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A B S T R A C T   

As the pharmaceutical industry increasingly adopts the Pharma 4.0. concept, there is a growing need to effec-
tively predict the product quality based on manufacturing or in-process data. Although artificial neural networks 
(ANNs) have emerged as powerful tools in data-rich environments, their implementation in pharmaceutical 
manufacturing is hindered by their black-box nature. In this work, ANNs were developed and interpreted to 
demonstrate their applicability to increase process understanding by retrospective analysis of developmental or 
manufacturing data. The in vitro dissolution and hardness of extended-release, directly compressed tablets were 
predicted from manufacturing and spectroscopic data of pilot-scale development. The ANNs using material at-
tributes and operational parameters provided better results than using NIR or Raman spectra as predictors. ANNs 
were interpreted by sensitivity analysis, helping to identify the root cause of the batch-to-batch variability, e.g., 
the variability in particle size, grade, or substitution of the hydroxypropyl methylcellulose excipient. An ANN- 
based control strategy was also successfully utilized to mitigate the batch-to-batch variability by flexibly oper-
ating the tableting process. The presented methodology can be adapted to arbitrary data-rich manufacturing 
steps from active substance synthesis to formulation to predict the quality from manufacturing or development 
data and gain process understanding and consistent product quality.   

1. Introduction 

In recent years, the pharmaceutical industry has been stirred by 
modernization efforts aiming for more agile and efficient processes, to 
reduce the cost and time of R&D and manufacturing, and to ensure more 
consistent product quality. Regulatory initiatives, such as the Quality by 
Design (QbD) (ICH, 2009), Process Analytical Technology (PAT) (FDA, 
2004), and the Real-time release testing (RTRT) (EMA, 2012) concepts, 
as well as the digitalization (Hole et al., 2021) and Pharma 4.0 (Arden 
et al., 2021) principles drive these endeavors. QbD promotes knowl-
edge- and risk-based operation by mapping the critical material attri-
butes (CMAs) and process parameters (CPPs) that impact the products’ 
critical quality attributes (CQAs) and defining a design space (i.e., a 
combination of the CMAs and CPPs) within which acceptable CQAs can 

be reached. The PAT initiative aims for the in-process analysis and 
control of the CQAs, CPPs, or CMAs by utilizing in-process analyzers and 
multivariate data analysis. QbD and PAT can also lead to an RTRT 
strategy, as the established design space and the real-time analysis can 
assure the product quality without end-product testing. 

The practical implementation of these principles has been exten-
sively researched in the past years. QbD – mainly statistical design of 
experiments (DoEs) – has been widely used in many steps, from active 
pharmaceutical ingredient (API) (Weissman and Anderson, 2015) to 
solid oral dosage form (Bai et al., 2019; Tho and Bauer-Brandl, 2011) 
development, and has also become an important part of new drug sub-
missions (Bai et al., 2019). Real-time analysis techniques, e.g., near- 
infrared (NIR) (De Beer et al., 2011), Raman (De Beer et al., 2011; 
Nagy et al., 2018), and terahertz spectroscopy (Markl et al., 2020) have 
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also been implemented for non-destructive, in situ analysis and even 
RTRT (Markl et al., 2020) throughout the manufacturing process (Laske 
et al., 2017; Simon et al., 2015). Using surrogate mathematical models 
coupled with the PAT measurements, even CQAs not directly measur-
able by PAT tools could be predicted, e.g., the tablets’ hardness (Casian 
et al., 2017; Otsuka and Yamane, 2006; Peeters et al., 2016) (Virtanen 
et al., 2008) or dissolution profile (Galata et al., 2019; Galata et al., 
2021; Galata et al., 2022; Hernandez et al., 2016; Nagy et al., 2019; 
Pawar et al., 2016; Yekpe et al., 2015). 

However, research gaps could also be pointed out (Grangeia et al., 
2020; Tho and Bauer-Brandl, 2011). Firstly, QbD has been widely uti-
lized to analyze the effect of, e.g., the granulation steps, but direct tablet 
compression is still predominantly based on empirical observations, 
resulting in sub-optimal operation and the inability to respond to pro-
cess deviations (Grangeia et al., 2020; Grymonpré et al., 2018; Tho and 
Bauer-Brandl, 2011). Secondly, the need to account for the variability of 
the raw materials in the design spaces has also been identified (Dave 
et al., 2015; Grangeia et al., 2020). A few studies have already been 
focused on the effect of the excipient and API variability, e.g., particle 
size, crystallinity, viscosity, and moisture content, on the outcome of the 
granulation and tableting (Casian et al., 2022; Ilyes et al., 2021; Kushner 
et al., 2011; Portier et al., 2021; Stauffer et al., 2019). Different ap-
proaches have been examined to handle these unintended effects, such 
as involving it in a DoE to select the most robust formulation (Casian 
et al., 2022), defining a multivariate specification (García-Muñoz, 
2009), or using an adaptive design space to compensate for the long- 
term variability (Igne et al., 2012). Risk-based multivariate control 
strategies (Ilyes et al., 2021; Portier et al., 2021) or feedforward control 
(García-Muñoz et al., 2010) were also proposed to compensate for the 
raw material variability. Thirdly, the emerging trend of retrospective 
QbD is also highlighted in (Grangeia et al., 2020), i.e., the utilization of 
the QbD principles on historical data. This could assist root cause 
analysis, achieve greater process understanding and consequently 
improve product quality in a later development stage without extensive 
additional experimenting (Puñal Peces et al., 2016; Silva et al., 2017; 
Yacoub et al., 2011). As historical data is increasingly getting available 
due to digitalization, this concept is expected to gain enormous 
attention. 

