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Abstract. Kloeckner discovered that the quadratic Wasserstein space over the real line

(denoted by W2(R)) is quite peculiar, as its isometry group contains an exotic isometry

flow. His result implies that it can happen that an isometry Φ fixes all Dirac measures, but

still, Φ is not the identity of W2(R). This is the only known example of this surprising and

counterintuitive phenomenon. Kloeckner also proved that the image of each finitely supported

measure under these isometries (and thus under all isometry) is a finitely supported measure.

Recently we showed that the exotic isometry flow can be represented as a unitary group on

L2
(
(0, 1)

)
. In this paper, We calculate the generator of this group, and we show that every

exotic isometry (and thus every isometry) maps the set of all absolutely continuous measures

belonging to W2(R) onto itself.

1. Introduction

The aim of this paper is to take a closer look at Kloeckner’s result on isometries of the

quadratic Wasserstein space over the real line, denoted by W2(R). In [25, Theorem 1.1]

Kloeckner showed that W2(R) admits a flow (Φq)q∈R of exotic isometries. But even these

wildly behaving isometries preserve finitely supported measures, in particular, they map the

set of all Dirac masses onto itself. These results were originally defined by means of an

extension argument using geometric tools. In [16] we gave an operator theoretic description

of (Φq)q∈R and we showed that it can be represented as an operator semigroup (in fact a

unitary group) (Uq)q∈R on L2
(
(0, 1)

)
. In Theorem A we extend this result by calculating

the skew-selfadjoint generator of the group. As an application, in Theorem B we complement

Kloeckner’s result on preserver properties: we will show that every element Φq of the flow

(and thus all isometry ofW2(R)) maps the set of all absolutely continuous measures belonging

to W2(R) onto itself.
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2. Definitions and statement of the results

Let (X, %) be a complete and separable metric space, and denote the set of Borel probability

measures on X and X × X by P(X) and P(X × X), respectively. For µ, ν ∈ P(X) we say

that π ∈ P(X ×X) is a coupling (π ∈ C(µ, ν), in notation) if

π(A×X) = µ(A) and π(X ×A) = ν(A)

for all Borel sets A. For a given real number p ≥ 1 the p-Wasserstein space Wp(X) is the set{
µ ∈ P(X)

∣∣∣∣∣ ∃x̂ ∈ X :

∫
X
%p(x, x̂) dµ(x) < +∞

}
endowed with the metric

dp(µ, ν) = inf
π∈C(µ,ν)

 x

X×X

%p(x, y) dπ(x, y)


1/p

.

We will denote the set of Dirac measures by ∆1, and in general, the symbol ∆n stands for

the set of those elements of Wp(X) that can be written as
∑n

i=1 λiδxi . For more details on

Wp(X) we refer the reader to the textbooks [1,9,33,36,37]. In this paper we will focus on the

case when X ∈ {R, [0, 1]} and p ∈ {1, 2}.

Given a metric space (Y, r) a map Φ : Y → Y is called an isometry (Φ ∈ Isom(Y ) in

notations) if it is surjective and r(Φ(y1),Φ(y2)) = r(y1, y2) for all y1, y2 ∈ Y . Isometries

of p-Wasserstein spaces and various other metric spaces of measures have been intensively

studied in recent years, see e.g. [2, 6, 7, 13–16, 18, 19, 24–28, 34, 38], not to mention isometries

of other important metric structures, see e.g. [3–5, 10–12, 20–22, 29–32]. The most important

contribution concerning the current topic has been done by Kloeckner in [25]. He managed to

describe Isom(W2(R)). In order to explain his results, we need to recall some technical details.

A special feature of Wasserstein spaces over the unit interval and over the real line is that

that the p-Wasserstein distance of measures can be calculated by means of their cumulative

distribution functions and quantile functions. Recall that the cumulative distribution function

of a Borel probability measure µ is defined as

Fµ : R→ [0, 1], x 7→ Fµ(x) := µ ((−∞, x]) .

We will use the notation Fµ(x−) := limt↑x Fµ(t) for the limit from the left. The quantile

function of µ (or the right-continuous generalized inverse of Fµ) is

F−1
µ : (0, 1)→ R, y 7→ F−1

µ (y) := sup {x ∈ R |Fµ(x) ≤ y} .

