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A B S T R A C T   

Batch distillation can be conveniently modelled by professional flow-sheet simulators. Optimisation can be 
performed by coupling an external optimiser to the simulator. The most frequently used method is the genetic 
algorithm (GA), which, however, requires a high number of simulations to evaluate the objective function. Two 
direct search methods, the Nelder-Mead simplex and the Box-complex algorithms are applied to reduce the 
computational intensity of optimisation. Calculations are performed for a case study from the literature where 
the profit of the regeneration of a multicomponent azeotropic waste solvent mixture was maximised by a GA. The 
influence of the parameters of the optimisation methods is investigated for each method. The highest profit is 
reached by the simplex algorithm. Both the simplex and complex algorithms generally outperform GA with a 
much lower number of simulations. Therefore, direct search methods can be used for fast and efficient optimi-
sation of batch distillation processes.   

1. Introduction 

Batch distillation (BD) has several advantages over continuous 
distillation processes, such as its ability to treat mixtures with varying 
amount and composition and to separate multiple components in the 
same column [1]. It is frequently applied in the pharmaceutical and fine 
chemical industry and in paint and spirit production, among others. 
However, the specific energy demand of batch distillation is even higher 
than that of continuous distillation. 

The treatment of waste solvent mixtures, which is usually performed 
by BD, is particularly challenging since the components of the mixtures 
often form azeotropes with each other, which makes it necessary to take 
multiple cuts (fractions). In general, only a single component is recov-
ered in high purity in the main cut. More volatile components or azeo-
tropes are removed in fore-cuts, while taking an after-cut might be 
necessary to remove pollutants from the still residue. Waste solvent 
regeneration is favourable not only from an economic point of view 
since the cost of purchasing fresh solvent is avoided, but also from an 
environmental one, because the incineration of waste solvents causes 
the emission of CO2 and potentially other harmful substances [2]. 

In the case of azeotropic and close-boiling mixtures, the recovery of 
the product can be increased by applying special batch distillation 
methods. In batch extractive distillation (BED, [3]), a mass separating 

agent, the entrainer, is fed continuously into the column and changes the 
relative volatilities of the original components favourably [4]. In batch, 
heterogeneous azeotropic (or heteroazeotropic) distillation (BHAD, 
[5]), the entrainer, added to the still pot with the charge, forms a het-
erogeneous azeotrope with at least one component. The azeotrope ob-
tained as the distillate can be separated by decantation. A combination 
of BED and BHAD is batch heterogeneous extractive (or hetero-
extractive) distillation (BHED, [6]), where the heterogeneous entrainer 
is fed continuously into the column. If the azeotrope is pressur-
e—sensitive, pressure-swing distillation (PSD) can be applied, which 
does not require the addition of an entrainer. In batch PSD must be 
realised by changing the pressure of the column between operational 
steps [7] or connecting two columns with different pressures (double- 
column systems, [8]). 

The efficiency of BD processes can be improved by optimisation. The 
energy demand or environmental impact of the process can be 
decreased, or the recovery of the product(s) can be increased. Since BD is 
a dynamic process, the optimisation problem is a dynamic one (also 
known as optimal control problem) whose solution consists of finding 
the time-optimal profile of the optimisation variables (e.g. reflux ratio). 
In the following sections, the literature on the optimisation of batch 
distillation is reviewed with a particular emphasis on the application of 
1. professional flow-sheet simulators for the optimisation of BD, 2. the 
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Nelder-Mead simplex and Box-complex direct search algorithms for the 
optimisation of either continuous or batch distillation. 

1.1. Optimisation of batch distillation: Problem formulation 

The book of Mujtaba [1], which dedicates an entire chapter to the 
optimisation of BD, distinguished three types of optimisation problems 
based on the objective function: minimum time (t), maximum distillate 
(D) and maximum profit/productivity problems. The objective function 
(P) of the maximum profit problem is the profit of the operation per unit 
time calculated as the value added to product per time minus the 
operating cost. Barreto et al. [9] and Hegely and Lang [10] used an 
alternative formulation of the maximum profit problem with P•t as the 
objective function. If the operating cost and the value of the charge are 
neglected, a maximum productivity problem is obtained [11], whose 
objective function is proportional to D/t, which is also known as specific 
product flow rate. In all the above formulations, the product purity is 
specified and thus acts as an inequality constraint. In the minimum time 
problem, the amount of the distillate, in the maximum distillate prob-
lem, the batch time is specified. 

Other possible objective functions include the energy demand [12], 
the specific energy demand [13], the specific product flow rate (the 
amount of product divided by the batch time) [14,15,16,17], the pro-
cessing capacity [18], the thermodynamic efficiency of the process [19], 
and various indicators of environmental impact. Pommier et al. [20] 
applied a complex cost function, including cost elements as immobili-
sation, energy, load, entrainer, column and tank treatment for a BHAD 
process. Environmental indicators are used as objective functions in 
multi-objective optimisation problems. In addition to the total annual 
cost (TAC), Wang et al. [21] used CO2 emissions, Zhao et al. [22] global 
warming and acidification potential as objective functions. Barreto et al. 
[23] devised an environmental objective taking into account the CO2 
emission and the human toxicity (expressed by LD50 and threshold limit 
values (TLV)). If not only the operation but also the design of the column 
is part of the optimisation problem, objective functions might be the 
investment cost [24,25,26] or TAC [27,21,22,26] Lelkes et al. [28] used 
an estimation of the total cost of a BED column. 

1.2. Solution approaches 

The solution approaches of the optimisation problem can be divided 
into two main categories, whether they are based on Pontryagin’s 
maximum principle or nonlinear programming (NLP) [1]. Pontryagin’s 
maximum principle can be used to determine the time-optimal profile of 
the optimisation variables by maximising the Hamiltonian function. 

Nonlinear programming approaches can be further classified into 
feasible and infeasible path approaches. In the feasible path approach, 
the model of the process is solved for every set of optimisation variable 
values generated by an optimisation algorithm. Based on the results, the 
algorithm generates a new set of optimisation variables. These steps are 
repeated until convergence. Since at least some optimisation variables 
can be continuous functions of time (e.g. the reflux ratio), an infinite- 
dimensional problem is obtained. The problem can be reduced into 
one of finite dimensions by using control vector parameterisation (CVP), 
where the operation time is divided into subintervals. In each subin-
terval, the continuous optimisation variables are given with known basis 
functions. The parameters of the basis functions in the subintervals are 
the new optimisation variables. In the simplest and most frequently used 
case, the optimisation variables are constant in each subinterval. In the 
case of BD processes with multiple steps, the subintervals can be 
conveniently chosen to coincide with the steps of the process. 

In the infeasible path approach, the dynamic process model is dis-
cretised into a set of algebraic equations, which can then be solved by 
collocation or other methods [29]. This approach avoids the large 
number of simulations (solving the process model) of the feasible path 
approach, but it results in an optimisation problem with many equations 

and variables. 

1.3. Modelling techniques 

The modelling technique influences which solution approaches can 
be applied. The process can be modelled by explicitly giving the model 
equations using a programming language, a dedicated modelling envi-
ronment (such as GAMS) or the custom modelling features of flow-sheet 
simulators (e.g. gPROMS). Works in the older literature exclusively use 
this technique, although it is still applied (e.g. by Barreto et al., 
[9;30,31]). In this case, any of the solution approaches described above 
are applicable. 

