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Entanglement, excitations and correlation effects

in narrow zigzag graphene nanoribbons
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MTA Wigner Research Centre for Physics, Budapest H-1525 P.O. Box 49, Hungary

We investigate the low-lying excitation spectrum and ground-state properties of narrow graphene
nanoribbons with zigzag edge configurations. Nanoribbons of comparable widths have been syn-
thesized very recently [P. Ruffieux, et al. Nature 531, 489 (2016)], and their descriptions require
more sophisticated methods since in this regime conventional methods, like mean-field or density-
functional theory with local density approximation, fail to capture the enhanced quantum fluctua-
tions. Using the unbiased density-matrix renormalization group algorithm we calculate the charge
gaps with high accuracy for different widths and interaction strengths and compare them with
mean-field results. It turns out that the gaps are much smaller in the former case due to the proper
treatment of quantum fluctuations. Applying the elements of quantum information theory we also
reveal the entanglement structure inside a ribbon and examine the spectrum of subsystem density
matrices to understand the origin of entanglement. We examine the possibility of magnetic order-
ing and the effect of magnetic field. Our findings are relevant for understanding the gap values in
different recent experiments and the deviations between them.

PACS numbers: 71.10.Fd, 71.10.Hf, 73.22.-f

I. INTRODUCTION

Graphene, the two-dimensional honeycomb lattice of
carbon atoms has attracted an enormous interest since
its first discovery in 2004.1 In spite of this, from the
point of view of applications in nanoelectronics, bulk
graphene is not useful due to the absence of a band
gap. Therefore, finite samples of graphene are likely to
be more advantageous in this aspect, since they may ex-
hibit a gap due to quantum confinement or electronic cor-
relations. Graphene nanoribbons are especially promis-
ing candidates in overcoming this obstacle. It has been
demonstrated, that nanoribbons with a well-defined crys-
tallographic orientation can be produced with scanning-
tunneling-microscope-based litography2,3 and even sub 4
nm widths can be achieved. On the other hand bottom-
up techniques now make it possible to synthesize either
armchair4 or zigzag5 nanoribbons whose widths consist
of a few zigzag carbon lines only. Ribbons with a zigzag
edge are particularly interesting because of their peculiar
electronic and magnetic properties.6,7 While a graphene
sheet can be considered as a marginal Fermi liquid,8 and
can be treated practically as a non-interacting system,
the situation is completely different for nanoribbons with
a zigzag edge. It is known from conventional band the-
ory that these ribbons have a flat band due to their edge
states.6 This large density of states at the Fermi energy
is very sensitive to magnetic ordering, even if only a weak
electron-electron interaction is present based on the the
Slater theory of antiferromagnetism. Note that such a
drastic effect does not occur in armchair ribbons due to
the absent edge states, therefore we focus on zigzag rib-
bons in the following. As a result of the interaction, a
gap opens in zigzag ribbons, which implies magnetically
ordered edge states as it has been demonstrated in an
indirect way recently with the contribution of one of us.3

The above facts motivated the exploration of the
interaction effects with the use of several methods,
like density-functional theory (DFT),7,9–12 mean-field
approximation,13–20 quantum Monte Carlo (QMC)21–23

and density-matrix renormalization group algorithm
(DMRG).24–26 The DFT and DMRG in Ref. [25] are used
in ab-initio calculations, while the other methods are ap-
plied in solving the π-band model of graphene, that is,
the Hubbard model on a honeycomb ribbon:

H =
∑

ij

tij ĉ
†
i ĉj + U

∑

i

n̂i↑n̂i↓, (1)