The distance d2(µ, ν) in W2(R) can be calculated for all µ, ν ∈ W2(R) as

d2 (µ, ν) =

(∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣2 dt

) 1
2

= ‖F−1
µ − F−1

ν ‖L2
(

(0,1)
)
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(see for instance [37, Remarks 2.19]), and according to Vallender [35], the distance d1(µ, ν) in

W1([0, 1]) can be calculated for all µ, ν ∈ W1([0, 1]) as

d1 (µ, ν) =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣ dt =

∫ 1

0
|Fµ(t)− Fν(t)| dt.

A very important property of p-Wasserstein spaces (p ≥ 1) is that X embeds into Wp(X)

isometrically by the map x 7→ δx, and that F(X) =
⋃
n∈N ∆n(X) is a dense subset of Wp(X)

(see e.g. Example 6.3 and Theorem 6.16 in [36]). We have a similarly natural embedding

for isometry groups, namely Isom(X) embeds into Isom(Wp(X)) by a group homomorphism.

Indeed, if ψ : X → X is an isometry of X, then its push-forward ψ# is an isometry ofWp(X),

where

(ψ#µ)(A) = µ(ψ−1(A))

for all Borel sets A ⊆ X. Finally, let us introduce some notations. Let m(µ) denote the center

of mass of a µ ∈ W2(R):

m(µ) =

∫ 1

0
F−1
µ (x) dx.

The symbols 1, x, and 1 ⊗ 1 will stand for 1(t) = 1 (t ∈ (0, 1)), x(t) = t (t ∈ (0, 1)), and

(1 ⊗ 1)f =
∫ 1

0 f(s)ds · 1 (f ∈ L2
(
(0, 1)

)
. Finally, let us denote by rc the map x 7→ 2c − x,

which is called the reflection through c ∈ R. Kloeckner showed in [25, Theorem 1.1] that

every isometry of W2(R) is a composition of some of the following maps:

• a trivial isometry, that is, ψ# for some ψ ∈ Isom(R);

• the map µ 7→ (rm(µ))#
(µ), that is, the isometry that reflects every measure through

its center of mass;

• an exotic isometry Φq for some q ∈ R.

In order to define Φq, Kloeckner parametrized ∆2(R) by x, p ∈ R, σ ≥ 0 as follows

(2.1) µ(x, σ, p) :=
e−p

ep + e−p
· δx−σep +

ep

ep + e−p
· δx+σe−p .

Now let q ∈ R be fixed, and define Φq on ∆2(R) by

(2.2) Φq (µ(x, σ, p)) := µ(x, σ, p+ q) (x, σ, p ∈ R, σ ≥ 0).

He proved that this indeed defines an isometry on ∆2(R) and that it extends uniquely to an

isometry ofW2(R). He also pointed out that even though the above definition is constructive,

it is not very explicit outside ∆2(R).

Let us identify W2(R) with the corresponding set of quantile functions. In that way, Φq

can be considered as a map defined on a subset of L2
(
(0, 1)

)
. We proved in [16] that this map

extends to a real unitary operator Uq : L2
(
(0, 1)

)
→ L2

(
(0, 1)

)
which can be written in terms

of a composition operator, the Volterra operator, a multiplication operator and a rank-one

projection. Our first result complements this description.
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Theorem A. Let q be a real number. Then the action of the exotic isometry Φq is given by

the following formula:

F−1
Φq(µ)(x) = (1− eq) ·m(µ) +

{
eq + (e−q − eq)hq(x)

}
· F−1

µ (hq(x))(2.3)

+ (eq − e−q) ·
∫ hq(x)

0
F−1
µ (s) ds (µ ∈ W2(R), 0 < x < 1),

where

(2.4) hq(x) =
xe2q

1 + (e2q − 1)x
(x ∈ (0, 1)).

