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A B S T R A C T   

In this work, the capabilities of a state-of-the-art fast Raman imaging apparatus are exploited to gain information 
about the concentration and particle size of hydroxypropyl methylcellulose (HPMC) in sustained release tablets. 
The extracted information is utilized to predict the in vitro dissolution profile of the tablets. For the first time, 
convolutional neural networks (CNNs) are used for the processing of the chemical images of HPMC distribution 
and to directly predict the dissolution profile based on the image. This new method is compared to wavelet 
analysis, which gives a quantification of the texture of HPMC distribution, carrying information regarding both 
concentration and particle size. A total of 112 training and 32 validation tablets were used, when a CNN was used 
to characterize the particle size of HPMC, the dissolution profile of the validation tablets was predicted with an 
average f2 similarity value of 62.95. Direct prediction based on the image had an f2 value of 54.2, this dem
onstrates that the CNN is capable of recognizing the patterns in the data on its own. The presented methods can 
facilitate a better understanding of the manufacturing processes, as detailed information becomes available with 
fast measurements.   

1. Introduction 

Vibrational chemical imaging techniques have experienced drastic 
improvements in the last few years (Hu et al., 2021; Zeng et al., 2022). In 
former times, acquiring a decently sized chemical image required 
several hours or even a whole day. Nowadays, however, Raman imaging 
instruments are more than 1000 times faster than what was available 10 
or 15 years ago. For example, when the surface of a solid dosage form, 
such as a tablet was analyzed with an older apparatus, approximately 
1000 spectra could be recorded in 16 h (Galata et al., 2022), while a 
state-of-the-art fast Raman model can record more than 1 million spectra 
in 6.5 h (Šašić and Prusnick, 2019). The measurement speed is even 
more astonishing in the case of near-infrared (NIR) imaging, where 
Nishii et al. recently demonstrated a system which can analyze up to 

4000 tablets per minute (Nishii et al., 2020). These new fast imaging 
solutions open the possibility of the real-time characterization of several 
critical vital quality attributes of tablets, as chemical imaging is capable 
of measuring active pharmaceutical ingredient (API) content (Nishii 
et al., 2020), particle size (Mészáros et al., 2022), polymorphism (Sarri 
et al., 2019) or the quality of film coating (Song et al., 2019). 

The in vitro dissolution profile is a crucial characteristic of a tablet, 
as it is meant to represent how the drug is released from the formulation 
after administration to patients (Zaborenko et al., 2019). This attribute 
is influenced by the tablet composition, the particle size of the in
gredients, and various manufacturing parameters. Currently, in vitro 
dissolution profiles are routinely measured in appliances built according 
to the United States Pharmacopoeia (Kuriyama and Ozaki, 2014). 
However, this technique relies on analyzing a small proportion of the 
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manufactured tablets; it is labor-intensive, time-consuming, requires a 
large amount of solvents, and it destroys the sample. Therefore, its uti
lization is not beneficial in a continuous manufacturing environment, 
where a real-time release testing approach based on Process Analytical 
Technology (PAT) sensors is more desirable (Markl et al., 2020). This led 
to the development of multiple strategies to construct surrogate models 
that predict the dissolution behavior of the product without performing 
the actual test (Zaborenko et al., 2019). Both first-principles (Horkovics- 
Kovats et al., 2022) and empirical (Pawar et al., 2016) models have been 
used to predict the dissolution profile of tablets based on data obtained 
via PAT sensors. A chemical image carries information about the factors 
that determine the release rate of the drug, thus, there is a chance of 
predicting the in vitro dissolution profile of tablets based on chemical 
images. Yekpe et al. were the first to utilize NIR chemical imaging for 
that purpose, where the concentration and particle size of the dis
integrant determined the drug release rate (Yekpe et al., 2015). More 
recently, Raman chemical imaging has also been applied in the case of 
sustained-release tablets where hydroxypropyl methylcellulose is 
responsible for controlling drug release (Galata et al., 2022; Zeng et al., 
2022). These results make it clear that Raman imaging yields an 
appropriate amount of information for the prediction of the dissolution 
profile of the tablet. However, in the works presented so far, the time 
required to acquire a single chemical image is comparable to the length 
of an actual dissolution run. Therefore, to exploit the true potential of 
this technique, the application of state-of-the-art fast Raman imaging 
appliances for this purpose should be tested. 