An alternative, popular technique is to use the library unit models of 
professional flow-sheet simulators, which makes the construction and 
modification of models fast and convenient. The flow-sheet simulators 
might use a sequential-modular or an equation-oriented approach. 
However, the capacities of widely used simulators to optimise dynamic 
processes is limited. A built-in sequential quadratic programming (SQP) 
method can be available, yet it cannot treat discrete variables, and in the 
case of certain more complex BD processes, its application might not be 
possible. Cook et al. [15] did use the built-in SQP optimiser of Aspen 
Plus, but the description of the optimisation is very limited. Multi-
BatchDS, a batch distillation flow-sheet simulator developed and used 
by Diwekar and her co-workers, has an optimisation function, but the 
method used and its capabilities are not evident from the open literature. 
It was used by Kim et al. [32] for the optimisation of the separation of an 
acetonitrile–water mixture in a middle-vessel column using BED. 
Diwekar and Agrawal [33] optimised the separation of an ideal ternary 
mixture (pentane-hexane-heptane) in a batch dividing-wall column with 
the assumption of constant molar overflow. 

1.4. Optimisation of batch distillation with external optimisation tools 
coupled to flow-sheet simulators 

A more flexible approach is to couple the simulator to an external 
optimisation tool. As the model equations are not explicitly given or they 
are not directly accessible for the optimisation tool, optimisation can 
only be performed by following the feasible path approach, and the 
simulation is treated as a black-box model to evaluate the objective 
function and the constraints at each iteration of the optimisation algo-
rithm. The main drawback of this method is that usually a large number 
of function evaluations is necessary, making the optimisation compu-
tationally intensive given that the runtime of a dynamic simulation 
might be in the order of minutes. 

The literature on using external tools to optimise BD processes is very 
limited. The majority of works [20,23,19,10,34,13,21] used a genetic 
algorithm (GA). GA is a nature-inspired stochastic optimisation method 
capable of finding the global optimum. Its implementation is easy; 
however, it requires a very large number of function evaluations [20]. 
Pommier et al. [20] compared the results of GA to those of an external 
SQP optimiser for the separation of water and pyridine with toluene as 
heterogeneous entrainer. GA was clearly superior, with a 47 % reduction 
in the cost compared to 12 % by using SQP. The cost could be further 
reduced to a slight extent by using the best solution of GA as a starting 
point of SQP. GA was also applied in a second case study where methyl 
acetate and chloroform were separated in two columns using benzene as 
a heterogeneous entrainer. Barreto et al. [23] used a multi-objective GA, 
NSGA-II (nondominated sorting GA; [35], to maximise the profit and 
minimise the environmental impact of the BHED separation of chloro-
form and methanol with water as entrainer. The same algorithm was 
used by Rodriguez-Donis et al. [19] for multi-objective optimisation of 
the BHAD of the mixture n-hexane–ethyl acetate with methanol as 
entrainer. Wang et al. [21] optimised a double-column configuration for 
the PSD of n-heptane-isobutanol by NSGA-II. The objective functions 
were the TAC and CO2 emission. Zhao et al. [26] optimised a similar 
three-column PSD configuration by NSGA-II, but using the investment 
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cost of third column instead of TAC as one of the objective functions. 
Hegely and Lang [10] maximised the profit with a mono-objective GA of 
the regeneration of a multicomponent waste solvent mixture. Two 
processes were studied: conventional and extractive batch distillation. 
In both cases, a production campaign consisted of six consecutive 
batches with the recycling of off-cuts; the optimisation of the batches 
was performed sequentially. The first batch of the conventional batch 
distillation process is taken as the case study of the present work. Hegely 
and Lang [34] maximised the profit of a BHAD process for the separation 
of isopropanol and water with toluene as entrainer. Nemeth et al. [13] 
minimised the specific energy demand of a two-column process where 
the distillate of the first column is the charge of the second one. Acetone 
was recovered from mixtures containing dichloromethane and water in 
different concentrations. Nemeth et al. [18] maximised the processing 
capacity of the two-column process for the separation of acetone–water 
and water-acetic acid mixtures. Since the recovery of the organic 
component was kept constant, the maximisation of the capacity is 
equivalent to the minimum time problem. 

Instead of a GA, Leipold et al. [25] used another evolutionary algo-
rithm, non-constrain-dominated sorting modified differential evolution 
(ncsMDE), for the multi-objective optimisation of a middle-vessel col-
umn. The algorithm, implemented in Visual Basic for Applications 
(VBA) with a Microsoft Excel user interface, performed better than a GA 
in test problems. Because of the computational intensity of the method, 
only 20 individuals were used, although the number of generations was 
high (2163). Li et al. [27] minimised the TAC of a double- and a triple- 
column pressure-swing BD processes. A sequential iterative method was 
used (equivalent to a univariate search), which is a local optimisation 
method. Zhao et al. [26] used the same method for the minimisation of 
the TAC of the three-column process mentioned earlier. Only two opti-
misation variables were considered. Asprion et al. [36] used SQP to 
minimise the sum of squared errors between experimental and simula-
tion data of the batch distillation of an ideal ternary mixture. The 
simulator used was CHEMADIS, the in-house, commercially unavailable 
dynamic simulator of BASF. 

As shown above, when the modelling is performed with a flow-sheet 
simulator, the optimisation method is usually a global, although 
computationally-intensive evolutionary algorithm. Therefore, there is a 
need for faster optimisation methods. Such methods would not only 
make it possible to perform more calculations, but to solve problems 
with a higher number of optimisation variables, as well. 

1.5. Direct search methods 

Direct search methods are derivative-free (also called zeroth-order) 
ones; thus, they can be coupled to flow-sheet simulators, and since the 
number of objective function evaluations is likely to be considerably 
lower than in the case of evolutionary algorithms, they are suitable 
candidates to reduce the computational intensity of optimisation. 
However, they are local methods, and thus might converge to local 
optima. The knowledge of at least one feasible initial point is necessary. 
Some examples of direct search methods are various random search 
methods, grid search, univariate optimisation, Hooke and Jeeves’ 
method, Powell’s method, as well as the ones tested in the present work: 
the Nelder-Mead simplex and the Box-complex method [37]. The 
Nelder-Mead simplex [38] was developed for unconstrained optimisa-
tion from the algorithm of Spendley et al. [39] and is based on the 
movement of an n + 1-dimensional simplex in the n-dimensional space 
of solutions. The Box-complex (constrained simplex) method [40] is a 
modification of the Spendley algorithm for constrained optimisation. A 
detailed description of both methods will be given in Section 2. 

1.6. Optimisation of continuous or batch distillation by using the Nelder- 
Mead simplex or Box-complex algorithms 

The literature on the application of the Nelder-Mead or the Box- 

complex method for the optimisation of distillation processes is very 
limited. In particular, only two examples of using either algorithm with 
a flow-sheet simulator were found: Corbetta et al. [41] applied the 
simplex method in the inner loop of a hybrid algorithm to solve NLP 
subproblems, while Giwa and Giwa [42] used a built-in method of Aspen 
HYSYS based on the complex method. Moreover, to the best of our 
knowledge, Diwekar et al. [43] and Manca [16] were the only ones to 
perform the optimisation of BD with one of the methods. Diwekar et al. 
[43] used a golden complex algorithm in the outer loop of the optimi-
sation of a multicomponent BD process with variable reflux ratios and 
stopping criteria of the fractions, while the Fibonacci search was used in 
the inner loop. However, the method is not described in detail, and a 
discussion is also missing. One can only assume that the golden complex 
is the modified complex algorithm described in Kovasin et al. [44] that 
includes a golden search in the reflection step. Manca [16] applied a 
mathematical model for the BD of a constant relative volatility binary 
mixture. The reflux ratio was a piecewise function with three time in-
tervals. The duration of the intervals were optimisation variables, as 
well. A modified simplex method was applied to maximise the capacity 
factor (equivalent to the specific product flow rate). The purity specifi-
cations were taken into account by a penalty function (changing the 
amount of product to zero), which introduced discontinuities into the 
objective function. In such cases, the global optimum is located on a 
discontinuity since reaching purities higher than necessary is subopti-
mal. Manca [16] compared SQP and the simplex algorithm. Optimisa-
tion with SQP was less successful, while the simplex algorithm was not 
affected by the discontinuities, although it required a higher number of 
function evaluations (1100–1300). The influence of the initial point was 
studied by randomly generating 300 points. Although the algorithm did 
not always converge to the same point, the values objective function 
were within 12 % of the best one as long as the purity specifications were 
fulfilled. Manca [16] concluded that the simplex is an efficient and 
robust optimisation method. 

