijders (1996, 2001) and Snijders et al. (2010).
15All data and scripts to construct the data as well as the analysis results can be found here:

https://tinyurl.com/2p9avyrp
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Figure 5.1. Affiliation network at observation t4 (developers as red circles; packages as
blue squares)

SAOMs are the most advanced predictive models for dynamic networks that allow the

testing of variousmechanisms influencing the evolution of a network (Cornwell, 2015).

SAOMs assume a continuous change process of the network structure, which is repre‑

sented by Markov chain models (Holland & Leinhardt, 1977) with a continuous‑time

parameter, although the network is observed at discrete points in time (Snijders, 1996,

2001). The change process consists of two sub‑processes: the (1) change opportunity

process and the (2) change determination process (Snijders et al., 2010). Thereby,

when an actor has the opportunity to change ties, determined by the rate function,

the probabilities of change are determined by the evaluation (or objective) function

(Snijders et al., 2010). The evaluation function thereby represents the relative attrac‑

tiveness of establishing a tie (Conaldi et al., 2012). The evaluation function includes

effects related to the structural properties of the network (endogenous effects) and ef‑

fects based on the attributes of an actor in the network (exogenous effects) (Snijders

et al., 2010).
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5.3.3 Model Development

We followed the guidelines for model development provided by Snijders et al. (2010)

and Ripley et al. (2022). Thereby, we specified the model for the dynamics in the

affiliation network via forward selection of theoretically grounded effects and tested

these effects using the score‑type test proposed by Schweinberger (2012). During the

selection process, we checked the t‑ratios for convergence for each effect, which indi‑

cate the stability of parameter estimates across simulations and should be below an

absolute value of 0.1 (Kalish, 2020; Snijders et al., 2010). Furthermore, we checked the

overall maximum convergence of the estimated models during the selection process,

which should be below the threshold of 0.25 (Ripley et al., 2022). We started with en‑

dogenous effects, followed by exogenous effects. Results were then validated by per‑

forming a backward selection. We also tested for time heterogeneity (Lospinoso et al.,

2011) and accounted for the composition change of developers (Huisman & Snijders,

2003).

In terms of endogenous effects, by default, an effect for outdegree (density), which rep‑

resents the tendency of an actor to have ties at all, is included in the model (Snijders

et al., 2010). Also, an effect for the tendency toward transitivity should be included in

the model (Snijders et al., 2010). In two‑mode networks, transitivity is expressed by

the number of four‑cycles (Robins & Alexander, 2004). This effect reflects the extent

to which actors make the same choices as their peers (Ripley et al., 2022). Another set

of effects that should be accounted for during the model selection process are degree‑

related effects (Snijders et al., 2010). Both in‑ and out‑degree are important positional

characteristics of nodes that drive network dynamics (Snijders et al., 2010) and should

be includedwhen high dispersion in in‑ and out‑degrees is present (Ripley et al., 2022).

Based on our theoretical foundation, we included the in‑degree popularity effect, which

accounts for the tendency of dispersion in in‑degrees of packages (i.e., number of par‑

ticipating developers). The out‑degree activity effect, which reflects the tendency of

dispersion in out‑degree of developers (i.e., the number of packages a developer par‑

ticipates in), was also significant and contributed to the convergence of the overall
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model and was therefore also included.

Furthermore, we included several exogenous actor‑specific effects. We started by in‑

cluding control effects. Related to packages, we controlled for community interest (mea‑

sured as the number of GitHub stars given to a package during a period), release activ‑

ity (measured as the number of version releases of a package during a period), license

restrictiveness (by adopting the categorization of Lerner & Tirole (2005) into (1) permis‑

sive, (2) restrictive, and (3) highly restrictive licenses), and age ( measured as the num‑

ber ofmonths from the package’s creation date until the end of a period). These effects

were modeled as receiver effects, which means that actors with higher values of the

covariate tend to have higher in‑degrees (Snijders et al., 2010). Related to developers,

we controlled for the overall activity of a developer by measuring the number of activi‑

ties a developer performed during a period. These include comments made on issues

or pull requests, status changes of issues or pull requests (e.g., opening or closing),

and pushing commits to the repository. This effect was modeled as a sender effect,

which means that actors with higher covariate values tend to have higher out‑degrees

(Snijders et al., 2010).

Finally, we included exogenous actor‑specific receiver effects as well as dyadic effects

for the influence of the dependency network. First, we measured the number of up‑

and downstream dependencies of a package in a period. Second, we included dyadic

effects accounting for the relation between a developer and a package. The dyadic

covariate thereby reflects if the developer also participates in anupstreamor downstream

dependency of the targeted package in the period. Therefore, the effect expresses the

extent to which participation becomes more likely if a developer also participates in

an upstream or downstream dependency.

Because the estimation operations of RSiena are not scale‑independent, it is advised to

scale covariates to achieve standard deviations between 0.1 and 10 (Ripley et al., 2022).

Therefore, we log‑transformed the values of our actor‑specific covariates. Table 5.1

summarizes the relevant effects used in this study.
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Table 5.1. Summary of Endogenous Network Effects and Exogenous Actor‑Specific Co‑
variates

Parameter Description

Outdegree (Density) Tendency of developers to participate in packages.
Transitivity Tendency of developer pairs to participate in the same

package.
Package Popularity Tendency of popular packages to attract more developers.
Developer
Participation

Tendency of developers that participate in more packages
to engage in extra packages.

Package License Tendency of developers to participate in packages with
specific license restrictiveness.

Developer Activity Tendency of developers with a higher level of activity to
participate in more packages.

Community Interest Tendency of packages with higher community interest to
attract more developers.

Release Activity Tendency of packages with more releases to attract more
developers.

Package Age Tendency of packages with higher age to attract more
developers.

Package Upstream
Dependencies

Tendency of packages with more upstream dependencies
to attract more developers.

Package Downstream
Dependencies

Tendency of packages with more downstream
dependencies to attract more developers.

Participation in
Upstream Dependency

Tendency of developers to participate in a package if they
also participate in an upstream dependency of that
package.

Participation in
Downstream
Dependency

Tendency of developers to participate in a package if they
also participate in a downstream dependency of that
package.

5.4 Results

First, Table 5.2 summarizes network descriptives. Over all periods, the network’s den‑

sity is relatively low. During all four periods, the network’s density, and its average

degree declines. This is a result of the joining actors in periods 2 to 4. Therefore, the

number of possible ties increases, but the number of ties that are actually established

does not increase accordingly.

Second, we report the tie changes of the networks in subsequent observations (Table
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Table 5.2. Network Descriptives

Period 1 2 3 4

Density 0.005 0.004 0.003 0.003
Avg. Degree 1.211 0.909 0.736 0.647
No. Ties 758 807 788 758
Miss. Fraction 0.466 0.242 0.087 0.000
Joined Actors – 262 182 102

5.3). For example, between observation 1 and 2 (1 → 2), 88 developers newly partici‑

pated in packages (0 → 1), 325 developers discontinued their participation (1 → 0), and

433 developers continued to participate in the related packages. The Jaccard index

represents the amount of change between two observations (Snijders et al., 2010). For

SAOMs, the suggested value is between 0.2 and 0.9 (Conaldi et al., 2012). In our case,

the values of the Jaccard coefficients for tie changes betweenobservations are between

0.45 and 0.51.

Table 5.3. Network Tie Changes between Periods

0 → 0 0 → 1 1 → 0 1 → 1 Distance Jaccard

1 → 2 155654 88 325 433 413 0.51
2 → 3 221043 150 362 445 512 0.47
3 → 4 266517 195 345 443 540 0.45

5.4.1 Model Estimates

We estimated the models using the procedure of method of moments (Snijders, 1996).

Table 5.4 presents the results of the models. We report parameter estimates and stan‑

dard errors for rate effects, endogenous network effects, actor‑specific and dyadic co‑

variates. Model 1 includes the effects of the endogenous network structure. Model 2

adds to Model 1 the effects of exogenous actor‑specific covariates for our control vari‑

ables. Model 3 adds to Model 2 the effects of the dependency network related covari‑

ates (i.e., our hypotheses). All models were run for 3,000 iterations in phase 3. In all

models, t‑ratios for convergence for each effect are below the suggested threshold of
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|0.1| (Kalish, 2020; Snijders et al., 2010) and the overall maximum convergence ratios

are below the suggested value of 0.25 (Ripley et al., 2022).

In the following, we report the estimates for Model 3 in more detail. In general, the

rate function indicates the expected number of opportunities that developers have to

change their affiliation with a project (Conaldi et al., 2012). Hence, the parameter esti‑

mates can be interpreted as the number of changes developers make regarding their

affiliations over time. For example, developersmake on average 0.8 changes in the last

period. This rate remains relatively stable over time and indicates that developers are

reluctant to change their affiliation with a project. Furthermore, the developer’s activ‑

ity level has a positive and significant effect on the number of change opportunities

(0.05; p < 0.01), indicating that more active developers tend to change their affiliation

more often.

The evaluation function controls for the subjective utility for developers when chang‑

ing their affiliation (Conaldi et al., 2012). In terms of endogenous network effects, we

observe that the estimate for the out‑degree of the developers is negative and highly

significant (‑5.52; p < 0.001). This indicates that developers show a lower tendency

to participate in new packages over time. Also, package popularity has a small but

positive and significant effect (0.04; p < 0.001), which indicates that already popular

packages are more likely to attract additional developers. Transitivity is positive but

not statistically significant (0.52; p < 0.1), which does not indicate a significant ten‑

dency towards clustering in the network. Thus, developers do not seem to follow their

previous collaborators to new packages in the future. The parameter estimate for de‑

veloper participation is not significant.

In terms of exogenous effects of actor‑specific covariates, we first focus on the effects

of interest related to the effect of a package’s dependency network on developer partic‑

ipation. We find that the number of up‑ and downstream dependencies of a package

does not influence its ability to attract developers, with both estimates being not signif‑

icant (both H1a and H1b are not supported). However, the estimates for both dyadic
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effects of up‑ (1.93; p < 0.001) and downstream dependencies (1.34; p < 0.01) are both

positive and significant. This indicates that developers are more likely to participate

in a package if they also participate in another package that is a down‑ or upstream

dependency of that specific package. Hence, we observe support for both H2a and

H2b.

