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in GZMB may associate with
cancer risk in patients with
Lynch syndrome
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1Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary, 2Hereditary
Cancers Research Group, Eötvös Loránd Research Network – Semmelweis University,
Budapest, Hungary, 3Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary,
4National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary, 5National
Oncology Biobank Center, National Institute of Oncology, Budapest, Hungary
Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer

syndrome (HNPCC) is a common genetic predisposition to cancer due to

germline mutations in genes affecting DNA mismatch repair. Due to mismatch

repair deficiency, developing tumors are characterized by microsatellite

instability (MSI-H), high frequency of expressed neoantigens and good clinical

response to immune checkpoint inhibitors. Granzyme B (GrB) is the most

abundant serine protease in the granules of cytotoxic T-cells and natural killer

cells, mediating anti-tumor immunity. However, recent results confirm a diverse

range of physiological functions of GrB including that in extracellular matrix

remodelling, inflammation and fibrosis. In the present study, our aim was to

investigate whether a frequent genetic variation of GZMB, the gene encoding

GrB, constituted by three missense single nucleotide polymorphisms

(rs2236338, rs11539752 and rs8192917) has any association with cancer risk in

individuals with LS. In silico analysis and genotype calls from whole exome

sequencing data in the Hungarian population confirmed that these SNPs are

closely linked. Genotyping results of rs8192917 on a cohort of 145 individuals

with LS demonstrated an association of the CC genotype with lower cancer risk.

In silico prediction proposed likely GrB cleavage sites in a high proportion of

shared neontigens in MSI-H tumors. Our results propose the CC genotype of

rs8192917 as a potential disease-modifying genetic factor in LS.

KEYWORDS

granzyme B, Lynch syndrome, immunotherapy, microsatellite instability, colorectal
cancer, mismatch repair deficiency, cancer neoantigens, immune infiltration
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Introduction

Cancer neoantigens are de novo amino acid sequences produced

by cancer cells provoking antitumor immune response (1). As

multiple layers of evidence support the clinically effective

modification of the host’s immune system in fighting neoplastic

diseases mainly through pharmacologic inhibition of immune

checkpoints (2, 3), cutting-edge approaches in oncoimmunology

aim to stimulate immune responses by cancer vaccines (4) and in

vitro modification of effector T cells (5). Although most cancer

neoantigens are unique to one’s cancer, several cancers, especially

those characterized by microsatellite instability (MSI-H) share several

recurrent neoantigens (6, 7), providing a rationale for off-the-shelf

cancer vaccines not only in the adjuvant/metastatic setting (8), but

also as a part of primary prevention in high-risk individuals (9, 10).

Although MSI-H cancers are sporadic tumors in the majority of

the cases, Lynch syndrome (LS), a frequent cancer predisposition

syndrome with a prevalence of 1:250-500 significantly elevates the

risk of developing MSI-H neoplasms (11). LS is caused by germline

pathogenic mutations in genes disrupting the optimal function of the

DNA mismatch repair machinery (MLH1, MSH2, MSH6, PMS2,

EPCAM), and is inherited in an autosomal dominant manner.

Frequent manifestations include colorectal cancer (CRC) and

endometrial cancer, although it mildly elevates the risk of a

spectrum of malignancies (12). Specific cancer risks vary by the

gene concerned; mutations in MLH1, MSH2 and EPCAM result in

similarly higher risks for CRC (~50% lifetime risk) and endometrial

cancer (~50% lifetime risk) (12). Previous studies have demonstrated

high frequencies of effective immunity against the shared neoantigens

formerly described inMSI-H tumors not only in LS-associated cancer

patients but also in healthy individuals living with LS (13, 14).

Optimal immunosurveillance acquires a key part in the host’s

prevention of carcinogenesis (15). In healthy patients with LS,

normal colonic mucosa exhibits higher frequencies of a wide range

of immune cell populations, while this is reduced in LS-associated

cancer (16). In colonic premalignant lesions, a higher amount of

lymphocyte –activation gene 3 immune checkpoint expression

facilitates immune evasion and carcinogenesis (17). Immune-tumor

interactions, and immunoediting in particular, are dynamically

changing after malignant transformation, the most important of

which is the frequent loss of b2 microglobulin expression, resulting

in impaired HLA class I antigen expression (15, 18–20).