Adams II and Seider [45] performed the optimisation of a semi- 
continuous distillation column with reaction in a middle vessel by 
using a single- and a bi-level algorithm. The column, modelled in Aspen 
Plus, was operated in six cyclically repeating modes. The bi-level algo-
rithm is capable of reducing the computational time. The optimisation 
variables of the outer loop were the global variables present during the 
whole operation, while local variables only present at individual modes 
were treated in the inner loop. The simplex algorithm was used either 
alone (single-level algorithm) or in the outer loop. The method proved to 
be the best when the unimodal progression algorithm was used in the 
inner loop, although only local optima were found. Ghaee et al. [46] 
applied the Nelder-Mead simplex only to optimise the parameters of the 
controllers of a continuous extractive distillation process. Wei-zhong 
and Xi-gang [47] used a simplex simulated annealing algorithm for 
the optimal synthesis of continuous distillation trains modelled by short- 
cut methods. Continuous variables were varied by the simplex, the 
discrete ones by a simulated annealing algorithm. Spasojević et al. [48] 
minimised the entropy production of a diabatic column described by a 
mathematical model. The Nelder-Mead algorithm proved to be the best 
among the methods studied: the Rosenbrock method, Hooke and Jeeves’ 
method, Powell’s method, the simplex and the complex algorithm. The 
number of function evaluations was 1090. Corbetta et al. [41] solved 
various optimisation case studies related to the separation of bio- 
mixtures by distillation. The problems were formulated within the 
generalised disjunctive programming framework and solved by a 
decomposition strategy based on the Outer-Approximation algorithm. 
Mixed-integer linear programming (MILP) master problems were solved 
by a branch & cut method, while a modified Nelder-Mead algorithm was 
applied in the NLP subproblems. Simulations were performed in PRO/II; 
the optimisation environment was GAMS. 

Umeda and his co-workers optimised an absorber-stripper system 
(the stripper is a distillation column) by using either the original [49] or 
a modified [50] complex algorithm. The modified algorithm takes into 
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account in the expansion step not only the order of the objective func-
tion values of the points, but the values themselves, as well. Adelman 
and Stevens [51], who optimised a plant consisting of a reactor, a heat 
exchanger, a decanter and a distillation column, stated that the complex 
algorithm should be capable of finding the global optimum due to the 
randomly generated initial points and its initial expansion. Holland [52] 
applied the complex method with penalty terms included in the objec-
tive function for the optimisation of continuous columns. Muraki and 
Hayakawa [53] used the complex algorithm as part of a method to 
synthesise optimal distillation trains with heat integration. The columns 
were modelled with short-cut methods. Vu et al. [54] also used the 
complex method and short-cut models to determine the optimal column 
configuration for different feed compositions of an ideal ternary 
mixture. The configurations studied included conventional and ther-
mally coupled ones. Giwa and Giwa [42] used the built-in optimiser of 
Aspen HYSYS to maximise the purity of the distillate of a reactive 
distillation column and compared the following methods available in 
HYSYS: the Fletcher-Reeves method, a quasi-Newton method, SQP, the 
BOX method (based on the complex algorithm) and a mixed method that 
is a sequential combination of the BOX and SQP methods. (Note that 
HYSYS is not capable of modelling batch distillation.) The choice of the 
objective function is questionable since the purities of the products are 
generally not considered as objective functions to be maximised but 
constraints to be respected. Only the fact that high-purity product is 
produced (moreover, without any constraint on the flow rate of the 
products) does not give any information about whether the process is 
favourable economically, energetically or environmentally. The opti-
misation variables were the reflux ratio, feed flow rate and reboiler heat 
duty, but the feeding locations were not included. The optimisation was 
performed without and with considering an inequality constraint on the 
purity of the bottom product. The former case is not realistic and leads to 
a low conversion, while in the latter case, the optimiser is not motivated 
to reduce the energy demand by avoiding overpurification. The 
Fletcher-Reeves, quasi-Newton and SQP methods failed to find a feasible 
solution. 

1.7. Goals and structure of the paper 

Performing the optimisation of BD processes modelled in flow-sheet 
simulators with the Nelder-Mead simplex or Box-complex direct search 
algorithms instead of the commonly used GA is a promising method to 
reduce the considerable computational intensity of the optimisation. 
However, as demonstrated by the literature review, the application of 
these methods was not yet reported. The goal of the present work is, 
therefore.  

1. to apply the Nelder-Mead simplex and Box-complex algorithms for 
the optimisation of a multicomponent azeotropic BD process previ-
ously optimised by a GA [10],  

2. to study the influence of the parameters of the optimisation methods 
on the results,  

3. to compare the results of the three algorithms. 

The paper is structured in the following way. After the introduction 
and literature review of Section 1, Section 2 presents in detail the 
optimisation methods used in the work. The BD process used as case 
study [10] is described briefly in Section 3. The results of the optimi-
sation calculations are presented in Section 4. First, the results of each 
method are shown, then the range of the optimisation variables is dis-
cussed, a comparison of the three methods is given, and subsequently, 
the best result is discussed in detail and compared to that of Hegely and 
Lang [10]. Finally, Section 5 presents the conclusions and proposes di-
rections for future research. 

2. Optimisation methods applied 

Three derivative-free optimisation methods are applied in the pre-
sent work: a genetic algorithm (GA), the Nelder-Mead simplex algorithm 
[38] and a variant of the Box-complex algorithm [40]. The algorithms 
were coded in Visual Basic for Applications (VBA) under Microsoft 
Excel. The objective function is evaluated by performing dynamic 
simulation with the professional flow-sheet simulator CHEMCAD [55]. 

The scheme of the optimisation environment is shown in Fig. 1. An 
Excel sheet was used as a user interface to modify the parameters of the 
method applied and to show the optimisation results. During the opti-
misation runs, the algorithm selects a combination of values for the 
optimisation variables. This set of values is copied to another Excel sheet 
which is the interface to CHEMCAD. The values of the optimisation 
variables are passed to CHEMCAD with a Data Map, which then gives 
back the calculation results. For a steady-state simulation, data transfer 
would only be necessary before and after running the simulation. 
However, if it is necessary to change the values of optimisation variables 
during a dynamic simulation, data transfer must be performed at every 
time step of the simulation. In the case study to be presented, the reflux 
ratio is changed, and accumulator tanks are switched based on the 
distillate composition. Therefore, running the simulation is performed 
by a VBA subroutine that continuously monitors the simulation results 
and changes the input values of the simulation (e.g. reflux ratios) 
accordingly. The algorithm can also prematurely stop the simulation if 
optimisation constraints are violated to make the optimisation faster. 

The (inequality) constraints are taken into account by all the 
methods with a penalty function: if a constraint is violated, the value of 
the objective function to be maximised is changed to a large negative 
number (− 10000 $). 

2.1. Genetic algorithm 

The elitist, real-coded GA used here is described in more details in 
Modla and Lang [56]. The parameters of the algorithm are the popula-
tion size, the mutation rate and the crossover rate. The optimisation is 
stopped after 100 generations. 