We conclude by reporting estimates for our control variables. For packages, the es‑

timates for community interest (0.20; p < 0.001) and package age (‑0.20; p < 0.01) are

significant. Furthermore, the estimate for developer activity is positive and highly

significant (0.47; p < 0.001), which indicates that developers with a higher level of ac‑

tivity tend to participate in more packages. In contrast to prior findings, both release

activity (0.13; p < 0.1) and license restrictiveness (0.31; p > 0.1) of a package are not

significantly influencing a package’s ability to attract developers.

5.4.2 Goodness-of-Fit

The simulation‑based goodness‑of‑Fit (GOF) test for the estimatedmodels tests the hy‑

pothesis that themodel which generated the observed data is equal to the fittedmodel

(Lospinoso & Snijders, 2019). The approach implemented in RSiena takes an auxiliary

statistic, that is, a feature of the data not included in the model and therefore not a

function of the estimation and compares it with the observed data and their distribu‑

tion (Lospinoso & Snijders, 2019). We tested auxiliary statistics for outdegree and in‑

degree distributions. BothModel 1 and 2 performed poorly for both in‑ and outdegree

distributions, but the fit for Model 3 meets the criteria of p > 0.05 for the Mahalanobis

distance‑combination, indicating a goodmodel fit (Kalish, 2020; Lospinoso & Snijders,

2019).

Figure 5.2 shows the results of theGOF tests forModel 3. Observed values are indicated

by the number connected by the red line. The simulated statistics are represented by

the violin plots. The dotted lines represent the 95th percentile bands. Wald‑type tests
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Table 5.4. Estimated Stochastic Actor‑Oriented Models for Affiliation Networks

Model 1 Model 2 Model 3

Effects Estim. S.E. Estim. S.E. Estim. S.E.

Rate Function
Rate of Network Change 1 0.72∗∗∗ (0.04) 0.77∗∗∗ (0.04) 0.77∗∗∗ (0.04)
Rate of Network Change 2 0.74∗∗∗ (0.04) 0.81∗∗∗ (0.04) 0.81∗∗∗ (0.04)
Rate of Network Change 3 0.70∗∗∗ (0.04) 0.80∗∗∗ (0.04) 0.80∗∗∗ (0.04)
Effect of Dev. Activity on Rate 0.10∗∗∗ (0.02) 0.05∗ (0.02) 0.05∗∗ (0.02)
Evaluation Function
Endogenous Network Effects
Outdegree (Density) −5.27∗∗∗ (0.14) −5.48∗∗∗ (0.12) −5.52∗∗∗ (0.13)
Transitivity (Four‑Cycles) 0.50 (0.38) 0.54∗ (0.25) 0.52† (0.29)
Package Popularity 0.05∗∗∗ (0.00) 0.04∗∗∗ (0.00) 0.04∗∗∗ (0.01)
Developer Participation 0.27∗∗∗ (0.04) 0.05 (0.04) 0.04 (0.04)
Exogenous Actor‑Specific Covariates
Developer Activity 0.49∗∗∗ (0.04) 0.47∗∗∗ (0.04)
Community Interest 0.19∗∗∗ (0.04) 0.20∗∗∗ (0.05)
Release Activity 0.12 (0.08) 0.13† (0.08)
License Restrictiveness 0.31 (0.33) 0.31 (0.33)
Package Age −0.18∗ (0.08) −0.20∗∗ (0.08)
Upstream Dependencies 0.05 (0.05)
Downstream Dependencies 0.08 (0.06)
Dyadic Covariates
Participation in Upstream Dependency 1.93∗∗∗ (0.56)
Participation in Downstream Dependency 1.34∗∗ (0.46)
Wald 𝜒2 Statistics (df) 320.19∗∗∗ (4) 231.63∗∗∗ (5) 14.64∗∗∗ (4)
Gen. score 𝜒2 Statistics (df) 394.84∗∗∗ (4) 198.98∗∗∗ (5) 19.20∗∗∗ (4)
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05; †𝑝 < 0.1; Convergence t‑ratios for all effects < |0.1|.
Overall maximum convergence ratios < 0.13

and score‑type tests for the joint significance of the added effects as reported in Table

5.4 also indicate an improvement of model fit and strong significance of the added

effects (p < 0.001).

5.5 Discussion

In this study, we developed and estimated a dynamic networkmodel for the analysis of

the evolution of an affiliation network in a large OSS ecosystem. With this model and

the test of associated hypotheses, we contribute to the literature on the participation

decisions of developers by focusing on the role of technical relations and connections

in the form of package interdependencies, thus introducing (package‑based) project
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Figure 5.2. Goodness of Fit of Model 3 for Indegree and Outdegree Distributions

dependencies as important antecedents for developer participation decisions.

Our results show that developers not only contribute to packages they use themselves

(H2b), but also to packages that make use of their own packages (H2a). This shows

that projects benefit from their dependencies in both directions through contributions

made by developers of interdependent projects. While previous research alreadymen‑

tioned need‑driven motivation as one antecedent for participation (Shah, 2006), this

empirically shows for the first time that users of a package do not free‑ride but also

contribute back. Moreover, our findings show that package providers contribute and

provide help to their dependent packages. Even though we find that the likelihood of

contribution increases, the actual type of the contribution remains an open question

and provides opportunities for future research. However, the number of dependen‑

cies by themselves do not influence a developer’s decision; a large number of up‑ or

downstream dependencies does not equal more attractiveness, thus we did not find

support for H1a and H1b.

Furthermore, our results show that developers only rarely change affiliations, as re‑

flected in the rate effects. Given that the participation in a new project comes with as‑

sociated costs related to required knowledge, skill, and necessary time to get involved

and familiar with a project (von Krogh et al., 2003), this is not surprising.

In comparison to prior studies, our results support previous findings related to the in‑

fluence of community interest on a project’s attractiveness (Subramaniam et al., 2009)
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and its decreasing ability to attract developers with growing age (Chengalur‑Smith et

al., 2010). Interestingly, we did not find an effect of license restrictiveness. This might

be related to the fact that most of the analyzed packages are released under the MIT

license and, in general, we did not see a great variety of used licenses in the overall

JavaScript ecosystem.

From a research perspective, our study demonstrates the benefits and potential in‑

sights that can be gained by applying dynamic network models to affiliation networks

in OSS projects. From a practical perspective, our results highlight that community

efforts should be directed not only towards a project itself, but also to interdependent

projects that build upon or are used by the focal project. Thismay also help to counter

negative effects such as breaking changes.

As with all research, this study has several limitations. First, we did not include all

available packages in the JavaScript ecosystem. However, by following the selected

sampling approach, we were able to identify and analyze the most important and

used packages during our observation. Furthermore, we only focused on one specific

ecosystem. Hence, future research could analyze if the shown mechanisms are also

present and influential in other software ecosystems.

Second, we focused only on effects driving the structural evolution and formation of

the affiliation network and neglected the co‑evolutionary aspect of its structure on

potential outcomes, such as a project’s sustainability and success. Hence, future re‑

search should build upon this study by including project‑related outcomes and their

interplay with both social and technical network structures.

Third, the dependency network has only partially been included in our analysis by

projecting it as actor and tie variables. Future research could therefore explicitly in‑

clude its structure by investigating the co‑evolution of the dependency and affiliation

network.

Fourth, we used digital trace data, which entails potential validity problems (Howison

et al., 2011). Even thoughwe performed several checks to increase our data’s confiden‑
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tiality, we cannot ensure complete accuracy due to the secondary nature of our data

sources.

5.6 Conclusion

In sum, our study theoretically and practically contributes to our understanding of an‑

tecedents of developer participation in OSS by introducing and highlighting the role of

technical interdependencies of projects in a software ecosystem. Thereby, we under‑

line the importance of a socio‑technical lens on theOSS phenomena that considers the

social as well as technical structures and provide several opportunities and directions

for future research.
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SUSTAINING OPEN SOURCE SOFTWARE PROJECTS:
AN ECOLOGICAL PERSPECTIVE ON TECHNOLOGICAL
INTERDEPENDENCIES IN SOFTWARE ECOSYSTEMS
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Abstract
The sustainability of open source software projects relies on the participation
of developers in their community. This study draws on organizational ecology
theory to investigate how interdependencies between projects in a technological
niche in software ecosystems influences a project’s ability to retain its develop‑
ers. We argue that interdependencies through shared developer resources lead to
mutualistic dynamics in a project’s technological niche that favor sustained par‑
ticipation. We empirically tested our hypotheses by collecting and analyzing lon‑
gitudinal data from the JavaScript ecosystem and testing them using a Bayesian
multilevel approach. We find that developer overlap in technological niches in‑
creases a project’s ability to retain developers. This effect becomes stronger with
increasing project age. Furthermore, we highlight the role of a project’s envi‑
ronment by adopting the concept of a technological niche to software ecosystems.
With these results, we contribute to the literature streams on open source sustain‑
ability and participation of developers.
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6.1 Introduction

The community‑based model of open source software (OSS) development, and the soft‑

ware components and applications that have resulted from it, form a considerable

part of contemporary organizations’ IT infrastructures (Nagle, 2019). Estimates sug‑

gest that OSS is the basis for up to 90% of any current software (Nagle et al., 2020).

Fundamentally, OSS projects rely on the voluntary participation of developers (Fang &

Neufeld, 2009; Roberts et al., 2006). However, volunteering developers can withdraw

their participation at any time; therefore, they represent an unstable resource (von

Krogh et al., 2012). Thus, many OSS projects at one point are no longer sustainable or

completely fail due to insufficient participation of developers (Fang & Neufeld, 2009).

Consequently, OSS projects must not only continuously attract new contributors but

also retain their active developers (Butler, 2001; Crowston et al., 2003), that is, keep

them involved in the project for a longer period.

Previous research has investigated individual‑level and project‑level characteristics

that influence developers’ initial and continuous participation decisions, for example,

intrinsic and extrinsic motivation (Roberts et al., 2006), social relations with project

participants (Hahn et al., 2008), firm sponsoring (Spaeth et al., 2015), license choices

(Stewart et al., 2006), or code architecture (Baldwin & Clark, 2006). However, these

studies predominantly focus on individual projects and their communities, neglect‑

ing the inter‑project relationships of modern OSS: OSS communities no are no longer

limited to a single project, but extend across interdependent projects through interde‑

pendencies emerging through the reuse of software components (Bogart et al., 2021).