Currently, QbD and PAT models are mainly built relying on factorial 
DoEs, using, e.g., response surface fitting or multivariate data analysis, 
such as principal component analysis (PCA) or partial least squares (PLS) 
regression. However, the structure of historical data is most often not 
ideal for such conventional methods. Machine learning (ML) tools, such 
as artificial neural networks (ANNs), emerge as potential tools to tackle 
these tasks due to their flexibility, suitability for big data processing, and 
ability to handle non-linearity, missing, and unstructured data. Conse-
quently, their application is expected to spread in the following years as 
the Pharma 4.0. concept and digitalization are increasingly adopted in 
the pharmaceutical industry (Arden et al., 2021; Đurǐs et al., 2021; Nagy 
et al., 2022). ANNs have already been identified as powerful methods in 
several pharmaceutical tasks (Agatonovic-Kustrin and Beresford, 2000; 
Nagy et al., 2022), e.g., to characterize, predict and optimize the pro-
duction of both active pharmaceutical ingredients (API) (Nagy et al., 
2022) and pharmaceutical formulations (Wang et al., 2022). Further-
more, PAT data could be fused and evaluated to predict product quality 
(Nagy et al., 2022), e.g., in vitro dissolution profiles (Galata et al., 2019; 
Galata et al., 2021; Nagy et al., 2019). 

Nevertheless, a general preconception of ANNs, i.e., their black-box 
nature, might inhibit the introduction of ANN-based solutions, as it 
goes against the aims of the regulatory initiatives to improve process 
understanding and reach knowledge and risk-based production. The 
need for gaining physical insight from the ML models has been identi-
fied, and studies dealing with interpretable ML, or explainable artificial 
intelligence (XAI) are exponentially growing (Molnar et al., 2020). The 
interpretation could be achieved by several methods (Esterhuizen et al., 
2022; Molnar et al., 2020), e.g., using interpretable surrogate models, 

analyzing the model components (e.g., the weights of the neurons), or 
using sensitivity analysis (Ruben et al., 2018; Srivastava et al., 2021) to 
study the response of the model outcome to the perturbations of the 
inputs. Despite the promising trends, few pharmaceutical-related studies 
have been published so far capitalizing on this approach. Korteby et al. 
used the Garson equation to quantify the importance of the input vari-
ables on the outcome of a fluid bed melt granulation, predicted by an 
ANN model (Korteby et al., 2018). In another study, the parameters 
affecting the production of monoclonal antibodies were identified by 
evaluating the weights in the ANN by response surface methodology 
(Gentiluomo et al., 2019). 

This work aims to demonstrate the applicability of interpretable 
ANNs to evaluate existing developmental pharmaceutical data to predict 
the product quality, gain process understanding and consequently 
improve the manufacturing process. The in vitro dissolution and hard-
ness of direct compressed extended-release tablets were predicted from a 
dataset obtained during pilot-scale development and optimization. Our 
goal was to identify the root cause of batch-to-batch variability and aid 
the optimization and control of the process to achieve robust and 
consistent product quality. Different ANN models were developed, using 
either Raman, NIR spectra, process variables, and material attributes. 
The application of sensitivity analysis was proposed for the interpreta-
tion of the ANNs, which also contributed to an ANN-based control 
strategy. The presented methodology is aimed to serve as a general 
approach for developing interpretable ANNs in any data-rich production 
step, from the drug synthesis to the quality assurance of the final dosage 
form to support the identification, optimization, and control of the 
CMAs and CPPs. 

2. Materials and methods 

2.1. Materials and analyzed samples 

A controlled-release tablet formulation was studied, containing the 
API in two different doses, silicified microcrystalline cellulose (PRO-
SOLV® SMCC HD 90, JRS PHARMA GmbH & Co. KG) and lactose 
monohydrate (FlowLac® 100, Meggle, MEGGLE GmbH & Co. KG) as 
fillers, and magnesium stearate (Faci Asia Pacific Pte ltd.) as a lubricant. 
Furthermore, 25 % w/w hydroxypropyl methylcellulose (HPMC) 
(METHOCEL™ K4M, DuPont) was used in controlled release (‘CR’) and 
direct compression grade (‘DC’) to form a hydrophilic gel layer, hence 
ensuring an extended release. The used K4M grade is a medium- 
molecular weight HPMC with approx. 4000 cPs viscosity (2 % solution 
in water). Its DC and CR grades are chemically identical, with the same 
target viscosities and degrees of methyl and hydroxypropyl substitution 
(although batch-to-batch variabilities might occur due to the 
manufacturing). However, the DC grade has less fines and more spher-
ical morphology to obtain a better powder flow rate, better process-
ability and reproducibility in tablet weight and content uniformity. The 
exact composition of the drug formulation and the name and charac-
teristics of the active pharmaceutical ingredient (API) are confidential. 

During the pilot development and optimization stage, tablets were 
manufactured with 20 kg batch sizes using direct compression. After 
appropriately blending at a container blender the API and excipients, 
flat-faced cylindrical tablets were compressed using a Fette 1200i rotary 
tablet press (Fette Compacting GmbH, Germany). 

Data and samples from the production of nine different tablet 
batches were available, where the tablets were prepared at two API dose 
levels and using different API and HPMC batches of varying material 
attributes. Furthermore, the ratio of the CR and DC grade HPMC in the 
formulation was also varied while the total HPMC content was kept 
constant. With these nine batches, tablet compression optimization 
studies were conducted, changing the pre-, and main compression 
forces, the force feeder rotational speed, and the productivity of the 
tableting. As a result, tablets produced with a total of 224 different 
(random) combinations of 13 potential critical material attributes 
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(MAs)/ process parameters (PPs) were available for further analysis. 
These parameters and their ranges are summarized in Table 1. 

The hardness and friability of all the 224 experimental settings were 
measured. In vitro dissolution, Raman, and NIR spectroscopic measure-
ments were performed on only 34 selected experiments. 