2.2. Nelder-Mead simplex method 

The Nelder-Mead (or downhill) simplex method is based on opera-
tions performed on an n-dimensional simplex where n is the number of 
optimisation variables. The simplex consists of n + 1 points in the space 
of the optimisation variables: for n = 3, the simplex is a tetrahedron. 
Although the initial simplex could be any set of points, Spendley et al. 
[39] recommended using a regular simplex in their earlier algorithm. 
The points of a regular simplex (i = 1…n) with side length “a” can be 
generated from a starting point Xstart (also part of the simplex) [37]: 

Xi = Xstart + pui +
∑n

j=1,j∕=i

quj (1)  

where ui is the unit vector along the ith axis, and the constants p and q 
are calculated as: 

Fig. 1. Scheme of the optimisation environment.  
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p =
a
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n + 1
√

+ n − 1
)

(2)  

q =
a

n
̅̅̅
2

√
( ̅̅̅̅̅̅̅̅̅̅̅

n + 1
√

− 1
)

(3) 

In every iteration, the objective function is evaluated at each point of 
the simplex, and a reflection operation is performed. Depending on the 
objective function values of the simplex and the new point obtained by 
reflection, either an expansion or contraction operation is performed, or 
the reflected simplex is kept for the next iteration. If a contraction fails to 
produce an improved value of the objective function, the size of the 
simplex is reduced. A flowchart of the algorithm is shown in Fig. 2. 

In the reflection operation, the point with the worst value of objec-
tive function (Xw) is reflected in the opposite face of the simplex to 
obtain point Xr [37]: 

Xr = (1+ α)X0 − αXw (4)  

where X0 is the centroid of all the points except Xw and α is a positive 
reflection coefficient. The higher α, the farther Xr is from X0. If the value 
of the objective function is better in Xr than in Xw, the former one 

replaces the latter in the simplex. The reflection operation drives the 
simplex towards better values of the objective function. 

If Xr is the new optimum, it can be expected that the objective 
function will further decrease in this direction, and the expansion 
operation is performed. A new point (Xe) is generated on the line X0 – Xr, 
but even further away from X0 [37]: 

Xe = γXr +(1 − γ)X0 (5)  

where γ > 1 is the expansion coefficient. Xw is replaced by the point 
having the best value of objective function between Xe and Xr. 

The contraction operation shrinks the simplex. It is performed if Xr 
has the worst value of the objective function among all the points of the 
simplex, or if only Xw is worse than Xr. In the latter case, Xw is replaced 
by Xr before the contraction. A new point Xc is generated [37]: 

Xc = βXh +(1 − β)X0 (6)  

where 0 ≤ β ≤ 1 is the contraction coefficient. If Xc is better than Xw, it 
replaces it. Otherwise, the optimisation cannot continue with the above 
operations, and the size of the simplex is reduced by replacing all the 
points (Xi, i = 1…n) except the current optimum (Xb) with the midpoints 

Fig. 2. Flowchart of the Nelder-Mead simplex algorithm.  
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of the line segments joining them to Xb: (Xb + Xi)/2. 
The optimisation can be stopped either when the standard deviation 

of the function values in the points of the simplex becomes lower than a 
small quantity ε, or when the simplex becomes smaller than a minimum 
value amin after a size reduction step. 

The simplex method has the following parameters that can be 
modified: the coefficients of each operation (α, β, γ) and the size (a) and 
location (Xstart) of the starting point. 

2.3. Box-complex method 

The third method applied in this work is a modified version of the 
Box-complex algorithm. Box [40] proposed this method as an extension 
of the Spendley simplex algorithm to optimisation problems with 
inequality constraints. The simplex is replaced with a set of k > n + 1 
points called the complex. Box [40] recommends using k = 2n. A 
flowchart of the algorithm is shown in Fig. 3. 

The points of the initial complex are generated randomly within the 
bounds of the optimisation variables. The only operation performed by 
the complex algorithm is the reflection as described by Eq. (4). The 
reflection coefficient α must be higher than 1.0. If Xr is feasible, that is, it 
does not violate any constraints, and if it is also better than Xw (the point 
with the worst value of objective function in the complex), then Xw is 
replaced by Xr. On the other hand, if Xr is either infeasible or worse than 
Xw, the value of α is decreased to its half, and a new Xr is generated. This 
is repeated until either an improved point is found or α becomes lower 
than a small quantity ε. In the latter case, the version of the algorithm 
described by Rao [37] performs the reflection operation with the point 
having the second-worst objective function value instead of Xw. How-
ever, in the modified algorithm proposed here, different operations are 
performed depending on the feasibility of Xr. If it is feasible, the 
reflection operation is performed with a point Xp randomly selected 
from the complex (excluding the best one). If Xr is infeasible, instead of 
reflection, Xw is replaced with a new point Xnew generated in the vicinity 

Fig. 3. Flowchart of the complex algorithm.  
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of the best point (Xb, the current optimum). Each i coordinate of Xnew is a 
random variable with uniform distribution in the interval (Xbi-σi, 
Xbi + σi) where σi is the standard deviation of coordinate i of the points 
of the complex. 

Similarly to the simplex algorithm, the optimisation is stopped either 
if the standard deviation of the function values of the complex becomes 
lower than a small quantity ε, or when the size of the complex becomes 
very small [37]. The latter condition is checked by comparing the 
maximum of the distances between any two points of the complex (d) to 
a prescribed stopping criterion (dmin). 

The parameters of the method are the reflection coefficient (α), the 
stopping criterion (dmin) and additionally, the bounds of the optimisa-
tion variables between which the starting points are generated. 

The method has the following advantages [40,37] compared to the 
simplex methods of Spendely or Nelder-Mead. Due to α > 1, the complex 
continuously expands when it is far from the optimum, leading to rapid 
progress. When a constraint is encountered, the complex contracts, 
flattens itself and follows the constraint. While a simplex with k = n + 1 
points tends to completely collapse into a lower dimensional subspace, 
which it will not be able to leave, the complex avoids this by having 
α > 1 and a higher number of points (k > n + 1). Thus, the complex is 
able to leave a constraint or turn at the corners of two constraints to 
improve the objective function. 

3. Case study 

The optimisation algorithms are applied for a case study of recov-
ering methanol from a five-component pharmaceutical waste solvent 
mixture by batch distillation taken from Hegely and Lang [10]. Hegely 
and Lang [10] studied a six-batch campaign where off-cuts were 
partially recycled to the next batch. The batches were optimised 
consecutively by using the genetic algorithm applied here, as well. In the 
present work, the optimisation of the treatment of the first batch is 
performed, where the charge consists only of fresh feed. 

The fresh feed (the charge) contains 0.07 mass % acetone (A), 
37.14 % methanol (B), 4.89 % tetrahydrofuran (C), 56.34 % water (D) 
and 1.56 % toluene (E). Methanol must be recovered with a purity of 
99.5 mass%. The components form five binary, minimum-boiling 
azeotropes. The order of pure components and azeotropes by 
increasing boiling point: A-B, A, B-C, B-E, C-D, B, C, D-E, D and E. Since 
the concentration of A is very low, the recovery of B is disturbed by the 
azeotropes B-C and B-E. (The existence of the C-D azeotrope does not 
affect the recovery B since the total amount C is removed by the B-C 
azeotrope.) Therefore, pollutants C and E must be removed in fore-cut 
(s). For the description of the vapour-liquid equilibria, the UNIQUAC 
model was used with the binary interaction parameters taken from 
Hegely and Lang [10]. 

The batch distillation process consists of the following five steps:  

• Step 0: heating-up of the total column under total reflux to approach 
steady-state. At the end of the step, the composition of the conden-
sate is close to that of the B-C azeotrope. This step lasts 360 min.  

• Step 1: taking the first fore-cut containing a high amount of B, C and 
E. This cut is incinerated. The step is finished when the concentration 
of C in the distillate (xd,C) decreases below a given stopping criterion: 
xd,C < Cr1.  