These networks of interdependent OSS projects create so‑called software ecosystems,

referring to communities that form on a common technology platform (e.g., program‑

ming language) and allow developers to create, share, and reuse software components

that build upon each other’s functionality (Bogart et al., 2021). Software ecosystems

have emerged as an important way of organizing software development (Bogart et al.,

2021), which has helped considerably to ease the reuse of software code and compo‑
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nents (Cox, 2019). However, the resulting dependencies make individual projects de‑

pendent on themaintenance and survival of other projects in the software ecosystem,

which can lead to potentially disastrous problems if a project is neglected or no longer

sustained. For example, the “leftpad incident”, where a popular project was removed

from the software ecosystem, resulted in hundreds of JavaScripts projects failing due

to broken dependencies (Gallagher, 2016). Another more recent example is the vul‑

nerability discovered in the log4j framework, the de‑facto standard for logging in Java‑

based applications, which has affected nearly every major software company and has

been described as the “most serious security breach ever” (Hunter & De Vynck, 2021).

These incidents triggered by software dependencies illustrate that the sustained par‑

ticipation of developers is not only crucial for individual OSS projects, but also critical

for other dependent OSS projects in the software ecosystem.

In this paper, we use the concept of technological niches to theorize about the relation‑

ship between developers and project interdependencies within a software ecosystem.

Technological niches are communities defined by their technological relationships in

a common technology space (Podolny et al., 1996; Podolny & Stuart, 1995). We draw

on organizational ecology theories and previous studies on online communities (e.g.,

Wang et al., 2013; Zhu, Kraut, et al., 2014; Zhu, Chen, et al., 2014) and argue that devel‑

oper overlap, that is, the degree of shared developers with other projects (Wang et al.,

2013), considerably impacts the growth and survival of OSS projects. Therefore, we

ask the following research question:

What is the effect of developer overlap in technological niches on the sustainabil‑

ity of open source projects in software ecosystems?

To answer our research question, we propose that developer overlap positively affects

developer retention due tomutualistic effects (Barnett & Carroll, 1987). We conducted

an empirical investigation of the JavaScript ecosystem, which is one of the largest

software ecosystems today and extensively incentivizes code sharing (Cox, 2019). We

collected projects and their dependencies as well as historical development activities
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covering two years from January 2017 until December 2018. We analyzed this data

with regard to the effect of developer overlap in technological niches inside the soft‑

ware ecosystem on the projects’ ability to retain developers. We found that developer

overlap has a positive effect on developer retention, indicating that the relationship

between OSS projects in technological niches is mutualistic. Furthermore, we found

no significant interaction between the effect of developer overlap density and project

size, but the effect of developer overlap density increases with increasing project age.

By taking the environmental interdependencies of OSS projects in software ecosys‑

tems into account, our study thereby makes three key contributions. First, we add

to the literature on OSS sustainability by highlighting the role of a project’s technical

environment, in the form of its technological niche, on its ability to keep developers

invested. Second, we add to the growing OSS literature adopting a network perspec‑

tive by combining it with organizational ecology theory. Third, we introduce a novel

lens to IS research on OSS communities by studying communities using the concept

of technology niches.

The remainder of this paper is structured as follows. In the next section, we focus on

the interdependencies betweenOSS projects in software ecosystems and describe how

we use an ecological perspective to conceptualize OSS projects environments through

technological niches. Followingly, we review the literature on OSS sustainability and

dynamics in organizational environments, which we apply to develop our hypotheses.

Next, we describe our model specification and report on our results. In the final sec‑

tion, we discuss our study’s theoretical and practical implications, its limitations, and

future research directions. We close this paper with conclusions.
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6.2 Related Work and Theoretical Background

6.2.1 Sustained Participation in Open Source Software Projects

The community‑based model of OSS development is only possible through the “open,

voluntary, and collaborative efforts” by its developers (Shah, 2006). These decentral‑

ized communities of developers collaborate via online development platforms such

as GitHub and voluntarily contribute to the projects (Fang & Neufeld, 2009; Roberts

et al., 2006), making OSS projects dependent on the continuous participation of their

community (Roberts et al., 2006; Shah, 2006). Hence, failing to sustain enough devel‑

oper participation and creating a community that is willing to engage with the project

over the long run is one of the major reasons for project failure (Bateman et al., 2011;

Crowston et al., 2003; Markus et al., 2000; Ren et al., 2012).

Therefore, the issue of developer participation and its relation to the sustainability

of OSS projects has emerged as a major topic in OSS studies (Curto‑Millet & Corsín

Jiménez, 2022). Previous research has thereby investigated several individual‑ and

project‑related factors and characteristics that influence developers’ participation

behavior. Individual factors comprise, for example, the enjoyment of participation

(Shah, 2006), the willingness to learn and develop skills (von Krogh et al., 2003), career

advancements (Lerner & Tirole, 2002), or emotional attachment with the project

(Maruping et al., 2019). Project‑related factors influencing developer participation

include, for example, the project’s license restrictions (Stewart et al., 2006), organiza‑

tional sponsorship (Shah, 2006; Stewart et al., 2006), or the modularity of its codebase

(Baldwin & Clark, 2006).

More recently, social relations between developers and projects have become the fo‑

cus of OSS research, with several studies using a network perspective to investigate the

influence of ties between developers themselves and project affiliations. For example,

developers are more likely to join a project if they have previous collaborations with

the project initiator (Hahn et al., 2008), and their decision to remain involved in the
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project is influenced by other developers (Oh & Jeon, 2007).

6.2.2 An Ecological Perspective on Software Ecosystems

In this study, we introduce an ecological perspective on OSS communities in software

ecosystems to examine the competition for developers between OSS projects. Mod‑

ern OSS communities emerge not only around a single project but around a collec‑

tion of interdependent software components that result in the formation of software

ecosystems, that is, communities that emerge on a shared technology platform (e.g.,

programming language) allowing developers to share and build upon packaged soft‑

ware components. In modern programming languages, the practice of reusing soft‑

ware components has become even more practical, and therefore more extensive,

through the integration of dependency management tools such as component man‑

agers (e.g., npm) and online databases of available software components (e.g., the

npm registry)16, which ease the process of downloading and installing software com‑

ponents (Cox, 2019). Adding an external software component to the codebase creates a

dependency relationship, making the integrating project dependent on the providing

project to properly function (Bogart et al., 2016).

This has proven to be a viable means of organizing OSS development work (Bogart

et al., 2021). In software ecosystems, interdependencies between projects emerge

and evolve through the recombination and reuse of the existing software components

(Bogart et al., 2016; Howison & Crowston, 2014; Singh et al., 2011), which is common

practice in OSS development (Haefliger et al., 2008; Sojer & Henkel, 2010). A software

ecosystem therefore can be seen as a self‑organizing system that emerges from the

combination of available technology (Arthur, 2009). This is enabled through incor‑

porating the principles of modular system design (Baldwin & Clark, 2000) and trans‑

parency of the development process and activities (Cataldo & Herbsleb, 2010).

Even though projects benefit from reusing software components through saving their

16https://www.npmjs.com/
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developers’ time and implementing already proven solutions (vonHippel & vonKrogh,

2003), it can lead to various technical as well as organizational problems such as fail‑

ure of the system and increasing coordination efforts (Cataldo et al., 2009). Thus, de‑

spite reducing complexity on a project level by creating a modular architecture that

is more attractive for developers (Baldwin & Clark, 2006), using existing components

creates a complex structure of interdependencies on the ecosystem level (Kapoor &

Agarwal, 2017). These interdependencies can become harmful for the quality of the

entire ecosystem if they are not maintained and properly managed (Cox, 2019; Decan

et al., 2019). Consequently, the development of software in ecosystems involves a large

and heterogeneous group of projects and related developers that need to effectively

collaborate to produce a functioning system (Cataldo & Herbsleb, 2010).

A prominent theoretical lens to study interdependencies in an ecosystem of interde‑

pendent entities is the theory of organizational ecology (Hannan & Freeman, 1989),

putting emphasis on the population and community levels of organizational analy‑

sis (Baum, 1996). Organizational ecology accounts for the effects of environmental

changes and shared resource requirements, which emerge in populations of intercon‑

nected organizations, on their performance (Hannan & Freeman, 1989). A population

is usually defined as a set of organizations having “unit character” (Hannan & Free‑

man, 1977). Research on online groups defined, for example, the shared technological

platform as the unit character to identify populations (Wang et al., 2013). We follow

a similar approach by defining the population of OSS projects based on their shared

programming language.

More recently, researchers have recognized that organizations in a population do not

have equal influence on each other and therefore have started to focus on internal

structures within organizational populations (Freeman & Audia, 2006). The unit char‑

acter of these so‑called organizational communities stems frompatterns of interdepen‑

dencies among organizational actors (Freeman & Audia, 2006). These interdependent

relations have been operationalized in different ways, for example, by focusing on the

organizational members and their characteristics (Baum & Singh, 1994b; McPherson,
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1983), or through a shared identity (Ruef, 2000).

6.2.3 Technological Niches and Developer Overlap

In this study, we adopt Podolny & Stuart (1995)’s concept of a technological niche, which

is a community that is based on a common technology space defined by relationships

between technological innovations. In their original work, Podolny & Stuart (1995)

defined the technology space of an organization using patent citation data to identify

the build upon innovations. They operationalize for each organization its egocentric

niche that includes (1) the focal organization, (2) those organizations the focal organi‑

zation builds upon by using their innovations, and (3) those organizations that build

upon the focal organization’s innovations.

In software ecosystems, when a project reuses another project’s provided functional‑

ity, thus building upon its work, this is reflected in their dependency relationships

between its software components. Larger projects often consist of multiple software

components, each with its own potential dependencies on other components; either

by belonging to the same project or from a different project. These dependencies on

the component level can be projected to the project level. By adopting Podolny & Stu‑

art (1995), we conceptualize a focal project’s egocentric technological niche in software

ecosystems consisting of (1) the focal project, (2) those projects that the focal project’s

components depend on, and (3) those projects that have components depending on

components of the focal project.

Figure 6.1 illustrates our ecological viewon software ecosystems representedby thede‑

pendency network and technological niches. The bottom layer represents the compo‑

nent level of the software ecosystem. The directed relations between two components

reflects a dependency relationship. The top layer represents the project level. OSS

projects are often divided into multiple software components. Thus, the related soft‑

ware components and their dependency relationships are aggregated on the project

level. On the project level, the striped rectangles represent the respective technologi‑
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cal niches of three exemplary focal projects, which are highlighted in red. Notice that

projects can belong to multiple technological niches, as indicated at the top where a

project belongs to two technological niches shown by the overlap.