2.2. Analytical methods 

2.2.1. Near-infrared spectroscopy 
The NIR spectra of 5 tablets per experiment were recorded using a 

Bruker MPA Multi-Purpose FT-NIR Analyzer (Bruker Optik GmbH, 
Germany) in diffuse reflectance mode and the OPUS 7.5 software 
(Bruker Optik GmbH, Germany). A high-intensity Tungsten NIR source 
was used with a PbS detector. The spectra were collected in the 10 000 – 
3800 cm− 1 with a resolution of 8 cm− 1, using 64 scans per spectrum, 
double-sided, forward–backward acquisition, and 10 kHz scanner 
velocity. 

2.2.2. Raman spectroscopy 
Raman spectra of 5 tablets per experiment were recorded by a Kaiser 

Raman Rxn2TM Hybrid (Kaiser Optical Systems, Ann Arbor, USA) in situ 
Raman spectroscope and iC Raman 4.1 (Mettler-Toledo AutoChem Inc., 
USA) software. The measurements were performed in reflection mode, 
using a 400 mW, 785 nm Invictus diode laser and the PhAT (Pharma-
ceutical Area Testing) probe, which illuminates the samples in a 6 mm 
diameter with a nominal focus length of 250 mm. The spectra were 
collected in the 200 – 1800 cm− 1 spectral range and 4 cm− 1 resolution 
with 30 s illumination time. 

2.2.3. In vitro dissolution 
In vitro dissolution tests of 5 tablets per experiment were performed 

in a Hanson SR8-Plus (Hanson Research, USA) dissolution tester, 
following the Ph.Eur./ USP paddle method and using spiral sinkers. 500 
mL of pH 4.5 acetate buffer was used as dissolution medium, stirred at 
75 rpm, and kept at a constant temperature of 37.0 ± 0.5 ◦C. Sampling 
and automated concentration measurements were performed by using a 
Hanson Autoplus Maximizer 8 (Hanson Research, USA) automatic pump 
and an online coupled Agilent 8453 UV–VIS spectrophotometer (Hew-
lett-Packard, USA). 20 h long dissolution tests were performed, sampling 
at 5, 10, 30, and 60 min, and every 60 min afterward. A univariate 
calibration with R2 = 0.99992 was used to determine the API concen-
tration based on a distinctive UV absorbance peak. 

2.2.4. Hardness and friability 
A Pharma Test WHT-3ME fully automated 4 in 1 tablet testing in-

strument (Pharma Test, Germany) was applied to determine the hard-
ness (and weight, thickness and diameter) of 20 tablets, and the average 
hardness was used for further calculations. Friability studies were con-
ducted according to Ph.Eur. 2.9.7. with 6.5 g tablets per run using a 
Pharma Test PTF-10E friabilator (Pharma Test, Germany) with 100 
rotations. 

2.3. Multivariate data analysis 

All data analysis was performed in MATLAB 9.8. (MathWorks, USA) 
using Statistics and Machine Learning Toolbox 11.7, Deep Learning 
Toolbox 14.0. and the PLS Toolbox 8.8.1. (Eigenvector Research, USA). 
Sampling for sensitivity analysis was performed using the SAFE Toolbox 
(Pianosi et al., 2015). 

2.3.1. Principal component analysis 
PCA was performed on the NIR and Raman spectra to reduce the 

spectral dimension and qualitatively analyze the main effects contrib-
uting to the variability of the spectra. PCA transforms the original n × λ 
size spectral dataset (n and λ referring to the number of the spectra and 
the spectral variables (wavenumbers), respectively) to a new coordinate, 
where the first few new variables (principal components, PCs) describe 
the variance of the dataset and keeping the PCs orthogonal to each other. 
Before PCA, standard normal variate (SNV) and mean centering were 
applied to the NIR spectra as preprocessing. Raman spectra were pre-
processed by Automatic Whittaker Filter baseline correction (asymme-
try parameter p = 0.001 and smoothing parameter λ = 10 000), 
normalization to a unit area, and mean centering. 

2.3.2. Artificial neural network 
Inspired by the information processing of the human brain, ANNs 

map the connection between input and output variables by inter-
connected information processing units, called artificial neurons or 
nodes. To achieve this, the neurons receive the inputs, an activation 
function weight and summarize them, and then a transfer function cal-
culates the output. A neural network contains several neurons, orga-
nized into layers based on their role, and the information is passed 
through these neurons during calculation. 

In this work, feedforward, fully-connected neural networks have 
been developed to predict the in vitro dissolution curve and hardness of 
the tablets from the process parameters or non-destructive spectroscopic 
data. Each ANN consisted of one input, one hidden, and one output 
layer. The number of neurons in the input layer corresponds to the 
number of input variables. ANNs with different input variable combi-
nations were tested to obtain the best model performance, using either 
the MAs/PPs summarized in Table 1, the Raman spectra reduced to 3 
PCs, or the NIR spectra reduced to 5 PCs. In the case of in vitro disso-
lution prediction, 23 output neurons were used, corresponding to the 23 
time points of the dissolution curve, while the ANNs predicting the 
hardness contained one output node. The number of the neurons in the 
hidden layers was optimized for each ANN model, for which ANNs were 
systematically built, varying the number of hidden neurons between 1 
and 10, with 50 repetitions. As relatively few input parameters were 
used, it was expected that the optimal hidden neuron number will be in 
the 1 – 10 range. Indeed, when the errors of the networks with different 
hidden neuron numbers were studied, signs of overfitting around 10 
neurons were observed, proving that the optimization in this range is 
sufficient. The neuron number providing the lowest validation error was 
used in the final model. In the hidden and output neurons, tangent 
sigmoid and linear functions were used as transfer functions. 

ANNs were trained using a dataset of known input–output (target) 
pairs by error backpropagation, which means adjusting the weights and 
biases of the neurons in an iterative calculation so that the difference 
between the calculated output and known target is minimized. Before 

Table 1 
Changing material attributes and process parameters and their ranges across the 
different batches.  