where tij is the hopping amplitude between sites i and j,
and U is the strength of the local Coulomb interaction.
In what follows we consider only nearest-neighbor hop-
ping terms, with t = 2.7 eV. The most extensive studies
were performed with DFT and in mean-field approxima-
tion because broad ribbons can easily be accessed, while
alternative approaches have been suggested recently to
treat large system sizes.27 Density functional and mean-
field theories reduce the original interacting system to
an effective single-particle problem, therefore they ne-
glect correlation effects and quantum fluctuations which
are known to be significant in quasi one-dimensional sys-
tems. For this reason a more accurate description is
necessary, which QMC and DMRG are able to address.
Due to the exponential growth of the Hilbert space,
these methods can treat only much smaller sizes. The
QMC studies mainly focused on the correlation between
edge atoms and dynamical properties,22 and the previ-
ous DMRG model calculations were restricted to very
small systems.24,26 In the widespread use of mean-field
theory, it is important to investigate its reliability by
examining the role of enhanced quantum fluctuations,
which this approximation neglects. Although a bench-
mark of mean-field theory was performed for quantum
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dot-like structures,21 less is known about the case of
zigzag nanoribbons. It has been shown previously that
QMC results agree well quantitatively with mean-field
results for wide enough ribbons in the weakly interacting
limit.22 In light of the new fact that zigzag ribbons with
already five zigzag carbon lines width can be created,5 it
is necessary to analyze such narrow ribbons where dimen-
sionality effects are expected to be more crucial. Here
we intend to fill a major gap with the DMRG method by
investigating the low-lying energy spectrum of zigzag rib-
bons in a controlled, accurate manner. We calculate the
charge gaps for various interaction strengths and compare
them with the mean-field results. Moreover, they are also
experimentally relevant quantities, since they can be ac-
cessed by scanning tunneling microscopy measurements.3

Furthermore, we address the ground-state properties by
considering not only the correlations between the edge
atoms, but between every pair of sites, which provides
us a deeper insight into the many-body aspect of the
graphene nanoribbons. We also investigate the magnetic
properties of the ground state and the effect of external
magnetic field.

The paper is organized as follows. Section II. contains
the numerical details of the DMRG method. In Section
III. A we present our results for the charge gaps for vari-
ous ribbon widths and interaction strengths and compare
them with the mean-field results. Section III. B demon-
strates the application of quantum information theory in
determining the entanglement patterns and correlation
functions of nanoribbons. In Section III. C the magnetic
properties are addressed. In Section III. D we discuss
how our results for the charge gap are related to recent
experiments and DFT calculations. Finally, in Section
IV. our conclusions are presented.

II. METHODS

We apply the DMRG algorithm in real space28–33

and use the dynamic block-state selection approach
(DBSS),34,35 which enables us the accurate control of
the truncation error. In our case, the a priori value of
the quantum information loss was set to χ = 10−4 and
the truncation errors were in the order of 10−6. This
threshold value required block states about 15000-20000
so that, our results are far more accurate than those
from previous investigations,24–26 in terms of the trun-
cation procedure. Such a large number of block states
is necessary to obtain accurate gap values and correla-
tion functions. We considered ribbons with a maximum
number of sites L = 84 and open boundary condition is
applied at every edge. A honeycomb ribbon is mapped
to a one-dimensional chain, with long-range hopping ele-
ments. The ordering of the sites and the geometry of the
ribbon is given in Fig. 1.

1 2 . . . Lx

.
.
.

1

2

Ly

DMRG sites

3

3

FIG. 1. The applied notations for the length and width of a
zigzag ribbon, and the mapping used in the DMRG calcula-
tion.

III. RESULTS

A. Charge gap

In what follows we restrict ourselves to half-filled case.
We know that in this case Lieb’s theorem36 forbids the
appearance of spontaneous spin polarization, however,
the low-lying spectrum can be obtained. In fact, with
scanning tunneling microscopy one can measure the band
gap, which in our case corresponds to the single-particle
excitation, usually referred as the charge gap:

∆(L) =
1

2

[

E0

(

L

2
+ 1,

L

2

)

+ E0

(

L

2
− 1,

L

2

)

−2E0

(

L

2
,
L

2

)]

, (2)

where E0(N↑, N↓) is the ground state in sector with N↑

up-spin and N↓ down-spin electrons and L = 2LxLy+Ly

is the total number of sites. We calculated the charge
gaps for different values of U and two different widths,
Ly = 2 and 4. The maximum length we could achieve
was Lx = 10 for Ly = 4. The Hubbard U was varied
within the range U/t = 0 and 4, since around Uc/t ∼ 3.9
a Mott-transition occurs in the two-dimensional honey-
comb lattice,37–39 and larger values are not physical in
case of graphene. A careful extrapolation of the gaps to
the thermodynamic limit was performed in each case as
it is demonstrated in Fig. 2 for Ly = 4. The data for
Ly = 4 were fitted using an exponential function:

∆(Lx) = ∆(∞) +A exp (−B/Lx) , (3)

with ∆(∞), A and B being free parameters. For Ly = 2
we obtained the same results as in Ref. [24] (see Fig. 3),
where the finite-size scaling of the gaps can be fitted with
a quadratic function, which may be due to the stronger
one-dimensional effects. In this case a much smaller num-
ber of block states, ∼ 500, was sufficient to keep the trun-
cation errors in the order of 10−6. However, for Ly = 4
15000-20000 block states are necessary to obtain energy
values within the same error margin. Since the ground-
state energies are in the order of∼ 102 and the magnitude
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FIG. 2. Finite-size scaling of charge gaps for different values
of U and Ly = 4 as indicated by the inset figure. The dotted
lines denote the exponential fit to the data described in the
main text.

of the truncation errors is ∼ 10−6, we estimate that the
error of the gaps is around ∼ 10−4, which is much smaller
than the size of the symbols in Fig. 2. The extrapolated
gap values as a function of U are shown in Fig. 3 for
two different widths. Our results suggest that the charge
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FIG. 3. (color online) DMRG results for the charge gaps as
a function of U for two different widths (Ly = 2 and 4) as
indicated in the legend. The dotted lines are guides to the
eye. The inset shows the bandgaps obtained with the mean-
field approximation of the Hubbard-model (solid and dotted
lines) together with the DMRG data.

gap opens at U/t = 0, which might be the residue of the
Slater transition occurring in the mean-field treatment.
This is also in agreement with the previous prediction24

based on the analysis of narrower ribbons. It is worth
comparing these results to those obtained from mean-
field theory whose details have been described in several
papers.15,21 We performed mean-field calculations for the
present ribbons (see Appendix for the details), and the
obtained mean-field gaps are shown in the inset of Fig. 3.
They exhibit qualitatively very similar behavior, how-

ever, they are remarkably larger than the DMRG gap
values. This can be attributed to the neglect of quantum
fluctuations, which are enhanced at such narrow widths.
It is worth mentioning that for small two-dimensional
structures, the mean-field theory provided quite accu-
rate results in comparison with QMC.21 This may follow
from the fact that the quantum fluctuations in a two-
dimensional systems are not as strong as in one dimen-
sion.

B. Quantum information analysis, correlation

functions

As a next step we consider the ground-state properties
by investigating various correlation functions. Our aim is
to investigate the correlations between two given subsys-
tems, namely, between two sites. The knowledge of this
quantity provides information about the whole system.
This can be obtained from the mutual information:40–42

Iij = si + sj − sij , (4)

which measures all types of correlations (both of classical
and quantum origin) between sites i and j, we will refer
to this quantity as the strength of entanglement between
the system components. Here si and sij are the one- and
two-site von Neumann entropies,43–48 respectively, that
can be calculated from the corresponding reduced density
matrices:

si = −Trρi ln ρi, (5)

sij = −Trρij ln ρij , (6)

where ρi (ρij) is the reduced density matrix of site i (sites
i and j), which is derived from the density matrix of the
total system by tracing out the configurations of all other
sites. In this part, we calculate the mutual information
for different values of the Hubbard interaction to reveal
how the interaction modifies the original ground state.
We use the sum of one-site entropies,49 ITOT, and the

entanglement distance,47 I
(MPS/real),η
dist :

ITOT =
∑

i

si, (7)

I
(MPS/real),η
dist =

∑

ij

Iij

(

d
(MPS/real)
ij

)η

, (8)