Project Level

Component Level

Figure 6.1. Software Dependency Network and Technological Niches

Consequently, not all projects in the software ecosystem are equally interdependent.

Software ecosystems tend to form technological niches. Technological niches in OSS

development are important because they provide a space for developers to specialize

and thereby reduce the barriers of contribution (von Krogh et al., 2003). This allows

them to accumulate more specific knowledge and strengthen their identification with

the community, which increases their motivation to sustain their contribution to the

community (Fang&Neufeld, 2009; vonKrogh et al., 2012). In addition to the set of com‑

mon technologies, these communities are characterized by shared goals, challenges,

and problems that the involved projects aim to solve. For example, a technological

niche could be formed around a specific type of application or tool (e.g., a content

management system or a web‑development framework), or a specific domain (e.g.,

scientific computing or machine learning).
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Within a technological niche, OSS developers usually work onmultiple projects simul‑

taneously (Grewal et al., 2006; Singhet al., 2011) andhencemust allocate their timeand

attention among different projects. From the perspective of a project, this results in de‑

veloper overlap, that is, the degree of shared developerswith other projects (Wang et al.,

2013). Developer overlap reflects the degree of interdependencies between projects

resulting from shared developer resources. Previous research on online groups and

communities has recently drawn from organizational ecology theories to investigate

the effect of these interdependencies that arise through overlapping members (e.g.,

Wang et al., 2013; Zhu, Kraut, et al., 2014; Zhu, Chen, et al., 2014). Along with studies

on traditional organizations, the findings of these studies are ambiguous, with some

showing positive and others negative effects of overlap on the growth and survival of

online groups and organizations.

However, these studies so far have neglected the projects’ environment and its effect

on competition for developers’ participation. As OSS projects exist in a larger software

ecosystem of interdependent projects, they must acquire and compete for developer

resources available in the pool of potential participants in the environment (Wang

et al., 2013). Furthermore, to the best of our knowledge, the relations that emerge

through the technical interdependencies in software ecosystemshavenot been consid‑

ered. Thus, we focus on these relations and the resulting interdependencies between

projects in a technological niche and their effect on sustained participation.

6.3 Theory and Hypotheses

6.3.1 Ecological Interdependencies in Technological Niches

OSS development is a collaborative process that involves a community of developers

who work together to create software. In effect, they form an organization. In orga‑

nizational ecology theory, organizations are considered interdependent when they in‑

fluence each other’s performance and success (Barnett & Carroll, 1987). Studies have
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thereby focused on the influence on potential outcomes such as organizations’ growth

and decline (McPherson, 1983), their founding (Baum & Singh, 1994a), or mortality

(Baum & Singh, 1994b). Interdependencies between organizations emerge on differ‑

ent levels, for instance, between individual organizations, populations, or communi‑

ties of organizations (Barnett & Carroll, 1987).

In OSS communities, there are many interdependencies that exist between develop‑

ers, users, and the project itself. Developers depend on each other to create andmain‑

tain software, while users depend on developers to provide software that meets their

needs. Projects itself can also have interdependencies with other projects, as it may

rely on other project’s software components to function correctly. In this study, we

focus on the interdependencies between communities of OSS projects, whose bound‑

aries are defined by their technological niche. These interdependencies can lead to

either competitive ormutualistic effects and therefore have negative or positive effects

on the organizations in the environment (Barnett & Carroll, 1987).

In organizational ecology literature, the density dependence model has been used to

capture the dynamics of competition and mutualism (Baum & Singh, 1994b). Early

studies investigated competitive and mutualistic effects as a function of population

density, that is, the number of organizations in a population (Carroll & Hannan, 1989).

More recently, studies have used the resource overlap model to investigate competi‑

tive and mutualistic effects (Baum & Singh, 1994b, 1994a). Here, the intensity of inter‑

dependencies between organizations is driven by the degree of similarity in resource

requirements (Hannan & Freeman, 1977, 1989).

6.3.2 Developer Overlap Density

In IS research, the density dependence model has been adopted to study the effect of

member overlap on the growth of online communities (Wang et al., 2013). Thus, the

resource of a community is defined through its shared members. As has been argued

for voluntary organizations (McPherson, 1983) and online communities (Wang et al.,
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2013), we consider developers in OSS projects as their most important resource. Reten‑

tion of developers, that is, retaining newcomers and lessening turnover of longtimers,

is thus an important objective of every OSS community.

We focus on the overlap between developers in the community to investigate the eco‑

logical interdependencies and their effect on retention. We argue for a mutualistic ef‑

fect of developer overlap on their sustainability in OSS communities defined by their

technological niche.

First, for OSS developers, it is common to work on multiple projects at the same time

(Grewal et al., 2006; Singh et al., 2011), whereas employees in traditional organizations

are usually contractually tied to a single organization. Therefore, the employee be‑

comes unavailable for other organizations, with a decreasing focus of developers who

participate in multiple projects (Kim et al., 2018; Wang et al., 2013) or a decrease in

community engagement through a lack of diversity in the community (Daniel et al.,

2013). This results in characteristics of a rival resource (Benkler, 2006). However, due

to the observed nature of OSS developers to be affiliated with multiple projects (Gre‑

wal et al., 2006; Singh et al., 2011), we argue that they rather possess characteristics of

a non‑rival resource that is not fully exhausted once associated with a specific project.

Second, developer overlap indicates collaboration of developers in other projects. Pre‑

vious research has shown that increased collaboration between developers not only

increases knowledge sharing (Peng et al., 2013) and leads to positive spillover‑effects

that lead to better quality and greater technical expertise in technological niches (Gre‑

wal et al., 2006) as well as growth (Zhu, Kraut, et al., 2014), but also that collaborative

ties increase the probability that developers stay involved in a project (Uzzi & Spiro,

2005), or even make new developers join the project (Hahn et al., 2008). Hence, we

propose:

H1: Developer overlap density within a project’s technological niche has a posi‑

tive effect on developer retention.
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6.3.3 Developer Overlap Density and Project Size

The legitimacy of organizations plays an important role in demographic and ecologi‑

cal processes (Hannan& Freeman, 1988). Legitimacy is thereby influenced by two key

demographic factors: size and age. In terms of size, larger organizations are usually

perceived as beingmore successful and dependable in the future, which leads to disad‑

vantages for smaller organizations (Baum, 1996). In ecological studies, this phenome‑

non is often referred to as the “liability of smallness” (Aldrich&Auster, 1986). Previous

research on voluntary organizations has shown that large organizations, where mem‑

bers are more loosely connected, are more likely to experiencemembership turnover

(McPherson et al., 1992). Thus, we argue that larger projects aremore likely to lose de‑

velopers when these developers are shared with other projects. Hence, we propose:

H2: Developer overlap density within a project’s technological niche has smaller

positive effects on developer retention in larger projects than in smaller projects.

6.3.4 Developer Overlap Density and Project Age

In terms of age, younger organizations are usually seen as having a higher chance

of failure and lower legitimacy (Baum, 1996). This phenomenon is referred to as the

“liability of newness” (Stinchcombe, 1965). As has been shown in research on online

groups,we similarly argue that olderprojects havemore committedmembers that also

have amore established network among other developers, which positively influences

their intention to stay involved in the project (Wang et al., 2013). Hence, we propose:

H3: Developer overlap density within a project’s technological niche has greater

positive effects on developer retention in older projects than in younger projects.

In summary, we propose that developer overlap with other projects in the technolog‑

ical niche has a positive effect on developer retention. Further, we assume that the

project’s size will negatively influence this effect whereas the project’s age positively

influences this effect. Figure 6.2 illustrates our proposed research model.
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Developer Overlap
Density

Project Size

Project Age

Developer
Retention

Control
Variables

H1 (+)
H2 (−)

H3 (+)

Figure 6.2. Research Model

6.4 Methods

6.4.1 Data

We tested our hypotheses in the JavaScript ecosystem, which is one of the largest OSS

ecosystems with extensive technological interdependencies between projects (Decan

et al., 2019). We used secondary data from the Libraries.io (Katz, 2020) and GHTorrent

datasets (Gousios, 2013). First, Libraries.io17 gathers data from different dependency

managers and tracks open source projects, their published components, and the in‑

terdependencies between them. Since we focused on the JavaScript ecosystem, we

first gathered all projects related to npm, which is the dependency manager of the

JavaScript programming language maintained by npm, Inc.18 Second, we added the

related development activities from GHTorrent19, which archives repository activity

on GitHub by monitoring its public event timeline, by matching both datasets based

on the repository information. We collected all relevant data from January 2017 until

January 2019 on a monthly basis. We chose this time span to have sufficient observa‑

tions and because of the restricted availability of historical event data20.

Several criteria were applied to guarantee that only active and legit projects were in‑

cluded in our analysis. First, we included projects with releases and code contribu‑

17https://www.libraries.io/
18https://www.npmjs.com/
19https://www.ghtorrent.org
20All data, code, and results are provided in an OSF repository here: https://tinyurl.com/4ckx8drk
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tions after the beginning of our observation in the beginning of 2017 and with at least

one participant in each period. Second, we removed all forks from the dataset, be‑

cause in a development model driven by pull requests, that is the process of cloning a

project, making changes, and requesting integration of the changes into the codebase,

forks are automatically created once a pull request is issued. Third, we removed all

activities related to bots from our data. These bots are used to coordinate work and au‑

tomate tasks (e.g., ‘dependabot’21 automatically updates technical dependencies) and

thereby they perform various activities in the repository (Hukal et al., 2019). Bots were

in parts automatically identified through a high number of affiliated projects during

a period, and in parts manually by scanning the related account login names. Fourth,

we observed only projects that had at least one interdependency with another project

during our observation. Therefore, projects that were not engaged in a dependency

relationship with another project at any time during our observation were excluded.

Lastly, we removed projects without information on their license. This resulted in a

final data set of 2,403 projects. Some projects were created after January 2017 and have

therefore fewer than 24 observations in the dataset. The final data set includes 41,909

project‑month observations.

6.4.2 Network Construction

The JavaScript ecosystem functioned as the boundary condition for our network. We

followed a whole network approach (Marsden, 2005) for our network construction. By

focusing on the JavaScript ecosystem, we concentrate on a specific programming lan‑

guage as the underlying foundational technology, which is a common strategy when

defining network boundaries in OSS studies (e.g., Grewal et al., 2006; Singh et al., 2011).

Therefore, developers in that network do not differ in their capability to develop in

a specific language. Also, because our main interest is on the effect of technology

niches, these interdependencies only exist in the context of a specific language.

