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Abstract 

Background:  In India, raw peanuts are obtained by aggregators from smallholder farms in the form of whole pods 
and the price is based on a manual estimation of basic peanut pod and kernel characteristics. These methods of raw 
produce evaluation are slow and can result in procurement irregularities. The procurement delays combined with the 
lack of storage facilities lead to fungal contaminations and pose a serious threat to food safety in many regions. To 
address this gap, we investigated whether X-ray technology could be used for the rapid assessment of the key peanut 
qualities that are important for price estimation.

Results:  We generated 1752 individual peanut pod 2D X-ray projections using a computed tomography (CT) system 
(CTportable160.90). Out of these projections we predicted the kernel weight and shell weight, which are important 
indicators of the produce price. Two methods for the feature prediction were tested: (i) X-ray image transforma-
tion (XRT) and (ii) a trained convolutional neural network (CNN). The prediction power of these methods was tested 
against the gravimetric measurements of kernel weight and shell weight in diverse peanut pod varieties1. Both meth-
ods predicted the kernel mass with R2 > 0.93 (XRT: R2 = 0.93 and mean error estimate (MAE) = 0.17, CNN: R2 = 0.95 and 
MAE = 0.14). While the shell weight was predicted more accurately by CNN (R2 = 0.91, MAE = 0.09) compared to XRT 
(R2 = 0.78; MAE = 0.08).

Conclusion:  Our study demonstrated that the X-ray based system is a relevant technology option for the estimation 
of key peanut produce indicators (Figure 1). The obtained results justify further research to adapt the existing X-ray 
system for the rapid, accurate and objective peanut procurement process. Fast and accurate estimates of produce 
value are a necessary pre-requisite to avoid post-harvest losses due to fungal contamination and, at the same time, 
allow the fair payment to farmers. Additionally, the same technology could also assist crop improvement programs in 
selecting and developing peanut cultivars with enhanced economic value in a high-throughput manner by skipping 
the shelling of the pods completely.

This study demonstrated the technical feasibility of the approach and is a first step to realize a technology-driven 
peanut production system transformation of the future.
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Introduction/background
Markets and value-chains linked to agricultural produce 
face many irregularities related to misrepresentation of 
the raw produce value [1, 2]. Such irregularities are com-
mon during procurement and, whether intentional or 
not, are percolating the emerging markets resulting in 
tremendous financial losses for the individual companies 
[3–8]. A key factor causing procurement irregularities is 
the non-transparent estimation of the commodity price. 
When coupled with poor value-chain logistics and a lack 
of storage facilities, which is common for the emerging 
markets, further challenges related to commodity quality 
and safety arise [3, 9–11]. Unfortunately, within the cur-
rent agricultural commodity trade the primary producers 
are affected the most.

Several technologies have been used to mitigate hur-
dles in the agricultural commodities trade related to 
standardization assessments of commodity values and/
or safety [12–15]. However, these technologies include 
classical destructive manual or laboratory testing meth-
ods (e.g., gravimetry, DNA sequencing, mass spectros-
copy, biochemical analyses) but also consider the indirect 
methods for commodity evaluation based on sensors 
(e.g., near infra-red or X-ray spectroscopy) [3, 12–14, 16]. 
The technology driven solutions, especially the portable 
ones, are in the spotlight of the international authorities 

as they might provide effective means to fill the blank 
spots of various agricultural value-chains [12, 16–19]. 
Within these, the X-ray-based systems are being used 
for non-destructive inspections of food matter struc-
ture, density, composition and homogeneity [20–28] and 
are used for many applications related to standard grain 
evaluation and inspection [29–42]. Although X-ray sys-
tems are traditionally stationary, the recent technology 
advancement highlighted the technology can be mobi-
lized for a range of out-doors applications. The CTport-
able series is one of the examples [43] demonstrating 
that it is possible to scale the system in terms of size and 
throughput for dedicated use-cases. With these kinds of 
X-ray systems, it is possible to skip the destructive part 
of material evaluation—i.e., the shelling of peanuts in 
this example. One of the major points is always the radia-
tion protection needed to assure a safe operation with 
these mobile systems. However, not only portable CT 
devices but also handheld X-ray fluorescence scanners 
are already available. Nevertheless, the mere availability 
of these kinds of systems does not imply the easy and fast 
detection of price indicators. For this, adapted imaging 
pipelines are needed to generate the relevant price indi-
cator out of the captured raw data.