Chemical image processing can be a daunting task as, initially, a 
large hyperspectral data cube is at hand, where a whole spectrum be
longs to each spatial pixel. Firstly, chemometric methods such as 

Classical Least Squares (CLS) (Vajna et al., 2011) or Multivariate Curve 
Resolution (MCR) (De Juan et al., 2014) are used to create a distribution 
map of each component of the analyzed mixture. The obtained con
centration maps of the components contain complex information about 
the sample, which should be further simplified if the goal is to create a 
regression model based on the map (Galata et al., 2022). Various arbi
trary methods can realize the quantitation of the concentration or the 
particle size of the component. However, in the last decade, unprece
dented advances were made in the field of artificial intelligence, leading 
to the creation of powerful image processing models. The advent of 
convolutional neural networks (CNNs) (Gu et al., 2018) enabled com
puters to learn the features of an image robustly and efficiently. CNN- 
based models have first been used to categorize whole images based 
on their content (Sharma et al., 2018). However, this technique has since 
been augmented to recognize individual objects in an image, this has 
many potential applications in medicine (Li et al., 2019) or the phar
maceutical industry (Ficzere et al., 2022). Using CNNs for regression 
tasks may be beneficial, thereby quantifying a certain attribute of the 
image (Zhou et al., 2016). When the unprocessed image is input, the 
CNN may discover patterns that correlate with the examined quality 
attribute, which would have been overlooked or lost during feature 
extraction when arbitrarily chosen algorithms are used. Therefore, CNNs 
could also be utilized in the analysis of chemical images, both for 
extracting the relevant features and directly predicting the value of the 
desired quality attribute. 

Consequently, our work has two main goals. Firstly, we intend to 
create a dataset for predicting the in vitro dissolution profiles of sus
tained release tablets based on Raman images acquired with a fast im
aging apparatus. The applied state-of-the-art imaging device reduces the 

Table 1 
Composition of calibration and validation tablets.  

Formulation name DR content (w/w%) HPMC content (w/w%) MCC content (w/w%) Lactose content (w/w%) MgSt content (w/w%) HPMC fraction 

Calibration settings 
C01 8 10 20 60 2 <45 µm 
C02 8 10 20 60 2 45–63 µm 
C03 8 10 20 60 2 63–100 µm 
C04 8 10 20 60 2 100–150 µm 
C05 8 13.33 20 56.67 2 <45 µm 
C06 8 13.33 20 56.67 2 45–63 µm 
C07 8 13.33 20 56.67 2 63–100 µm 
C08 8 13.33 20 56.67 2 100–150 µm 
C09 8 16.66 20 53.34 2 <45 µm 
C10 8 16.66 20 53.34 2 45–63 µm 
C11 8 16.66 20 53.34 2 63–100 µm 
C12 8 16.66 20 53.34 2 100–150 µm 
C13 8 20 20 50 2 <45 µm 
C14 8 20 20 50 2 45–63 µm 
C15 8 20 20 50 2 63–100 µm 
C16 8 20 20 50 2 100–150 µm 
C17 8 23.33 20 46.67 2 <45 µm 
C18 8 23.33 20 46.67 2 45–63 µm 
C19 8 23.33 20 46.67 2 63–100 µm 
C20 8 23.33 20 46.67 2 100–150 µm 
C21 8 26.66 20 43.34 2 <45 µm 
C22 8 26.66 20 43.34 2 45–63 µm 
C23 8 26.66 20 43.34 2 63–100 µm 
C24 8 26.66 20 43.34 2 100–150 µm 
C25 8 30 20 40 2 <45 µm 
C26 8 30 20 40 2 45–63 µm 
C27 8 30 20 40 2 63–100 µm 
C28 8 30 20 40 2 100–150 µm 
Validation settings 
V01 8 12 20 58 2 <45 µm 
V02 8 12 20 58 2 63–100 µm 
V03 8 15 20 55 2 45–63 µm 
V04 8 15 20 55 2 100–150 µm 
V05 8 25 20 45 2 <45 µm 
V06 8 25 20 45 2 100–150 µm 
V07 8 28 20 42 2 45–63 µm 
V08 8 28 20 42 2 63–100 µm  
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map acquisition time to several minutes, making the technique more 
appealing in industrial R&D and manufacturing quality control. Sec
ondly, we aim to exploit the image processing capability of CNNs for the 
prediction of the dissolution profile of the tablets. To achieve this, we 
plan to create dissolution prediction models based on classic image 
analysis methods and compare them with a CNN-based method. A 
combination of fast chemical imaging with CNNs can bring vast 
improvement in quality control by providing a previously unseen quality 
and quantity of information. 