• Step 2: taking the second fore-cut, which contains more B, but whose 
pollutant content is still too high. This cut is recycled to the next 
batch (to decrease the loss of B). The step is finished when the 

concentration of C in the distillate (xd,C) decreases below a given 
stopping criterion: xd,C < Cr2.  

• Step 3: taking the main-cut, which is the methanol product with high 
purity. At the end of the step, the D content of the distillate starts to 
increase. The step is finished when the concentration of B in the 
product decreases below 99.52 %: xmc,B < 99.52 %.  

• Step 4: taking the after-cut, which is a mixture of B and D to remove B 
from the still residue so that it can be sent to biological wastewater 
treatment. This cut is also recycled to the next batch. The step is 
finished when the B content in the still residue decreases below 
0.25 %: xsr,B < 0.25 %. 

The distillation column has 27 theoretical plates (including the total 
condenser and the reboiler). The top pressure is atmospheric, and the 
column has a pressure drop of 0.25 bar. The volume of the charge is 
25 m3 (at 20 ◦C). The liquid hold-up of the condenser and the columns is 
0.45 m3 and 0.05 m3/plate, respectively. The constant heat duty of the 
reboiler (Qst) is 1800 MJ/h, which is provided with saturated heating 
steam of 3 bar (heat of condensation: rst = 2263.5 MJ/t). 

The optimisation problem to be solved is the following one [10]: 

max
X

{OF(X) } (7)  

subject to the inequality constraints. 

xmc,B(X) ≥ 99.5mass% (8)  

xfc2,C(X)

xfc2,B(X)
≤ 0.107 (9)  

xfc2,E(X)

xfc2,B(X)
≤ 0.120 (10)  

where OF is the objective function, X the vector of the optimisation 
variables, and xfc2,i is the concentration of component i in the second 
fore-cut. Constraints 9 and 10 are applied to limit the accumulation of C 
and E in the next batches because of the recycling of the second fore-cut. 

OF is the profit of processing one batch. It consists of the income, 
which is the value of regenerated methanol (that can also be considered 
as a purchase cost avoided), the incineration cost of the first fore-cut, 
and the cost of heating steam, which is proportional to the duration of 
the process (t) [10]: 

OF = pBmmc − cincmfc1 − cst
Qst

rst
t (11)  

where mmc is the mass of the main cut (product), mfc1 is the mass of the 
first fore-cut, pB is the price of methanol (0.46 US$/kg), cinc is the cost of 
incineration (0.21 $/kg), and cst is that of the heating steam (57.6 $/t). 
The cost of cooling water and the biological treatment of the still residue 
are neglected. 

The optimisation variables are the reflux ratios of the steps: R1 (first 
fore-cut), R2 (second fore-cut) R3 (main cut), and the termination 
criteria of Steps 1 and 2 (Cr1 and Cr2). R4 (the reflux ratio of the after- 
cut) was optimisation variable in Hegely and Lang [10], but since its 
effect on OF is negligible, it is fixed as 5.41 here. 

For more details on the phase equilibria and the separation process, 
the reader is referred to Hegely and Lang [10]. 

4. Results 

In this section, the results of the different algorithms are presented 
and compared. The performance of the methods is discussed, and 
detailed results are given for the new optimum. 

Table 1 
Ranges of the optimisation variables in GA optimisation.   

R1 R2 R3 Cr1, mass% Cr2, mass% 

Upper bound, Ui 15 15 15  40.00  10.00 
Lower bound, Li 0.6 0.6 0.6  0.50  0.50  
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4.1. Optimisation results with genetic algorithm 

Table 1 shows the ranges of the optimisation variables used with GA. 
New individuals were generated with random values of each variable 
within the given bounds. The ranges were chosen to be wide enough so 
that the global optimum is surely included in the domain defined by 
them. Additionally, Cr2 should always be less than or equal to Cr1, since 
xd,C decreases in time in a monotonous way. 

The parameters of GA: the population size, the mutation rate and the 
crossover rate were varied to study their effect on the optimisation re-
sults (Table 2). The first row (run JCP) contains the results of Hegely and 
Lang [10]. The number of generations was always 100; thus the number 
of simulations performed was 100 times the population size. In all the 
optimisation runs, the average increase of OF per generation became 
consistently low before reaching 100 generations. Since GA is a sto-
chastic method, repeating the optimisation with the same GA parame-
ters gives different results. This can be seen by comparing runs JCP and 
GA-2, the latter which gave a 2.7 % (13 $) higher OF value with different 
values of the optimisation variables, as well. The stochastic nature of the 
method means that it is not possible to clearly distinguish the effect of 
changing the parameters of the method from the inherent variation of 
the results. Nevertheless, changes in the GA parameters that are clearly 
favourable or unfavourable can be detected. 

The population size (in the range studied) does not significantly in-
fluence the value of OF. Therefore, a population of 15 individuals is 
sufficient, and further runs were performed with this value. Both the 
mutation and crossover rates were optimal at the values used in runs JCP 
(5 and 70 %, respectively). 

The results indicate that the GA parameters used in Hegely and Lang 
[10] were appropriate, but it is still possible to reduce the population 

size from 30 to 15 without adversely affecting the value of OF. Although 
a higher OF value was reached in this work, this is consistent with the 
stochastic nature of the method. 

4.2. Optimisation results with the Nelder-Mead simplex algorithm 

Since this case study has five optimisation variables, the simplexes of 
the Nelder-Mead simplex algorithm consist of six points in the five- 
dimensional space of optimisation variables. The initial simplex was 
generated with the methods described in Section 2.2 with the following 
modifications. In order to take into account the very different ranges for 
the possible values of the optimisation variables, the simplex was scaled. 
This was done by using different values of the p and q coefficients of the 
unit vectors for each variable. The size of the simplex (a) was given as a 
percentage of the ranges of the variables shown in Table 1. For any 
optimisation variable i, the value ai used in Eqs. (2) and (3) to obtain the 
p and q values is calculated by the following equation: 

ai = (Ui − Li)a+Li (12) 

The value of a used here was 5 %. The scaling of the simplex was 
especially necessary since Cr1 and Cr2 were considered in the optimi-
sation as mass fractions instead of mass percents. The p and q values 
obtained are given in Table 3. The optimisation was stopped if the 
standard deviation of OF in the points of the simplex became lower than 
0.01 $ or if the size of the simplex became lower than amin = 0.05 %. 

Several optimisation runs were performed with the simplex algo-
rithm to study the influence of the parameters of the method and that of 
the starting point (Table 4). Run S-1 was performed with the values 
recommended by Nelder and Mead [38], then in runs S-2 to S-7 each 
parameter was either decreased or increased, one parameter at a time. 
With the recommended simplex parameters, an OF value slightly infe-
rior to that of GA was obtained, although with only 209 simulations. 
Changing the value of the reflection coefficient (α) considerably reduced 
OF. Similar behaviour was observed by changing the contraction coef-
ficient (γ), although the changes in OF were smaller. On the other hand, 
increasing the expansion coefficient (β) to 0.75 increased OF, even 
though the number of simulations required was also higher. Further 

Table 2 
Results of the GA optimisation runs.  

ID Parameters of the method Number of simulations R1 R2 R3 Cr1, mass% Cr2, mass% OF, $ 

Population size Mutation rate, % Crossover rate, % 

JCP 30 5 70 3000  6.22  3.07  3.05  17.50  2.62 467 
GA-1 15 5 70 1500  5.77  3.57  3.26  18.21  2.97 479.3 
GA-2 30 5 70 3000  5.68  3.55  3.31  19.24  2.79 479.8 
GA-3 45 5 70 4500  5.57  3.52  3.35  18.40  3.07 477.9 
GA-4 15 3 70 1500  5.27  4.54  3.17  17.11  3.32 461.0 
GA-5 15 7 70 1500  6.21  5.05  3.28  15.73  3.12 440.7 
GA-6 15 5 50 1500  5.07  7.27  3.27  14.95  3.78 402.0 
GA-7 15 5 90 1500  5.80  6.84  3.07  16.16  3.25 423.9  

Table 3 
p and q values for the generation of initial simplexes.   