In the case study presented, we investigated whether 
an X-ray-based system is a suitable technology option 

Keywords:  Peanut production, Technology-driven system transformation, X-ray, Convolutional neural network (CNN), 
Kernel weight, Shelling percentage

Fig. 1  Graphical abstract showing the differences of the current process of evaluating produce compared to the described technology-based 
process as presented in this publication
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to assess the peanut commodity price indicators 
(Fig.  1). As a demonstration use-case, we selected the 
peanut value-chain in the Kalyandurg mandal (14.55°N, 
77.11°E, 656  m; an administrative division of Ananta-
pur district, Andhra Pradesh, India). In this case, the 
commodity is procured by aggregators from the farm-
ers in their fields in the form of whole peanut pods. 
The procurement costs depend mostly on subjective 
visual evaluation (physical contaminations, damages, 
kernel size) and shelling percentage (kernel weight/
total pod weight estimated gravimetrically) estimated 
by the aggregator [44, 45]. The pooled produce is then 
transported to a processing unit where the raw pea-
nut is shelled, kernels mechanically graded and further 
sold based on the features of recovered kernels (physi-
cal properties and biochemical composition). At pre-
sent, the procurement speed does not guarantee that 
all farmers in the region can be visited on time. This 
can result in crop value deteriorations—mainly fungal 
contamination [46–49]. We also argue that substituting 
the manual procurement method with suitable technol-
ogy could, in the future, standardize and accelerate the 
procurement process and, at the same time, allow fair-
procurement cost estimation for the producers while 
avoiding the produce deterioration.

Herewith, we present a proof-of-concept study which 
investigates whether the 2D X-ray scans of whole pea-
nut pods in combination with several feature prediction 
algorithms can be used to predict peanut attributes that 
are important for peanut commodity price estimates 
(i.e., kernel weight and shell weight).

Results
Peanut varieties evaluation for price indicators: kernel 
weight, shell weight, shelling percentage
Three market price driving features of peanut pods; i.e., 
kernel weight (g/pod), shell weight (g/pod) and shelling 
percentage (100*total kernel weight/total pod weight) 
were analyzed in the study (details in "Peanut commodity 
price indicators"). The evaluated kernel weights ranged 
from 0.003  g to 2.47  g/pod with the average of 0.83  g/
pod (Fig.  2a, Additional file  1: Table  S1). Similarly, the 
minimum shell weight in the studied dataset was 0.05 g/
pod while the maximum was 1.40 g/pod with an average 
of 0.38 g/pod (Fig. 2b, Additional file 1: Table S1). Shell-
ing percentage—another parameter of economic impor-
tance—spanned across 1.5% to the maximum 87.8% with 
an average of 67.65% (Fig. 2c, Additional file 1: Table 1). 
The distributions of values for all three features in the 
analyzed dataset were skewed towards lower values (i.e., 
the lower values were over-represented in the dataset, 
Fig. 2a–c) which had significant implications for the con-
struction of the CNN feature predicting algorithms (i.e., 
the importance of each value for CNN construction was 
weighted based on the frequency of its abundance in the 
dataset; see "Peanut pod features prediction from X-ray 
scans through image transformation (XRT) and a con-
volutional neural network (CNN) regression model", 
"Feature predictions methods and comparison metrics"). 
The in-depth analysis further revealed there were signifi-
cant differences among the 39 investigated varieties in all 
three characters: kernel weight, shell weight and shelling 
percentage (Additional file 1: Fig. S1a–c).

Fig. 2  Boxplots depicting the distribution and range of kernel weight (a), shell weight (b), and shelling percentage (c) across 39 diverse peanut 
varieties assessed in the study. Kernel and shell weight were quantified by gravimetric measurements as a ground truth and shelling percentage 
was calculated as the ratio of kernel weight to total pod weight. Details on the varieties used are further elaborated in Additional file 1: Table 1 and 
Fig. S1 a–c
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Peanut pod features prediction from X‑ray scans 
through image transformation (XRT) and a convolutional 
neural network (CNN) regression model
The peanut pods were scanned using the X-ray system 
CTportable160.90 ("2D X-ray images" section). The 
resulting X-ray projections were pre-processed ("Image 
treatment" section) and, consequently, two methods 
have been used to predict the peanut pod characters: 
kernel weight and shell weight (X-ray image transfor-
mation: "Features prediction using X-ray transfor-
mation (XRT) of images", and convolutional neural 
network: "Features prediction using CNN regression 
model"). To express prediction accuracies and ena-
ble the comparison of the two pod feature prediction 
methods, the descriptive statistics of linear correla-
tion function between values predicted by X-ray image 
transformation (XRT) and the Convolutional Neural 
Network (CNN) method with ground truth measure-
ments were used (Table 1a,b, Fig. 3, details in "Feature 
predictions methods and comparison metrics" section).

This included splitting the data set into training 
(see Table 1a) and test (see Table 1b, Fig. 3) set which 
included 90% and 10% of the data set, respectively., For 
both methods (XRT and CNN), the evaluation met-
rics, i.e. the goodness of the fit for the linear regression 
between ground truth characters and their predictions 
by XRT and CNN, are summarized in Table 1a,b (Pear-
son correlation coefficient (r), coefficient of determina-
tion (R2), mean square error (MSE), mean average error 

(MAE), slope and intercept). The correlations of the 
test set are visualized separately in Fig. 3a–d.