21https://github.com/dependabot
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To construct the network, we first identified all projects related to the npm registry

available in the Libraries.io dataset. For each project, we identified all associated com‑

ponents, their versions, and related dependencies. We created snapshots for the state

of the network for each observation. We only included projects and their respective

components in the network that had a release one year prior to the observation date

because a large proportion of the projects in the data set showed no release activity

due to potential feature completion or termination. Dependency relations of a com‑

ponent were gathered for all recent versions six months prior to the observation date

because including only dependencies of the recent version would have excluded ver‑

sion branches that are still used and in development. Furthermore, in the JavaScript

ecosystem, dependencies are distinguished between runtime dependencies and de‑

velopment dependencies. Runtime dependencies are required for the software to

function, whereas development dependencies are only used during the development

process. Thus, we focused only on runtime dependencies. Based on the dependency

network, we created the project network projection. Based on the project network,

we conceptualize a project’s technological niche by following Podolny & Stuart (1995).

Each project therefore occupies an egocentric niche that includes the (1) focal project,

(2) the projects that the focal project uses as a dependency (upstream dependencies),

(3) the projects that use the focal project as a dependency (downstreamdependencies),

and (4) the dependencies between these projects.

6.4.3 Measures

Dependent Variable

Our study focuses on the sustained participation of developers in OSS projects. There‑

fore, we capture the continuous participation by measuring developer retention as the

number of developers that continued their participation in the project in the following

month. This is based on existing measures to compare participants from one period

to the next (e.g., Butler, 2001; Chengalur‑Smith et al., 2010; Wang et al., 2013). Partic‑
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ipation in OSS projects is more than just committing code. Developers report issues,

provide feedback and help, andmanage tasks (Setia et al., 2012). Therefore, we follow

Hartwick & Barki (1994) and operationalize participation in a project as the “behav‑

iors, assignments, and activities” during the development process. This includes writ‑

ing comments in issues or pull requests, opening or closing issues or pull requests,

or pushing commits to the repository. To measure developer retention of a project,

we first collected all developers that participated in each period. Afterwards, we com‑

pared the list of developers participating in subsequent periods and counted develop‑

ers that participated in both periods.

Independent Variables

We follow Wang et al. (2013) by using a weighted measure of developer overlap density

that accounts for both the number of projects in the technological niche that have

shared developers with the focal project and the degree of overlap between the focal

project and other projects in the niche. Two projects were considered sharing a devel‑

oper if the developer participated in both projects in the samemonth. To arrive at our

measure of developer overlap density, we calculated the degree of overlap between

the focal project 𝑖 with another project 𝑗 in the focal project’s technological niche as

the number of shared developers divided by the total number of participating develop‑

ers in focal project 𝑖 in month 𝑡. The developer overlap for a focal project 𝑖 in month 𝑡
was then calculated as the sum of the degree of overlap between the focal project and

each project in its technological niche:

Developer Overlap Density𝑖𝑡 =
𝐽

∑
𝑗=1

Shared Developers𝑖𝑗𝑡
Developers𝑖𝑡

(6.1)

For our interaction effects, wemeasured project size by counting all participating devel‑

opers in a month. Here, the definition of participation used for calculating developer

retention applies as well. Project age was measured as the difference in months be‑

tween the creation data of the project’s repository and the end date of the respective
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month.

Control Variables

We controlled for the population size measured as the total number of projects in the

software ecosystems in eachmonth. Technological niche sizewas calculated as the num‑

ber of projects in the focal project’s technological niche in each month. Average activ‑

ity in a project was calculated as the total number of participation activities divided

by the total number of participating developers in a month. Furthermore, we created

dummy variables to account for the restrictiveness of the project’s license. In doing

so, we followed Singh et al. (2011) and coded a project’s license restrictiveness as either

‘permissive’, ‘copyleft’, if the license included the respective clause, or ‘others’. In case

license information was not provided on the project‑level, we collected the licenses of

the individual components and assigned themost restrictive license. A seconddummy

variable reflected the organizational ownership of the project based on the account

type of the repository’s owner (‘USR’ or ‘ORG’).

6.5 Model Specification

Wespecified aBayesianmultilevel regressionmodel to estimate the effect of developer

overlap density on developer retention. Amultilevel model accounts for our clustered

data structure due to the repeatedmeasures of each project. Therefore, we included a

random effect that allowed the intercept to vary across projects. An initial Hausman

test suggested that fixed effects are sufficient. Thus, we modeled the effects of our

independent and control variables as fixed effects.

Our dependent variable, developer retention, is a count and initial analysis showed

overdispersion. Therefore, we choose a negative binomial posterior distribution,

which takes additional variation due to unobserved influences into account (McEl‑

reath, 2020). We used a log‑link function, which is the typical link function used for
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count data (Gelman et al., 2014), and used weakly informative priors as suggested by

McElreath (2020). We fitted the model using R and the brms package(Bürkner, 2017).

Markov chain Monte Carlo (MCMC) simulations were used to draw samples from

the posterior distribution. We used four chains and ran them for 4,000 iterations

(2,000 warmup; 2,000 sampling) each. All chains converged, were well‑mixed (�̂�<

1.01) and reached sufficient effective sample size for our variables of interest (ESS >

1,000). In each model, we found some observations with Pareto k‑values > 0.7, which

indicates a high influence on the model. Hence, we refitted the models for each

influential observation by removing it from the data and checked the models’ pre‑

diction accuracy using leave‑one‑out cross‑validation (LOO) with Pareto‑smoothed

importance sampling (PSIS), which is recommended in case of weak priors and

influential observations (Vehtari et al., 2017).

Furthermore, initial analysis of our variables indicated that they were not normally

distributed, which can lead to biased parameter estimates (Gelman&Hill, 2007). Thus,

we applied a logarithmic transformation to all independent variables. In addition, to

reduce biases due tomulticollinearity, wemean‑centered variables before creating the

interaction terms to reduce correlations and keep variance inflation at an acceptable

level. All variables except project age and developer retention were lagged by 1month

to account for reverse causality. Initial analysis also revealed outliers regarding our

variable for developer overlap density in our data thatmight bias the regression results.

Therefore, we excluded these observations from the dataset.

6.6 Results

Figure 6.3 exemplarily shows the evolution of the technological niche of the project

vue22 from the first snapshot in January 2017 until the last snapshot in December 2018.

We refrain from showing the entire software ecosystem due to its large size. Both net‑

works show the projects at the bottom layer with edges representing interdependen‑

22https://github.com/vuejs
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cies between them with the focal project highlighted in the center. The size of the

nodes is relative to the size of the projects based on the number of participating devel‑

opers in the period. The top layer represents the participating developers with edges

representing participation in the same project. Both layers are connected through

edges representing the affiliation of a developer to a project. The technological niche

consists of 41 projects and 1096 developers in January 2017 and grows to 223 projects

and 2870 projects in December 2018.

In January 2017, 49.2% of the projects had only one participating developer. 15.8%

of the projects had two and 35% had three or more participating developers. In De‑

cember 2018, 53.7% of the projects had only one participating developer. 17.1% of the

projects had two and 29.2% had three or more participating developers. In January

2017, 29.5% of all projects in the ecosystem had no technical interdependency with

another project in the ecosystem. 21,7% of the projects had only one interdependent

project, 14,6% had two, and 34,2% had three or more. In December 2018, 28.3% of all

projects in the ecosystem had no technical interdependency with another project in

the ecosystem. 21,6% of the projects had only one interdependent project, 14,3% had

two, and 35,8% had three or more.

Table 6.1 displays the descriptive statistics for our untransformed variables. Most of

the variables are highly skewed. Thus, we also report the median values for each vari‑

able. In addition, our dummy variable for license restrictiveness shows that 80.3% of

the projects used a permissive license, with theMIT license being the dominant choice

with 60.8%. 2.57% of the projects chose a license including the copyleft clause, and

17.2% licenses were labeled as other. Regarding the project’s ownership, 65.2% were

owned by an organization and 34.8% by a user account.

Table 6.2 reports the correlations between our transformed variables and their

variance‑inflation factors (VIF) to test for multicollinearity. All VIF scores are < 3,

indicating that multicollinearity is not an issue (James et al., 2021). We observed

a high correlation between developer retention and project size, which is due to
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(a) January 2017

(b) December 2018

Figure 6.3. Exemplary Technological Niche and Affiliated Developers of the “vue”
Project

the operationalization of both variables. Furthermore, high correlations between

developer overlap density and its interaction terms with project size and project age

are rather structurally in nature and hence are no reason for concern.

In Table 6.3, we report the results of our regression analysis. The dependent variable
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Table 6.1. Descriptive Statistics (n = 2,283; N = 37,520)

Variable Mean St. Dev. Min Median Max

1 Developer Retention 8.62 21.81 0 4 614
2 Population Size 47,658.92 13,765.46 25,854 47,494 69,431
3 Technological Niche Size 28.91 115.01 1 7 3087
4 Avg. Activity 9.35 24.41 0.11 3.79 1653.00
5 Project Size 34.20 94.94 2 14 3157
6 Project Age 34.14 23.15 0.93 29.43 128.69
7 Dev. Overlap Density 0.06 0.11 0.00 0.00 0.47
8 Dev. Overlap Density2 0.02 0.04 0.00 0.00 0.22
9 Dev. Overlap Dens. × Project Size 2.76 12.48 0 0 403
10 Dev. Overlap Dens. × Project Age 2.38 4.80 0.00 0.00 50.11

Table 6.2. Correlation Matrix

Variable VIF 1 2 3 4 5 6 7 8 9 10

1 Developer Retention – 1
2 Population Size 2.541 −.028 1
3 Technological Niche Size 1.567 .150 .129 1
4 Avg. Activity 1.072 .079 .001 .076 1
5 Project Size 1.520 .595 −.049 .309 −.081 1
6 Project Age 2.863 .053 .085 .343 −.292 .253 1
7 Dev. Overlap Density 1.155 .059 .015 .406 .067 .114 .077 1
8 Dev. Overlap Density2 1.041 −.077 −.014 −.192 .046 −.200 −.095 .040 1
9 Dev. Overlap Dens. × Project Size 1.541 −.296 .036 −.023 .073 −.602 −.185 −.037 .130 1
10 Dev. Overlap Dens. × Project Age 1.343 −.032 −.047 −.138 .205 −.176 −.658 −.007 .058 .257 1

developer retention leads the independent and control variables, except project age, by

one month. Model 1 represents the baseline model with only the control variables.