Material attribute (MA)/ 
process parameter (PP) 

Parameter 
name 

Unit Parameter 
range 

API dose Dose [mg] Undisclosed 
API particle size distribution API d10 [µm] 2 – 6 

API d50 [µm] 10 – 18 
API d90 [µm] 27 – 42 

HPMC particle size 
distribution 

HPMC PSD [% w/w < 63 
µm] 

32 – 60.3 

HPMC methoxy substitution M% [% w/w] 22.6 – 23.1 
HPMC hydroxypropyl 

substitution 
HP% [% w/w] 8.3 – 9.2 

HPMC viscosity Visc [mPas] 3746 – 4749 
HPMC CR content CR% [% of HPMC 

content] 
0 – 100 

Tableting pre-compression 
force 

Pre-CF [kN] 1 – 3 

Tableting main compression 
force 

Main-CF [kN] 5 – 18 

Tableting force feeder speed Feed [rpm] 15 – 45 
Tableting productivity Prod [1000 

tablets/h] 
30 – 65  
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training, the weights and biases were initialized using the Nguyen- 
Widrow layer initialization function (Nguyen and Widrow, 1990), 
which contains a degree of randomness, i.e., training the ANN multiple 
times produces different results. The training was performed using 
Bayesian regularization as a training algorithm for better generalization 
(MacKay, 1992) and the mean squared error (MSE) between the output 
and target as a cost function. In the case of the in vitro dissolution pre-
diction models, the goodness of the models was also characterized after 
the model training by calculating the f1 difference and f2 similarity 
factors between the target and output dissolution curves (Costa and 
Sousa Lobo, 2001), which are common indicators of the agreement of 
two dissolution curves. Their values range between 0 and 100; the lower 
the f1 and the higher the f2 value, the better the agreement. The good-
ness of the ANNs predicting the hardness was evaluated by calculating 
the coefficient of determination and root mean square error of training 
(R2

C, RMSEC) and prediction (R2
P, RMSEP). 

During ANN modeling, the randomness of the ANN model building 
and the fact that ANNs can result in a different model if the training 
dataset is slightly changing has to be tackled. Therefore, the bootstrap 
resampling technique with 1000 resampling was implemented, and 
1000 ANN retraining was performed in the case of each ANN model. In 
this way, the distribution of the ANN model results and the confidence 
intervals could be estimated. Therefore, further in this work, the results 
of an ‘ANN model’ always refer to the average outcome of the 1000 
bootstrapped submodels. The 95 % confidence interval of the results is 
estimated as the 2.5 and 97.5 percentiles of the 1000 repetitions. 

2.3.3. Sensitivity analysis 
Sensitivity analysis (SA) was performed on ANN models using the 

material attributes/process parameters to interpret the ANN, i.e., to 
analyze the effect of the ANN input variables on the output variability 
and consequently determine and rank the importance of the variables. 

The effect of the API dose was omitted from SA, as it could only take 
two distinct levels. Instead, SA was repeated at both dose levels sepa-
rately. With the remaining 12 parameters included in Table 1, 10 000 
parameter combinations were created by Latin hypercube sampling, 
assuming a uniform distribution of the parameters within their ranges 
given in Table 1. Then, the 10 000 parameter combinations were 
simulated using the ANN models. 

Partial Rank Correlation Coefficients (PRCC) were calculated be-
tween each input variable – output pair, which describes the correlation 
between the input–output pairs while removing the effect of the addi-
tional input variables. The magnitude of the PRCC value characterizes 
the strength of the connection. Furthermore, the direction of the asso-
ciation is also characterized, as the sign of the PRCC indicates if the two 
values move in the same or the opposite direction. This is why PRCC is a 
widely used, robust sensitivity index applied for nonlinear relationships, 
but limited to monotonic relationships, as the direction could not be 
defined for non-monotonic relationships and could lead to misleading 
conclusions (Marino et al., 2008). Consequently, before SA, mono-
tonicity tests were carried out by changing one input at a time while 
keeping the other parameters at their central value. The responses were 
analyzed in scatter plots to evaluate if the monotonicity criterium is 
fulfilled. In our study, no non-monotonic relationship was found. 
Otherwise, different SA techniques could be used, such as variance- 
based sensitivity analysis, e.g., Sobol, eFAST, which are applicable for 
nonlinear, non-monotonic relationships but have a much higher 
computational demand (Marino et al., 2008). 

3. Results and Discussion 

3.1. Qualitative analysis of experimental data 

A total of 224 combinations of 13 varying material attributes/pro-
cess parameters (see Table 1) were available to analyze the in vitro 
dissolution, hardness, and friability of the manufactured tablets. The in 

vitro dissolution curves of 34 selected settings were measured with 5 
repetitions (i.e., 170 tablets were dissolved). Fig. 1 shows significant 
variation between these experiments, while a low standard deviation 
within the repeated measurements was observed. However, as multiple 
factors changed simultaneously, the main reasons for the variations 
could not be identified by visual inspection. Fig. 2 depicts the dissolution 
curves of five batches of the same API dose and changing main 
compression forces. Batch 1 and Batch 2 were prepared with 100 % DC 
grade HPMC, Batch 3 contained 100 % CR grade, while Batch 4 and 
Batch 5 contained both DC and CR grades in a 50 %-50 % ratio. 
Furthermore, the batches were prepared using different API and HPMC 
batches, causing differences in the particle size and HPMC viscosity, and 
substitution levels due to the raw materials’ batch-to-batch variation. 
Fig. 2 shows that the compression force influenced the dissolution to a 
changing extent, as well as the used HPMC grades were suspected to be 
influential. Batch 1 had the fastest dissolution, which, however, could be 
associated with either the different API or HPMC batch. The f1 and f2 
values are commonly used indicators of the agreement of the dissolution 
curves in the pharmaceutical industry; f1 below 15 and f2 above 50 are 
the acceptance limits for agreement. The calculated f1 and f2 values 
between the samples ranged between 0.8 and 32.7 and 34.8 – 96.5, 
respectively, i.e., significant differences between the profiles were 
detected. The largest difference was observed between Batch 1 (7 kN) 
and Batch 5 (15 kN) with f1 = 32.7 and f2 = 34.8. Even when batches 
were produced with the same main compression force, unacceptable f1 
and f2 values were obtained, e.g., the f2 values between Batch 1 (15 kN) – 
Batch 4 (15 kN), Batch 1 (15 kN) – Batch 5 (15 kN) and Batch 3 (15 kN) – 
Batch 5 (15 kN) were 46.9, 45.8, 48.2, respectively. These values indi-
cate a high risk of producing out-of-specification tablets. Therefore, it 
was aimed to identify the main factors causing the variation in the 
dissolution profiles by mathematical modeling and develop a method to 
predict the quality of the tablets for real-time release testing and opti-
mization purposes. 