Granzymes are serine proteases, which are the main

components of the granules of cytotoxic T-cells and natural killer

(NK) cells eliciting perforin-mediated apoptosis of target cells (21).

This mechanism is a key effector element in antimicrobial and

antitumor immune responses. Granzyme B (GrB) is the most

abundant granzyme present in cytotoxic granules, however, recent

studies have uncovered several additional molecular mechanisms,

in which GrB maintains significant roles (22). In particular, by the

expression of GrB in a wide variety of normal epithelial cells and

cancer cells, GrB alters extracellular matrix remodeling, epithelial-

to-mesenchymal transition and fibrosis (22).

GrB is a 33 kDa protein, which is encoded by the gene GZMB in

humans. Former genetic studies have confirmed three closely linked

common single nucleotide polymorphisms (SNPs) all resulting in
Frontiers in Oncology 02
missense mutations (rs8192917 Q48R, rs11539752 P88A and

rs2236338 Y245H) (Figure 1A) (26, 27). An initial study

proposed that Granzyme B harbouring the minor RAH haplotype

(resulting from the minor alleles of these SNPs) is incapable of

inducing apoptosis (26), however a follow-up study leveraging

several layers of evidence including enzyme activity assays

dismissed this possibility (27). Nevertheless, there is still no clear

evidence on how these three missense alterations, relatively far from

the catalytic triad might affect the function of the enzyme.

In the present study, we aimed to analyze the association between

rs8192917, a tagging SNP of the RAH haplotype and cancer risk in

high-risk individuals with LS. Additionally, based on our in silico

analysis we anticipate that a significant portion of shared neoantigens

in MSI-H cancers can be cleaved by GrB. This study strengthens the

immune-related pathogenetic contribution to LS-associated

tumorigenesis and invites further investigations in independent LS

cohorts to validate the observed disease-modifying nature of rs8192917.
Materials and methods

Subjects, DNA isolation and genotyping

145 individuals harboring germline pathogenic mutations of

MLH1, MSH2 or terminal deletions of EPCAM were consecutively

enrolled between 1994 and 2021. Baseline characteristics of study

subjects are presented in Table 1. Following genetic counseling and

written informed consent, DNA was isolated from peripheral blood

using the Gentra Puregene Blood Kit (Qiagen, Cat No.: 158389).

Mutation analysis was performed using methods described earlier

(28, 29) including Sanger sequencing and multiplex ligation-

dependent probe amplification (MLPA). The study was approved

by the Scientific and Research Ethics Committee of the Medical

Research Council of Hungary (ETT-TUKEB 53720-7/2019/EÜIG).

For the genotyping of rs8192917, a predesigned TaqMan Allelic

Discrimination assay was used (assay ID: C:_2815152_20). Quantitative

real-time PCRwas performed on anApplied Biosystems 7500 Fast PCR

instrument according to the manufacturer’s instructions.
Linkage disequilibrium analysis of
rs2236338, rs11539752 and rs8192917

To investigate if a tagging SNP from rs2236338, rs11539752 and

rs8192917 can be selected we analyzed the linkage disequilibrium of

these SNPs. Firstly, LDMatrix online tool (LDLink, version 5.3.3)

was used to assess the linkage disequilibrium of these SNPs in

various populations (30).

Additionally, to investigate linkage disequilibrium in the same

population from which our LS cohort was selected, we leveraged

whole exome sequencing (WES) data from our center obtained

between 2017-2022. Patients included in this cohort were advised to

have their germline DNA subjected to clinical WES based on their

individual and family cancer history and the lack of germline

pathogenic mutation detection in prior targeted genetic testing.

As patients throughout the entire country were included in this

database following the recommendations of national centers of
frontiersin.org
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excellence, this database can be considered as representative of the

current Hungarian population.