The test set metrics (Table 1b, Fig. 3b, d) for total ker-
nel weight showed that both methods generated rel-
evant predictions as both achieved R2 ~ 0.94 and mean 
absolute error (MAE) < 0.17 (MAE was slightly lower for 
the CNN method). The CNN model predicted the shell 
weight with similar accuracy (R2 = 0.91) as the total ker-
nel weight (R2 = 0.95) but the prediction via the XRT 
method had notably lower R2 values (kernel: R2 = 0.93, 
shell: R2 = 0.78). Nevertheless, the MAE for the shell 
weight prediction was lower for XRT (MAE = 0.08) com-
pared to CNN (MAE = 0.09). The linear regression slope 
on the test dataset was closer to 1 for the XRT method 
compared to CNN for kernel weight. The intercept was 
lower for CNN compared to XRT for the predictions of 
kernel weight and higher for CNN compared to XRT for 
shell weight predictions (Table 1b, Fig. 3).

The prediction accuracy of these two methods was also 
assessed using PCA biplots (Fig.  4a, b, "Feature predic-
tions methods and comparison metrics" section). The 
results showed that there was generally a good agreement 
between predictions of features by XRT and CNN for 
kernel weight and shell weight (~ 99% loading on princi-
pal component 1). The principal component 2 (explain-
ing ~ 1% variability in the dataset) pointed out that CNN 
predictions were closer to the ground-truth values com-
pared to XRT for both kernel and shell weight. This 
method also indicated that some varieties were predicted 
with markedly different accuracies by XRT and CNN 

Table 1  a,b Summary of statistical indicators used to evaluate the prediction power of the direct X-ray images transformation (XRT) 
model and the CNN model for inferring the kernel weight and shell weight from 2D X-ray scans

These are: r (Pearson’s correlation coefficient), R2 (coefficient of determination), MSE (mean squared error), MAE (mean absolute error), slope and intercept of relation 
between the ground-truth observations (kernel and shell weight) and predictions (by XRT and CNN model). The metrics specific to calibrations set (90% of dataset) is 
in Metrics: calibration, while the metrics of the test set (testing set) is in Metrics: testing

Kernel weight/pod (by XRT 
method)

Kernel weight/pod (by CNN 
method)

Shell weight/pod (by XRT 
method)

Shell weight/pod 
(by CNN method)

(a) Metrics: calibration

 r 0.93 0.97 0.84 0.94

 R2 0.87 0.95 0.71 0.89

 MSE 0.06 0.03 0.02 0.02

 MAE 0.18 0.14 0.09 0.1

 Slope 1.01 0.75 0.78 0.64

 Intercept 0.16 0.09 0.04 0.05

(b) Metrics: testing

 r 0.97 0.97 0.91 0.96

 R2 0.94 0.94 0.82 0.92

 MSE 0.05 0.07 0.01 0.03

 MAE 0.18 0.21 0.08 0.1

 Slope 1.03 0.73 0.84 0.61

 Intercept 0.15 0.1 0.02 0.05
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methods. This was apparent with genotype ICGV86564 
which had the largest pods and kernels in the whole data-
set (Additional file 1: Table S1).

Discussion
Analysis of peanut traits of economic significance
The analyzed peanut varieties encompassed a large range 
of variability for kernel weight (0.003–2.47 g/pod), shell 
weight (0.05–1.40  g/pod) and their ratio–shelling % 
(1.5%–87.8%), sufficiently representing the cultivated 
South Asian gene-pool [50, 51]. In many of the pea-
nut market scenarios, the price incentives are primarily 

linked to a higher proportion of larger kernels and high 
shelling percentage (high proportion of kernel mass in 
total pod mass) in the raw produce [44, 45, 52]. Similarly, 
crop improvement programs have to breed for the same 
traits in order to enhance the economics of peanut farm-
ing. This is currently difficult because evaluation of these 
traits in both processes (i.e., market and breeding) relies 
on manual assessment which is time-consuming and 
potentially error-prone (e.g., [3, 44, 51,53, 54]. Therefore, 
assessing the potential of emerging X-ray technology 
options and advanced data analytics to close these gaps 
was the main motivation of the presented study.

Fig. 3  Regression plots illustrating the prediction power of CNN a, b and direct X-ray images transformation (XRT; c, d) models for kernel weight 
(a, c, solid circle) and shell weight (b, d, solid square) parameters. Graphs visualize the relation of the 10% of the dataset (“test set”) to the actual 
gravimetrically estimated ground truth which was used to infer the statistical metrics. The expanded statistical metrics of this dataset is summarized 
in Table 1b. Kernel weight (solid circle); Shell weight (solid square); Solid line (—) depicts the linear regression between the ground truth 
observations and predictions; Dashed line (---) indicates the 1:1 relation
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X‑ray technology options for the rapid assessment 
of peanut commodity features
Through this study we have demonstrated that an X-ray 
imaging system (CTportable160.90) [43] combined with 
XRT- and CNN-based algorithms is a relevant technol-
ogy base suitable to assist current peanut value-chains 
and breeding. While the use of the XRT method for simi-
lar applications in other crops has already been estab-
lished [25–27, 54] its applicability for the peanut crop 
was tested here for the very first time. Also, the utiliza-
tion of CNN algorithms for similar tasks is new and has 
not been attempted before.