Notice that here we also control for the direct effects of project size and project age on

developer retention. Model 2 adds the effect of developer overlap density to Model 1,

and Model 3 adds the squared and interaction terms to Model 2. We report parameter

estimates and the confidence intervals (95%) for bothfixed and randomeffects. LOOIC

scores indicate an improvement in the predictive accuracy from Model 1 to Model

3. Also, we calculated the intraclass correlation for each model which expresses the

information provided by the grouping in multilevel models with values ranging from

0 if no information is provided to 1 if the members of a group are identical (Gelman &

Hill, 2007). For all three models, the ICC score is around 0.47. Following, we refer to

the full specification (Model 3) to discuss the results.
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Table 6.3. Results of Bayesian Multilevel Models

DV: Developer Retention

Model 1: Control Model 2: Main Effect Model 3: Interactions
95%‑CI 95%‑CI 95%‑CI

Est. Low High Est. Low High Est. Low High

Fixed Effects
Intercept 1.098∗∗∗ 0.854 1.354 1.064∗∗∗ 0.817 1.308 1.042∗∗∗ 0.789 1.289
Population Size −0.194∗∗∗ −0.218 −0.169 −0.191∗∗∗ −0.214 −0.167 −0.193∗∗∗ −0.217 −0.168
Technological Niche Size −0.023∗∗∗ −0.030 −0.015 −0.030∗∗∗ −0.038 −0.022 −0.029∗∗∗ −0.037 −0.021
Avg. Activity 0.135∗∗∗ 0.127 0.143 0.133∗∗∗ 0.125 0.141 0.133∗∗∗ 0.125 0.141
Project Size 0.874∗∗∗ 0.866 0.883 0.875∗∗∗ 0.868 0.883 0.878∗∗∗ 0.869 0.887
Project Age −0.123∗∗∗ −0.134 −0.111 −0.123∗∗∗ −0.134 −0.111 −0.114∗∗∗ −0.127 −0.101
Dev. Overlap Density 0.220∗∗∗ 0.158 0.282 0.198∗∗∗ 0.130 0.267
Dev. Overlap Density2 0.474∗ 0.015 0.933
Dev. Overlap Dens. × Project Size 0.028 −0.019 0.079
Dev. Overlap Dens. × Project Age 0.096∗∗ 0.028 0.164
Random Effects
𝜎Project 0.306∗∗∗ 0.294 0.317 0.306∗∗∗ 0.294 0.318 0.306∗∗∗ 0.294 0.317
Dummy Variables
License Restrictiveness Yes Yes Yes
Year Yes Yes Yes
Ownership Yes Yes Yes

𝑁Projects 2, 283 2, 283 2, 283
𝑁Observations 37, 520 37, 520 37, 520
ICC 0.473 0.475 0.471
LOOIC 154, 993.906 154, 958.271 154, 952.583
Note: ∗∗∗ indicates 99% confidence interval not including zero. ∗∗ indicates 95% confidence interval not including zero.
∗ indicates 90% confidence interval not including zero. LOOIC was computed following Vehtari et al. (2017).

6.6.1 Effect of Developer Overlap Density

We proposed that developer overlap in technological niches has a positive effect on

developer retention (H1). We find support for this hypothesis with a positive coeffi‑

cient for developer overlap density (β = 0.198***; 95%‑CI: [0.130, 0.267]). We also added

a square term to test for a potential curvilinear relationship of developer overlap den‑

sity. The square term was also positive (β = 0.474**; 95%‑CI: [0.015, 0.933]), indicat‑

ing that developer overlap density improves developer retention at an increasing rate.

When interpreting the coefficients and to understand their effects, it is important to

consider that the variable has been log‑transformed and we used a log‑link function

in ourmodel, whichmeans that the dependent variable is also log‑transformed. Thus,

the coefficient reflects the percent increase in the dependent variable for every 1%

increase in the independent variable. Hence, for every 1% increase in developer over‑

lap density, developer retention increases by about 0.2%. Our second hypothesis (H2)

proposed a negative effect of project size on the effect of developer overlap density.

The coefficient for the interaction term is positive but not significant (β = 0.028; 95%‑
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CI: [‑0.019, 0.079]), therefore hypothesis H2 is not supported. However, consistent

with hypothesis H3, we found a positive and significant interaction between developer

overlap density and project age (β = 0.096**; 95%‑CI: [0.028, 0.164]).

Figure 6.4 plots the conditional effects of developer overlap density on developer re‑

tention on the left and visualizes the interaction effect for three levels of project age

from low, medium, to high on the right.
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Figure 6.4. Effect of Developer Overlap Density on Developer Retention

6.6.2 Control Variables

For the effects of our control variables, we find that the coefficient for population size

is negative and significant (β = ‑0.193***; 95%‑CI: [‑0.217, ‑0.168]). Moreover, the coeffi‑

cient for the technological niche size is negative and significant (β = ‑0.029***; 95%‑CI:

[‑0.037, ‑0.021]). The coefficient for the average amount of activity by a developer is
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positive and significant (β = 0.133***; 95%‑CI: [0.125, 0.141]). The largest effect on de‑

veloper retention has the project’s size with a positive and significant coefficient (β =

0.878***; 95%‑CI: [0.869, 0.887]). This is not surprising because of the operationaliza‑

tion of both variables. The coefficient for project age is negative and significant (β =

‑0.114***; 95%‑CI: [‑0.127, ‑0.101]).

6.6.3 Robustness Checks

We performed several robustness checks to ensure the robustness of our results (see

Appendix A). During our data collection, we used various selection criteria and de‑

fined time spans that might influence the results of our analysis. Therefore, we re‑

constructed our entire sample and the associated affiliation, dependency, and project

networks by changing each of these criteria and re‑estimated the final model (Model

3).

First, we changed the observation frequency from monthly to quarterly. This time

span is usually associated with the length of a typical release cycle in OSS projects

(Hahn et al., 2008). In doing so, the period‑dependent variables changed as well. For

example, themeasure for developer retentionnowcompared developers participating

in two subsequent quarters. The results are mostly consistent with Model 3, however,

the interaction effect between developer overlap density and project size became sig‑

nificant. Thismight indicate that larger projects have a higher probability of retaining

developers over a longer period compared to smaller projects.

Second, we changed the parameters for the dependency network construction by

changing the time span for a project to be labeled as inactive from 1 year to 6 months

as well as the release cycle lengths from 6 months to 3 months independently. Here,

the squared term of developer overlap becomes insignificant when decreasing the

time after which a project is marked as inactive to 6 months.

Third, we increased the depth of the technological niche by 1, meaning that we also

included projects that were 2 hops away from the focal project in its niche. Here, the
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results changed significantly with the squared term of developer overlap density and

the interaction termwith project age now being insignificant. Also, the direct effect of

the technological niche size is now insignificant. This indicates thatwith an increasing

depth of a project’s technological niche, the community’s cohesion diminishes and

project’s further away from the focal project might have a decreasing influence.

Fourth, we included only project size with at least 5 participating developers for all

observations in our sample and re‑estimated the model. Again, the results remained

qualitatively the same.

Fifth, as our initial data set is unbalanced because projects are newly created during

the observation period, we re‑estimated the model using a balanced panel by only in‑

cluding projects that existed at the start of our observation in January 2017. The linear

effect of developer overlap density remained qualitatively the same but the squared

and interaction terms became insignificant. These changes might be explained by

the fact that those projects that were already created at the beginning of our observa‑

tion were already quite established and therefore the project’s age has no influence on

the effect of developer overlap density on developer retention.

Lastly, we re‑estimatedModel 3 by using different distributions for our dependent vari‑

able that are also suitable for count data. We tested poisson, zero‑inflated poisson and

zero‑inflated negative binomial distributions. Only for the zero‑inflated negative bino‑

mial distribution, the squared term of overlap density became insignificant. All other

effects remained qualitatively the same.

6.7 Discussion

6.7.1 Theoretical Implications

In this study, we investigated the effect of developer overlap in a project’s technologi‑

cal niche on developer retention. We developed and tested various hypotheses using
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longitudinal data from2,283 projects in the JavaScript software ecosystem. Our results

indicate partial support for our hypotheses and are robust to numerous controls and

model specifications.

Our study has several theoretical and practical implications. Theoretically, we argued

that, because of mutualistic dynamics between OSS projects in technological niches,

developer overlap would have a positive effect on developer retention. We found sup‑

port for this hypothesis. The literature on online communities has so far produced

mixed results on the effect of membership overlap. For instance, studies showed that

membership overlap has negative effects on a community’s growth (Wang et al., 2013),

survival (Zhu, Kraut, et al., 2014), and attention and time spent by its members (Kim

et al., 2018). However, sharing members has also been shown to have positive ef‑

fects on knowledge collaboration (Zhu, Kraut, et al., 2014) and the access to external

knowledge (Kim et al., 2018). Our study adds another positive effect of membership

overlap to the discussion by focusing on developer retention as an important factor

for an OSS project’s sustainability. As we measure overlap within a project’s techno‑

logical niche, we posit that the resulting interdependencies lead to developers stay‑

ing involved with the project due the resulting complementary relationships. Even

though developers participate in other projects in a focal project’s technological niche

and therefore spend time externally, they collaborate in the larger community due

to technological dependencies. This indicates that developers do not see projects in a

technological niche as competing, individual projects but rather as a coherent stack of

projects that function together. Therefore, participating in and sharing developers be‑

tween technical interdependent projects leads to mutualistic rather than competitive

effects.

Furthermore, our findings suggest that the effect of developer overlap rises with in‑

creasing age. This indicates that it is less difficult for more mature and established

projects to sustain the participation of shared developers. As mature projects benefit

fromhigher perceived legitimacy and decreased risk of abandonment the uncertainty

for developers also decreases and therefore their intention to stay involved increases
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(Setia et al., 2012). Moreover,mature projects provide better opportunities for develop‑

ers to build networks and establish social ties that encourage long‑term participation

(Chengalur‑Smith et al., 2010; Uzzi & Spiro, 2005). However, we also found a nega‑

tive direct effect of a project’s age on developer retention, which supports the argu‑

ment that as newer projects provide more interesting development tasks compared

to maintenance‑heavy work in older projects, they are more attractive for developers

and thus are also able to retain their participation over the time (Chengalur‑Smith et

al., 2010). Taking the direct and indirect effects of a project’s age together, our results

indicate that older projects might be able to counter the negative direct effect through

the amount of shared developers in their technological niche.