Besides the in vitro dissolution, the hardness and friability of the 
tablets are also important quality attributes, so their variation along the 
224 settings was also studied (see Fig. 1). The hardness showed a sig-
nificant variation between approx. 40–110 N with an average of 75 N, 
and the friability changed between 0 and 0.2 %. Generally, the friability 
should not exceed 1 % for directly compressed tablets, therefore, it could 
be concluded that the friability stays well below the acceptance criteria 
and was not further studied. 

Previous studies have shown that NIR and Raman spectra can be 
effectively used for predicting the in vitro dissolution of tablets if the 
critical material attributes/process parameters impacting the dissolu-
tion can be detected by spectroscopy (Galata et al., 2019; Galata et al., 
2021; Nagy et al., 2019). Therefore, the NIR and Raman spectra of the 
170 dissolved tablets were recorded before the in vitro dissolution tests, 
and the spectral variability was studied by PCA modeling. The NIR and 
Raman PCA models using all the measured spectra indicated that the 
major spectral variance is caused by having two API doses. Therefore, 
PCA models using a single dose were also built. As for the PCA model of 
the Raman spectra, the first three PCs were associated with 85.97, 1.24, 
and 1.10 % variance, respectively, while further PCs were deemed 
negligible with variances below 1 %. Observing the samples in the three- 
dimensional principal component space (Fig. 3.a), samples from Batch 1 
and Batch 2 (green squares in Fig. 3.a) showed significant variability in 
the direction of PC 1, which might be caused by the difference in the PSD 
of API batches. The samples were clustered based on the HPMC grade in 
the PC 2 – PC 3 plane. Consequently, Raman spectroscopy is expected to 
be suitable for RTRT of the in vitro dissolution if the API PSD and the 
HPMC grade are CMAs of the dissolution. As for the PCA model of the 
NIR spectra, PC 1 accounted for 98.89 % variance. However, it could not 
be associated with any known process parameters or material attributes, 
but it reflected the difference in measurement days; therefore, it is not 
depicted in Fig. 3. PC 2 accounted for 1.01 % variance, where the 
clustering of the samples based on the changing pre- and main 
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compression forces was observed (in Fig. 3, only the change per the pre- 
compression force is visualized, and the main compression force 
changed proportionally). Consequently, NIR spectroscopy might be used 
to reflect differences in the in vitro dissolution when the main CPP is the 
tablet compression force. 

3.2. Development of the ANN models 

Several ANNs were built with different input variables to find the 
best approach for predicting the in vitro dissolution profile. From the 34 
tableting settings (170 tablets), 8 settings (40 tablets) were separated for 

Fig. 1. Variability of quality attributes of the studied tablets.  

Fig. 2. In vitro dissolution of 5 tablet batches, with different main compression forces.  

Fig. 3. PCA score plots of a. Raman spectra, samples colored based on the HPMC grades, b. NIR spectra, colored based on the pre-compression forces, with 95% 
confidence ellipses. 
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validation purposes, and the models were built and optimized using the 
remaining 24 settings (130 tablets) as a training set. The 8 selected 
validation samples belonged to 6 different batches (Batch 1, 2, 4, 5, 
plotted in Fig. 2), as well as Batch 6, 7, which were manufactured as 
validation batches during the pilot development). The CMAs and CPPs of 
the validation samples varied, e.g., CR% was either 0 or 50 % CR%; 
Main-CF changed between 7 and 15 kN), and the batches were manu-
factured with different API and HPMC raw material batches. The 
measured dissolution profiles are depicted in Fig. 4. 

Table 2 summarizes the characteristics of the models. ANN 1 – ANN 3 
models were built using different combinations of the material attri-
butes/process parameters summarized in Table 1. The subset of pa-
rameters used for ANN 3 was selected based on sensitivity analysis (see 
Section 3.3 for details). When both CR and DC grades of HPMC were 
used in the tablet, the related MAs (viscosity, M%, HP%, PSD) were 
calculated as the mass fraction-weighted average of the two excipients. 
In ANN 1, only these MAs were used to characterize the effect of HPMC, 
while in ANN 2, the mass fraction of the CR grade was also used as input. 
Additionally, models using the NIR (ANN 4) and Raman (ANN 5) PC 
scores were also built, and using the hardness as a fast in-process control 
measurement as a surrogate of dissolution was also tested (ANN 6). The 
individual dissolution curve of each tablet was used as a target value. 
When ANNs with Raman, NIR spectra, and hardness (ANN 4 – ANN 6) 
were built, the inputs were also individual, as the spectra could be 
clearly assigned to the given tablets. When PPs, MAs were used as inputs 
(ANN 1 – ANN 3), only the average values for the batches were available; 
therefore, the inputs were these average values. However, as it can be 
seen, e.g., in Fig. 2, the standard deviation of the tablets within a batch is 
low; therefore, it did not significantly increase the fitting error. 