Within our dataset, both methods (XRT and CNN) 
predicted the peanut produce characteristics of economic 
value with relevant accuracies (R2 > 0.94, MSE < 0.21 
for kernel weight; R2 > 0.82, MSE < 0.1 shell weight). 
Although both algorithms predicted features of most of 
the pods similarly, the CNN predictions were closer to 
the ground truth observations, especially while dealing 
with the prediction of extreme values and contaminated 
pods (e.g., large pods and pods with soil remnants).

With the current system, the pod holder preparation 
and scanning took approximately 2  min and the pre-
diction of features took less than 1  s (XRT) and 6 secs 
(CNN). Thus, a rapid estimation of the quality aspects of 
unshelled peanuts is possible and could support the cur-
rent pod-evaluation process tremendously. However, the 
concrete time- and cost-efficiency of the current technol-
ogy set-up were beyond the scope of this feasibility study. 
This will be, certainly, an important next step in the 

technology transfer pathway for dedicated use in the pea-
nut value-chain and breeding. Technology interventions 
similar to those presented hereby could support global 
efforts to bridge the remaining blind spots in agricul-
tural commodity value-chains [56]. The same technology 
interventions in the crop improvement process would 
enable faster evaluation and release of more economi-
cally beneficial cultivars.

Furthermore, the approaches currently validated on 
peanuts can be readily adapted to other crops where the 
removal of the grain shell pose difficulties for kernel fea-
tures evaluations (e.g. rice, barley or oats). In such cases 
the "virtual shelling” enabled by X-ray technology could 
largely offset these hurdles. X-ray scanning is also suita-
ble for evaluation of whole panicles (cereals) or pods (leg-
umes) where it can offset the laborious process of grain 
threshing as shown before [20, 21, 25, 34, 35, 42]. Also 
X-ray can be used for non-destructive evaluation of inner 
structures and physical properties of the grains, tubers 
etc. Many of these are important factors related to grain 
processing (e.g. milling) or internal tissue health [20, 21, 
27, 29, 42, 59] and automation can open new avenues to 
agricultural research.

Conclusion
Many farming communities that depend on peanut pro-
duction systems face numerous challenges related to 
irregularities in peanut produce procurement. In these 
market scenarios, the procurement process often begins 
with a slow manual shelling and weighting of peanuts at 

Fig. 4  Principal Component Analysis (PCA) and visualization of two main principal components that explained > 99% of variation in kernel weight 
(a) and shell weight (b). The graph represents the main relations between observed kernel weight (Obs_KW) and shell weight (Obs_SW) and their 
prediction by XRT (XRT_KW, XRT_SW) and CNN (CNN_KW, CNN_SW)
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the farmers gates. Resulting delays in procurement can 
lead to produce contamination due to inadequate storage 
[47, 48]. In line with the international committee for food 
value and safety [3, 10, 56–58], we argue that the current 
procurement process could be streamlined using novel 
portable technologies [18, 40, 41]. Therefore, we tested 
the relevance of X-ray-based technology for the predic-
tion of the key indicators of peanut produce price, kernel 
and shell mass. For the first time, we adapted a recently 
patented procedure building on a 2D-X-ray projection 
conversion method for biomass determination [59] and 
developed completely novel CNN algorithms to predict 
kernel and shell mass from whole peanut pod projections.

We showed both methodologies were relevant to pre-
dict the kernel and shell mass non-destructively from 
the 2D-X-ray pod projections. If operationalized on the 
ground, these could standardize and accelerate peanut 
commodity procurement. This acceleration would limit 
the risk of fungal contaminations due to inadequate stor-
age and, at the same time, the non-destructive assessment 
of kernel weight, shell weight and shelling percentage 
would grant a fair price to farmers. The same technology 
could be used as a part of the peanut breeding process 
to accelerate the selection of economically viable prod-
ucts and assist peanut researchers in general. Beside the 
demonstrated application for the peanut procurement 
in India, the same technology can be adapted for assess-
ing optically occluded features in harvested plant mate-
rial. This can range from legume pods, rice grains up to 
the whole cereal panicles and thus offset the manual or 
destructive shelling or threshing process. Of course, this 
would need to adapt the presented imaging pipeline and 
algorithms used within this publication.