In addition, while previous studies showed that the negative effect of member overlap

on growth decreases with increasing community size (Wang et al., 2013), we did not

find a significant effect of project size on the influence of developer overlap on reten‑

tion. This indicates that a shared developer’smotivation to stay involvedwith a project

is driven by the nature of the technological interdependence between the projects

rather than their size (and therefore perceived legitimacy). Moreover, our results re‑

lated to the positive effect of a project’s size and developer retention differ from pre‑

vious findings that showed that larger online communities are associated with larger

member loss (Butler, 2001). In contrast, we suggest that increasing member size may

counter the negative effects.

Our study highlights the importance of a project’s environment (i.e., its software

ecosystem) for its sustainability. Previous research on OSS projects’ sustainability

has largely focused on factors on the project‑, individual‑, and social‑relational‑level,

thereby neglecting the technological interdependencies between projects in software

ecosystems. As OSS projects and their communities do not exist in isolation but

are part of a larger software ecosystem of technological interdependent software

components and projects, our study demonstrates that these interdependencies need

to be considered when investigating the evolution of a project and its community. By

using technological niches to capture and analyze a project’s environment in software
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ecosystems, we introduce a useful concept from organizational ecology to define a

project’s environment.

6.7.2 Practical Implications

From a practical perspective, our research offers several implications for OSS project

managers and community leaders. In showing the positive effect of developer over‑

lap inside the technological niche, managers and leaders should try to integrate and

collaborate actively with other projects in their technological niche. They may even

encourage their members to participate in adjacent projects, instead of fearing to lose

them to competitors. Therefore, they would not only profit from a higher probabil‑

ity of retaining their existing developers but could also benefit from knowledge shar‑

ing and increasing collaboration. As these projects are technically interdependent, a

higher level of collaboration could thereby help in better understanding the needs of

dependent projects and their developers, thus improving the quality and satisfaction

with the project altogether.

6.7.3 Limitations and Future Research

This study has several limitations that provide directions for future research. First,

we studied a single software ecosystem based on the shared JavaScript programming

language. Each programming language and its related software ecosystemhas its own

characteristics. For instance, many projects in the JavaScript ecosystem are targeted

at web developers. Furthermore, provided software components tend to be small with

some projects only consisting of a few lines of code. Therefore, future studies should

attempt to replicate our results in other software ecosystems (e.g., Python, Rust, or Go,

to name just a few popular contemporary ones). Due to our transparent approach, our

data collection, transformation, and extraction processes can be used for this purpose

and even the used datasets provide the required data.

However, measure of developer retention does not account for the amount of activity
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in the project, but rather if developers continue to participate altogether. Therefore,

it might be the case that in case of increasing overlap density, the activity level of the

individual developer or the project’s community as a whole decreases.

Second, we did not account for the developers’ role in the project or the quality of their

contributions. Whereas some developers participate inmore technical roles by revolv‑

ing issues in the software or extending its functionality, others have more managerial

responsibilities (Hann et al., 2013). We believe that for OSS sustainability, both roles

are equally important, but we did not investigate which type of participant is more

likely to retain in a project if there are overlapping affiliations in the technological

niche. Furthermore, we did not account for other sociodemographic characteristics

of the participating developers, such as level of experience, tenure, or age. Thus, in

addition to the environmental effects in technological niches, future studies could in‑

clude these developer characteristics into the analysis, specifically because ecological

studies have also found that competitive effects between organizations increase if they

target the samemembers based on their socio‑demographics (Popielarz &McPherson,

1995).

Third, future research could further dive into the unique characteristics of technolog‑

ical niches. In our study, we only focused on the overlap between developers and

included the niche’s size as an additional control. However, previous research has

proposed several other niche characteristics, such as status of the individual projects

and indirect ties between them that are not related to the focal project (Podolny et al.,

1996; Podolny & Stuart, 1995), competitive crowding through similarities in technolog‑

ical use (Podolny et al., 1996; Stuart & Podolny, 1996) that might influence dynamics

in technological niches. Investigating these characteristics and their effect on OSS

sustainability would contribute to our understanding of software ecosystems.

Fourth, using trace data comes with various promises but also perils (Grover et al.,

2020; Kalliamvakou et al., 2014, 2016), especially when using it for network analysis

(Howison et al., 2011). By applying various checks and filters during our data collec‑

97



Chapter 6 Study 3: Ecological Perspective on Technical Interdependencies

tion and adjusting the operationalization of our variables during initial analysis, we

made sure to account for the most common perils such as low project activity, in‑

active projects, project‑specific usage of GitHub features (Kalliamvakou et al., 2016).

Thereby, we also ensured the validity of our constructs by account for potential tem‑

poral mismatch caused by our data aggregation (Howison et al., 2011), for instance, by

varying the chosen observation periods and time intervals. Nevertheless, future stud‑

ies should further validate our findings by either using different data sources, other

observation periods, or different operationalization of our constructs.

6.8 Conclusion

The sustainability of OSS projects as the foundation of our digital applications and

infrastructures becomes increasingly important. By highlighting the role of techni‑

cal interdependencies in software ecosystems and the influence of environmental dy‑

namics on developer retention, this study contributes to the growing literature on

OSS sustainability and introduces an ecological perspective on software ecosystems

and shows that project interdependencies in technological niches through shared de‑

velopers have a mutualistic effect and lead to increasing developer retention in OSS

projects. In general, we hope that this study also draws attention to the problems that

stem from software component reuse in modern OSS development. Even though the

failure of such dependencies has not been the focus of this study, by highlighting the

level of interdependencies on a technical level, we hope to engage other IS researchers

to further investigate this phenomenon.

98



CHAPTER 7

DISCUSSION

This dissertation presents three empirical studies on the influence of technical inter‑

dependencies in software ecosystems on the sustained participation of developers in

OSS projects. By focusing on the technical interdependencies, this dissertation ex‑

tends the body of knowledge by showing how they influence (1) developer attraction,

(2) developers’ participation decisions, and (3) developer retention. Thereby, these

studies theoretically contribute to the literature on developer participation and OSS

sustainability and hold several practical implications for OSS project managers and

community leaders. Following, I summarize the contributions of each study, their

practical implications, and limitations and discuss future research directions.

7.1 Summary of Contributions

7.1.1 Contributions of Study One

The first study contributes to the literature on OSS project characteristics that lead

to attracting developers. Thereby, the study extends the body of knowledge by draw‑

ing attention to the technical interdependencies that emerge in software ecosystems.

Furthermore, the study adds to OSS research that investigates the role of networks on

sustained participation. Three main contributions can be derived from this study.

First, the study shows a positive effect of upstream dependencies on a project’s abil‑

ity to attract developers. As previous studies have found mixed effects of upstream

dependencies on a project’s survival (Valiev et al., 2018), this study provides evidence

that the negative effects of more upstream dependencies, such as an increase in po‑

tential points of failure, might be offset by an increase in developer attraction.
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Second, the study highlights the overarching problem in software ecosystems emerg‑

ing from the fact that highly used projects that build the foundation of others, do not

sufficiently profit from these dependencies. This study empirically found support for

this phenomenon as the downstream dependencies of a project had no effect on its

ability to attract developers. Thus, our findings support the assumption that devel‑

opers reuse software components so that they do not have to maintain or build them

themselves (Haefliger et al., 2008).

Third, the study contributes to network‑based studies onOSS projects (e.g., Hahn et al.,

2008; Maruping et al., 2019; Oh & Jeon, 2007; Peng, 2019) by introducing and focusing

on the role of technical interdependencies in OSS ecosystems. Thus, this study high‑

lights the importance of these technical networks and adopts a holistic socio‑technical

perspective on OSS projects and software ecosystems.

7.1.2 Contributions of Study Two

The second study contributes to the literature on developers’ participation decisions

by introducing technical interdependencies between OSS projects as important an‑

tecedents. The two main contributions of this study are as follows.

First, by leveraging the dependency relations between OSS projects, this study empir‑

ically shows that developers contribute to projects they use themselves, but also to

other projects that build upon their projects. While previous research has already sug‑

gested that developers are oftenmotivated by their own needs (Shah, 2006), this study

empirically verifies this assumption.

Second, the study demonstrates the benefits and potential applications of advanced

dynamic networkmodels, such as SAOMs, in the context of OSS research. Even though

SAOMs have been used in OSS research before (e.g., Conaldi et al., 2012), this study

is the first to combine the affiliation and dependency networks between projects in

software ecosystems.
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7.1.3 Contributions of Study Three

The third and final study of this dissertation focuses on sustaining OSS projects

through developer retention, that is, keeping existing developers engaged in the long

term. The study draws from organizational ecology theory (Hannan & Freeman,

1989) and adopts the concept of a technological niche (Podolny et al., 1996; Podolny

& Stuart, 1995) to investigate the effect of developer overlap on a project’s ability to

retain developers. Thereby, the study contributes to OSS research in two ways.

First, this study shows that the effect of developer overlap in technological niches

is mutualistic instead of competitive, which leads to increased developer retention.

Thus, it contributes to the literature on online communities that has produced mixed

results. These studies have shown that membership overlap in communities has neg‑

ative effects on their ability to grow (Wang et al., 2013) and their survival (Zhu, Kraut,

et al., 2014) as members’ attention and available time is shared between the overlap‑

ping communities (Kim et al., 2018). We show that due to technical interdependen‑

cies between the developer‑sharing projects, these developers stay involved with the

project over the long run and thereby increase its sustainability. Furthermore, this

study shows that this effect even increases with increasing project age.

Second, this study highlights the importance of a project’s environment in a software

ecosystem for its sustainability. By introducing the concept of the technological niche,

it demonstrates that OSS projects and their communities do not exist in isolation but

are part of a larger community around technical interrelated projects.

7.2 Synopsis

Taken together, this dissertation contributes to the literature on the sustainability

of OSS projects that focuses on the continuous participation of its developers (e.g.,

Chengalur‑Smith et al., 2010; Fang & Neufeld, 2009; Zhang et al., 2013) and to the

ecological perspective on online communities (e.g., Butler, 2001; Wang et al., 2013;
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Zhu, Chen, et al., 2014) in two main ways.

First, by focusing on the technical interdependencies between OSS projects, this dis‑

sertation adds a missing piece for a holistic socio‑technical view on OSS development.