2. Materials and methods 

2.1. Materials 

The selected model drug, drotaverine hydrochloride (DR) was pur
chased from Sigma Aldrich (Munich, Germany). The applied matrix 
polymer, hydroxypropyl methylcellulose (HPMC) K100M DC2 was 
gifted by Colorcon (Budapest, Hungary). Microcrystalline cellulose 
(Vivapur 200, MCC) was obtained from JRS Pharma (Rosenberg, Ger
many). α-lactose monohydrate (Granulac® 70) was supplied by Meggle 
Pharma (Wasserburg, Germany). Magnesium stearate (MgSt) was cho
sen as the lubricant, it was purchased from Hungaropharma Ltd. 
(Budapest, Hungary). Concentrated HCl solution was obtained from 
Merck (Darmstadt, Germany). 

2.2. Methods 

2.2.1. Sieving of HPMC 
HPMC was separated into four fractions by applying sieves with the 

following pore sizes: 45 µm, 63 µm, 100 µm and 150 µm. For the sieving, 
a CISA BA 200 N (Barcelona, Spain) apparatus was used with a vibration 
amplitude of 2 mm, the procedure was carried out until the mass of the 
fractions became constant. Fractions with the following particle sizes 
were collected: <45 µm, 45–63 µm, 63–100 µm, 100–150 µm. 

These fractions were characterized using a Malvern Mastersizer 2000 
(Malvern, UK) laser diffraction appliance with a Malvern Scirocco 2000 

powder feeding inlet. Measurements were carried out with a dispersive 
air pressure of 2 bar on samples weighing 2 g. 

2.2.2. Preparation of tablets 
Tablets were manufactured with a total of 36 compositions (28 for 

training and 8 for validation). In our earlier works, we found that the 
concentration and particle size of HPMC are the two most significant 
factors determining the dissolution rate in tablets of this kind, while the 
particle size of the drug did not have a strong effect (Galata et al., 2021). 
Therefore, the two parameters varied between the compositions were 
the concentration and particle size of HPMC. The actual values for each 
setting are shown in Table 1. The tablets were compressed on a Dott 
Bonapace CPR-6 single punch tablet press (Limbiate, Italy) with a force 
of 15 kN. 14 mm concave punches were utilized, and the target weight of 
the tablets was 500 mg. 4 tablets were prepared at each composition. 

2.2.3. Fast Raman imaging 
Raman imaging of the surface of the tablets was performed using a 

Thermo Scientific DXR3xi (Waltham, Massachussets, USA) apparatus 
equipped with a 785 nm laser with a power of 30 mW. A microscope 
objective with a magnification of 20 × was used to acquire the chemical 
images in line scan mode. An automated sample stage moved the tablet, 
and an area of 1.2 × 1.2 mm2 was covered with steps of 40 µm, resulting 
in the acquisition of 31 columns with 31 spectrum in each column, for a 
total of 961 spectra. The spectra were recorded with an acquisition time 
of 0.1 s in the Raman shift region of 200–1800 cm− 1 and the area was 
scanned 3 times, this way the total measurement time was 5 min and 48 
s for each map. 