Materials and methods
Graphical overview
Raw peanut procurement price typically depends on 
physical parameters of the peanut pods: i.e., kernel and 
shell mass. These are notoriously difficult to assess manu-
ally ("Peanut commodity price indicators"). We gathered 
peanut varieties representing the range of the peanut 
commodities in South Asian markets ("Peanut varie-
ties used and ground truth measurements"). The whole 
pods were scanned by X-ray (2D X-ray images) and, 
consequently, the manual gravimetric measurements of 
kernel and shell mass were measured ("Peanut varieties 
used and ground truth measurements"). Altogether, 1752 
of 2D X-ray projections of individual peanut pods were 
taken. The images were pre-processed ("Image treat-
ment") and the two methods for the prediction of peanut 
kernel mass and shell mass trained and applied: (a) X-ray 
image transformation for biomass assessment (XRT 
method, "Features prediction using X-ray transformation 

(XRT) of images") and convolution neural network (CNN 
method, "Features prediction using CNN regression 
model") (Fig.  5). The standard metrics were defined to 
compare these two methods for their prediction accu-
racy, i.e., to infer peanut kernel and shell weight from 
pre-processed 2D X-ray scans of peanut pods ( "Feature 
predictions methods and comparison metrics" section).

Peanut commodity price indicators
The international peanut commodity market considers 
many traits linked to the pods and kernel features related 
to their physical and biochemical characters (generic 
guidelines for international trade, [44, 45, 58, 60]. In the 
selected use case for peanut value-chains (Sri Satya Sai 
Raithu MAC Federation Limited and commodity aggre-
gators [61], Anantapur, Andhra Pradesh, India), only 
a few of these features are considered now Due to the 
manual processes involved in the grading, the estima-
tion of peanut procurement cost is time consuming (typi-
cally < 30 min to assess a produce lot). Due to the lack of 
the storage facilities, any delay in procurement poses an 
additional threat to the safety of the produce (mainly the 
risk of fungal contaminations).

Peanut varieties used and ground truth measurements
To assess the technology potential, we used peanut varie-
ties representing the range of the variability in pod and 
kernel sizes and shapes relevant to South Asian markets. 
These included 30 breeding lines and 4 released cultivars 
popular with Indian farmers obtained from the experi-
mental field at the ICRISAT research station, South Asia 
peanuts improvement team. These have been grown 
under optimal irrigation and fertilization regimes in alfi-
sol fields during the rainy season (June–September 2019). 
Each of the varieties contained a subset (~ 0.5 kg) of pods 
from several plants harvested from experimental plots. 
The typical trial plot size was 1.2 × 2 m.

We also included 5 peanut crops harvested from 5 dif-
ferent small-scale farmer fields (typically ~ 2  ha of the 
cropped land) in the Anantapur region in the rainy sea-
son (June–September 2019). Here, the peanut crop is 
typically raised on sandy soils and each farmer adapts 
different crop management strategies as per the available 
resources. We collected the sub-set of raw produce from 
5 different fields (~ 0.5 kg), which contained a mix of pods 
from different plants. Altogether, 1752 peanut pods were 
analyzed. The details of these varieties and their analysis 
are in the Additional file 1: Table S1 and Fig. S1 a–c.

From each subset of collected peanut varieties ~ 40 
pods were randomly selected. This roughly corresponds 
to the peanut pod quantity on which aggregators would 
estimate the price for the farmer’s produce. Conse-
quently, the X-ray 2D projection images of all pods were 
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taken (details in "2D X-ray images"). Then, for each of the 
scanned pods, the ground truth measurements of kernel 
weight and shell weight were conducted gravimetrically 
(KERN balance, 0.001 accuracy, the evaluation by aggre-
gators is also done gravimetrically). From the total kernel 
weight and the shell weight, the shelling percentage was 
calculated for each individual pod via s = Wk

Wp
· 100 . In 

this formula, s represents the shelling percentage calcu-
lated by dividing the kernel weight Wk by the total weight 
of the pod Wp and multiplying it with 100.

The distribution of all pod feature ranges (kernel 
weight, shell weight and shelling percentage) covered 
by the study were displayed in the boxplots (R software, 
version 4.0.2). The variation within and among the char-
acters of different peanut varieties were visualized using 
the basic Quartile Box Plot method with the data distri-
bution display (Tibco Spotfire software, version 10.7.0). 
The significance of differences in the peanut pod charac-
teristics among the varieties were tested using a one-way 
ANOVA test followed by the Tukey–Kramer test for the 
pair-wise comparison of the individual varieties (Genstat 
software,18th Edition).

2D X‑ray images
2D X-ray images were taken using the CTportable160.90 
system from the Development Center X-Ray Technology 
(EZRT) of the Fraunhofer Institute of Integrated Circuits 
(Fürth, Germany). The technical details of the system can 
be found via [25–27, 43]. In brief, the scanner consists of 
an X-ray source with acceleration voltages ranging from 
30 to 90 kV, a current up to 160 µA and a detector size 
of 2304 × 1300 pixels (49.5  μm pixel size). The sample 
stage can be positioned between the X-ray source and the 
detector with a minimum focus object distance (FOD) of 
16 mm and a maximum FOD of 285 mm, resulting in a 
maximum resolution of about 2.8 μm. The detector is a 
14-bit CMOS sensor (Teledyne DALSA Shad-o-Box 3 K 
HS) featuring a direct-contact Gd2O2S scintillator 
(Kodak Min-R 2190) scintillation foil.