WES data of 276 independent individuals were included in this

anonymized Hungarian germline sequencing database. WES was

performed using standard methods. Sequencing data analysis was

performed following the Genome Analysis Toolkit (GATK) best

practices guidelines. Paired-end sequencing data were obtained in

FASTQ file format and reads were trimmed using Cutadapt to

remove adapters and bases where the PHRED quality value was less

than 20. The trimmed reads were aligned to Genome Reference

Consortium Human Build hg19 using Burrows‐Wheeler Aligner

(bwa-mem2-2.0) (31). Picard tools were used to sort, marking

duplicates and index reads. Base Quality Score Recalibration

(BQSR) was performed using (GATK) (32). Variant discovery

was performed in two steps: single-sample variant calling was

performed using HaplotypeCaller in GATK; this was followed by

GenotypeGVCFs to combine variants from single-sample gVCFs to

the multi-sample VCF. Variant annotations were executed using

Funcotator. Genotype calls of rs2236338, rs11539752 and

rs8192917 were performed as earlier reported (33). Briefly, allele

ratios of 0-0.1 and 0.90-1 were considered homozygous, 0.3-0.7

were considered heterozygous, while allele ratios of 0.1-0.3 and 0.7-

0.9 were uncalled. The minimum sequencing depth for homozygous
Frontiers in Oncology 03
calls was 5 reads/allele, and for heterozygous calls was 10 reads/

allele. Genotype calls were further analyzed using Haploview 4.2

software (34).
In silico analysis of Granzyme B cleavage
sites in shared frameshift neoantigens

The ability of Granzyme B to cleave shared neoantigens present

in MSI-H tumors was analyzed by the PROSPERous online tool

(35). Briefly, shared neoantigens which are developed as frameshift

peptides due to repeated mismatch repair deficiency provoking an

immune response in independent patients with MSI-H tumors were

selected based on the prior study of Ruodko et al. (7). The amino

acid sequences of the selected neoantigens were subjected to the

PROSPERous prediction algorithm using the P4-P2’ cleavage site

and logistic regression options.
Statistical analysis

Statistical analysis was performed using GraphPad Prism 9.0

software. For analyzing the correlation between cancer occurrence
A B

D

C

FIGURE 1

Structural representation and linkage disequilibrium analyses of rs2236338, rs11539752 and rs8192917 of GZMB Panel (A): 3D visualization of the
crystallographic structure of Granzyme (B) Members of the catalytic triad are highlighted in red (H57, D102, S195). Amino acids altered by rs8192917,
rs11539752 and rs2236338 are highlighted in yellow (Q48R), purple (P88A) and blue (Y245H), respectively. 3D protein structure (1FQ3) was deposited
to Protein Data Bank (rcsb.org) by Estebanez-Perpina et al. (23) and was visualized using Mol* Viewer (24). Panels (B–D): Linkage disequilibrium (LD)
analyses of SNPs rs2236338, rs11539752 and rs8192917. Haploview 4.2 was used for LD analysis of the Hungarian WES cohort (Panel B). LDMatrix
online tool of the LDLink package was used to analyze LD in the CEU (Utah residents from North and West Europe) population (Panel C) and in
additional populations (Panel D). The D’ values of each SNP pair are indicated within the squares in the matrices. Solid red squares indicate D’ value
of 100%. D’ values characterize the extent two which two alleles are nonrandomly associated (25). A D’ value of 100% between two SNPs
corresponds to fully dependent inheritance, while a D’ value of 0% signals that the inheritance of the two SNPs are statistically independent from
each other. AF, African; AMR, Ad Mixed American; EAS, East Asian; EUR, European; SAS, South Asian.
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and SNP status log-rank test, c2 and Fisher’s exact tests were used.

P-values < 0.05 were considered statistically significant. Post-hoc

power calculations were performed on significant differences

observed by Fisher’s exact test to assess the role of sample

size. Statistical power > 80% was considered to be strong

statistical power.
Results

SNPs rs2236338, rs11539752 and
rs8192917 are in linkage disequilibrium
in the investigated Central
European population

We performed a linkage disequilibrium analysis of SNPs

rs2236338, rs11539752 and rs8192917. First, we analyzed an

anonymized exome sequencing database of Hungarian patients
Frontiers in Oncology 04
with various medical histories. This cohort includes patients

from the whole country and therefore is representative of the

current Hungarian population. Within this cohort, the three

SNPs were found to be in linkage disequilibrium (Figure 1B).

Additional in silico analysis in the LDmatrix database verified the

universal nature of this association in various populations

(Figures 1C, D).

Since the results indicated an extremely strong linkage

disequilibrium between the analyzed three SNPs, we selected

rs8192917 as the tagging SNP for this haplotype for further

analysis based on the fact that extensive previous research

initiatives analyzed its’ association with various conditions and

diseases (36–42).
The minor allele of rs8192917 correlates
with delayed cancer occurrence in
patients with LS

Our LS cohort included 63 (43.4%), 61 (42.1%) and 21 (14.5%)

individuals with germline pathogenic variants inMLH1,MSH2 and

EPCAM genes, respectively. This distribution correlates well with

data from the Prospective Lynch syndrome Database (PLSD),

where data from 2607 (51.1%) MLH1 and 2495 (48.9%) MSH2

(EPCAM carriers were included in the MSH2 cohort) carriers were

analyzed (12).

