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Three-flavor chiral effective model with four baryonic

multiplets within the mirror assignment

L Olbrich1, M Zétényi2, and F Giacosa1,3

Abstract. We study three-flavor octet baryons by using the so-called extended Linear Sigma
Model (eLSM). Within a quark-diquark picture, the requirement of a mirror assignment
naturally leads to the consideration of four spin- 1

2
baryon multiplets. A reduction of the

Lagrangian to the two-flavor case leaves four doublets of nucleonic states which mix to form
the experimentally observed states N(939), N(1440), N(1535) and N(1650). We determine the
parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties
of the aforementioned states. By tracing their masses when chiral symmetry is restored, we
conclude that the pairs N(939), N(1535) and N(1440), N(1650) form chiral partners.
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1. Introduction

In these proceedings, which are based on the results of Ref. [1], we focus our attention on baryons

consisting of the light quarks u, d, and s and with quantum numbers JP = 1
2

+
and JP = 1

2

−
.

First and foremost, this includes the nucleon N(939) and the resonances N(1440), N(1535),
N(1650), but also Λ, Σ, and Ξ resonances [2].

The fundamental force of nature describing baryons (and hadrons in general) is Quantum
Chromodynamics (QCD), whose Lagrangian is given in terms of quarks and gluons by (e.g.
Ref. [3]):

LQCD = q̄
(
iγµD

µ −m
)
q − 1

2
Tr(GµνGµν) , (1)

where Dµ = ∂µ+igAµ is the covariant derivative and g is the coupling “constant” parametrizing
the interaction of the quark fields q with a gluon field Aµ. The latter is associated with the
SU(3)c gauge field Aµ = Aµ

aT a for a = 1, 2, . . . , 8 ], T a being the SU(3) generators. The
Yang-Mills field-strength tensor is Gµν = i[Dµ,Dν ]/g. Definitely, the QCD Lagrangian is
elegant, compact, and contains only few parameters (the bare quark masses and the coupling
g). However, a more detailed study within the framework of renormalization shows that the
coupling “constant” of strong interaction depends on momentum scale and becomes arbitrary
large in the low-energy regime. This fact forbids the usual approach of perturbation theory
and causes QCD to be not analytically solvable. On top of that, confinement implies that only
“white”, i.e. color singlet states (the hadrons) are the asymptotic states of the theory, and only
these can be measured in detectors.
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In order to describe hadrons, theoretical physicists had to look for alternatives. One such
possibility is given by effective approaches to QCD, such as chiral perturbation theory (e.g.
Refs. [4]) or linear Sigma Models (see below). In this process one uses Lagrangians which
contain hadrons as degrees of freedom, instead of quarks and gluons as in QCD. To get the
basic idea of an effective model, we make a short digression by asking under which conditions
a glass of water freezes. The answer is easy: it depends on the temperature of water. But why
is this answer so simple? Actually, the exact description of the system requires to solve coupled
differential equations for each molecule. This is indeed very complicated, actually impossible also
for supercomputers. However, by using the effective description provided by thermodynamics,
one can solve (some) problems in a much simpler way. In doing so, we lost the information about
the motion of each molecule, but we retained the information that is important for describing
the whole system.

Let us then turn back to hadrons with half-integer spin: baryons. A baryon is a very
complicated system of quarks and gluons arising from Eq. (1). For a fast moving baryon, as
for instance a proton, one may use (generalized) parton distribution functions to analyze its
substructure in terms of quarks and gluons, see e.g. Ref. [5]. However, for a baryon in its rest
frame, this is a very hard task, possibly even harder than following each molecule of water
mentioned above. The use of effective descriptions highly simplify the task. Typically, one uses
the concept of ‘constituent quarks’: an almost massless bare quark is dressed by clouds of gluons
and quarks and becomes a quasiparticle with an effective mass of about 300 MeV [3]. A baryon
is then described as a bound state of three constituent quarks. Within this framework, also the
concept of diquark as the strong correlation of two quarks is important, because often baryons
are also regarded as quark-diquark objects.

Certain types of effective models, such as linear Sigma Models, are based on Lagrangians
which contain from the very beginning only hadrons (mesons and baryons). Quark and gluon
fields do not appear. Yet, these Lagrangians are constructed in such a way that (some of the)
symmetries of QCD of Eq. (1) are taken into account at he composite level. In particular, chiral
symmetry [3] and its spontaneous and explicit breaking are at the basis of such approaches.
Recently, the so-called extended Linear SigmaModel (eLSM) has been developed for both mesons
and baryons. It contains scalar, pseudoscalar, vector, and axial-vector mesons. Moreover, it
shows chiral symmetry and its breaking but also dilatation symmetry and its anomalous breaking
(this is the non-perturbative origin of an energy scale of QCD, the renowned ΛQCD ≃ 200 MeV).