It is apparent from Table 2 that ANN 6 resulted in the lowest f2 value 
both for the training and validation, followed by the model based on the 
Raman spectra. The NIR spectroscopic technique outperformed the 
Raman method but still resulted in significantly lower f2 than the models 
using the MAs/PPs. ANN 2 resulted in the best training accuracy (f2 =

96.58), while the best validation performance was obtained when only 
the most significant factors were selected (see Section 3.3 for details) as 
inputs. 

In Fig. 4, the measured and predicted in vitro dissolution curves of the 
validation samples can be compared. It can be observed that there is a 
significant variation in the measured dissolution curves of the validation 
samples, which was best captured by the ANN 1 – ANN 3 models (ANN 2 
and 3 provided visually the same results; therefore, only ANN 2 is 
plotted). ANN 5 and ANN 6 basically predicted the average dissolution 
curve of the studied dataset, i.e., they were not capable of predicting the 
changing dissolution curves appropriately, e.g., identifying out-of- 

specification tablets. ANN 4 performed better to an extent, implying 
that the NIR spectra capture the critical MA/PP affecting the dissolution 
better than the Raman spectra. Comparing the order of the measured 
and predicted dissolution curves, it is also visible that the ANN 2 and 3 
predictions agreed with the target, e.g., it indicated well that the Valid 2 
and Valid 8 samples had the fastest release, while Valid 5 had the most 
extended dissolution. The good agreement between the measurements 
and predictions is also apparent when plotting the measured and pre-
dicted dissolution curves of each validation sample individually (Fig. 5). 

Based on these results, it can be stated that by registering the MAs of 
the raw materials and the tableting parameters, the in vitro dissolution of 
the tablets could be predicted non-destructively, without the need for 
any analytical measurement of the tablets. This could significantly 
contribute to more consistent product quality and reduce waste. 

ANN 7 and ANN 8 models were built to predict the hardness of the 
tablets from the MAs/PPs. The obtained regression curve of ANN 8 is 
illustrated in Fig. 6, where the input parameters of ANN 8 were selected 
based on sensitivity analysis (see Section 3.3 for details). The model 
resulted in 2.71 and 3.50 N RMSEC and RMSEP values, respectively, 
which are deemed sufficient to predict potential problems in the tablet 
quality. 

3.3. Interpretation of the ANN models by sensitivity analysis 

ANN 2 and ANN 7 were further studied by SA to investigate how the 
input MAs/PPs affect the dissolution profile and hardness. SA enables 
the interpretation of the ANN, which can be crucial both from the 
modeling perspective to increase credibility and support the process and 
product understanding. 

Before SA, it was checked if the monotonicity criterium for utilizing 
the PRCC measures was fulfilled. The inputs showed monotonicity in the 
studied ranges while keeping the other parameters at their central value. 
Consequently, the 10 000 combinations of the input parameters created 
by the Latin Hypercube sampling were simulated using the trained ANN 
2 and ANN 7 models, and the PRCC measures were calculated. It is worth 
mentioning that the 10 000 parameter combinations could be simulated 
in approx. 1 – 2 min (using GPU acceleration with an NVIDIA GeForce 
930MX GPU), i.e., the ANN model could be a powerful tool to generate 
virtual DoEs and to make real-time predictions and optimizations. 

The SA was repeated for the two API doses separately, but no dif-
ference was observed between the outcome of the SA; therefore, it was 
concluded that the API dose does not significantly influence the 
importance of the other parameters. The mean value of the PRCC and 
the width of the confidence interval – calculated based on the 1000 
replicated ANN models – are important indicators of the sensitivity of 

Fig. 4. Measured and predicted validation samples with the different models.  
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the input parameters. Due to the empirical nature of the training, net-
works with different weights can result in the same output. Therefore, 
wide confidence intervals can be obtained for a given input if the 

weights connected to the input can take random values. That is, a wide 
confidence interval also indicates that the input variable – in the range 
of the study – is not an important parameter for model fitting, and its 
influence on the modeled output (i.e., dissolution, hardness) is uncer-
tain. However, the confidence interval can also incorporate the uncer-
tainty caused by the limited training data. Therefore, expanding the 
training dataset could decrease the confidence intervals of the PRCC 
values, but mainly for those parameters that have great importance in 
the model. 

As for the dissolution model, the PRCC values and their confidence 
intervals could be calculated for each of the 23 dissolution time points, 
among which the 1, 5, 10, and 20 h points are illustrated in Fig. 7. 
Conducting the SA for the individual time points of the dissolution 
profile enables us to draw conclusions from the dynamic changes of 
parameter importance throughout the dissolution process, which could 
even reflect the mechanism of the process. The obtained coefficients for 
ANN 2 revealed that the main compression force (Main-CF), the particle 
size of the HPMC, and the percentage of the CR grade are the most 
influential factors throughout the dissolution curve. The sign of the 
PRCCs corresponds to the expectations, i.e., increasing the Main-CF 
decreases the dissolution rate. Moreover, increasing the HPMC particle 
size (i.e., decreasing the HPMC fraction with particle size below 63 µm) 
and the CR% increase the dissolution rate. As for the dynamic of the 
parameter importance, the hydroxypropyl substitution (HP%) appears 

Table 2 
Properties of the developed ANN models.  

Output: In vitro dissolution curve (Dissolution % at 23 time points) 

Model name Input data No. of hidden neurons Training f2 Validation f2 

ANN 1 12 MA/PP  

(Table 1 without CR%) 

4 96.49 83.79 

ANN 2 13 MA/PP parameters  

(Table 1) 

5 96.58 82.49 

ANN 3 Main-CF, HPMC PSD, CR%, HP%, M% 6 93.61 85.54 
ANN 4 NIR (5 PCs) 2 84.17 77.43 
ANN 5 Raman (3 PCs) 1 77.72 74.40 
ANN 6 Hardness 1 76.13 70.48 
Output: Hardness (N) 
Model name Input data No. of hidden neurons R2

C RMSEC [N] R2
P RMSEP [N] 

ANN 7 13 MA/PP parameters  

(Table 1) 

2 0.9654 2.83 0.9447 3.79 

ANN 8 Main-CF, Feed, Visc, HPMC PSD, CR% 4 0.9686 2.71 0.9538 3.50  

Fig. 5. Measured and predicted by ANN 2 model in vitro dissolution curves of the validation samples.  