The investigation of their influence on developer participation revealed that technical

interdependencies affect a project’s ability to attract and retain developers and play

a role in a developer’s participation decision. Thus, this dissertation highlights the

importance of the technical environment of OSS projects that emerge and evolve in

software ecosystems.

Second, this dissertation introduces the concept of a technological niche to the eco‑

logical studies on online communities. This concept provides a way to define an OSS

project’s environmentmore precisely, it alsomakes for a suitable vehicle to investigate

dynamics in specific parts of a software ecosystem. As I showed that the dynamics in

technological niches in OSS projects are contrary to findings in online communities,

other effects might be different in technological niches in the context of OSS projects

as well.

In summary, this dissertation draws attention to the technical interdependencies and

their importance for a holistic view of OSS projects and their sustainability. It shows

that three major factors of sustainable OSS development, developer attraction, reten‑

tion, and their participation choice, are all influenced by technical interdependen‑

cies. Therefore, this dissertation suggests that when researching the OSS phenom‑

enon, these technical interdependencies and the resulting relations and dynamics

should be included and encourages research to consider this technical aspect in fu‑

ture studies.
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7.3 Practical Implications

This dissertation provides several insights and implications for OSS developers and

managers. First, as the first study indicates that the reuse of software components

leads to an increased ability to attract developers, project leads and managers should

evaluate which parts of the required functionality could be provided by other projects,

which could be implemented as an upstream dependency. This would allow develop‑

ers to focus on the project’s core functionality. However, potential upstream depen‑

dencies should be selectedwith care because their implementation leads to increasing

costs for dependency management, the risk of breaking changes, and vulnerabilities.

Second, thefirst study also highlights the overall problemof software reuse in software

ecosystems with highly important projects, indicated by their number of downstream

dependencies, not benefiting from their importance by becoming more attractive for

developers. Even though the second study indicates that developers tend to participate

in the projects they use, thismight not translate into growing a sustainable community.

Third, this dissertation indicates that community‑building efforts should also be di‑

rected towards a project’s interdependent projects. As the results of study 2 indicate

that developers tend to participate in projects they use themselves as upstream de‑

pendencies and help other projects that make use of their projects resulting in down‑

stream dependencies, OSS project leads and community managers should actively try

to engage with those developers. Also, study 3 highlights that sharing developers who

participate in other projects in the project’s technological niche leads to an increase

in retaining developers. Thus, to establish a sustainable community and thereby in‑

crease a project’s chance of survival and success, projects need to create a greater com‑

munity beyond the boundaries of their own scope and engagewith their technological

niche emerging from technical interdependencies.
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7.4 Limitations and Future Research

Following, Iwill highlight themain limitations of this dissertation and derive potential

avenues for future research.

7.4.1 Definition and Measurements of OSS Sustainability

The goal of this dissertation was to investigate the influence of technical interdepen‑

dencies on the sustainability of OSS projects. In doing so, it used various measures

that all reflect the quantity of participation. As shown by Curto‑Millet & Corsín Jiménez

(2022), the quantity of participation is only one aspect that emerges in research on sus‑

tainability. For instance, besides the quantity of participation, also the type of partic‑

ipation plays a key role in OSS sustainability. In this dissertation, participation was

generally defined as any contribution in the form of code commits, issue or pull re‑

quest creation, or engaging in discussions. Even though all these contributionsmatter

and are important for a project to survive and evolve, their values and required efforts

might differ and lead to different impacts on the overall sustainability of a project.

Hence, future studies could further distinguish between these types of contributions

and analyze if the effect of technical interdependencies differs depending on the type

of contribution.

Other important factors for OSS sustainability are the characteristics and roles of the

individual developers (Curto‑Millet & Corsín Jiménez, 2022). In this dissertation, for

example, I did not distinguish between core or peripheral developers (Setia et al.,

2012), organizational employment, or other socio‑demographic characteristics (i.e.,

nationality, age, gender). By taking these characteristics into account, future studies

could try to investigate if the effects of technical interdependencies change based on

the composition of a project’s participants.
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7.4.2 Beyond the JavaScript Ecosystem

Second, this dissertation focusedona single software ecosystem, the JavaScript ecosys‑

tem. However, there exist various other software ecosystems for different program‑

ming languages, such as Python, Java, and Rust. Each of these programming lan‑

guages and their related ecosystems focus on different domains and applications and

thus have different characteristics, features, communities, and audiences. For in‑

stance, the JavaScript ecosystem’smain domain lies inweb development and is charac‑

terized as an ecosystemwith intensive reuse of software components (Cox, 2019). Due

to this specific domain and resulting audience as well as the culture of heavily reusing,

even trivial, software components, our results might differ in other ecosystems.

Hence, future research could replicate and extend the findings to different ecosystems.

For example, the Java ecosystem is popular in the domain of enterprise software and is

more mature compared to the JavaScript ecosystem. Therefore, the composition and

characteristics of the community might be different, especially due to the potentially

greater participation of organizations.

7.4.3 Inside Dependencies and Configurations

Third, this dissertation demonstrates the importance of technical interdependencies

in the consideration of the OSS phenomenon. However, the observations and opera‑

tionalization of technical interdependencies take place on a high level. This disserta‑

tion looked mainly at the presence and amount of these dependencies, and the result‑

ing environment of an OSS project, thereby ignoring other properties and dynamics.

For instance, the size of the dependency in terms of its functional scope or the num‑

ber of participating developers might influence its effect on the focal project. Further

research could consider the dependencies’ properties when investigating their influ‑

ence on developer participation.

Furthermore, the configuration of the used dependencies might result in different

outcomes. For example, the usage of well‑established and common projects as de‑
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pendencies might have a different impact on a project’s attractiveness and ability to

leverage additional developer resources as potentially more developers are familiar

and knowledgeable with the implementation of these projects. In addition, the influ‑

ence of a particular dependencymight changewhen combinedwith another and there

might exist specific configurations that are superior compared to others. Thus, future

research should dive deeper into the specific dependency configurations of a project.

7.4.4 Structure of the Technological Niche

Fourth, I believe that the concept of the technological niche (Podolny et al., 1996;

Podolny & Stuart, 1995), introduced in study 3, represents a promising analytical tool

to look at the environment of an OSS project within a software ecosystem. In this

dissertation, specifically in study 3, I used this concept to define the boundary of a

project’s environment. However, each technological niche has its distinctive struc‑

ture that could be considered in future studies. For example, Podolny & Stuart (1995)

investigate the structure of the technological niche by analyzing the effect of indirect

ties between organizations in the niche that do not involve the focal organization on

the intensity of competition. Also, in a following study, Podolny et al. (1996) looked

at the technological overlap between organizations in the niche represented by their

shared use of antecedent innovations, which they refer to as crowding.

Future research could apply these ideas to further study technological niches in

OSS ecosystems. For instance, the mutualistic effect of shared developers might

be stronger in niches where many projects share the same software components

as their foundation. Also, this dissertation only looked at the impact of a project’s

technological niche on its sustainability, but influencing effects on other outcomes in

OSS development might be possible. For example, the structure of the technological

niche might influence the success of a project or the intensity of knowledge collabo‑

ration between niche occupants. Thus, I believe that by including an OSS project’s

environment defined by its technological niche will yield some further insights into
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how OSS projects and their communities interact, and which dynamics emerge in

these interdependent software ecosystems.

7.4.5 Evolution of the Software Ecosystem

Fifth, the studies of this dissertation mostly focused on the influence of a project’s

technical dependencies on sustained participation as the outcome. Accordingly, this

dissertation explores the variation in sustainability as a function of the technical in‑

terdependencies of a project. When applying the topology proposed by Borgatti &

Foster (2003), this dissertation thereby treats the outcome as a consequence of the net‑

work structure. Thus, the question of how the overall software ecosystem evolves and

changes remains unanswered in this dissertation.

Therefore, future studies could adopt the other perspective by focusing on the cause

of the network structure emerging from technical interdependencies. How do social

and technical relations influence its evolution, growth, and shape? Do technical inter‑

dependencies of a project influence the social relations and collaborations between

developers or is it the other way around? How does the introduction of a novel inno‑

vation through a project influence the evolution of the software ecosystem and what

influences the adoption of projects? These questions might shed light on the dynam‑

ics and evolution of software ecosystems and thereby lead to a better understanding

of the socio‑technical structures in modern OSS development.

7.4.6 Digital Trace Data and Network Analysis

Lastly, this dissertation uses digital trace data, which implies several potential validity

issues (Howison et al., 2011; Kalliamvakou et al., 2016). This data was generated from

IT systems and was not designed and originally intended for research purposes. Fur‑

thermore, most of the data comes from secondary sources, GHArchive, GHTorrent,

and Libraries.io. Therefore, even though I conducted various reliability checks and

followed recommendations to ensure construct validity and avoid temporalmismatch
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(Howison et al., 2011), I cannot guarantee that the data is completely accurate. Thus,

future research should try to replicate our findings with data from different sources

or periods.
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CONCLUSION

With the increasing dependence of organizations on OSS in the digital age, the ques‑

tion of how to sustain OSS projects becomes increasingly important. This dissertation

investigated developer participation as one of themajor factors influencing a project’s

sustainability. In doing so, it focused on the technical interdependencies betweenOSS

projects that emerge in software ecosystems as a modern way of organizing work in

OSS development. In three empirical studies situated in the JavaScript ecosystem, I

analyzed how technical interdependencies influence (1) developer attraction, (2) de‑

velopers’ participation decisions, and (3) developer retention in technological niches.

These studies offer novel insights into OSS projects by highlighting the role of techni‑

cal interdependencies in software ecosystems. The results from the empirical studies

help to achieve a true socio‑technical perspective on the OSS phenomenon. The study

presented in Chapter 4 shows how OSS projects benefit from software reuse by be‑

coming more attractive for developers. The following study presented in Chapter 5

provides evidence on how a developer’s participation decision is influenced by techni‑

cal interdependencies between projects. Finally, the last study presented in Chapter

6 adopts an ecological perspective and shows how projects in a technological niche

benefit from sharing developers which leads to an increased ability to retain existing

developers.

This dissertation contributes to the literature on OSS sustainability and developer par‑

ticipation by introducing technical interdependencies in software ecosystems as an

important antecedent and influencing factor. As the importance of OSS for our digi‑

tal world steadily increases and software ecosystems remain one of themost common

ways of organizing work in OSS development, these insights are timely and relevant to

sustain these projects in the future.
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APPENDIX A

ROBUSTNESS CHECKS

Table A.1. Robustness Checks (Study 3)
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