Moreover, the exotic isometry flow {Φq : q ∈ R} extends into a strongly continuous one-

parameter (real) unitary group {Uq : q ∈ R} = {exp(qA) : q ∈ R} on L2
(
(0, 1)

)
. The skew-

symmetric generator (A,D(A)) of this operator semigroup is

(2.5) (Af) (x) = (1− 2x) · f(x) + 2x(1− x) · d

dx
f(x) +

∫ x

0
f(s)ds−

∫ 1

x
f(s)ds

on the domain

(2.6) D(A) =

{
f ∈ L2

(
(0, 1)

) ∣∣∣∣∣ f is absolutely continuous, x(1− x)df
dx ∈ L

2
(
(0, 1)

)}
.

Before stating Theorem B, we remark that it is not true in general that an isometry of a

Wasserstein space preserves ∆n or preserves absolute continuity of measures. To see such an

example, consider the Wasserstein space W1([0, 1]), and the isometry j which is defined as

j(µ) := ν if Fν = F−1
µ (for more details see [16, Section 2.1]).

Figure 1. The cumulative distribution functions (restricted to [0, 1]) of δ 1
3

(gray dashed line), 1
2(δ0 + λ|[0,1]) (black line), and their images.

For this isometry

– it is not true that the image of ∆n is ∆n for all n ∈ N. In fact, Dirac measures (i.e.,

elements of ∆1) are typically mapped into ∆2, as j(δt) = tδ0 + (1− t)δ1,

— it is not true that the image of each absolutely continuous measure is absolutely

continuous. One such example is µ = 2λ|[ 1
2
,1], where λ is the Lebesgue measure. The

image of µ is 1
2(δ0 + λ|[0,1]).

Theorem B. Let us denote byWac
2 (R) the set of all absolutely continuous measures belonging

to W2(R). Then for all q ∈ R, Φq maps Wac
2 (R) onto itself.
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3. Proofs

3.1. Proof of Theorem A. The proof of (2.3) appeared originally in [16, Theorem 3.18.].

In the following proof, we briefly recall some details (mainly notations) for the reader’s con-

venience.

Proof. We look at the Wasserstein space W2(R) as a convex and closed subset of L2
(
(0, 1)

)
whose linear span is dense in L2

(
(0, 1)

)
, via the identification µ 7→ F−1

µ . Therefore by [39,

Theorem 11.4] and (2.2) the exotic isometry Φq can be extended to a unique linear isometric

embedding which we denote by Uq. Let us point out that the linear span of {F−1
µ |µ ∈ ∆2(R)}

is dense in L2
(
(0, 1)

)
, therefore Uq is the unique bounded operator on L2

(
(0, 1)

)
such that

(3.1) Uq

(
F−1
µ(x,σ,p)

)
= F−1

µ(x,σ,p+q) (x, σ, p ∈ R, σ ≥ 0).

Therefore, it is enough to find a bounded linear operator that satisfies (3.1), that operator

will then be equal to Uq. Observe that (3.1) is equivalent to

(3.2) Uq1 = 1 and Uq

(
F−1
µ(0,1,p)

)
= F−1

µ(0,1,p+q) (p ∈ R).

Let us introduce some notations: let M1−x stand for the multiplication operator by the

function 1 − x, and V for the Volterra operator: (V f)(t) =
∫ t

0 f(s) ds (t ∈ (0, 1)). The

composition operator with symbol hq (see (2.4)) will be denoted by Cq

Cq : L2
(
(0, 1)

)
→ L2

(
(0, 1)

)
, (Cqf)(x) = f(hq(x)) (x ∈ (0, 1)).

Notice that Cq is a bounded operator, as hq maps [0, 1] bijectively onto itself; it is a smooth

function on a neighbourhood of [0, 1], and its derivative is bounded from below by e−2|q| on

[0, 1]. In [16, Theorem 3.18] we showed that Uq can be written as

(3.3) Uq = Cq ·
[
(1− eq) · (1⊗ 1) + eq · I + (e−q − eq) ·Mx + (eq − e−q) · V

]
,

which implies (2.3) for almost every x ∈ (0, 1). Since two right-continuous functions are equal

almost everywhere on (0, 1) if and only if they coincide on (0, 1), we conclude (2.3), and thus

(using (3.2) and (3.3)) (Uq)q∈R is strongly continuous. The next step is to find its generator.