To test the minimum technology requirements for fea-
ture extractions, only 2D projections of peanut pods were 
used. For this, the peanut pod holder was designed and 
crafted from extruded polystyrene (eps) to hold 4 peanut 
pods at the time. To cover the largest field of view, the 
pod holder was fixed directly onto the detector, result-
ing in an optical magnification close to 1. The system 
was operated at 60 kV and 103 µA with an exposure time 
of 300 ms resulting in a resolution of about 49.5 µm. A 
total of 438 2D X-ray projections were taken with 4 pods 

Fig. 5  Overview about the workflow, the market demand and the derived metrics to rate the quality of peanut pods



Page 9 of 14Domhoefer et al. Plant Methods           (2022) 18:76 	

in the holder resulting in 1752 individual pods. Includ-
ing changing the pod holder, system preparation and 
measurement, each scan took about 2  min. The system 
functionalities were controlled by the software Volex10 
(Fraunhofer Institute of Integrated Circuits, Germany 
[62]).

Image treatment
We took altogether 438 projections of the eps grid organ-
ized to carry four separate pods (1752 pods). Each image 
was cropped into four to display just one peanut pod and 
exported into an image format (TIFF). The raw images 
consisted of gray pixel values in a range from 5597 to 707 
(mean of pixel values 4906.43).

The following steps were designed to create labels 
and compensate for the absorbance of the residual eps-
grid projections (i.e., “border”; Fig.  6b). For this, two 
projections containing the empty eps grid were taken 
and exported as a TIFF image. Images were averaged to 
generate “mean blank images" (see Fig.  6c). The mean 
blank images were then subtracted from all the peanut 
images. After the subtraction of the mean blank images, 
some pixels had negative values. To eliminate them, each 
pixel of each image was squared, and the square root was 
taken (Fig. 6d). Afterwards, to create labels of the residu-
als of the eps-grid, a threshold of 5250 was iteratively 
determined within a subset of randomly chosen peanut 
images which were visually checked. All values below 
this threshold were set to 0 (black), the rest to a value of 
65,535 (white/ highest unsigned integer value, Fig. 6e).

For each image, the mean gray value of a small area 
(~ 40 × 30 pix) outside of the projected peanut was cal-
culated (named i0 ; Fig.  5f ). The highest i0 value was 
5382.635, the lowest 4864.444, (these values actually rep-
resent the stability of the X-ray source operated with the 
settings as described above).

Consequently, the image areas containing the residual 
eps grid were set to the i0 value (Fig. 6g). Thus, the fol-
lowing steps were not affected heavily from the sam-
ple holder. However, as the threshold for the label was 
selected manually, some of the images contained some 
artefacts. For the XRT and CNN method, the raw grey 
values within a pixel were transformed into a virtual 
weight estimation Fig. 6h [25].

Using this approach, the exponential absorption of 
X-rays within matter is corrected and transformed into 
a linear space correlating with the actual biomass of the 
absorbing matter. In this case, correlating with the total 
biomass of shell and peanut kernels. All values below 0 
were corrected to 0 taking the intrinsic noise within the 
X-ray projections into account. After implementing this 
routine, all grey values ranged between 0 and 2. These 
images (as in Fig. 6h) served as direct input training data 

for the CNN (see Sect.  "Features prediction using CNN 
regression model").

Further image processing steps were specifically done 
to extract the peanut pod features via the XRT method 
("Features prediction using X-ray transformation (XRT) 
of images"). This required the separation of the image 
area occupied by the kernel and the shell. For this, a 
threshold was set individually for every preprocessed 
image (Fig. 6h) using the automatic threshold algorithm 
by Otsu [62]. The Otsu algorithm exhaustively searches 
for the threshold that maximizes the inter-class vari-
ance. In our case, the application of the Otsu threshold-
ing method (Eq.  1) found the threshold distinguishing 
the image background from the kernel [63]. This algo-
rithm found the applicable threshold minimizing the 
following equation.

As we aimed to define the kernels it was necessary to 
choose the threshold in such a way that the shell would 
become part of the background. After the iterations of 
the Otsu thresholding method, the shell was still part 
of the foreground. As we only wanted the kernels to 
be in the foreground, and the shell appeared slightly 
lighter, the value 50 was found suitable and finally sub-
tracted from the Otsu threshold. This value 50 was 
obtained manually using a small set of peanut images 
to shift the threshold so that the pixel representing the 
shell became part of the background. All values above 
the threshold were set to 0 (black), all values below to 
1 (white). On the resulting binary images an ellipse 
shaped filter mask shape = (5 × 5 pixel) was used for a 
morphological erosion. Additionally, the morphological 
dilation was performed as well, with an ellipse-shaped 
filter mask (shape: 9 × 9 pixel) [64] (see Fig. 6i).

