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Abstract
We propose that a device composed of two vertically stacked monolayer graphene Josephson
junctions can be used for Cooper pair splitting. The hybridization of the Andreev bound states of
the two Josephson junction can facilitate non-local transport in this normal-superconductor
hybrid structure, which we study by calculating the non-local differential conductance. Assuming
that one of the graphene layers is electron and the other is hole doped, we find that the non-local
Andreev reflection can dominate the differential conductance of the system. Our setup does not
require the precise control of junction length, doping, or super conducting phase difference, which
could be an important advantage for experimental realization.

Quantum entangled particles have numerous poten-
tial applications in fields such as quantum commu-
nications or quantum cryptography. Thus, practical
schemes of producing entangled particles are of fun-
damental interest [1]. One of the most promising can-
didates for creating entangled electron states is based
on spin singlet Cooper pairs. It was proposed that
if the electrons of a Cooper pair can be extracted
coherently and separated spatially, they can serve as
a source of entangled electrons [2, 3]. This process is
known as Cooper pair splitting (CPS). As discussed
in, e.g. [4, 5], the key physical process to achieve CPS
is the non-local or crossed Andreev reflection (CAR).

Although the first observations of CPS were made
in metallic nanostructures [6, 7], devices that use two
quantum dots (QDs) have garnered the most atten-
tion in this field. The charging energy on the QDs
prohibits the double occupancy on each dot, lead-
ing to the suppression of electron cotunneling (EC).
EC is a competing process with CAR and it should
be suppressed in order to achieve CPS. Experiment-
ally CPS has been achieved in QD devices realized
in InAs and InSb nanowires [8–13], carbon nan-
otubes [14, 15], graphene based QDs [16–18], and
recently in 2DEGs [19]. Alongside the experimental

effort, substantial theoretical work has also been
devoted to the study of CPS in QD based devices
[2, 3, 20–22].

A different approach to suppress EC with respect
to CAR makes use of features in the density of states
of semiconductors [23, 24]. Since this approach does
not necessitate QDs, it should make the fabrica-
tion of CPS devices simpler. Regarding monolayer
graphene, [23] predicted that pure CAR could be
achieved in a n-type graphene−superconductor−p-
type graphene junction, if the doping of the graphene
is smaller than the superconductor pair potential
∆0. In this case, the vanishing density of state of
graphene at the Dirac point allows the elimination
of processes that suppress CAR. However, due to the
charge fluctuations around the Dirac point, which
are usually larger [25, 26] than the value of ∆0 of
most superconductors, such a low doping is diffi-
cult to achieve experimentally. The problem of charge
fluctuations can be mitigated, to some extent, by
using bilayer graphene [27], because the larger dens-
ity of states allows a better control of residual dop-
ing levels [27, 28]. Recently, the signatures of CPS
have also been observed in multi-terminal ballistic
graphene-superconductor structures [29]. Another
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recent theoretical proposal [30, 31] suggested that
the CAR probability can be enhanced in a device
where the central region consists of two, coupled one-
dimensional superconductors and two normal leads
are attached on each side to one of the supercon-
ductors. The central region effectively constitutes a
superconducting QD. The CAR can be resonantly
enhanced by tuning the superconducting phase dif-
ference between the one-dimensional superconduct-
ors to ϕ≈ π and then adjusting the chemical poten-
tial of the superconductors.

In this work we propose that an approach based
on Andreev molecular states (AMSs) [32, 33] can
also help to achieve CAR dominated transport. It
was suggested that Andreev bound states (ABSs) in
closely spaced Josephson junctions (JJs) can overlap
and hybridize forming AMSs. We study the possibil-
ity of CPS in a setup that harbors AMSs. The device
consists of two graphene JJs displaced vertically with
respect to each other, (see figure 1) such that the
ABSs in the two junctions can hybridize. This type
of graphene JJ has recently been studied experiment-
ally in [34], focusing on superconducting interference
device type operation and quantum Hall physics. We
calculate the non-local, non-equilibrium differential
conductance through the device, when two normal
leads are weakly connected to the graphene layers, as
shown in figure 1. Our most important finding is that
CAR can be larger than EC even if the doping of the
graphene layers is significantly larger than the value
of ∆0. Therefore, the CAR should be less affected by
charge puddles, which are present in graphene at low
doping.

1. The model

The schematics of the proposed four-terminal device
is shown in figure 1. Two graphene monolayers (red
and blue) of length L are placed above each other.
They are separated by an insulator such as hBN or
vacuum in the center of the device, i.e. for 0 < x<
L, meaning that there is no direct electrical contact
between these two layers vertically. Two supercon-
ducting leads, SL and SR (dark gray) are attached to
the edges of the top and bottom graphene layers, at
x= 0 and x= L. In addition, two normal leads (light
gray) N1 and N2 are weakly coupled to the middle
(x= L/2) of the top and the bottom graphene layer,
respectively. We note that a similar layout for a single
graphene JJ junction was used in [35] to determine
the energy spectrum of ABSs.

In our calculations the description of both the
normal and the superconducting regions is based
on the nearest-neighbor tight-binding model of
graphene with in-plane hopping amplitude γ0. The
top and bottom graphene layers and the supercon-
ducting leads constitute the central region of the
device, described by the Hamiltonian

HC =

Hgr −µt 0 WNS

0 Hgr −µb WNS

W†
NS W†

NS HS −µS

 . (1)

Here Hgr is the Hamiltonian of undoped mono-

layer graphene,HS =

(
HSL 0

0 HSR

)
is the Hamilto-

nian of the superconducting leads in the non-
superconducting state. The leads SL and SR are
modeled with Bernal stacked multilayer graphene,
with out-of plane hopping amplitude γ1. We assume
that the top and bottom graphene layers are per-
fectly aligned and denote the doping by µt [µb] in
the top [bottom] layer, while µS is the doping in
SL and SR. WNS describes the coupling between the
graphene layers and the superconducting leads with
hopping amplitude γNS = γ0, corresponding to a per-
fectly transparent interface.