Fig. 6. Regression curve of ANN 8.  
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as the fourth most important factor at the beginning of the dissolution, 
but in the end, it merges into the insignificant factors. The effect of the 
Main-CF is also decreased by the end of the dissolution process. These 
observations could be associated with the formation of the retarding gel 
in the initial phase of the dissolution, hence aiding the understanding of 
the product. Furthermore, the results can assist the definition of the 
specification limits of the critical MAs. For example, the API particle size 
distribution appears to be insignificant, which indicates that – from the 
perspective of the dissolution – wider specification limits could be set for 
the API PSD, which is an essential technological benefit for the API 
production, e.g., crystallization steps. In contrast, the results showed that 
controlling better the PSD of the HPMC is a crucial factor in decreasing 
the undesirable batch-to-batch variability of the dissolution. Further-
more, the SA highlights the importance of controlling the HP% and M%, 
which are often overlooked MAs, although they can vary batch-to-batch 
even when using the same supplier. The acceptable ranges of these pa-
rameters could be calculated using the ANN model, where the CQA 
(here, the dissolution profile and hardness) comply with the regulatory 
or technological requirements. 

The SA of the ANN 7 model was also performed to rank the sensitivity 
of the hardness to the input variables. As expected, the study showed 
(see Fig. 8) that increasing the main compression force has the most 
pronounced effect on increasing the hardness. Following the Main-CF, it 
was found that a slower rotation of the force feeder significantly in-
creases the hardness, which also corresponds to the observation of 
previous studies (Narang et al., 2010; Wünsch et al., 2020) and has been 
mainly attributed to shear effects. The CR% and the HPMC viscosity also 

impacted the hardness, which has also been reported (Nokhodchi et al., 
1996). Nokhodchi et al. associated the higher viscosity of HPMC with 
less plasticity, resulting in worse deformation and consequently weaker 
tablets. 

Based on the SA results, it can be concluded that the application of SA 
on the ANN models provides multiple benefits. First of all, it greatly 
increases the interpretability of the model. As the results show, the ANNs 
captured genuine physical relationships between the MAs/PPs, which, 
from the technological point of view, increases the process and product 
understanding and aids the selection of the CMAs and CPPs from the list 
of the potential parameters. Furthermore, it can be an essential part of 
the risk analysis and setting the specification limits. 

From the modeling perspective, the interpretability increases the 
method’s reliability, which could also serve as additional insurance of 
validity for the regulatory. SA could also be used as a variable selection 
method as ANN 3 and ANN 8 were built using only the most important 
inputs (see Table 2). The selection was made by visually analyzing the 
PRCC plots, choosing the first few relevant parameters with large PRCC 
values and relatively small confidence intervals. In this way, the cut-off 
point is somewhat subjective, but when the choice is not straightfor-
ward, models could be built with different numbers of parameters to find 
the most optimal subset. ANN 3 and ANN 8 resulted in the best predic-
tion performance, which indicates that no relevant factors were omitted, 
and the generalization capability of the models was improved. In addi-
tion, using fewer input variables also decreases the computational time, 
which could be beneficial in a real-time application. 

In light of the SA, the performance of the ANN 4 – 6 models could also 
be better understood. As the PCA results (Section 3.1) showed, the 
Raman spectra mainly capture the effect of the API PSD, which is, 
however, not a CMA, i.e., ANN 5 did not yield satisfactory results. ANN 4 
gave a marginally better result as the NIR spectra were affected by the 
compression force, the main CPPs. It is worth noting that the 
spectroscopy-based surrogate modeling could be used either for imme-
diate or controlled-released formulations, as they do not directly mea-
sure the dissolution profile itself, but the CMAs/CPPs affecting the 
dissolution. It is demonstrated by the results, that for a successful sur-
rogate dissolution model, the important criterium is that the variation of 
the CMA/CPP could be detected by the spectroscopic technique. The 
hardness could also not be utilized as a good surrogate of dissolution, as 
different CMAs and CPPs impact them. Consequently, a proposed RTRT 
model could use the compression force (e.g., registered in-line) and the 
CMAs of the HPMC (HP%, M%, PSD). If segregation might occur during 
manufacturing, an in-line PSD measurement and a method for 
measuring CR% in real-time might be necessary. 

The pilot scale developmental data used in this work has provided us 
with an unstructured dataset compared to a factorial DoE generally used 
for QbD studies. This entails that the factors (inputs) are not orthogonal 
to each other, i.e., the dataset is not balanced to ensure that all levels and 

Fig. 7. Effect of the input parameters on the 1, 5, 10, and 20 h dissolution values.  

Fig. 8. Effect of the input parameters on the hardness.  
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factors are considered equally. This can cause additional uncertainty, 
especially for limited-sized data, and interactions of some inputs might 
not be sufficiently explored. Furthermore, some inputs might not be 
independent variables from each other. However, it is also worth noting 
that conducting and analyzing factorial DoEs also get more limited and 
complicated when a large number of inputs need to be accounted for, 
due to the increasing number of required experiments and the con-
founding factors. In contrast, ANNs – as the presented results demon-
strate – can easily tackle data with many potential input values. 
Moreover, they can effectively capitalize on continuously growing 
datasets (e.g., manufacturing data) to become increasingly accurate in 
the range of the operation. As digitalization is getting more prevalent in 
the pharma industry, such unstructured datasets are getting more 
widespread, which could become a valuable source of information by 
using interpretable ANNs, without any additional experimental burden. 
Furthermore, if deemed necessary, the results of the interpretable ANN 
could be further used to construct a factorial DoE with the selected most 
important inputs. 