As expected, the most frequent manifestation of LS was CRC

followed by endometrial cancer in women, with more than 75% of

the cohort exhibiting any manifestation of LS (Table 1). This LS-

associated cancer risk corresponds well with data from the PLSD

(70-80%), while our cohort contains a larger percentage of CRC

cases (67% vs. 50%) possibly due to referral bias (12).

Genotyping of rs8192917 in our LS cohort revealed 85

individuals with TT, 49 individuals with CT and 11 individuals

with CC genotype resulting in a minor allele frequency (MAF) of

0.24. This MAF is similar to the MAF of 0.23 observed in the

European (non-Finnish) population of the gnomAD database

(version 2.1.1) (43).

LS individuals harboring the CC genotype were less likely to

develop CRC, the main manifestation of the syndrome (Figures 2A,

B, Table 2A). Moreover, individuals homozygous for the minor

allele ‘C’ were less likely to develop LS-associated tumor

manifestations (Figures 2C, D, Table 2B). Since LS-associated

tumor risks differ in women vs. men mainly due to the risk of

endometrial cancer, we performed subgroup analyses based on sex

as well (Supplementary Figure 1, Tables 2C, D) and have found that

rs8192917-dependent differences are maintained in the female

cohort. Statistical power calculations revealed the associations

found in the total cohort to be mild, however statistical power

was found to be strong when analyzing LS-associated tumor

occurrence restricted to women (Table 2). Additional calculations

restricted to LS-associated tumor manifestations without CRC or

restricted to endometrial cancer occurrence in women have found

no associations, probably due to the low sample sizes in these

subgroups (Supplementary Table 1).
TABLE 1 Baseline characteristics of individuals with LS involved in this
study.

n 145

Sex, female (%) 70 (48.3%)

age (years) 42.9 ± 15.2

LS-associated tumor occurrence (%) 110 (75.9%)

age at LS-associated tumor occurrence (years) 39.5 ± 9.4

CRC (% of total) 98 (67.6%)

age at CRC occurrence (years) 40.1 ± 10.9

endometrial cancer (% of women) 28 (40%)

age at endometrial cancer occurrence (years) 47.0 ± 6.5

ovarian cancer (% of women) 1 (1.4%)

age at ovarian cancer occurrence (years) 37.9

cancer of the small intestine (% of total) 3 (2.1%)

age at small intestine cancer occurrence (years) 55.0 ± 8.1

pancreatic cancer (% of total) 2 (1.4%)

age at pancreatic cancer occurrence (years) 45.2 ± 1.9

gastric cancer (% of total) 4 (2.8%)

age at gastric cancer occurrence (years) 50.3 ± 14.5

cancer of the bile ducts (% of total) 1 (0.7%)

age at bile duct cancer occurrence (years) 61.1

cancer of the urinary tract (% of total) 3 (2.1%)

age at urinary cancer occurrence (years) 58.2 ± 8.5

keratoacanthomas of the skin (% of total) 7 (4.8%)

age at skin keratoacanthoma occurrence (years) 45.4 ± 20.0

brain tumor (% of total) 0 (0%)
If multiple cancers in the same organ occurred in the same patient, the age at the first
occurrence was included. Data are presented as n (% of total/female subjects) or mean ±
standard deviation.
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Granzyme B is predicted to cleave multiple
shared neoantigens in MSI-H cancers

Based on the study of Roudko et al, 46 neoantigens shared

between MSI-H tumors were included in the in silico analysis (7) to

assess probable cleavage by Granzyme B (35). Upon the scores of

each cleavage sites, putative loci were classified as likely (score>5.0,

n = 27) and unlikely (score<1.0, n = 1575) cleavage sites

(Figure 3A). Applying this threshold, 19 out of 46 (41.3%) shared

neoantigens harboured likely cleavage sites (Figure 3B,

Supplementary Table 2).
Discussion

Identifying disease-modifying genetic factors has tremendous

potential in personalizing screening protocols and treatment

options, especially in individuals living with high risk for cancer

development. Primary studies in individuals living with hereditary

predisposition to breast and ovarian cancer found multiple SNPs

which may alter cancer risk (44, 45). Based on these results recent

studies started to investigate the predictive ability of polygenic risk

scores for cancer risk prediction in women living with germline

mutations in BRCA1 and BRCA2 (46, 47). In LS, earlier studies have

found some SNPs which can affect personalized risk of cancer (48–

51). In particular, two studies confirmed the association of genomic

regions 8q23.3 and 11q23.1 with CRC risk in individuals with LS
Frontiers in Oncology 05
(48, 51). A recent study found an association between rs2075786, a