R1 R2 R3 Cr1, mass% Cr2, mass% 

p  0.65671  0.65671  0.65671  1.8219  0.45377 
q  0.14759  0.14759  0.14759  0.40947  0.10198  

Table 4 
Results of the simplex optimisation runs.  

ID Parameters of the method Number of simulations R1 R2 R3 Cr1, mass% Cr2, mass% OF, $ 

α β γ 

S-1 1  0.5 2 209  4.86  3.08  3.10  18.75  3.01  474.9 
S-2 0.5  0.5 2 142  6.71  4.26  3.38  11.34  2.50  377.5 
S-3 1.5  0.5 2 135  7.08  2.03  3.01  12.89  2.49  445.3 
S-4 1  0.25 2 157  4.96  3.72  3.16  17.28  3.13  463.3 
S-5 1  0.75 2 236  5.55  2.69  3.17  20.12  2.75  493.3 
S-6 1  0.5 1.5 232  6.17  3.82  2.92  17.98  2.36  451.5 
S-7 1  0.5 2.5 158  5.21  3.53  3.28  17.51  3.24  466.9 
S-8 1  0.875 2 195  6.03  2.96  3.07  17.38  2.79  479.1 
S-9 1  0.875 2 193  5.97  2.39  3.03  16.85  2.61  472.5 
S-10 1  0.75 2 263  5.47  3.14  3.04  18.39  2.94  483.2 
S-11 1  0.75 2 151  5.57  3.67  2.98  18.71  2.97  485.2  
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increasing β to 0.875 (run S-8) was already not advantageous. 
In all of the above runs, the initial simplex was generated from the 

same starting point (Table 5, first row). The value of OF in this point is 
low compared to the results of the optimisations meaning that it is not 
necessary to have a starting point with an already high OF value. To 
study the influence of the starting point, two other points were also used 
(Table 5). Runs S-9 and S-10 were started from a point with an ever 
lower OF value than before. Using β = 0.75 (S-10) was better than 0.875 
(S-9) in this case, as well. The OF value obtained with β = 0.75 is slightly 
lower than the best one obtained with the previous starting point (run S- 
5), but still above the value obtained by the recommended parameters. 
However, the number of simulations was higher. Starting the optimi-
sation from a point with higher OF (run S-11) gave very similar values 
for OF and the optimisation variables as run S-10 with a smaller number 
of simulations. 

In conclusion, it was important to select appropriate parameter 

values for the simplex algorithm. The values recommended by Nelder 
and Mead [38] (α = 1, β = 0.5, γ = 1) are acceptable, but the best results 
were obtained by changing β to 0.75. The location of the starting point 
does influence the value of OF but only slightly. Since the values of the 
variables do not vary strongly with starting location, it can be assumed 
that the variation in the results is due to the premature termination of 
the method rather than the finding of different local optima. The most 
important difference is in Cr1, which is much higher in run S-5. 

4.3. Optimisation results with the Box-complex algorithm 

The influence of the parameters and starting points of the complex 

Table 5 
Starting points of the simplex optimisation runs with the corresponding OF 
value.  

Runs R1 R2 R3 Cr1, mass% Cr2, mass% OF, $ 

S-1-8  7.00  4.00  4.00  10.00  2.00  286.5 
S-9-10  8.00  4.50  4.50  7.50  1.50  148.7 
S-11  6.00  4.00  3.50  15.00  2.50  406.5  

Table 6 
Results of the complex optimisation runs.  

ID Parameters of the method Starting complex Number of simulations R1 R2 R3 Cr1, mass% Cr2, mass% OF, $ 

α dmin n 

C-1 1 0.1 8 Randomly generated in Range A 152  5.71  4.97  3.18  17.06  3.17  459.3 
C-2 161  5.79  4.39  3.00  17.52  2.92  468.4 
C-3 187  5.70  5.15  2.95  16.94  3.08  455.5 
C-4 303  5.81  2.65  3.06  19.54  2.66  489.2 
C-5 309  5.56  4.67  3.34  17.41  3.10  460.2 
Avg.  222  466.5 
SD 77 13.5 
C-6 1 0.1 8 Randomly generated in Range B 708  5.92  2.05  3.14  20.30  2.48  488.2 
C-7 789  5.68  3.03  3.03  18.92  2.83  488.5 
C-8 301  5.92  3.29  3.27  17.81  2.79  477.7 
C-9 379  6.22  1.91  3.08  17.84  2.40  479.7 
C-10 1236  5.84  2.48  3.03  18.41  2.68  483.5 
Avg.  683  483.5 
SD 373 4.9 
C-11 1.3 0.2 8 Randomly generated in Range B 274  6.00  3.15  3.25  18.19  2.66  475.8 
C-12 134  5.84  2.49  3.02  19.08  2.62  486.5 
C-13 393  6.13  2.13  3.17  17.05  2.54  474.5 
C-14 166  5.50  3.29  3.07  19.00  2.93  487.4 
C-15 166  5.59  2.50  3.17  20.37  2.72  491.7 
Avg.  227  483.2 
SD 107 7.6 
C-16 1.6 0.2 8 Randomly generated in Range B 254  6.41  1.77  3.14  17.63  2.37  480.3 
C-17 294  5.51  2.41  3.35  21.23  2.58  485.2 
C-18 220  5.95  3.06  3.42  17.55  2.82  472.1 
C-19 330  5.11  3.47  3.06  18.41  3.06  477.6 
C-20 141  7.75  3.26  3.06  19.32  2.71  482.4 
Avg.  248  479.5 
SD 73 5.0 
C-21 1.3 0.2 10 Randomly generated in Range B 639  5.57  3.03  2.93  19.14  2.90  488.9 
C-22 256  5.75  2.60  3.04  19.42  2.69  489.6 
C-23 293  5.69  2.62  3.03  19.80  2.73  492.1 
C-24 389  5.49  3.51  3.24  18.42  2.94  478.8 
C-25 210  5.68  2.47  3.26  19.74  2.68  487.8 
Avg.  357  487.4 
SD 171 5.1 
C-26 1.3 0.2 10 Predetermined (Table 8) 245  6.33  1.88  3.19  17.55  2.40  478.3 
C-27 388  5.63  2.78  3.06  19.70  2.76  491.2 
C-28 407  5.31  3.63  3.04  18.67  2.89  478.7 
C-29 168  6.95  3.76  3.06  14.68  2.59  443.9 
C-30 358  5.98  2.59  3.10  18.47  2.64  485.5 
Avg.  313  475.5 
SD 103 18.4  

Table 7 
Starting ranges of the optimisation variables for the complex optimisation runs.  

Range Runs  R1 R2 R3 Cr1, mass 
% 

Cr2, 
mass% 

Range 
A 

C-1-5 Upper 
bound  

7.00  6.00  3.50  20.00  3.00 

Lower 
bound  

5.00  4.00  2.50  10.00  0.05 

Range 
B 

C-6- 
25 

Upper 
bound  

8.00  6.00  4.50  25.00  3.50 

Lower 
bound  

4.00  2.00  2.50  15.00  1.50  
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algorithm on the optimisation results was studied. Unlike the simplex 
method, this is a stochastic method. Therefore, at each setting, the 
optimisation is repeated five times, and the average (Avg.) and standard 
deviation (SD) of OF and the number of simulations are calculated 
(Table 6). 