3.4. Using ANN models for manufacturing optimization 

As the SA showed, the changing MAs of the HPMC batches signifi-
cantly influence the in vitro dissolution and hardness, causing undesir-
able batch-to-batch variability, i.e., inconsistent product quality. One 
possible solution to avoid this would be setting stringent specification 
limits for these CMAs, which, however, could increase the cost of the 
raw material or even result in supply problems. Instead, by embracing 
the possibilities provided by the QbD approach, the critical process 
parameters could be flexibly set to compensate for the changing CMAs. 

The developed ANN models could be utilized coupled with an opti-
mization algorithm to predict the optimal process parameters. This 
approach was demonstrated by studying the dissolution and hardness of 
two batches by ANN 3 and 8. Both batches contained different DC and 
CR grade HPMC batches, which properties are summarized in Table 3. 
ANN 3 predicted significantly different dissolution profiles when the 
tableting parameters were kept constant (at 15 kN Main-CF, 50 % CR%, 
and 25 rpm Feed), as illustrated in Fig. 9.a, and ANN 8 predicted 95.2 
and 89.2 N hardness for Batch 1 and 2, respectively. 

Based on the SA, the dissolution was influenced by the HPMC PSD, 
HP%, and M%, which are dictated based on the available raw material, 
while the Main-CF and CR% could be flexibly varied. As for the hard-
ness, the HPMC PSD and Visc are fixed input factors, while the CR% and 
the Feed could be varied to achieve the required hardness. Conse-
quently, the Main-CF, CR%, and Force had to be optimized to achieve 
the required target dissolution profile and acceptable hardness. For this, 
the fmincon function of MATLAB was used, where the objective was to 
maximize the f2 value (i.e., minimize the 100- f2 objective function) 
between the simulated and target dissolution profile. In this work, the 
target dissolution profile was defined as the average dissolution profile 
of the training dataset used for the model building, but arbitrary targets 
could be defined based on, e.g., technological, in vivo performance, or 
bioequivalence considerations. The hardness was used as a constraint to 
keep its value between 50 and 70 N. The optimal values of Main-CF, CR 
%, and Force were searched between the 5–20 kN, 0–100 %, and 15–45 
rpm bounds, respectively. 

Table 4 summarizes the optimization results, and Fig. 9.b illustrates 
the dissolution profiles predicted using the optimized process parame-
ters. Fig. 9 clearly shows that it is possible to reach the required disso-
lution profile by modifying the tableting parameters, and the differences 
caused by the different HPMC batches could be efficiently eliminated. 
Using fixed parameters, Batch 1 and 2 provided f2 values of 61.19 and 
52.12 with the target dissolution, which could be significantly increased 
by the process optimization to 95.21 and 98.80, respectively. Moreover, 
the hardnesses of the two batches are also predicted to be 60.0 N. The 
optimization resulted in a significantly different CR – DC ratio to 
compensate for the different CMAs, while the Main-CF was only 
marginally different. The force-feeding rate could be set with a 10 rpm 
difference to achieve consistent hardness. Consequently, it can be 
concluded that using flexible manufacturing parameters permitted by 
the QbD principles and ANN-based optimization can significantly 
contribute to achieving consistent product quality. 

4. CONCLUSIONS 

In this work, ANN models were successfully developed to charac-
terize the in vitro dissolution profiles and hardness of direct compressed 
extended-release tablets using an existing dataset accumulated during 
pilot-scale development. Using the raw material attributes and process 
parameters, these CQAs could be effectively predicted, and the batch-to- 
batch variability captured. The results showed that ANNs could effec-
tively tackle unstructured, e.g., historical data without needing a dedi-
cated DoE, which shows its potential for Pharma 4.0. applications as the 
available manufacturing and developmental data are drastically 
growing due to the digitalization efforts. 

Although ANNs are often deemed as inscrutable black boxes, the 
results of this study show that coupled with the sensitivity analysis, 
ANNs could be interpreted, i.e., could be associated with genuine 
physical relationships between the CMAs/CPPs and CQAs. The pre-
sented methodology is not specific to direct compression and the pre-
diction of dissolution or hardness but can be applied as a general 
framework to characterize arbitrary CQAs in data-rich processes from 
the drug synthesis steps to the final product manufacturing. It was 
demonstrated that this methodology not only enhances the models’ 
credibility but also increases the process knowledge, contributes to risk 
analysis, to establish specification limits and control strategies, ensuring 
consistent product quality. In this way, interpretable ANNs can embrace 
the QbD and PAT concepts, using the ever-increasing databases of 
pharmaceutical development and manufacturing, which could become a 
goldmine of process knowledge with adequate data processing. 
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Table 3 
Properties of HPMC batches used in the optimization study.   

Batch 1 Batch 2  

DC grade 
HPMC 

CR grade 
HPMC 

DC grade 
HPMC 

CR grade 
HPMC 

PSD 32 60.3 43 56.3 
Visc. 3826 3746 4232 4749 
HP% 8.8 8.8 8.3 9.2 
M% 23.1 22.6 23.1 23.1  
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Marosi, G., Nagy, Z.K., Nagy, B., 2019. Fast, Spectroscopy-Based Prediction of In 
Vitro Dissolution Profile of Extended Release Tablets Using Artificial Neural 
Networks. Pharmaceutics 11, 400. 
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Fig. 9. Dissolution profiles with (a) fixed process parameters and (b) parameters optimized by ANN.  

Table 4 
Tableting parameters and process outcome with fixed and the optimized flexible 
operational parameters.   

Batch 1 Batch 2  

Fixed 
process 

Optimized 
process 

Fixed 
process 

Optimized 
process 

Main-CF [kN] 15  6.9 15  7.2 
CR% [w/w %] 50  48.3 50  15.0 
Feed [rpm] 25  30.6 25  21.9 
f2 with target 

dissolution 
61.19  95.21 52.12  98.80 

Hardness [N] 95.2  60.0 89.2  60.0  
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