Before superconductivity is introduced, the total
Hamiltonian of the system reads

Htot =

HC W1 W2

W†
1 H1 0

W†
2 0 H2

 , (2)

whereHl =Hgr −µl is the Hamiltonian of the normal
leads N l, with l= 1,2. The leads N l are also modelled
by monolayer graphene and their doping is kept fixed
at µl = 0.1 eV. We checked that the results discussed
below do not strongly depend on µl. W l describes the
coupling betweenN l and the corresponding graphene
layer (see figure 1).

To describe the transport properties of this sys-
tem when the leads SL and SR are superconducting,
we used the approach based on the Bogoliubov-de
Gennes Hamiltonian. This can be compactly written
as(

Htot − EF ∆̃(x)
∆̃∗(x) −Htot + EF

)(
Ψe

Ψh

)
= ε

(
Ψe

Ψh

)
,

(3)
where EF is the Fermi energy, ε> 0 is the excit-
ation energy, Ψe and Ψh are electron and hole
wave functions, respectively. ∆̃(x) is a matrix which
only has non-zero elements between degrees of free-
dom that belong to either SL or SR. To describe
superconductivity, an s-wave pairing potential is
used, which is nonzero only in the superconduct-
ing leads and changes in a step-function manner
at the normal-superconducting interface: ∆(x) =
∆0[θ(−x)+ θ(x− L)exp(iφ)], where θ is the Heav-
iside function, and φ is the superconducting phase
difference between SL and SR. The step-function
change of the pair-potential at the boundary is valid
if λ(S)

F ≪ λ
(t,b)
F , ξ0 [36]. Here λ

(S)
F and λ

(t,b)
F are the

Fermi wavelength in the superconducting leads and
central graphene layers and ξ0 = ℏvF/∆0 is the (in-
plane) ballistic superconducting coherence length,
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Figure 1. A schematic of the device. Two graphene monolayers (red and blue) of length L and doping µt and µb are placed above
each other and are connected at either side to superconducting leads SL and SR (dark gray). Normal leads N1 and N2 (light gray)
are connected to each graphene layer at x= L/2. Translation invariance in the y direction is assumed. To study the properties of
the device, we calculate the dependence of the current I1 in N1, when a voltage V is applied to N2.

vF ≈ 106 m s−1 being the Fermi velocity of mono-
layer graphene. We use highly doped superconduct-
ing leads with µS = 0.8 eV, therefore the above con-
dition is satisfied in all our calculations. Since the
in-plane γ0 and out-of plane γ1 hopping amplitudes
in Bernal stacked multilayer graphene are different,
it is intuitive to define an effective superconducting
coherence length ξ⊥ ̸= ξ0 associated with the out-of-
plane hopping in the superconducting leads. One can
expect that interlayer Andreev reflection from the top
to the bottom graphene layers is only significant if
d≲ ξ⊥, where d is the vertical distance between these
layers. We explain how ξ⊥ is estimated in Supple-
mentary Information (SI), here we only mention than
in all subsequent calculations d≪ ξ⊥.

In the transport calculations we assume that a
voltage V is applied (with respect to EF) to the top
normal lead N2 and the current I1 is measured in
the bottom normal lead N1, as shown in figure 1.
We calculate the non-local differential conductance
G(eV) = dI1/dV which depends on CAR. We are
primarily interested in the case of wide graphene lay-
ers, where exact termination of the edges does not
matter because the transport properties are determ-
ined by bulk states. Using hard wall boundary condi-
tions [37, 38], the transverse wavenumber q parallel
to the y direction is a good quantum number, see the
SI for further details. The numerical calculations dis-
cussed below were performed using the tight-binding
framework implemented in the EQuUs [39] package.

2. Andreev molecular states

The Andreev reflection of quasiparticles at the
graphene-superconductor interfaces leads to the
formation of correlated electron–hole states known
as ABSs [35, 36, 40–43], with energies En ⩽∆0. Their
presence in the proximitized graphene layers means
that an induced gap ∆ind appears in the graphene
layers, which is smaller than the pairing potential
∆0 of the superconductors. If the superconducting
phase difference φ is fixed, in ballistic systems the
magnitude of ∆ind is determined by the smaller of

two energy scales, namely, the bulk gap ∆0 and the
Thouless energy ETh = ℏvF/L.

For φ= 0, when ETh ≫∆0, i.e. in the short junc-
tion regime ∆ind ≊∆0. In the opposite case ETh ≪
∆0, the dominant energy scale is ETh; this is the long
junction regime where ∆ind is considerably smaller
than ∆0. Note that the ratio of ETh and ∆0 can also be
expressed as ETh/∆0 = ξ0/L, so that the short junc-
tion regime corresponds ETh/∆0 ≫ 1. In this work,
we study devices with Thouless energy between 0.4∆0
and 3∆0. Junctions with ETh in this range correspond
to the intermediate length regime, where analytic res-
ults valid in the short [36] or long [40] regime of a JJ
consisting of a single graphene layer do not strictly
apply. Taking ∆0 = 1 meV, the aforementioned ETh
values correspond to L between 210 and 1580 nm.