In the meson sector, the three-flavour case Nf = 3 has been investigated in detail in Ref. [6, 7].
Yet, until recently, the baryonic sector was only studied for Nf = 2 in Ref. [8]. Here, following
Ref. [1], we enlarge (Sec. 2) the eLSM to Nf = 3 in the baryonic sector. This is a non-trivial step
which naturally leads to the consideration of four baryonic octets. Next, (Sec. 3) we consider the
limiting case in which only baryons with quarks u and d are considered and discuss the mixing
patterns and the identification of the chiral partner of the nucleon. Finally, in Sec. 4 we present
our conclusions and outlooks.

2. The eLSM and its implications

The mesonic part of the eLSM Lagrangian containing (pseudo)scalar and (axial-)vector mesons
is given in Refs. [6, 7]. The inclusion of baryons was performed for Nf = 2 in Refs. [8] and
investigated at finite density in Ref. [9]. Recently, the development of the baryonic eLSM to
Nf = 3 was undertaken in Ref. [1]. The basic idea is to construct baryonic fields in a chiral
quark-diquark picture. For Nf = 3 diquarks transform as antiquarks, thus one may construct
baryons in a similar way as mesons. This assumption results in matrices with elements of dif-
ferent flavor content, which are related to the octet-baryonic fields:







[d, s]
− [u, s]
[u, d]





︸ ︷︷ ︸

diquark

(u, d, s)
︸ ︷︷ ︸

quark

=̂





uds uus uud
dds uds udd
dss uss uds



 ∼






Λ√
6
+ Σ0

√
2

Σ+ p

Σ− Λ√
6
− Σ0

√
2

n

Ξ− Ξ0 − 2Λ√
6




 . (2)

When enlarging the present discussion by taking into account the chirality of quarks and diquarks
(see Ref. [10]) and requiring chiral invariant mass terms, we naturally obtain four baryonic
multiplets, two of which transform in a standard way under chiral transformations and two in
a so-called “mirror” way. These four multiplets are represented by four matrices analogous to
Eq. (2). Two of these matrices labeled N1 and N2 behave under chiral transformations as

N1R → URN1RU
†
R , N1L → ULN1LU

†
R,

N2R → URN2RU
†
L , N2L → ULN2LU

†
L , (3)

where UL and UR are 3 × 3 representation matrices of U(3)L and U(3)R. The remaining two
matrices M1 and M2 show a chiral transformation from the left that is ‘mirror-like’ compared
to the aforementioned:

M1R → ULM1RU
†
R , M1L → URM1LU

†
R

M2R → ULM2RU
†
L , M2L → URM2LU

†
L . (4)

These transformations comply a so-called “mirror assignment” [11] which allows one to introduce
chirally invariant baryon mass terms in the Lagrangian. The Lagrangian describing these
baryonic fields and their interactions with mesonic degrees of freedom is invariant under chiral
symmetry U(3)R ×U(3)L as well as parity and charge-conjugation transformations [1]. It reads

LNf=3,bar = Tr
{
N̄1LiγµD

µ
2LN1L + N̄1RiγµD

µ
1RN1R + N̄2LiγµD

µ
1LN2L + N̄2RiγµD

µ
2RN2R

}

+Tr
{
M̄1LiγµD

µ
4RM1L + M̄1RiγµD

µ
3LM1R + M̄2LiγµD

µ
3RM2L + M̄2RiγµD

µ
4LM2R

}

− gN Tr
{

N̄1LΦN1R + N̄1RΦ
†N1L + N̄2LΦN2R + N̄2RΦ

†N2L

}

− gM Tr
{

M̄1LΦ
†M1R + M̄1RΦM1L + M̄2LΦ

†M2R + M̄2RΦM2L

}

−m0,1 Tr
{
N̄1LM1R + M̄1RN1L + N̄2RM2L + M̄2LN2R

}

−m0,2 Tr
{
N̄1RM1L + M̄1LN1R + N̄2LM2R + M̄2RN2L

}

− κ1 Tr
{

N̄1RΦ
†N2LΦ+ N̄2LΦN1RΦ

†
}

− κ′1 Tr
{

N̄1LΦN2RΦ+ N̄2RΦ
†N1LΦ

†
}

− κ2 Tr
{

M̄1RΦM2LΦ+ M̄2LΦ
†M1RΦ

†
}

− κ′2 Tr
{

M̄1LΦ
†M2RΦ+ M̄2RΦM1LΦ

†
}

.