In runs C-1 to C-5, the reflection coefficient was α = 1.0, which is the 
minimum possible value, the minimal size of the complex (determining 
termination) is dmin = 0.1, while the number of points in the complex is 
n = 8, that is higher than 6, the minimum number of points. The starting 
complex is randomly generated in Range A (Table 7). These range of the 
optimisation variables are considerably narrower than the ones used for 
GA, but the values found by GA and the simplex method are generally 
within them, with the exception of R2 and, in the case of run S-5, Cr1. 
With these parameters of the method, the individual runs gave satis-
factory OF values with numbers of simulations close to those of the 
simplex method. However, the OF values have a wide distribution be-
tween 455.2 $ to 489.2 $ (which is the second-highest value found so 
far). This shows that although it is possible to obtain high OF values, this 
can only be done reliably by performing multiple runs. The final values 
of the variables are not limited by the starting ranges; for example, R2 in 
run C-4 is below its lower bound. 

In order to study the influence of the starting ranges, they were 
modified based on the previous optimisation results (Range B, Table 7). 
The ranges of the reflux ratios were widened, that of Cr1 was shifted 
higher, and that of Cr2 was shifted and narrowed. Widening the ranges 
can make the optimisation slower since it is likely that during the gen-
eration of the initial complex a higher number of infeasible points will be 
found. On the other hand, increasing the size of the initial complex can 
help approaching the true optimum. The results (runs C-6 to C-10) show 
that the average number of simulations became three times higher, 
although it varied considerably among the individual runs (from 301 to 
1236). However, the average OF value increased significantly, and the 
standard deviation fell almost to its third. This means that with these 
settings, the complex algorithm reliably gave OF values comparable or 
better than the best one obtained by GA. Considering that the number of 
simulations was undesirably high by using the favourable starting 
ranges, the earlier termination of the algorithm was considered by 
increasing dmin to 0.2. For runs C-1 to C-5, dmin reached 0.2 after 128 
simulations on average. At this point, the maximal OF value was already 
found in one of the cases (run C-4), and the average OF was only by 
0.15 % (0.68 $) lower than at dmin = 0.1. For runs C-6 to C-10, the 
average number of simulations was less than half (302) than with 
dmin = 0.1. The maximum and average OF values were only by 0.25 % 
(1.21 $) and 0.23 % (1.09 $) lower, respectively. Therefore, continuing 
the optimisation until dmin = 0.1 after reaching dmin = 0.2 does not 
significantly increase the value OF, but nearly doubles simulation time. 

Runs C-11 to C-15 were thus performed with dmin = 0.2. Addition-
ally, α was increased to 1.3. With this modification, the number of 
simulations decreased, while the average value of OF practically 
remained the same. One of the runs (C-15) gave the highest OF value 
obtained by the complex algorithm this far. By further increasing the 
value of α (runs C-16 to C-10), the average value of OF decreased 
slightly. Therefore, the value of α = 1.3 is satisfactory. 

In runs C-21 to C-25, the number of points of the complex was 
increased to n = 10, which is the value recommended by Box [40] since 
it is twice the number of optimisation variables. The value of α was 1.3. 
This modification increased considerably the number of simulations 
required, from 227 to 357. On the other hand, the highest average OF 
value was obtained this far. The standard deviation was also low, 
meaning that the values of OF were reliably high (only one of them was 
lower than the best one obtained by GA). Run C-23 gave an OF value 
close to the best one obtained by the simplex method. 

All previous calculations were started from randomly generated 
complexes. In runs C-26 to C-30, a predetermined starting complex was 
given (Table 8). The first point of the complex was the starting point 
used in run S-11 (Table 5). All the other points were generated from this 

one by changing the values of two operational variables simultaneously. 
The reflux ratios were increased, the stopping criteria were decreased to 
ensure that all points are feasible. From the ten possible combinations of 
changing two variables simultaneously, the one where the two stopping 
criteria are changed was not used. Using this starting complex made the 
optimisation faster, but the average value of OF decreased. However, 
this decrease is mainly because run C-29 has a low OF value; the other 
four runs gave good results. These calculations show that the variation of 
optimisation results does not only arise from the randomly generated 
starting complex but also from the random replacement of points during 
optimisation. 

To conclude, the best results were achieved by using the parameter 
values recommended by Box [40]: α = 1.3, k = 10 and starting the 
optimisation with a complex randomly generated with moderately wide 
ranges for the optimisation variables. By these settings, it was possible to 
reliably obtain high OF values. Choosing an appropriate value for the 
termination criterion (here, the size of the complex) is important to 
avoid an excessive increase in optimisation time. The method is sensitive 
to the generation of the initial complex. Using wider ranges improves the 
value of OF, but increases the optimisation time. 

4.4. Distribution of the values of the optimisation variables 

Fig. 4 shows the distribution of the values of the optimisation vari-
ables for the three optimisation methods in the form of box plots. The 
red line shows the median value, the box the interquartile range (the 
range between the first and third quartiles (25th and 75th percentile, 
respectively)), while the whiskers (in black) show the upper and lower 
fences, which are the maximum and minimum values not considered 
outliers. A value was defined as an outlier (shown as red marks) if it was 
farther away from the 25th or 75th percentile than 1.5 times the inter-
quartile range. The range between the whiskers corresponds approxi-
mately to ± 2.7 times the standard deviation of a normally distributed 
variable [57]. (The numerical values of the statistics shown in Fig. 4 are 
given in Tables S1-S3 in the Supporting information.) The horizontal 
black line shows the value found by the optimisation run with the 
highest OF value (run S-5), which will be referred to here as the optimal 
value. (Since the methods do not check optimality criteria, it cannot be 
claimed that this is the global optimum, but it is likely to be a good 
approximation of it.). 

The distributions of R1 are similar to each other, with that of the 
simplex method being wider. The values of R2 obtained by GA are 
generally higher than those obtained by the other methods. The optimal 
R2 is even outside of the range found by GA. The values of R3 obtained by 
GA are also usually higher; however, the optimal value is in the higher 
part of the third quartile by the simplex and complex methods. In the 
case of Cr1, GA gave generally lower values. The optimal value is the 
highest of the simplex method and above the range of GA. In contrast, 
usually higher Cr2 values were found by GA. 

The results show that while the distribution of the values of the 
optimisation variables was similar for the simplex and complex 
methods, the ranges obtained by GA were different for most of the 

Table 8 
Points of the starting complex for runs C-26-30.  

R1 R2 R3 Cr1, mass% Cr2, mass% OF, $  

6.00  4.00  3.50  15.00  2.50  406.5  
6.50  4.50  3.50  15.00  2.50  409.2  
6.50  4.00  4.00  15.00  2.50  382.6  
6.50  4.00  3.50  13.50  2.50  402.3  
6.50  4.00  3.50  15.00  2.25  396.8  
6.00  4.50  4.00  15.00  2.50  369.2  
6.00  4.50  3.50  13.50  2.50  381.3  
6.00  4.50  3.50  15.00  2.25  377.4  
6.00  4.00  4.00  13.50  2.50  362.9  
6.00  4.00  4.00  15.00  2.25  357.5  
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Fig. 4. The distribution of the values of the optimisation variables obtained by the different optimisation methods: a. R1, b. R2, c. R3, d. Cr1, e. Cr2.  

Fig. 5. The distribution of the number of simulations (a.) and the values of OF (b.) obtained by the different optimisation methods.  
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variables (with the exception of R1 and Cr1). In some cases (R2, Cr1), the 
ranges did not include the optimal value. 

4.5. Comparison of the optimisation methods 

The number of simulations and the values of OF are also shown in 
box plots in Fig. 5. (The numerical values of the statistics shown in Fig. 5 
are given in Tables S4-S6 in the Supporting information.) Both the 
simplex and complex methods required much fewer simulations than GA 
(Fig. 5a). However, the simplex method showed much lower variations, 
while the number of simulations of the complex method approached in 
outlying cases those of GA. (In the case of GA, the median value co-
incides with the minimum one). 