One can expect that in the setup shown in figure 1,
the ABSs formed in the two graphene layers can
hybridize, leading to the formation of AMSs [32, 33].
In order to see the effects of ABS hybridization, we
start by considering the properties of ABSs formed in
individual layers, i.e. when one of the graphene layers,
e.g. the bottom one is disconnected from the super-
conductors and only the top one is connected. We
also disconnect the lead N2 and calculate the Green’s
function of the resulting graphene JJ. The spectrum
of the ABSs is determined performing local density
of states (LDOS) calculations for energies 0 ⩽ E⩽
∆0. The LDOS is calculated as the sum of the LDOS
of electron and hole type quasiparticles ρ(E,q) =
ρe(E,q)+ ρh(E,q) =−(1/π)Im(GR), where Im(GR)
is the imaginary part of the retarded Green’s func-
tion. The LDOS is evaluated on ∼ 10 unit cells of
the top layer around x= L/2. In figures 2(a)–(c) we
show results for superconducting phase differences
φ = 0, π/2 andπ, usingµt =−5 meV and ETh =∆0.
One can clearly see the appearance of multiple ABSs.
Above E= 0 there is an energy range where no ABSs
are present indicating the induced gap ∆ind. One can
observe that as φ increases from 0 to π, the induced
gap ∆ind decreases and at φ = π the induced gap is
closed. This can be shown analytically in both the
short [36] and long [40] junction regime and also
agrees with the experimental results of [35].

3
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Figure 2. Local density of state calculations of ABSs as a function of the momentum q, for three different superconducting phase
differences φ. (a)–(c) LDOS of ABSs in a monolayer graphene JJ, for φ = 0, π/2 and π going from left to right. (d)–(f ) LDOS of
AMS in the top graphene layer, i.e. when both graphene layers are connected to the superconductors, for φ = 0, π/2 and π going
from left to right. We used doping µb =−µt = 5∆0 and ETh =∆0 in all cases.

Turning now to the bilayer setup of figure 1,
the distance between the graphene layers is taken to
be d= 3.3 nm in our calculations, while we found
that ξ⊥ ≈ 38 nm (see SI). Since d≪ ξ⊥, the coup-
ling between the ABSs can lead to the formation of
AMSs [32, 33]. This is shown in figures 2(d)–(f ),
where one can see the LDOS ρt(E,q) calculated in
the top graphene layer. At this stage the normal leads
N1 and N2 are not yet connected to the graphene
layers. For AMSs with energies En ≲∆0 the relat-
ively weak hybridization leads to only minor modi-
fications of the LDOS, cf figures 2(a)–(c). However,
for φ = π there are AMSs with energy En ≳ 0 which
are more strongly modified by interlayer hybridiza-
tion (figure 2(f)). One can also see that, similarly to
the case of ABSs (figures 2(a)–(c)), the magnitude of
∆ind in the presence of AMSs can be tuned by chan-
ging φ (figures 2(d)–(f )).

One can expect that in order to have a finite inter-
layer transmission of electrons from N1 to N2 in the
bias window |eV|⩽∆0, ∆ind has to be smaller than
∆0. Therefore, ∆ind is an important parameter of the
device. We calculated ∆ind as a function of the dop-
ing µ and ETh, where µ= µb =−µt, see figure 3. The
value of ∆ind is extracted from LDOS calculations
by determining the minimum of the AMS spectrum.
We find that for φ= 0 and ETh = 0.4∆0, 0.6∆0 the
induced gap is suppressed ∆ind ≪∆0 (figure 3(a)).
However, for larger values of ETh = 0.8∆0 − 3∆0 a
general observation is that ∆ind is comparable to ∆0
for low doping, but increasing µ leads to the reduc-
tion of∆ind. For large enough doping the induced gap
can be suppressed regardless of the Thouless energy

Figure 3. Size of the induced gap ∆ind (in units of ∆0) as a
function of the magnitude of the doping µ, where
µ= µb =−µt, and Thouless energy ETh, for
superconducting phase difference (a) φ= 0 and
(b) φ = π/2.

for the ETh values we studied. In short, the condition
∆ind <∆0 is satisfied for a wide range of (µ, ETh)
values. Note that tuning the doping changes not only
∆ind, but also the number of the AMSs. Furthermore,
as illustrated in figures 2(d)–(f ), by increasing φ the
AMSs are shifted deeper into superconducting gap
and ∆ind decreases (figure 3(b)). We find that in these
ballistic devices forφ = π the induced gap disappears
regardless of the value of ETh.

3. Differential conductance

We now discuss the transport through the central
region of the device when the normal leadsN1 andN2
are attached, as shown in figure 1. We are interested
in the dependence of I1 in N1 on the applied voltage
V to N2. We restrict our study to voltages |eV|⩽∆0,

4
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therefore one expects that the transport is mediated
by the AMSs in the junction. We use the Keldysh non-
equilibrium Green’s function technique [44–48] to
calculate dI1/dV= G(eV,q) for a given q and then
sum the contributions of the different q values, see
the SI for more details. The differential conductance
is given by

G(eV,q) =−2e
h

Re
{

d
dV

ˆ
dETr

[
τzW1G<

C,1(E,eV)
]}

,

(4)

where τ z is a Pauli matrix acting in the electron–
hole space and G<

C,1(E,eV) is the bottom lead–central
region lesser Green’s function. To lighten the nota-
tions, the q dependence of G<

C,1(E,eV) is not written
explicitly. The differential conductance G(eV) can be
evaluated as

G(eV) =
∑
q

G(eV,q) =
w

2π

ˆ
G(eV,q)dq, (5)

where w is the width of the junction in the y dir-
ection. All calculations are performed at T= 0 K
temperature.