2.2.4. In vitro dissolution testing 
A Hanson SR8-Plus appliance (Chatsworth, CA, USA) was used in 

USP II configuration (paddle method) to carry out the in vitro dissolu
tion test of the tablets. 900 mL of pH 1.2 HCl solution was used as 
dissolution medium, the temperature was set to 37 ± 0.5 ◦C and the 
rotational speed of the paddles was 100 rpm. The dissolution of the 
tablets was monitored for 16 h by taking samples at set intervals with a 
Hanson Autoplus 8 Maximizer (Chatsworth, CA, USA) automatic syringe 
pump through 10 µm pore size filters. A total of 37 samples were taken at 
the following time points: 2, 5, 10, 15, 30, 45 and 60 min, after that, 
every 30 min until 960 min. The DR content in the samples was 
measured using an Agilent 8453 (Hewlett-Packard, Palo Alto, CA, USA) 
on-line coupled spectrophotometer by measuring the absorbance at 302 
nm in 10 mm flow through cuvettes. 

2.3. Data analysis 

The calculations described in this chapter were carried out in 
MATLAB version 9.8 (Mathworks, Natick, MA, USA), utilizing the 
PLS_Toolbox 8.8.1 (Eigenvector Research, Manson, WA, USA), Wavelet 
Toolbox 5.4 and Deep Learning Toolbox 14.0. 

2.3.1. Data extraction from Raman chemical images 
The Classical Least Squares (CLS) method was applied to predict the 

HPMC content from the Raman spectra at each point of the hyper
spectral images, this required the acquisition of the spectra of the pure 
components. CLS calculates values from 0 to 1 for each component 
characterizing their concentration in the spectrum. Thus, 31 × 31 
chemical maps were obtained for all components. Among the maps, 
HPMC scores were used to predict the dissolution profile. 

Four approaches were used to extract information from the HPMC 
distribution maps. Wavelet analysis (WA) was applied to a 2D image in 
the first two cases. It can be used to quantify the texture of the image 
(Mészáros et al., 2020). As a result, a histogram is obtained, which looks 
different when the image has a smooth or rough texture. For this anal
ysis, the concentration maps were converted to grayscale images by 
upscaling the values from 0 to 1 to 0–255. Discrete 2D WA was 

Table 2 
Properties of the ANNs used for dissolution prediction. MSE: mean squared 
error.  

Property WA WA-CLS CNN-CLS 

Input layer 
neuron 
number 

2 3 2 

Input scores values from 
PCA 

scores values from 
PCA + HPMC 
concentration 

particle size from 
CNN + HPMC 
concentration 

Number of 
hidden 
layers 

1 1 1 

Hidden layer 
neuron 
number 

1–10 (optimized) 1–10 (optimized) 1–10 (optimized) 

Hidden layer 
transfer 
function 

tangent sigmoid tangent sigmoid tangent sigmoid 

Output dissolution profile dissolution profile dissolution profile 
Output layer 

neuron 
number 

37 37 37 

Output layer 
transfer 
function 

linear linear linear 

Training 
algorithm 

Bayesian 
regularization 

Bayesian 
regularization 

Bayesian 
regularization 

Stopping 
criteria 

gradient of MSE 
performance 
function <
10-7 or epochs >
1000 

gradient of MSE 
performance 
function <
10-7 or epochs >
1000 

gradient of MSE 
performance 
function <
10-7 or epochs >
1000  
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performed on the images in two steps. Firstly, the image was decom
posed using a Daubechies2 wavelet, afterwards, discrete Meyer filters 
were applied for a second and third decomposition. A histogram was 
then created from the approximation coefficients, consisting of 600 bins. 
In order to reduce the dimensionality of the data, the histogram was 
subjected to Principal Component Analysis (PCA), and the first two score 
values were retained after this. As preprocessing prior to PCA, Savitzky- 
Golay smoothing (filter width 15, 2nd order polynomial) and mean 
centering were applied. In the first approach (WA), these two score 
values were the input of the dissolution prediction models, while in the 
second (WA-CLS), this data was augmented with the HPMC concentra
tion of the tablets obtained by averaging the CLS predictions of the 961 
spectra. 

In the third and fourth scenarios, CNN-based processing was carried 
out on the chemical maps. The third method is called CNN-CLS, as CNN 
is applied to characterize the particle size of HPMC, while the HPMC 
content is obtained by averaging the CLS predictions. In the fourth 
approach (‘only CNN’), the chemical map is the input of a CNN without 
additional processing and the dissolution profile is predicted directly 
from the images. 