The resulting binary peanut kernel images (Fig. 6i) were 
used to label the peanut kernels and the peanut shells 
of the transformed images (Fig.  6h), respectively. In the 
process, the binary images (Fig. 6i) were multiplied with 
the transformed images (Fig. 6h) to obtain only the pix-
els representing the kernel. The results were integrated 
and plotted against the actual kernel weight. For the 
shell weight, the binary peanut images (Fig. 6i) were used 
inverted to serve as a label image for the shell (Fig. 6h). 
All bright pixels in the label image denote foreground 
objects whereas dark pixels denote the image background 
(compare Fig.  6j). The resulting images were also inte-
grated and plotted against the actual shell weight.

(1)σ 2
w(t) = w0(t)σ

2
0(t)+ w1(t)σ

2
1(t)
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Feature predictions methods and comparison metrics
After the pretreatment of the images the dataset was ran-
domly separated into a calibration and testing dataset 
90:10%. The “calibration” dataset (90% of the data) was 
used to train the feature predictive algorithms and the 
“testing” dataset (10% of the data) to generate the met-
rics that indicate the predicting power of each method. 
For each trait (kernel weight, shell weight) and method, 
descriptive statistics of the relationship between ground 
truth measurements and predicted values were calcu-
lated, i.e., r (Pearson’s correlation coefficient), R2 (coef-
ficient of determination), MSE (mean squared error), 
MAE (mean absolute error), slope, intercept of relation 
between the ground-truth observations and predictions. 
The exact same pod images were used as a “calibration” 
and “test” set to compare the prediction power of the two 
tested methodologies ("Features prediction using X-ray 

transformation (XRT) of images" and "Features predic-
tion using CNN regression model").

To compare the features extraction methodologies fur-
ther, principal component analysis (PCA) between the 
ground-truth measurements and the features predicted 
using methods "Features prediction using X-ray transfor-
mation (XRT) of images" and "Features prediction using 
CNN regression model" was performed using R Studio 
software (v2021.09.0 Build 351). PCA helped to clarify 
the source of prediction errors for particular types of 
peanut pods and pointed out further prediction method-
ology improvements, limitations and advantages of each 
method.

Features prediction using X‑ray transformation (XRT) 
of images
To separate the kernel and shell biomass, the label images 
were applied on the processed images to dissect the 

Fig. 6  Individual steps involved in image processing of the individual X-ray pod projections obtained from CTportable160.90. a is the original 
image (within the image the parts of the pods that we attempted to predict are named). In the following steps the eps-borders were eliminated; 
these borders are marked with yellow ellipsoids (b); subsequently, the areas of borders not containing a peanut pod were averaged (c) and 
subtracted from the fig (d) (compare c and d). Consequently, for each pixel its absolute value was taken (e) and a threshold value of 5250 (c) applied 
to the image leading to (f). In f the small area not containing peanut or a border (indicated by an orange square) was used to set the i0. This i0 was 
applied to the fig and resulted in g. Consequently, the image was transformed with Eq. 1 used as an input to CNN (h). To apply the XTR method for 
pod feature prediction, the mask based on the Otsu-thresholding method—used to differentiate the kernel (i) and shell occupied area (j)—was 
further applied to 5h
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pixels reflecting the peanut kernels and shells, respec-
tively (details in "Image treatment" “label image” applica-
tion process is visualized on Fig. 6h–j.). For all images in 
the calibration set (90% of dataset containing the same 
pod images as the calibration set used for CNN, "Fea-
tures prediction using CNN regression model"), the grey 
pixel values belonging to kernel and shell projections 
were integrated and correlated and the actual peanut ker-
nel and shell weight measured gravimetrically. The reli-
ability of this prediction method was expressed through 
linear regression parameters between XRT predictions 
and gravimetric measurements for calibration (90%) and 
test portions (10%) of the dataset. These metrics from the 
linear regression are summarized in the Additional file 1: 
Table S1 and displayed in Fig. 3.

Features prediction using CNN regression model
The calibration dataset (i.e., 90% of the complete data set) 
was further split into a “training” (80% of calibration set) 
and “validation” set (20% of the calibration set, which was 
used to monitor network accuracy during the training on 
80% of the calibration dataset after each epoch).

CNNs are a special kind of deep neural network 
designed to identify features in 2D images where numer-
ous different mask filters are trained to identify recurring 
structures. To train a network, a training set is needed 
that contains the input images and the associated tar-
get values (i.e., ground truth measurements; see "Peanut 
varieties used and ground truth measurements"). Several 
input images (“training set”, Fig.  6h., "Image treatment" 
section) are fed into a pre-specified neural network struc-
ture. In the last layer, one or more output values are cal-
culated. The output is then compared to the target values. 
The resulting error is backpropagated through the net-
work to optimize the different parameters in the model 
structure [65].