In order to obtain an insight into the transport
properties of this setup, let us first consider a simple
model: we assume that only a single AMS of energy
EAMS is present, which extends over both graphene
layers in the central region. We neglect the q depend-
ence of the AMS and assume that coupling between
N1 (N2) and bottom (top) graphene layers is weak.
According to the calculations detailed in the SI, the
differential conductance can be approximated by

G(eV)≈ 4e
h

(Γe
1 −Γh

1)(Γ
e
2 −Γh

2)

(eV− EAMS)2 +Γ2 , (6)

where Γα
l are level broadenings [49] due to the coup-

ling of the electron [hole] (α= e[h]) part of the AMS
to the states in N l at energy EAMS, and Γ = Γe

1 +
Γh

1 +Γe
2 +Γh

2. Equation (6) shows that the presence
of an AMS results in a resonant peak of Lorentzian
lineshape in the differential conductance, at eV≈
EAMS. The signature of CAR dominated transport is
G(eV)< 0, meaning that an injected electron in N2
is transmitted as a hole into N1. The sign of G(eV) is
determined by the numerator in equation (6), which
depends on the difference between the level broaden-
ing of electron- and hole-like degrees of freedom of
the AMS.

In the tunneling limit Γ
e(h)
l depends on the

product of the LDOS of the electron (hole) compon-
ent of the AMS and of the attached leads N l. Since
the leads are metalic, their LDOS is constant. There-
fore Γe

l −Γh
l depends mainly on the difference of the

LDOS of the electron and hole type quasiparticles in
the AMS. One can expect that this can be changed

by two means: firstly, by tuning the doping of the
two graphene layers. Secondly, since the AMS wave
functions depend on the superconducting phase dif-
ference φ, the LDOS can also be changed by tuning
φ. Thus, this simple model suggests that one has two
experimental knobs to tune the interlayer transmis-
sion and try to achieve CAR dominated transport.

As it can be seen in figure 2, for finite doping of
the graphene layers, multiple AMS are present in our
setup. The result given in equation (6) can be easily
generalized to this case (see the SI). One finds that
G(eV,q) defined in equation (4) reads

G(eV,q)

=
4e2

h

∑
m,n

(Γe
1,mn(q)−Γh

1,mn(q))(Γ
e
2,mn(q)−Γh

2,mn(q))

(eV− Em(q)+ iΓmm(q))(eV− En(q)− iΓnn(q))
,

(7)

where the summation runs over the number of the
AMSs,Γnm depends on the product of the wave func-
tions of the nth and mth AMS and Γnn =

∑
l,αΓ

α
l,nn.

The m= n terms are Lorentzian resonances, this is
the type of contribution we have already discussed
when we derived equation (6). The m ̸= n terms cor-
respond to a ‘cross-talk’ between different AMSs and
they are affected by interference effects between dif-
ferent AMSs. Therefore, in general, G(eV,q) depends
both on the LDOS and on the interference of the qua-
siparticle components of the AMSs.

Note, that in [23, 24] the enhancement of the
probability of CAR is related to the DOS of the semi-
conducting leads, which are attached to a central
superconducting strip, and their different doping. In
our setup the leads N l are assumed to be metallic
and their doping does not play an important role.
Moreover, as we discussed above, in our case quasi-
particle interference also affects G(eV), but as we will
show in section 4 it does not lead to the type of reson-
ant enhancement of CAR as in [30, 31]. These consid-
erations clearly show the difference between our pro-
posal and those of [23, 24, 30, 31].

4. Negative non-local Andreev reflection

We start with calculations which illustrate the com-
plex interplay of LDOS and interference related
effects in the differential conductance. In figure 4 we
show the LDOS difference of the electron and hole
quasiparticles of AMSsδρt(E,q) = ρet(E,q)− ρht (E,q)
(δρb(E,q) = ρeb(E,q)− ρhb(E,q)) in the top (bottom)
graphene layers. These results were obtained in the
same way as the total LDOS ρ(E,q) in figures 2(d)–
(f), i.e. evaluated on ∼ 10 unit cells around x =
L/2. We consider two cases: µb =−µt (asymmet-
ric doping) and µb = µt (symmetric doping) and
the parameters of the calculations correspond to the
case shown in figure 2(d). In a given layer the sign

5
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Figure 4. The LDOS difference of the electron and hole quasiparticles of AMSs in the top and bottom graphene layers.
(a) δρt(E,q) and (b) δρb(E,q) for asymmetric doping and (c) and (d) for symmetric doping, respectively. Here φ= 0, ETh =∆0
and |µb|= |µt|= 5∆0.

of δρ(E,q) depends on both the energy E and the
wavenumber q. However, one can clearly observe
that for asymmetric doping δρt(E,q) has opposite
sign to δρb(E,q). On the other hand, for symmetric
doping δρt(E,q) = δρb(E,q), which can be expected
based on the inversion symmetry of the system. Since
more than one AMSs gives contributions to δρ(E,q),
these results cannot be directly related to individual
broadening differencesΓe

l,nn −Γh
l,nn, but they do illus-

trate the important effect of the doping of the two
graphene layers. Furthermore, using the arguments
put forward below equation (6), these results sug-
gest that the sum of the m= n terms in equation (7)
gives a negative (positive) contribution to the differ-
ential conductance for asymmetric (symmetric) dop-
ing profile.