where d
(MPS)
ij = |i − j| is for the one-dimensional topol-

ogy of the DMRG and d
(real)
ij is the distance in physical

lattice space. ITOT and I
(MPS/real),η
dist quantify the total

quantum information encoded in the wave function and
the localization of entanglement in the system, respec-
tively. Firstly, we consider the noninteracting case. The
entanglement patterns obtained from the mutual infor-
mation are shown in Fig. 4 for a system with Lx = 6
and Ly = 4. It is clearly observed, that mainly short-
range correlations are present, and certain opposite sites
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FIG. 4. (color online) Entanglement patterns in a zigzag ribbon for Lx = 6, Ly = 4 and U = 0. The various types of lines
correspond to different magnitudes as indicated in the sidebar. The numbers indicate the positions of sites along the one-
dimensional DMRG topology. The blue dashed lines connect only nearest-neighbor sites (for example: sites i = 1, 2 or i = 1, 5),
or opposite sites within a hexagon (for example: sites i = 9, 10 or i = 22, 23). The red dash-dot lines connect opposite zigzag
sites, for example: i = 13, 16.
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FIG. 5. (color online) Similar to Fig. 4 but for U/t = 2, furthermore the red dash-dot lines at the zigzag edges connect
neighboring zigzag sites, for example: i = 13, 21 or i = 24, 32.

in a hexagon are entangled, but there is no strong en-
tanglement between the two edges (note that red and
green lines correspond to one and two orders of magni-
tude smaller values, respectively). In this case a max-
imum number of block states ∼ 8000 was sufficient to
determine the ground state wave function within our er-
ror margin. As a next step, we investigate what happens
when the electrons are interacting. To emphasize the in-
teraction effects, we set U/t = 2. The results are shown in
Fig. 5. It is remarkable, that besides the strong nearest-
neighbor entanglement, moderately strong entanglement
appears between the two edges, and between electrons
on the same edge. It is interesting to mention that here
a maximum number of ∼ 15000 block states was neces-
sary to obtain the ground state, which is almost twice
as large as in the noninteracting case using the same
threshold value in the truncation procedure. In agree-

ment with this I
(MPS),2
dist (U = 0) = 232.07 increases to

I
(MPS),2
dist (U = 2t) = 371.12 and similarly I

(real),2
dist (U =

0) = 38.67 increases to I
(real),2
dist (U = 2t) = 51.27. There-

fore, for U/t = 2 longer range entanglement bonds ap-

pear, as indicated by I
(real),2
dist , in contrast to the U = 0

case, whose presence naturally requires much larger bond
dimensions since these entanglement bonds are cut when
subsystem entropies are calculated. The sum of one-
site entropies decreases with U (ITOT(U = 0) = 72.08,
ITOT(U = 2t) = 70.45), but in a much lower rate than
in the one-dimensional case. We also mention that the
ground states in both cases are spin singlets, and finite
spin polarization does not appear at the edges, since
the ground state respects the rotational symmetry of
the original Hamiltonian, in agreement with the previous
DMRG and QMC results. This is in sharp contrast with
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the mean-field results, where a broken-symmetry ground
state is realized and the ferromagnetically polarized edges
are coupled to each other antiferromagnetically.
The analysis so far has given us an overall picture

about which sites are strongly entangled, but to obtain
additional information about the nature of the entan-
glement it is worth investigating the eigensystem of the
two-site density matrices. Firstly, we consider two neigh-
boring zigzag sites, (24 and 32 in Fig. 5) and solve the
eigenvalue problem of the corresponding two-site reduced
density matrix, ρ24,32. In its eigenvalue spectrum, the
most significant eigenvalue (ω = 0.128) is threefold de-
generate, and the corresponding eigenvectors are:

φ
(1)
24,32 = | ↑〉24| ↑〉32,

φ
(2)
24,32 =

1√
2
(| ↑〉24| ↓〉32 + | ↓〉24| ↑〉32〉),

φ
(3)
24,32 = | ↓〉24| ↓〉32.

(9)

It means that in this mixed state the largest weight be-
longs to the triplet components, which results in a ferro-
magnetic correlation between the two neighboring zigzag
sites. Similarly, we investigate the reduced density ma-
trix of two zigzag sites sitting on opposite edges, e.g.
29 and 32. Performing the same analysis, we find that
the eigenvector corresponding to the largest eigenvalue
(ω = 0.19) is:

φ29,32 =

0.7067(| ↑〉29| ↓〉32 − | ↓〉29| ↑〉32)
+ 0.0236(| ↑↓〉29|0〉32 + |0〉29| ↑↓〉32),

(10)

which describes that the two electrons on the opposite
edges form a singlet. This can be considered as a direct
evidence for the antiferromagnetic coupling between the
two edges mediated by the conduction electrons in the
ribbon.
The above statements have been obtained for a fi-

nite length, thus it is important to investigate their size-
dependence, which is shown in Fig. 6. Here one can see
the spin correlations (〈SiSj〉) between the opposite edges
and between neighboring edge atoms as a function of in-
verse ribbon length taken at the middle of the ribbon. In
the case of odd Lx values we performed an average over
the two correlation values in the middle of the ribbon to
reduce the oscillation due to the finite-size effects. It is
easily seen that the absolute value of both quantities in-
creases with the ribbon length, confirming that the above
results remain valid even in the thermodynamic limit.