In our case we constructed the CNN network training 
structure to predict the peanut kernel and shell weights 
from virtual biomass images (Fig. 6h). This specific net-
work consisted of 10 convolutional layers, maximum 
pooling layers and fully connected layers/dense layers. 
The output layer consisted of two output neurons, featur-
ing the predicted kernel and shell weight. In contrast to 
classic feed forward CNNs the output in this study con-
sisted of continuous values. Hence, we refer to our net-
work as a CNN regression model.

For this study a structure similar to the AlexNet was 
built [66–69]. The first convolutional layer filtered the 
input image with 96 filter masks (size: 11 × 11 pixels) 
with a stride of 4 × 4. The second convolutional layer 
took the max pooled output of the first convolutional 

layer as an input and filtered it with 256 filter masks (size: 
5 × 5 pixels). The third, fourth, and fifth convolutional 
layers were connected without any intervening pooling 
layers. The third convolutional layer had 384 filter masks 
(size: 3 × 3 pixels) connected to the pooled outputs of 
the second convolutional layer. The fourth convolutional 
layer also had 384 filter masks of 3 × 3 pixels in size, and 
the fifth convolutional layer had 256 filter masks (size: 
3 × 3 pixels). All fully connected layers had 200 neu-
rons each. The first two fully connected layers also had 
a dropout of 50%. The last output layer consisted of two 
output neurons each trained to predict the peanut ker-
nel and shell weight. The two maximum pooling layers 
between the first three layers had a size of 3 × 3 pixels 
and a stride of 2 × 2 [70]. All layers had “valid padding” 
meaning no padding and were activated with the ReLu 
activation function [71]. The loss function used was the 
MSE (mean squared error). During training, the MAE 
(mean average error) between target and predicted val-
ues was also monitored at the end of each training step. 
The batch size used for training was 50 images fed into 
the network during one training step. The optimizer of 
choice for updating weights (filter masks) and biases was 
Adaptive Moment estimation (ADAM), with a leaning 
rate of 0.00005, the exponential decay rates β1 = 0.9 and 
β2 = 0.999 and a convergence criterion ǫ = 1 · 10

−8 [72].
In our case, CNN was trained for 30 epochs with vir-

tual biomass images and their corresponding peanut ker-
nel and shell weight values as target values. Each value of 
the two measured parameters—shell and kernel weight 
values—was assigned a “sample weighting “. This value 
was implemented to account for peanut kernel and shell 
weights that are underrepresented in the training set 
(refer to "Peanut varieties evaluation for price indicators: 
kernel weight, shell weight, shelling percentage" section). 
It is defined as the percentage of how much the particu-
lar loss was weighted during the back-propagation pro-
cess. The sample weighting was adjusted according to the 
number of occurrences of a specific peanut kernel and 
shell weight in the overall distribution. Thus, extreme val-
ues of weights for kernel and shell—that were underrep-
resented in the dataset—were assigned a higher sample 
weight than more abundant examples. This way of sam-
ple weighting assigns a higher loss to underrepresented 
ranges of values increasing their impact on the learning 
step. Before the training was initiated, the weights (filter 
masks) and biases of the convolutional and fully con-
nected layers were initiated. The biases were initiated 
with zeros. The weights were initialized with the Glorot 
uniform initializer, also called Xavier uniform initializer 
[73]. The hardware used was the GPU GeForce GTX 
1050 Ti and 16 GB RAM.
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Additional file 1: Figure S1 a, b, c: Modified boxplot showing variation in 
kernel weight (a), shell weight (b), and shelling percentage (c) within and 
across 39 peanut genetic materials used in the study: advanced breeding 
lines (grey), elite cultivars (blue) and farmer-produced peanut crop (green). 
Each boxplot represents one particular genetic material. Within each box-
plot the mean of each genetic material is marked by red line (−) and the 
values distribution within particular genetic material is shown along the 
vertical axes of the boxplot. Dashed line (---) depicts the average of all 39 
genetic materials used in this study. Table S1: The table contains the list 
of peanut genetic materials used for in this study. These include peanut 
crop harvested  from farmers in Anantapur (sequential number 1-5), elite 
cultivars formally released and currently cultivated across India (sequential 
number 6-9), advanced breeding lines obtained from the ICRISAT peanut 
breeding team (sequential number 10-39). Each of the genetic materials 
consisted of ~40 peanut pods which were gravimetrically evaluated for 
kernel weight, shell weight and shelling percentage. The means of these 
pod characters for each genetic material are presented in the table along 
with the results of the Tukey-Kramer test (i.e. the letters accompanying the 
means). The same letters occurring in the letter sequence indicate that the 
pod characteristics of the genetic material were not significantly different 
and vice versa.
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