The contributions of the m ̸= n terms in
equation (7) is more difficult to visualize, but our
numerical calculations indicate that they give an
equally important contribution to G(eV). To illus-
trate this point, in figures 5(a) and (b) we show the q-
resolved non-local differential conductance G(eV,q)
for asymmetric and symmetric doping, respectively,
and weakly coupled normal leads N1 and N2. We
used the same parameters as for the calculations in
figure 4. The non-zero matrix elements ofW1 andW2
are on the order 0.1γ1, whereγ1 is the interlayer coup-
ling in Bernal stacked graphene. The general features
in G(eV,q) closely resemble the LDOS in figure 4,
showing the important role of the AMSs in the non-
local conductance for this relatively weak coupling
between N1, N2 and the corresponding graphene lay-
ers. G(eV,q) can be both positive and negative as a
function of q, which indicates that the LDOS differ-
ence of the electron and hole quasiparticles, shown in
figure 4, is not the only factor affecting it. However,

as one can see by comparing figures 5(c) and (d), we
find that the total non-local differential conductance
G(eV) =

∑
qG(eV,q) is mostly negative (positive)

for asymmetric (symmetric) doping.
Next, we study the dependence of G(eV) on the

magnitude of the doping of the layers. In figure 6 we
fixed the superconducting phase difference at φ = 0
and show the results for a setup with a large Thouless
energy ETh = 3∆0. The white region around eV = 0,
where G(eV) vanishes, corresponds to |eV|⩽∆ind.
For low doping, when µ≲ 4∆0, the induced gap is
almost the same as the bulk gap, i.e. ∆ind ≈∆0 and
G(eV)≈ 0. ∆ind decreases as the doping is increased,
and for energies ∆ind ⩽ |eV|⩽∆0, CAR dominated
differential conductance appears for the asymmet-
ric doping case (figure 6(a)). In contrast, as shown
in figure 6(b) for symmetric doping G(eV) is usu-
ally positive, indicating EC dominated transport. We
emphasize that contrary to the p-n junction setup
suggested by [23], in our setup the doping of the
graphene layers does not have to be smaller than
∆0, which is experimentally difficult to achieve. The
CAR dominated transport appears for dopings µ >
∆0, when ∆ind <∆0. We performed similar calcula-
tions as in figure 6(a) for longer junctions as well, see
figures 7(a) and (b). We find extended regions of CAR
dominated transport when the layers are asymmetric-
ally doped and ∆ind <∆0 is satisfied.

As mentioned previously, the superconducting
phase difference φ can be another way to tune the
non-local transport. Typically, the JJ where φ should
be tuned is part of a large SQUID loop [50, 51]. The
magnetic field used in e.g. [50] to change φ was of
the order of 0.05mT. Such low magnetic fields should
have negligible orbital effects in the top and bot-
tom graphene layers, therefore we do not include it

6
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Figure 5. The q-resolved non-local differential conductance G(eV,q) for (a) asymmetric and (b) symmetric doping for the systems
shown in figure 4. (c) and (d) The total differential conductance G(eV) corresponding to the case in (a) and (b), respectively.

Figure 6. The non-local differential conductance G(eV) as a function of the doping of the graphene layers µ and the applied
voltage V, at superconducting phase difference φ= 0, and Thouless energy ETh = 3∆0. In (a) an asymmetric doping profile
µb =−µt = µ is used, while in (b) the doping is symmetric µb = µt =−µ. (c) and (d): G(eV) trace along the dashed line at
µ= 40∆0 in (a) and (b), respectively. Negative G(eV) indicates CAR dominated transport.

explicitly, i.e. through a vector potential A(r), in the
following calculations. We assume that the only rel-
evant effect of the magnetic field is to change φ in
the JJ.

We discuss the φ dependence of the differential
conductance in the calculations shown in figure 8(a),
where we used the same ETh as in figure 6(a), whereas
figure 8(b) corresponds to the case in figure 7(a). We

remind that as φ increases from 0 to π, the induced
gap in the graphene layers is gradually reduced and
∆ind goes to zero for φ = π, see figures 2(d)–(f ).
This appears as a shrinking, low-conductance white
region for |eV|≲∆ind in figures 8(a) and (b). How-
ever, G(eV) is finite and negative in the range ∆ind ⩽
|eV|⩽∆0 for most values of φ, suggesting that CAR
is also robust to the change of φ. Similar behavior can

7
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Figure 7. The non-local differential conductance G(eV) as a
function of the doping of the graphene layers µ for an
asymmetric doping profile in the long junction regime. In
(a) we used ETh =∆0 and in (b) ETh = 0.6∆0 and the
legend for different colors is given in figure 6. The
superconducting phase difference is φ= 0. (c) and (d):
G(eV) trace along the dashed line at µ= 40∆0 in (a) and
(b), respectively.

Figure 8. The differential conductance G(eV) as a function
of the superconducting phase difference φ, for (a) a device
in the short junction regime, ETh = 3∆0 and doping
µb =−µt = 20∆0, and (b) ETh =∆0 and
µb =−µt = 5∆0. The legend for different colors is given
in figure 6.

be seen for both ETh = 3∆0 and ETh =∆0. We have
checked that for symmetric doping µt = µb the dif-
ferential conductance is mostly positive for all values
of φ, i.e. the interlayer transport is dominated by EC.