(5)

The traces are invariant under cyclic permutation, which ensures their symmetry under the
chiral transformations (3) and (4). The covariant derivatives are given by Dµ

kR = ∂µ−ickR
µ and

Dµ
kL = ∂µ−ickL

µ for k = 1, . . . , 4, where the left- and right-handed matrices Lµ andRµ represent
(axial-)vector mesonic degrees of freedom. (Pseudo)scalar mesonic fields are incorporated via

the Φ matrix. The mesonic matrices transform under chiral transformations as Rµ → URR
µU †

R

, Lµ → ULL
µU †

L , and Φ → ULΦU
†
R. The mass parameters m0,1 and m0,2 are particularly

important, since they allow to shed light on the origin of the nucleonic masses. They emerge
from (dilatation-invariant) interactions upon the condensation of glueball and/or a four-quark
states, see e.g. Ref. [9].



The baryonic fields in Eq. (5) are not parity eigenstates, therefore we construct the fields of
definite parity,

BN =
N1 −N2√

2
, BN∗ =

N1 +N2√
2

, BM =
M1 −M2√

2
, BM∗ =

M1 +M2√
2

. (6)

where now BN and BM have positive parity and BN∗ and BM∗ have negative parity. In the limit
of zero mixing, BN describes the ground-state baryonic fields of Eq. (2), i.e., {N(939), Λ(1116),
Σ(1193), Ξ(1338)}, BM the positive-parity fields {N(1440),Λ(1600),Σ(1660),Ξ(1690)}, BN∗ can
be assigned to the negative-parity fields {N(1535), Λ(1670),Σ(1620),Ξ(?)} and, finally, BM∗ to
{N(1650),Λ(1800),Σ(1750),Ξ(?)}. In general the fields describing physical particles emerge as
a mixture of BN , BN∗, BM , and BM∗. The detailed study of this mixing will be performed
below for the two-flavor case.

3. Results

In order to determine the twelve parameters of the model, we reduce Eq. (5) to Nf = 2. This
leaves us with four isodoublets (instead of the baryonic 3 × 3 matrices), which mix to produce
the experimentally observed nucleon N(939), N(1440), N(1535), and N(1650). For the fit, we
use thirteen quantities: masses and decay widths of the resonances, the axial coupling constant
of the nucleon from [2], as well as the lattice results for the remaining axial coupling constants
[12]. Using a standard χ2-square procedure we found that three acceptable and almost equally
deep minima exist, see Ref. [1]. The first two minima lead to small absolute values of m0,1

and m0,2, while the third one features absolute values of these constants comparable with the
nucleon’s mass (in agreement with the recent study of Ref. [13]).

Quite remarkably, for all three minima the decay N(1535) → Nη cannot be described (it is a
factor 10 too small [1]). Thus, further studies are needed to understand N(1535). It may contain
a sizable admixture of ss̄, see Ref. [14], or the problem might be connected to the role of chiral
anomaly in the baryonic sector [15]. The assignment of chiral partners can also be investigated
by computing the masses as a function of the chiral condensate ϕN , because masses of chiral
partners become degenerate for ϕN → 0. For all minima, the result shows that the masses of
the N(939) and N(1535) as well as N(1440) and N(1650) merge as ϕN → 0, therefore these
form two pairs of chiral partners.

Finally, as an illustration, we present here one of the resulting mixing matrices (Minimum 1
in [1]):







N(939)
γ5N(1535)
N(1440)

γ5N(1650)







=







−0.996 −0.025 −0.046 −0.074
0.075 −0.492 0.039 −0.867

−0.050 −0.057 0.995 0.073
0.010 0.869 0.086 −0.488













BN

γ5BN∗
BM

γ5BM∗







. (7)

In fact, although the mixing has been determined for Nf = 2 only, our calculations show that
it is a good first approximation for all the members of the octet.

4. Summary and outlook

The eLSM is an effective model of QCD whose building blocks are hadrons. Starting from its
Lagrangian, one can perform calculations that are not possible within QCD. In this work we
have generalized the eLSM to the three-flavor case. Requiring chirally invariant mass terms one
is lead to use the so-called “mirror assignment”, and naturally obtains four baryonic multiplets.
In order to determine the parameters, we have performed a reduction to theNf = 2 case and a fit
to experimentally known quantities. Three minima produce results that are in good agreement
with experiment (expect for the decay width N(1535) → Nη). Furthermore, we concluded that



the pairs N(939), N(1535) and N(1440), N(1650) form chiral partners. The most important
open problem is to decide which of the minima is preferable. To this end, we will investigate
the complete Nf = 3 case by performing an overall fit to measure physical quantities. As
a consequence, interesting information for both vacuum physics, such as scattering processes
involving strange hadrons [16] and at nonzero density, such as the role hyperon in compact stars
[17], will be obtained.
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