C. Magnetic properties

Previously we revealed the behavior of correlation
functions inside the ribbon. Naturally, we did not find
long-range magnetic order in finite-systems due to the
SU(2) symmetry of the Hamiltonian. However, this
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FIG. 6. (color online) Finite-size scaling of spin correlations
between the opposite edges (red squares) and between neigh-
boring edge atoms for U/t = 2 (black circles), calculated in
the middle of the ribbon as they are indicated in the inset
figure.

may not be true in the thermodynamic limit, where
symmetry-breaking ground state can occur.23 We investi-
gate this aspect, by adding an artificial pinning magnetic
field along the z-direction at the bottom sites of the rib-
bon to the Hamiltonian (1):

Hpin = −h
∑′

i

Sz
i , (11)

where the prime denotes that the summation is over
only the bottom sites of the ribbon (for example sites
8,16,24,. . . in Fig. 4). We apply a tiny magnetic field,
h = 0.01t, to explore possible magnetic order by inves-
tigating the response of the system for various values of
the Hubbard interaction. The results are shown in Figs. 7
(a)-(c). One can clearly see in Fig. 7 (a) that for U/t = 0
the pinning magnetic field hardly triggers any magnetic
moment, as it is expected for a paramagnetic ground
state. The situation is quite different as U is switched
on. For U/t = 2 remarkable spin polarization appears
at the edges, Sz

i ∼ 0.06, while much smaller magnetic
moments appear inside the ribbon. This corresponds to
the regime where the edge magnetism is expected to oc-
cur. Increasing U near the critical Uc, significant spin
polarization appears also inside the ribbon, whose mag-
nitude is comparable to the magnetic moments at the
edges. This reflects the tendency that the honeycomb
lattice becomes antiferromagnetically ordered above the
critical value. However, here a crossover takes place since
the charge gap opens up for any U/t > 0 in the zigzag rib-
bon unlike in the fully two-dimensional honeycomb lat-
tice, where the Mott transition occurs at a finite Uc.
As a next step we investigate what happens if a uni-

form external magnetic field is applied. To address this
question we consider the first spin excited state of the
Hamiltonian (1), with Sz

TOT = 1, S = 1 quantum num-
bers. The results are shown in Figs. 7 (d)-(f). Qualita-
tively similar behavior is observed in the bulk as in the
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FIG. 7. (color online) Panels (a)-(c) show the local magnetic moments (Sz
i ) of the ground state in the presence of a pinning

magnetic field at the bottom zigzag sites, h/t = 0.01, for various values of U . Panels (d)-(f) show the distribution of local
magnetic moments in the Sz

TOT = 1, S = 1 sector for different values of U . The magnitude of up and down moments are
proportional to the area of the circles.

previous case, however, the polarization of the edges is
more robust in all cases, even for U/t = 4. This substan-
tiates the findings of Ref. [24] that the zigzag sites at the
edges can be polarized in the easiest way.

D. Discussion

We discuss our results in the light of recent
experiments5 where ribbons with a comparable width
were investigated. To account for the reported gaps
of ∆exp ∼ 1.5 eV, the Hubbard-U should be tuned very
close to the Mott-insulating regime, see Fig. 3. This may
not be a surprise for us since in free-standing graphene
the Hubbard-U was estimated U/t ∼ 3.4,50 which is quite
close to Uc. Larger values of U are not reasonable in our
case, since the bulk graphene is not an insulator. Note
that the gaps may be further increased by the inclusion
of longer-range interactions, since the screening may not
be as effective as in ordinary metals. This hypothesis is
corroborated by DFT+GW calculations,9,51 where a sig-