SNP of the gene encoding telomerase reverse transcriptase (TERT)

and cancer risk in individuals with germline MSH2 mutation in a

large international cohort (50). Nevertheless, studies leveraging

these results to construct polygenic risk scores in this cohort are

still scarce. However, a pioneering study in individuals with

germline PMS2 mutations provided a rationale to investigate this

matter more thoroughly (49). In anticipation of these studies we

aimed to investigate if immunogenetic factors, specifically genetic

variants of GrB might associate with cancer risk in LS.

Rs2236338, rs1159752 and rs8192917 are three functionally

active SNPs resulting in amino acid change. Jeong et al. previously

showed that these three SNPs constitute a haploblock in the Korean

population (36). Similarly to this result, by the analysis of the

Central European population in the LDMatrix online tool and also

in our Hungarian cohort of 276 independent patients, where WES

was performed, we found that these three SNPs are closely linked

together. Based on these results we selected rs8192917 as a tagging

SNP of this haplotype for further genotyping in our LS cohort.

The CC genotype of rs8192917 was associated with decreased

risk for LS-associated tumors in our cohort. This association was

significant when the analysis was restricted to females, while in

males a tendency toward this association was verified. The

association of the CC genotype with decreased cancer occurrence

was also validated when the analysis was restricted to CRC, but not

to endometrial cancer and other, less frequent LS manifestations,

possibly due to the insufficient sample size in this regard. Earlier, the
A

B D

C

FIGURE 2

Age-related occurrence of CRC and LS-associated tumors in individuals with LS according to rs8192917 genotype Kaplan-Meier curves were plotted
to visualize the first CRC diagnosis based on CC vs. CT vs. TT genotypes (Panel A) and CC vs. CT + TT genotypes (Panel B). Kaplan-Meier curves
were plotted to visualize the first LS-associated tumor diagnosis based on CC vs. CT vs. TT genotypes (Panel C) and CC vs. CT + TT genotypes
(Panel D). LS-associated tumors included malignant tumors of the gastrointestinal tract (CRC, gastric cancer, pancreatic cancer, cancer of the small
intestine and of the bile ducts), endometrial cancer, ovarian cancer, malignant tumors of the urinary tract and keratoacanthomas of the skin. Curves
were compared by log-rank test. n = 145. P-values < 0.05 were considered statistically significant.
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‘C’ allele of rs8192917 has been associated with vitiligo, an

autoimmune dermatologic condition in three independent

cohorts (36–38). Moreover, rs8192917 has also been associated

with subacute sclerosing panencephalitis (39) and postoperative

keloids (40) in single cohorts. Additionally, this SNP has been

associated with transplantation outcomes after HLA-matched

unrelated bone marrow transplantation (41). On the functional

level, a study has suggested that rs8192917 associates with natural

killer cell cytotoxicity (42), however further functional validation is

needed to determine the specific nature of this finding. Nonetheless,

another GZMB SNP, independent of rs8192917 has been associated

with joint destruction in rheumatoid arthritis (52), strengthening
Frontiers in Oncology 06
the role of genetic variants of GZMB in immune-related

pathogenic mechanisms.

Although these previous lines of evidence suggest a wide-raging

disease-modifying effect of GZMB genetic variants, mechanistic

insights are still lacking. Sun et al. have clearly demonstrated that

the minor RAH haplotype retains the pro-apoptotic activity of GrB

(27), however, GrB has multiple roles in extracellular matrix

remodeling, epithelial-to-mesenchymal transition, inflammation

and fibrosis (22). QPY and RAH variants may have different

substrate-specificities, which might directly affect some of these

mechanisms. Regarding autoimmune pathomechanisms as in the

case of generalized vitiligo, it has already been suggested that altered
TABLE 2 Analysis of frequencies of CRC and LS-associated tumors in LS individuals based on their rs8192917 genotype.