2.3.2. Creation of dissolution prediction models 
The four approaches described in the previous chapter require vastly 

different neural network architectures. In the first three cases, simple 
feedforward backpropagation ANNs were used for the prediction of the 

dissolution profiles, their properties are summarized in Table 2. The 112 
(28 × 4) training samples were split randomly into the following cate
gories: training (70%), cross-validation (15%) and testing (15%). 

In the ‘only CNN’ and CNN-CLS approaches, CNNs were applied for 
two different purposes. In the CNN-CLS method, a CNN was trained to 
predict the particle size of HPMC based on the chemical maps of the 112 
training tablets. The size of the smallest sieve through which the fraction 
has passed was chosen to be the output of this CNN. The constructed 
model was then used to predict the HPMC fraction of the tablets which 
was used as input in a feedforward backpropagation ANN. In the ‘only 
CNN’ approach, the CNN used the chemical maps as input to directly 
predict the dissolution profile of the tablets. The architecture and pa
rameters of the models are shown in Fig. 1 and Table 3, respectively. 

The neuron number of the ANNs in the hidden layer was optimized 
with numbers between 1 and 10. The dissolution prediction CNN gave 
variable results after multiple runs, therefore it was run 100 times to 
choose the best-performing model. The predictive ability of the models 
was evaluated using the f2 similarity factor (Equation (1)), which has 
values between 0 and 100. The more similar the predicted and measured 
dissolution profiles, the higher the value: 

f2 = 50log10

⎧
⎨

⎩

[

1 +
1
n

∑n

i=1
wt(Rt − Tt)

2

]0.5

*100

⎫
⎬

⎭
(1)  

where Rt and Tt refer to the dissolution values measured and predicted at 
time point t, respectively, wt is an optional weighing factor and n is the 
number of measurement points in the dissolution curve. The parameter 
is applied in a way that only points before 85% dissolution are used and 
one point after 85%, this way, the easily predicted flat end of the curve is 
not taken into consideration (Duan et al., 2011). 

3. Results and discussion 

3.1. Information extraction from the Raman chemical images 

In order to characterize the HPMC concentration and particle size of 
the tablets, the Raman chemical images were processed using the CLS 
method to obtain the concentration map of HPMC. Based on a visual 

Fig. 1. Architecture of the CNNs used for dissolution and HPMC particle size prediction. ReLU: rectified linear unit.  

Table 3 
Settings of the CNNs used for dissolution prediction.  

Property HPMC particle size 
prediction CNN 

Dissolution prediction 
CNN 

Training function Adam Adam 
Validation 

frequency 
5 epochs 5 epochs 

Initial learn rate 0.001 0.0005 
Learn rate drop 

period 
10 epochs 10 epochs 

Learn rate drop 
factor 

0.9 0.95 

Maximum epochs 100 200  
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inspection, these images can be used to differentiate various concen
trations and particle size fractions (Fig. 2). As the concentration in
creases, more pixels with high HPMC content can be observed. When the 
particle size is larger, high intensity pixels are clustered and there are 
regions lacking HPMC between them, while the distribution is more 
uniform with smaller particle sizes. Unlike in our previous work (Galata 
et al., 2022), this time, the tablets contain both HPMC and MCC. These 
have a very similar composition, therefore the applied spectroscopic 
technique must have a strong sensitivity to minor differences in order to 
make them distinguishable in the chemical image. 

The predicted HPMC concentration values were averaged for the 
whole map to obtain a single value representing the whole tablet, the 
results of this operation are shown in Fig. 3a. It can be seen that the 
predicted values have a constant bias, this can be attributed to the fact 
that the Raman signal of HPMC is not very intense compared to 

drotaverine and lactose, therefore the CLS method, due to intensity 
normalization, predicts a lower contribution to the spectrum. However, 
despite this, the predicted concentrations follow the trend of the real 
composition of the tablets. 

The CNN trained for predicting the HPMC sieve fraction of the tablets 
is also promising, as seen in Fig. 3b. The model can effectively differ
entiate between the smaller fractions, the predictions are less satisfying 
only in the case of the test tablets with the 100–150 µm HPMC fraction. 