nificant increase of the gaps has been observed compared
with what has been obtained in local-density approxima-
tion (LDA).7 It is also in agreement with the fact that the
scanning-tunneling-microscope measurements were car-
ried out in such an environment where the sample was
embedded on an insulator.5 Here one can expect that the
on-site Coulomb interaction is close to the value of the
free-standing graphene and long-range interaction might
be important. Thus, as we have seen U/t ∼ 3.4− 3.9 re-
sults in gaps lying very close the experimental values. On
the other hand, when the ribbon is placed on the top of a
metal host,3 the experimental gap values, ∆exp ∼ 0.3 eV,
are smaller by almost an order of magnitude. This can be
explained, if we recall that in this case the host metal in-
duces extra charge carriers into the ribbon – indicated by
the presence of a finite density of states at the Fermi en-
ergy –, therefore the screening of the Coulomb interaction
is stronger. Hence, the π-band model containing a much
weaker Hubbard interaction term, U/t ∼ 1.5, than in the
free-standing case, provides quantitatively accurate gap
values in this case. Another possible importance of our
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results is the fact that the gap values cannot be increased
above ∆ ∼ 0.3-0.4 eV by creating narrower and narrower
ribbons – in contrast to prediction of the naive mean-
field theory –, as long as the ribbon can be described by
the conventional π-band model, like in the experimental
setup of Ref. [3]. Furthermore, we emphasize that the
widely used mean-field approach cannot be applied even
for wider ribbons for U/t & 2.23, since this theory pre-
dicts a Mott-insulating state in the honeycomb lattice
above this value,52 which turned out to be inaccurate by
more sophisticated calculations.37–39

IV. CONCLUSIONS

In this paper we examined the charge gaps and ground-
state properties of narrow zigzag graphene nanoribbons
by applying the unbiased DMRG method with high ac-
curacy to the π-band model containing only local inter-
action terms. It turned out that the mean-field theory
grossly overestimates the gap values in the case of such
narrow widths. This discrepancy can be ascribed to the
fact that the enhanced quantum fluctuations suppress
their values. Our analysis also revealed how the devia-
tions between recent experiments can be understood in
terms of the π-band model with a local Coulomb inter-
action. It was argued that depending on the effective-
ness of screening, tuning the value of the on-site Hubbard
term, the model can account for quantitatively accurate
gap values. We performed a quantum information anal-
ysis and determined the spectrum of subsystem density
matrices and the entanglement patterns in the ribbons,
which gave us a spectacular description of the many-body
aspect of the ground states. We pointed out how the en-
tanglement evolves as the interaction is switched on. The
understanding of the entanglement structure in nanorib-
bons is important from the point of view of their future
applications in quantum information processing or quan-
tum computation. Finally, we investigated the magnetic
properties of nanoribbons and explored possible magnetic
orders for various values of the Hubbard interaction.
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Appendix: Details of the mean-field calculation

We performed mean-field calculations to benchmark its
gap values against the DMRG results. Using the stan-
dard procedure for the decoupling of the Hubbard term
we arrive at

H′

=− t
∑

〈ij〉σ

(

ĉ†iσ ĉjσ +H.c.
)

+ U
∑

i

(n̂i↑〈n̂i↓〉+ n̂i↓〈n̂i↑〉 − 〈n̂i↓〉〈n̂i↑〉) , (A.1)

where we have made use of the fact that only nearest-
neighbor hoppings are allowed and the summation in the
first term is carried out for nearest-neighbor sites. Since
we deal with a single-particle problem, the Hamiltonian
can be diagonalized by a Bogoliubov transformation in
k-space:

H′

=
∑

kσn

εnkσĈ
†
nkσĈnkσ − U

∑

i

〈n̂i↑〉〈n̂i↓〉, (A.2)

where Ĉ†
nkσ (Ĉnkσ) are the transformed operators that

destroy (create) a particle with wavenumber k with spin
σ in band n. The energy bands are given by εnkσ which
depend on the yet unknown electron densities. The densi-
ties and energy bands are calculated selfconsistently. For
a given ribbon width, Ly, we obtain 2Ly bands accord-
ing to the number of sites in the unit cell of the ribbon.
Since we deal with the half-filled case, the first Ly bands
are completely filled, thus, the energy gap is determined
as the bandgap between bands n = Ly and n = Ly + 1.
This is shown in the inset of Fig. 3.
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