That is, the operator A : D(A) → L2
(
(0, 1)

)
such that {Uq | q ∈ R} = {exp(qA) | q ∈ R}.

The domain D(A) is the collection of all f ∈ L2
(
(0, 1)

)
such that the limit limq↓0

1
q (Uqf − f)

exists. Note that for all q ∈ R, f ∈ L2
(
(0, 1)

)
we have

1

q
(Uqf − f) (x) =

1− eq

q

∫ 1

0
f(s) ds+

eqf(hq(x))− f(x)

q

+
e−q − eq

q
hq(x)f(hq(x)) +

eq − e−q

q

∫ hq(x)

0
f(s) ds

for (Lebesgue) almost every x ∈ (0, 1). Let us calculate the limit limq↓0
1
q (Uqf − f) (x): using

that d
dq (eqf(hq(x)))

∣∣∣
q=0

= f(x) + f ′(x)2x(1− x), we have

lim
q↓0

1

q
(Uqf − f) (x) = −

∫ 1

0
f(s) ds+

d

dq
(eqf(hq(x)))

∣∣∣
q=0
− 2xf(x) + 2

∫ x

0
f(s) ds

= (1− 2x) · f(x) + 2x(1− x) · d

dx
f(x) +

∫ x

0
f(s)ds−

∫ 1

x
f(s)ds
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for all f ∈ L2
(
(0, 1)

)
such that the map x 7→ x(1 − x)f ′(x) belongs to L2. According to

Stone’s theorem [8, Theorem 3.24], (A,D(A)) is a skew-selfadjoint operator. �

3.2. Proof of Theorem B. We close the paper with an application of Theorem A. Using

(2.3), one can show that the slopes of secant lines of F−1
µ ◦ hq and F−1

Φq(µ) are comparable (see

(3.4) below), which is the key observation of the proof below.

Proof. As we pointed out earlier, the function hq from (2.4) is a monotone increasing bijection

of [0, 1] which is smooth in a neighbourhood of [0, 1], and whose derivative satisfies

e−2|q| ≤ d
dxhq(x) ≤ e2|q| (x ∈ [0, 1]).

The inverse will be denoted by h−1
q : [0, 1] → [0, 1]. Note that for all µ ∈ W2(R), q ∈ R and

0 < x1 < x2 < 1 we have

F−1
Φq(µ)

(
h−1
q (x2)

)
− F−1

Φq(µ)

(
h−1
q (x1)

)
= eq ·

(
F−1
µ (x2)− F−1

µ (x1)
)

+
(
e−q − eq

)
·
(
x2F

−1
µ (x2)− x1F

−1
µ (x1)−

∫ x2

x1

F−1
µ (s) ds

)
= eq ·

(
F−1
µ (x2)− F−1

µ (x1)
)

+
(
e−q − eq

)
·
∫ x2

x1

s dF−1
µ (s),

where we used integration by parts. Since

0 ≤
∫ x2

x1

s dF−1
µ (s) ≤

∫ x2

x1

1 dF−1
µ (s) = F−1

µ (x2)− F−1
µ (x1),

we conclude the following for all µ ∈ W2(R), q ∈ R and 0 < x1 < x2 < 1:

e−|q| ·
(
F−1
µ (x2)− F−1

µ (x1)
)

(3.4)

≤ F−1
Φq(µ)

(
h−1
q (x2)

)
− F−1

Φq(µ)

(
h−1
q (x1)

)
≤ e|q| ·

(
F−1
µ (x2)− F−1

µ (x1)
)
.

Since (Φq)−1 = Φ−q, what is left to prove is that if µ ∈ Wac
2 (R), then Φq(µ) is also

absolutely continuous. We shall do this indirectly. Assume that µ is absolutely continuous

but Φq(µ) is not. Then F−1
µ cannot be constant on any non-degenerate interval. Consequently

by (3.4), the same holds for F−1
Φq(µ), thus FΦq(µ) is continuous on R. By definition, there exists

an ε > 0 such that for all n ∈ N there exists a finite set of pair-wise disjoint intervals{
[an,j , bn,j)

∣∣ j = 1, . . . , Nn

}
with Nn ∈ N and satisfying

(3.5)

Nn∑
j=1

bn,j − an,j < ε
n and

Nn∑
j=1

FΦq(µ) (bn,j)− FΦq(µ) (an,j) > ε.