5. Conclusion

In conclusion, we have studied non-local Andreev
reflection in a monolayer graphene based double JJ
geometry. We have shown, that the ABSs appearing
in the graphene layers hybridize and form AMSs. By
studying the non-local differential conductance, we
found that choosing an asymmetric doping profile in
the graphene layers leads to CAR dominated trans-
port mediated by the AMSs. Changing the doping
profile to a symmetric one leads to the suppression
of CAR. Importantly, the observed negative differen-
tial conductance does not require a very low doping
of the graphene layers, which is difficult to achieve.
We found that the negative non-local differential con-
duction is robust with respect to the junction length,
changes in the doping of the graphene layers and the
superconducting phase difference.
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National Excellence Program of the Ministry for
Innovation and Technology from the source of
the National Research, Development and Innova-
tion Fund and by the Hungarian Scientific Research
Fund (OTKA) Grant No. K134437. A K and P R
acknowledge support from the Hungarian Academy
of Sciences through the Bólyai János Stipendium
(BO/00603/20/11 and BO/00571/22/11) as well. The
research was supported by the Ministry of Innovation
and Technology and the National Research, Devel-
opment and Innovation Office within the Quantum
Information National Laboratory of Hungary and we
acknowledge the computational resources provided
by the Wigner Scientific Computational Laboratory
(WSCLAB).

ORCID iD

Andor Kormányos https://orcid.org/0000-0002-
6837-6966

References

[1] Vidal G 2003 Efficient classical simulation of slightly
entangled quantum computations Phys. Rev. Lett. 91 147902

[2] Recher P, Sukhorukov E V and Loss D 2001 Andreev
tunneling, Coulomb blockade, and resonant transport of
nonlocal spin-entangled electrons Phys. Rev. B 63 165314

[3] Lesovik G, Martin T and Blatter G 2001 Electronic
entanglement in the vicinity of a superconductor Eur. Phys.
J. B 24 287–90

[4] Samuelsson P, Sukhorukov E V and Büttiker M 2003 Orbital
entanglement and violation of bell inequalities in
mesoscopic conductors Phys. Rev. Lett. 91 157002

[5] Prada E and Sols F 2004 Entangled electron current through
finite size normal-superconductor tunneling structures Eur.
Phys. J. B 40 379

[6] Beckmann D, Weber H B and v. Löhneysen H 2004 Evidence
for crossed Andreev reflection in superconductor
ferromagnet hybrid structures Phys. Rev. Lett. 93 197003

[7] Russo S, Kroug M, Klapwijk T M and Morpurgo A F 2005
Morpurgo, Experimental observation of bias-dependent
nonlocal Andreev reflection Phys. Rev. Lett. 95 027002

[8] Hofstetter L, Csonka S, Nygård J and Schönenberger C 2009
Cooper pair splitter realized in a two-quantum-dot
Y-junction Nature 461 960

[9] Hofstetter L, Csonka S, Baumgartner A, Fülöp G,
d’Hollosy S, Nygård J and Schönenberger C 2011 Finite bias
Cooper pair splitting Phys. Rev. Lett. 107 136801

[10] Das A, Ronen Y, Heiblum M, Mahalu D, Kretinin A V and
Shtrikman H 2012 High-efficiency Cooper pair splitting
demonstrated by two-particle conductance resonance and
positive noise cross-correlation Nat. Commun. 3 1165

[11] Ueda K et al 2019 Dominant nonlocal superconducting
proximity effect due to electron-electron interaction in a
ballistic double nanowire Sci. Adv. 5 eaaw2194

8

https://orcid.org/0000-0002-6837-6966
https://orcid.org/0000-0002-6837-6966
https://orcid.org/0000-0002-6837-6966
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevB.63.165314
https://doi.org/10.1103/PhysRevB.63.165314
https://doi.org/10.1007/s10051-001-8675-4
https://doi.org/10.1007/s10051-001-8675-4
https://doi.org/10.1103/PhysRevLett.91.157002
https://doi.org/10.1103/PhysRevLett.91.157002
https://doi.org/10.1140/epjb/e2004-00284-8
https://doi.org/10.1140/epjb/e2004-00284-8
https://doi.org/10.1103/PhysRevLett.93.197003
https://doi.org/10.1103/PhysRevLett.93.197003
https://doi.org/10.1103/PhysRevLett.95.027002
https://doi.org/10.1103/PhysRevLett.95.027002
https://doi.org/10.1038/nature08432
https://doi.org/10.1038/nature08432
https://doi.org/10.1103/PhysRevLett.107.136801
https://doi.org/10.1103/PhysRevLett.107.136801
https://doi.org/10.1038/ncomms2169
https://doi.org/10.1038/ncomms2169
https://doi.org/10.1126/sciadv.aaw2194
https://doi.org/10.1126/sciadv.aaw2194


2D Mater. 10 (2023) 035009 E Zsurka et al

[12] Kürtössy O, Scherübl Z, Fülöp G, Lukács I E, Kanne T,
Nygård J, Makk P and Csonka S 2022 Parallel InAs
nanowires for cooper pair splitters with coulomb repulsion
(arXiv:2203.14397)

[13] Wang G et al 2022 Singlet and triplet Cooper pair splitting in
superconducting-semiconducting hybrid nanowires
(arXiv:2205.03458)

[14] Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T and
Strunk C 2010 Carbon nanotubes as Cooper pair beam
splitters Phys. Rev. Lett. 104 026801

[15] Schindele J, Baumgartner A and Schönenberger C 2012
Near-unity Cooper pair splitting efficiency Phys. Rev. Lett.
109 157002

[16] Brange F, Prech K and Flindt C 2021 Dynamic Cooper pair
splitter Phys. Rev. Lett. 127 237701

[17] Tan Z B, Cox D, Nieminen T, Lähteenmäki P, Golubev D,
Lesovik G B and Hakonen P J 2015 Cooper pair splitting by
means of graphene quantum dots Phys. Rev. Lett. 114 096602