A total cohort (n = 145)

genotype CRC diagnosis no CRC diagnosis p-value post-hoc power

CC 4 (36.4%) 7 (63.6%)

CT 35 (71.4%) 14 (28.6%)

TT 59 (69.4%) 26 (30.6%) 0.0688

CC 4 (36.4%) 7 (63.6%)

CT + TT 94 (70.1%) 40 (29.9%) 0.0390 62.8%

B total cohort (n = 145)

genotype LS-tumor diagnosis no LS-tumor diagnosis p-value post-hoc power

CC 5 (45.5%) 6 (54.5%)

CT 38 (77.6%) 11 (22.4%)

TT 67 (78.8%) 18 (21.2%) 0.0489

CC 5 (45.5%) 6 (54.5%)

CT + TT 105 (78.4%) 29 (21.6%) 0.0240 66.6%

C male cohort (n = 75)

genotype LS-tumor diagnosis no LS-tumor diagnosis p-value post-hoc power

CC 3 (75.0%) 1 (25.0%)

CT 21 (70.0%) 9 (30.0%)

TT 30 (73.2%) 11 (26.8%) 0.9487

CC 3 (75.0%) 1 (25.0%)

CT + TT 51 (71.8%) 20 (28.2%) >0.9999

D female cohort (n = 70)

genotype LS-tumor diagnosis no LS-tumor diagnosis p-value post-hoc power

CC 2 (28.6%) 5 (71.4%)

CT 17 (89.5%) 2 (10.5%)

TT 37 (84.1%) 7 (15.9%) 0.0014

CC 2 (28.6%) 5 (71.4%)

CT + TT 54 (85.7%) 9 (14.3%) 0.0027 92.9%
Panel (A) demonstrates individuals with and without CRC diagnosis (n = 145), while Panel (B–D) demonstrates individuals with LS-associated tumor diagnosis in the total cohort (Panel B, n =
145), in males (Panel C, n = 75) and females (PanelD, n = 70). LS-associated tumors included malignant tumors of the gastrointestinal tract (CRC, gastric cancer, pancreatic cancer, cancer of the
small intestine and of the bile ducts), endometrial cancer, ovarian cancer, malignant tumors of the urinary tract and keratoacanthomas of the skin. 3X2 contingency tables (CC vs. CT vs. TT
genotypes) were analyzed by c2 tests, while 2X2 contingency tables (CC vs. CT + TT genotypes) were analyzed by Fisher’s exact tests. P-values < 0.05 were considered statistically significant. In
the case of Fisher’s exact tests, post-hoc power calculation has additionally been performed. Statistical power > 80% was considered strong.
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cleavage of autoantigens might explain the previously confirmed

association of rs8192917 with this disease (38). Transposing this

hypothesis to MSI-H carcinogenesis in LS, our in silico analysis

revealed that a large proportion of shared neoantigens in MSI-H

cancers encompass likely GrB cleavage sites. Differential cleavage of

these frameshift peptides serving as neoantigens might directly

affect optimal immunosurveillance, a key feature in LS-related

tumorigenesis (15). Moreover, performing in-depth analyses

regarding autoimmune conditions and cancer risk in individuals

with LS might further shed light on the immunological

pathomechanism of these diseases which can possibly be affected

by GrB and other mediators.

It is important to note the limitations of our study. Deriving from

its’ monocentric nature, we cannot infer the observed association to

other populations. Although our cohort is smaller than those of large

international consortia, such as the PLSD (12), it is still the largest

Hungarian Lynch syndrome cohort ever studied and is comparable to

a Swedish national study, where the country’s population is also

comparable to Hungary (53). By disregarding individuals withMSH6

and PMS2 mutations, where cancer risk is significantly lower, and

selecting only individuals with MLH1, MSH2 or EPCAM mutations,

where lifetime colorectal cancer risk is approximately 50%, we

were able to perform our comparative study in a relatively

homogeneous population.
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In conclusion, we found that rs8192917 SNP of the gene

encoding GrB correlates with cancer risk in our LS cohort.

Following validation of this finding in independent cohorts, this

SNP can be included in personalized risk stratification and

screening recommendations in affected individuals. Further

research avenues might also include the functional assessment of

the QPY and RAH variants of GrB to investigate possible

differences in substrate-specificities that might explain the

observed protective effect.
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