By the continuity of FΦq(µ), without loss of generality we may assume from now on that

(3.6) 0 < FΦq(µ) (an,j) < FΦq(µ) (c) < FΦq(µ) (bn,j) < 1 (an,j < c < bn,j)

always holds. Set

xn,j := FΦq(µ) (an,j) and yn,j := FΦq(µ) (bn,j) ∈ (0, 1)
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for all j, n. Then by (3.6) we have F−1
Φq(µ) (xn,j) = an,j and F−1

Φq(µ) (yn,j−) = bn,j . Therefore

(3.5) can be written in the form

(3.7)

Nn∑
j=1

F−1
Φq(µ) (yn,j−)− F−1

Φq(µ) (xn,j) <
ε
n and

Nn∑
j=1

yn,j − xn,j > ε.

By replacing yn,j by ỹn,j ∈ (xn,j , yn,j ] close enough to yn,j , we may assume without loss

of generality that we have F−1
Φq(µ) (yn,j) everywhere in (3.7) instead of F−1

Φq(µ) (yn,j−). Set

un,j := hq (xn,j) and vn,j := hq (yn,j). Observe that (3.4), (3.7) and the properties of hq imply

(3.8)

Nn∑
j=1

F−1
µ (vn,j)− F−1

µ (un,j) <
ε
n · e

|q| and

Nn∑
j=1

vn,j − un,j > ε · e−2|q|.

Recall that F−1
µ is not constant on any non-degenerate interval. Therefore setting cn,j :=

F−1
µ (un,j) and dn,j := F−1

µ (vn,j) gives

Nn∑
j=1

dn,j − cn,j < ε
n · e

|q| and

Nn∑
j=1

Fµ (dn,j)− Fµ (cn,j) > ε · e−2|q|,

which contradicts µ being absolutely continuous. �

Acknowledgement. We are grateful to the anonymous referee for his/her valuable comments

and suggestions.

References

[1] L. Ambrosio, N. Gigli, A user’s guide to optimal transport. Modelling and optimisation of flows on

networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013.

[2] J. Bertrand, B. Kloeckner, A geometric study of Wasserstein spaces: isometric rigidity in negative

curvature, Int. Math. Res. Notices 5 (2016), 1368–1386.

[3] F. Botelho, J. Jamison, L. Molnár, Surjective isometries on Grassmann spaces, Journal of Functional

Analysis, 265 2013, 2226–2238.

[4] F. Botelho, D. Ilisevic, On isometries with finite spectrum Journal of Operator Theory 86 2021,

255–273.

[5] F. Botelho, J. Jamison, Surjective isometries on absolutely continuous vector-valued function spaces,

Contemp. Math., 687 (2017), 55–65.

[6] G. Dolinar, B. Kuzma, D. Mitrovic, Isometries of probability measures with respect to the total vari-

ation distance, J. Math. Anal. Appl. 507 (2021), Paper No. 125829.

[7] G. Dolinar, L. Molnár, Isometries of the space of distribution functions with respect to the Kolmogorov–

Smirnov metric, J. Math. Anal. Appl. 348 (2008), 494–498.

[8] K-J. Engel, R. Nagel, A short course on operator semigroups, Universitext. Springer, New York, 2006.

[9] A. Figalli and F. Glaudo, An Invitation to Optimal Transport, Wasserstein Distances, and Gradient

Flows, EMS Textbooks in Mathematics, EMS Press, Berlin, 2021.

[10] R.J. Fleming,J.E. Jamison, Isometries on Banach Spaces: Function Spaces, Chapman and Hall/CRC

Monographs and Surveys in Pure and Applied Mathematics, 129, Boca Raton, FL, 2003.

[11] R.J. Fleming, J.E. Jamison, Isometries on Banach Spaces: Function Spaces Vol. 2.: Vector-valued

Function Spaces, Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics,

138, Boca Raton, FL, 2008.

[12] K. Jarosz, V.D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc., 305 (1988),

193–206.
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Dániel Virosztek, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
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