The score values of the first two principal components (PCs) obtained 
from the PCA of the wavelet histograms are shown in Fig. 4. Both values 
show a correlation with the concentration and particle size of HPMC, 
however, the two effects cannot be clearly separated. The values of the 
first PC become smaller as HPMC concentration increases, and at one 
concentration level, higher particle sizes have higher values. At small 
concentrations, the second PC shows a stronger correlation with particle 

Fig. 2. Examples of chemical maps of tablets with various HPMC concentrations and particle sizes. The colorbars on the right represent the concentration of HPMC 
predicted by the CLS method. The numbers on the left and bottom represent distance measured in micrometers. 

Fig. 3. A) hpmc concentration of tablets values predicted by the cls method. b) hpmc sieve fraction of tablets predicted with cnn.  
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size, however, this diminishes when the concentration is higher than 
20%. 

The success of data extraction shown in Figs. 2-4 implies that Raman 
chemical imaging is capable of differentiation between HPMC and MCC, 
as both the concentration and particle size of HPMC could be effectively 
characterized. 

3.2. Prediction of dissolution profiles 

After the necessary data extraction was performed, ANN and CNN 
models were created to predict the dissolution profile of the tablets. The 
f2 value of the obtained predictions is shown in Fig. 5. 

The average f2 value and the optimal neuron number in the hidden 

layer of the four methods is listed in Table 4. A small number of hidden 
neurons is sufficient for modeling the effect of the varied parameters on 
the dissolution curve. The CNN-CLS method generally yields the best 

Fig. 4. A) score values on the first pc of the wavelet histograms. b) score values on the second pc of the wavelet histograms. the color of the markers indicates hpmc 
content, while the marker shape refers to hpmc particle size. 

Fig. 5. F2 value of the predictions obtained for the 8 validation formulations using the 4 different methods. The central line of the boxes mark the median, the bottom 
and top edges refer to the 25th and 75th percentiles, respectively, the whiskers extend to cover the most extreme data points which are not outliers. 

Table 4 
Optimal neuron number in the hidden layer and average f2 value of the pre
dictions with the four methods.  

Method Number of neurons in hidden layer Average f2 

Only CNN –  54.20 
CNN-CLS 3  62.95 
WA 2  59.26 
WA-CLS 4  60.41  
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predictions, while WA and WA-CLS are slightly less accurate. It is 
remarkable that the ‘only CNN’ method, predicting the profiles directly 
from the chemical images, also yields good results. 

Fig. 6 shows the average predictions obtained for the 8 validation 
formulations. All four methods apparently give a satisfying prediction of 
the measured dissolution curve, the ‘only CNN’ method has lower f2 
values because its predictions are a bit farther from the real dissolution. 
Nonetheless, it is capable of recognizing the working principles of the 
tablets similarly to the other three methods utilizing additional pro
cessing. The two formulations with the least accurate predictions are 
V04 and V06. These both have the 100–150 µm HPMC fraction. In both 
cases, the predicted dissolution is slower than the measured. This 
observation can be explained by the fact that when the particle size of 
HPMC is too large, its measurement based on the chemical maps be
comes less reliable. This appears in Fig. 3b, where the predicted particle 
size of the two 100–150 µm validation formulations is smaller than it 
should be. This phenomenon does not occur with smaller particle sizes. 
Presumably, a larger area would be desirable to map for reliable mea
surement of particles bigger than 100 µm, thus, the issues experienced 
here can be prevented. 

4. Conclusions 

Overall, fast Raman imaging was proven to be an excellent 

information source for the dissolution prediction of sustained release 
tablets. If the current rate of progress in instrument development can be 
maintained, real-time applications of the technology might become 
available in a few years. This progression will revolutionize quality 
assurance of pharmaceutical products, as both the quantity and particle 
size of components will be measurable in all the produced tablets. 
Manufacturers will be able to identify and remove individual faulty 
tablets without compromising the whole batch, while trends in the 
process, such as a particle size shift due to segregation, will also be easier 
to recognize. 

With the development of CNNs, information extraction from the 
chemical maps will become more effective, as the direct prediction of 
the dissolution profile from the map demonstrated here does not require 
preprocessing steps during which valuable information might be lost. 
CNNs were shown here to be capable of predicting the dissolution profile 
on their own, while they are also excellent for data extraction purposes. 
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