[18] Borzenets I, Shimazaki Y, Jones G, Craciun M, Russo S,
Yamamoto Y and Tarucha S 2015 High efficiency CVD
graphene-lead (Pb) Cooper pair splitter Sci. Rep. 6 23051

[19] Pöschl A, Danilenko A, Sabonis D, Kristjuhan K,
Lindemann T, Thomas C, Manfra M J and Marcus C M 2022
Nonlocal conductance spectroscopy of Andreev bound states
in gate-defined InAs/Al nanowires (arXiv:2204.02430)

[20] Falci G, Feinberg D and Hekking F W 2001 Correlated
tunneling into a superconductor in a multiprobe hybrid
structure Europhys. Lett. 54 255

[21] Walldorf N, Brange F, Padurariu C and Flindt C 2020 Noise
and full counting statistics of a Cooper pair splitter Phys.
Rev. B 101 205422

[22] Liu C-X, Wang G, Dvir T and Wimmer M 2022 Tunable
Superconducting Coupling of Quantum Dots via Andreev
Bound States in Semiconductor-Superconductor Nanowires
Phys. Rev. Lett. 129 267701

[23] Cayssol J 2008 Crossed Andreev reflection in a graphene
bipolar transistor Phys. Rev. Lett. 100 147001

[24] Veldhorst M and Brinkman A 2010 Nonlocal cooper pair
splitting in a pSn junction Phys. Rev. Lett. 105 107002

[25] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P,
Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P
and LeRoy B J 2011 Scanning tunnelling microscopy and
spectroscopy of ultra-flat graphene on hexagonal boron
nitride Nat. Mater. 10 282

[26] Mayorov A S, Elias D C, Mukhin I S, Morozov S V,
Ponomarenko L A, Novoselov K S, Geim A K and
Gorbachev R V 2012 How close can one approach the Dirac
point in graphene experimentally?Nano Lett. 12 4629

[27] Park G-H, Watanabe K, Taniguchi T, Lee G-H and Lee H-J
2019 Engineering crossed Andreev reflection in
double-bilayer graphene Nano Lett. 19 9002

[28] Efetov D K et al 2016 Specular interband Andreev reflections
at van der Waals interfaces between graphene and NbSe2
Nat. Phys. 12 328

[29] Pandey P, Danneau R and Beckmann D 2021 Ballistic
graphene Cooper pair splitter Phys. Rev. Lett. 126 147701

[30] Soori A and Mukerjee S 2017 Enhancement of crossed
andreev reflection in a superconducting ladder connected to
normal metal leads Phys. Rev. B 95 104517

[31] Nehra R, Bhakuni D S, Sharma A and Soori A 2019
Enhancement of crossed andreev reflection in a kitaev ladder
connected to normal metal leads J. Phys.: Condens. Matter
31 345304

[32] Pillet J-D, Benzoni V, Griesmar J, Smirr J-L and Girit C O
2019 Nonlocal Josephson effect in Andreev molecules Nano
Lett. 19 7138

[33] Kornich V, Barakov H S and Nazarov Y V 2019 Fine energy
splitting of overlapping Andreev bound states in
multiterminal superconducting nanostructures Phys. Rev.
Res. 1 033004

[34] Indolese D I, Karnatak P, Kononov A, Delagrange R,
Haller R, Wang L, Makk P, Watanabe K, Taniguchi T and
Schönenberger C 2020 Compact SQUID realized in a
double-layer graphene heterostructure Nano Lett. 20 7129

[35] Bretheau L, Wang J I-J, Pisoni R, Watanabe K, Taniguchi T
and Jarillo-Herrero P 2017 Tunnelling spectroscopy of
Andreev states in graphene Nat. Phys. 13 756

[36] Titov M and Beenakker C W 2006 Josephson effect in
ballistic graphene Phys. Rev. B 74 041401(R)

[37] Tworzydło J, Trauzettel B, Titov M, Rycerz A and
Beenakker C W J 2006 Sub-poissonian shot noise in
graphene Phys. Rev. Lett. 96 246802

[38] Titov M and Beenakker C W J 2006 Josephson effect in
ballistic graphene Phys. Rev. B 74 041401

[39] Rakyta P 2015 Eötvös Quantum utilities (available: http://
eqt.elte.hu/EQuUs/html/)

[40] Titov M, Ossipov A and Beenakker C W 2007 Excitation gap
of a graphene channel with superconducting boundaries
Phys. Rev. B 75 045417

[41] Manjarrés D A, Gomez S and Herrera W J 2014 Andreev
levels in a Andreev superconductor graphene
superconductor nanostructure Physica B 455 26

[42] Ben Shalom M et al 2016 Quantum oscillations of the critical
current and high-field superconducting proximity in ballistic
graphene Nat. Phys. 12 318

[43] Banszerus L, Libisch F, Ceruti A, Blien S, Watanabe K,
Taniguchi T, Hüttel A K, Beschoten B, Hassler F and
Stampfer C 2020 Minigap and Andreev bound states in
ballistic graphene (arXiv:2011.11471)

[44] Cresti A, Farchioni R, Grosso G and Parravicini G P 2003
Keldysh-Green function formalism for current profiles in
mesoscopic systems Phys. Rev. B 68 075306

[45] Do V N 2014 Non-equilibrium Green function method:
theory and application in simulation of nanometer electronic
devices Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 033001

[46] Pala M G, Governale M and König J 2008 Nonequilibrium
Josephson and Andreev current through interacting
quantum dots New J. Phys. 10 099801