The values of OF had a wider distribution by GA (Fig. 5b) than by the 
other two methods, which is unfavourable. The highest value was 
reached by the simplex method, which, however, gave the lowest value, 
as well. On the other hand, the complex method gave more consistently 
high OF values. 

Fig. 6 shows the evolution of OF as a function of the number of 
simulations for the optimisation run of each method giving the highest 

final OF value. 
GA did not only require a much higher number of simulations than 

the simplex and complex methods but, after a brief period of steep in-
crease, OF increased only slowly. For the simplex and complex methods, 
OF started already at a relatively high value and increased rapidly to a 
value close to the final result. 

Plotting the number of simulations as a function of OF (Fig. 7) reveals 
that there is no strong relationship between the two values. The number 
of simulations was always low by the simplex method. As it can be seen 
for the complex method, an increased number of simulations does not 
necessarily result in a better OF value. 

The distance of all j points obtained by optimisation from the best 
one (run S-5) was calculated by: 

δj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑5

i=1

(
Xi,j − Xi,S− 5

Ui − Li

)2
√
√
√
√ (13)  

where Xi,j is the value of the optimisation variable i in point j. The upper 
and lower bounds Ui and Li (with the values shown in Table 1) were used 
to scale the differences in the values of the optimisation variables. The 

Fig. 6. The evolution of OF during optimisation for the runs with the highest 
final OF value. 

Fig. 7. The number of simulations and the value of OF obtained for the different optimisation methods.  

Fig. 8. The distance from the optimal OF value (D) as a function of the distance 
from the optimal point in the space of decision variables (δ). 
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distance of the OF values obtained from the highest one was also 
calculated: 

Dj = OFS− 5 − OFj = 493.3 − OFj (14) 

As a general trend, Dj decreases with decreasing δj (Fig. 8), meaning 
that the optimisation runs were not approaching another local optimum 
located at very different values of the optimisation variables but having 
a comparable (or better) OF value than the best one found here. 

4.6. Detailed results of the new optimum 

The new optimum found by run S-5 is compared to those of Hegely 
and Lang [10] (run JCP). The E/B mass ratio in the second fore-cut is 
close to the limit values of the constraint in both cases (Table 9). 
However, for run JCP, the C/B mass ratio is significantly (by 11 %) lower 
than the limit (Eq. (9)). It is expected that in the optimum both con-
straints are active for two reasons. First, it is preferable to remove C and 
E in the second fore-cut instead of the first one to decrease the incin-
eration cost. Second, if the C/B or E/B ratio is not maximal, more B is lost 
in the second fore-cut, decreasing the mass of the main-cut and the in-
come. Compared to run JCP, R1 and R2 are lower in run S-5 (by 11 and 
12 %, respectively), while R3 is slightly (by 3.9 %) higher (Tables 2 and 

4). The highest difference is in Cr1, which is considerably (by 15 %) 
higher in run S-5, meaning that the first fore-cut stops earlier. Cr2 is also 
higher (by 5.0 %), corresponding to an earlier start of the main-cut. 

The profit of run S-5 is 5.6 % higher due to the 4.7 % lower incin-
eration and 2.2 % lower steam costs. The reduction of the latter is caused 
by the lower reflux ratios leading to a shorter (by 2.2 %) process dura-
tion. The mass of the main cut and thus the income decreased by 1.3 %; 
however, this was compensated by the lower costs. 

Fig. 9 compares the evolution of the condensate (distillate after Step 
0) composition of the two runs. By run S-5, Step 1 is shorter mainly due 
to the higher Cr1 value. Because of this, the subsequent steps are shifted 
earlier. The concentration of B is higher in Steps 0–2 and in the first part 
of Step 3 but lower later on. However, due to the shifting, the average 
concentration of B in the second fore-cut is almost the same (81.59 % by 
S-5, 81.66 % by JCP). 

5. Conclusions 

In order to reduce the computational intensity of the optimisation of 
batch distillation processes, two direct search methods, the Nelder-Mead 
simplex and a variant of the Box-complex method were studied, and the 
results were compared to those of a genetic algorithm (GA). The opti-
misation algorithms were coded in Visual Basic for Applications under 
Microsoft Excel and coupled to the CHEMCAD professional flow-sheet 
simulator. The calculations were performed for a case study taken 
from Hegely and Lang [10], where the profit of the batch distillation 
treatment of a multicomponent azeotropic waste solvent mixture was 
maximised by GA. The influence of the parameters of the different 
optimisation methods was also studied. 

The values of the parameters (number of individuals, crossover and 
mutation rate) of GA used by Hegely and Lang [10] were found to be 
appropriate, although it was possible to decrease the number of in-
dividuals from 30 to 15 without significantly affecting the value of the 
objective function (OF). The disadvantage of GA was that it required a 
high number of evaluations of OF, that is simulations. By the simplex 
algorithm, the best result was obtained by using the reflection and 
expansion coefficients recommended by Nelder and Mead [38], while 

Table 9 
Detailed results of Hegely and Lang [10] (JCP) and the new optimum (S-5) for 
one batch.   

JCP S-5 Difference, % 

R1 6.22 5.55  − 10.8 
R2 3.07 2.69  − 12.4 
R3 3.05 3.17  3.93 
Cr1, mass% 17.50 20.12  15.0 
Cr2, mass% 2.62 2.75  4.96 
xfc2,C/xfc2,B 0.0951 0.1058  11.3 
xfc2,E/xfc2,B 0.1191 0.1182  − 0.756 
Income ($) 2597 2563  − 1.31 
Incineration cost ($) 492 469  − 4.67 
Steam cost ($) 1638 1602  − 2.20 
Profit ($) 467 493  5.57  

Fig. 9. Evolution of the condensate composition for the results of Hegely and Lang [10] (JCP) and for the new optimum (S-5).  
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increasing the contraction coefficient from 0.5 to 0.75. The choice of the 
starting location did not have a strong effect on the values of OF ob-
tained. For the complex algorithm, the values recommended by Box [40] 
gave the best results. It was important to select an appropriate value for 
the termination criterion of the algorithm to avoid a large number of 
calculations with only a small improvement in OF. The selection of the 
ranges of the optimisation variables, within which the initial complex is 
generated, was also important. Wider ranges can improve the value of 
OF at the cost of increasing the computational time. 

The best OF value was reached by the simplex algorithm, which was 
0.2 % higher than the best one found by the complex algorithm, 2.8 % 
higher than that of GA and 5.6 % higher than the result of Hegely and 
Lang [10]. Taking into account all optimisation runs performed with 
different parameter values of the methods, both the simplex and the 
complex algorithm generally gave better results than GA, but the com-
plex algorithm reached higher OF values more consistently. The number 
of simulations was much lower by the simplex and the complex algo-
rithm than by GA (median values were lower by 87 % and 80 %, 
respectively), although by the complex algorithm, it could approach the 
values of GA in certain optimisation runs. The results demonstrated that 
the direct search method can be applied to reduce the computational 
intensity of the optimisation of batch distillation while obtaining similar 
or even better results than GA, the method most frequently applied for 
this purpose. While the careful selection of the parameter values of the 
direct search methods will result in better OF values, good OF values will 
likely be obtained even by following the recommendations of Nelder and 
Mead [38] and Box [40]. 

In future works, it would be worthwhile to study combinations of GA 
and the direct search methods, such as using GA for a low number of 
generations, then using the best point as the starting point of the direct 
search method. This could enable a compromise between the global 
search of GA and the low computational intensity of the direct search 
methods. 
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