[47] Bolech C J and Giamarchi T 2005 Keldysh study of
pointcontact tunneling between superconductors Phys. Rev.
B 71 024517

[48] Wu S-T and Yip S 2004 ac Josephson effect in asymmetric
superconducting quantum point contacts Phys. Rev. B
70 104511

[49] Claughton N R, Leadbeater M and Lambert C J 1995 Theory
of Andreev resonances in quantum dots J. Phys.: Condens.
Matter 7 8757

[50] Nanda G, Aguilera-Servin J L, Rakyta P, Kormá nyos A,
Kleiner R, Koelle D, Watanabe K, Taniguchi T,
Vandersypen L M K and Goswami S 2017 Current-phase
relation of ballistic graphene Josephson junctions Nano Lett.
17 3396

[51] Della Rocca M L, Chauvin M, Huard B, Pothier H, Esteve D
and Urbina C 2007 Measurement of the currentphase
relation of superconducting atomic contacts Phys. Rev. Lett.
99 127005

9

https://arxiv.org/abs/2203.14397
https://arxiv.org/abs/2205.03458
https://doi.org/10.1103/PhysRevLett.104.026801
https://doi.org/10.1103/PhysRevLett.104.026801
https://doi.org/10.1103/PhysRevLett.109.157002
https://doi.org/10.1103/PhysRevLett.109.157002
https://doi.org/10.1103/PhysRevLett.127.237701
https://doi.org/10.1103/PhysRevLett.127.237701
https://doi.org/10.1103/PhysRevLett.114.096602
https://doi.org/10.1103/PhysRevLett.114.096602
https://doi.org/10.1038/srep23051
https://doi.org/10.1038/srep23051
https://arxiv.org/abs/2204.02430
https://doi.org/10.1209/epl/i2001-00303-0
https://doi.org/10.1209/epl/i2001-00303-0
https://doi.org/10.1103/PhysRevB.101.205422
https://doi.org/10.1103/PhysRevB.101.205422
https://doi.org/10.1103/PhysRevLett.129.267701
https://doi.org/10.1103/PhysRevLett.129.267701
https://doi.org/10.1103/PhysRevLett.100.147001
https://doi.org/10.1103/PhysRevLett.100.147001
https://doi.org/10.1103/PhysRevLett.105.107002
https://doi.org/10.1103/PhysRevLett.105.107002
https://doi.org/10.1038/nmat2968
https://doi.org/10.1038/nmat2968
https://doi.org/10.1021/nl301922d
https://doi.org/10.1021/nl301922d
https://doi.org/10.1021/acs.nanolett.9b03981
https://doi.org/10.1021/acs.nanolett.9b03981
https://doi.org/10.1038/nphys3583
https://doi.org/10.1038/nphys3583
https://doi.org/10.1103/PhysRevLett.126.147701
https://doi.org/10.1103/PhysRevLett.126.147701
https://doi.org/10.1103/PhysRevB.95.104517
https://doi.org/10.1103/PhysRevB.95.104517
https://doi.org/10.1088/1361-648X/ab2403
https://doi.org/10.1088/1361-648X/ab2403
https://doi.org/10.1021/acs.nanolett.9b02686
https://doi.org/10.1021/acs.nanolett.9b02686
https://doi.org/10.1103/PhysRevResearch.1.033004
https://doi.org/10.1103/PhysRevResearch.1.033004
https://doi.org/10.1021/acs.nanolett.0c02412
https://doi.org/10.1021/acs.nanolett.0c02412
https://doi.org/10.1038/nphys4110
https://doi.org/10.1038/nphys4110
https://doi.org/10.1103/PhysRevB.74.041401
https://doi.org/10.1103/PhysRevB.74.041401
https://doi.org/10.1103/PhysRevLett.96.246802
https://doi.org/10.1103/PhysRevLett.96.246802
https://doi.org/10.1103/PhysRevB.74.041401
https://doi.org/10.1103/PhysRevB.74.041401
http://eqt.elte.hu/EQuUs/html/
http://eqt.elte.hu/EQuUs/html/
https://doi.org/10.1103/PhysRevB.75.045417
https://doi.org/10.1103/PhysRevB.75.045417
https://doi.org/10.1016/j.physb.2014.07.038
https://doi.org/10.1016/j.physb.2014.07.038
https://doi.org/10.1038/nphys3592
https://doi.org/10.1038/nphys3592
https://arxiv.org/abs/2011.11471
https://doi.org/10.1103/PhysRevB.68.075306
https://doi.org/10.1103/PhysRevB.68.075306
https://doi.org/10.1088/2043-6262/5/3/033001
https://doi.org/10.1088/2043-6262/5/3/033001
https://doi.org/10.1088/1367-2630/10/9/099801
https://doi.org/10.1088/1367-2630/10/9/099801
https://doi.org/10.1103/PhysRevB.71.024517
https://doi.org/10.1103/PhysRevB.71.024517
https://doi.org/10.1103/PhysRevB.70.104511
https://doi.org/10.1103/PhysRevB.70.104511
https://doi.org/10.1088/0953-8984/7/46/007
https://doi.org/10.1088/0953-8984/7/46/007
https://doi.org/10.1021/acs.nanolett.7b00097
https://doi.org/10.1021/acs.nanolett.7b00097
https://doi.org/10.1103/PhysRevLett.99.127005
https://doi.org/10.1103/PhysRevLett.99.127005

	Non-local Andreev reflection through Andreev molecular states in graphene Josephson junctions
	1. The model
	2. Andreev molecular states
	3. Differential conductance
	4. Negative non-local Andreev reflection
	5. Conclusion
	References


