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Abstract

Pseudouridylation is one of the most abundant RNA modifications in eukaryotes, making pseudouridine known as the “fifth
nucleoside.” This highly conserved alteration affects all non-coding and coding RNA types. Its role and importance have
been increasingly widely researched, especially considering that its absence or damage leads to serious hereditary diseases.
Here, we summarize the human genetic disorders described to date that are related to the participants of the pseudouridyla-

tion process.
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Introduction

The variability of the phenotype is primarily explained by
genomic sequence changes. Accordingly, Mendelian disor-
ders are generally caused by single nucleotide variations of
the coding sequence. Nevertheless, epigenetic modifications
largely contribute to the phenotype variability, and its severe
forms can be even disease-causing (Araki and Mimura 2018,
Cullell, Soriano-Tarraga et al. 2022, Derakhshan et al. 2022,
Ojaimi, Banimortada et al. 2022, Pierce and Black 2022).
Besides DNA methylation and histone modifications, RNAs
are also subjects to epigenetic modifications that have seri-
ous impact on their function, implying a potential role in dis-
ease development (Han and Phizicky 2018; Ontiveros et al.
2019; Barbieri and Kouzarides 2020; Haruehanroengra et al.
2020; Destefanis et al. 2021, Kumari, Groza et al. 2021).
Almost 200 different types of RNA modifications associ-
ated with 175 human diseases have thus far been identified
according to the MODOMICS database (Boccaletto et al.
2022).

All types of RNAs, including transfer RNAs (tRNA),
ribosomal RNAs (rRNA), messenger RNAs (mRNA) and
other non-coding RNAs, undergo modifications during their
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maturation (Boccaletto et al. 2022). Nuclear and mitochon-
drial tRNAs are the subjects of the most diverse modifi-
cations. The tRNA and rRNA modifications were studied
most extensively, because of their highest expression rate.
Nevertheless, the modifications of the mRNA are also of
special importance as they may directly affect the translation
(Schwartz 2016; Helm and Motorin 2017; Zhao et al. 2017,
Linder and Jaffrey 2019).

One of the most abundant RNA modifications in eukary-
otic cells is pseudouridylation: the transformation of uri-
dine to its other isoform called pseudouridine (¥).(Fig. ).
Some specific pseudouridylation sites are already present in
archaebacteria, eubacteria and in the organelles of eukary-
otic cells, such as mitochondria and chloroplasts (Charette
and Gray 2000). Based on the conservation of these sites,
they seem to be essential modifications, but no lethal or
severe phenotypes were found related to most of them in
yeasts or eubacteria. In these species, their major role is sup-
posed to be the fine tuning of the RNA structure (Charette
and Gray 2000). In mammals, the role of RNA pseudouri-
dylation is supposed to be more remarkable. Inducible pseu-
douridylation of mammalian mRNA has a stimuli-specific
pattern, which may help the cell in adaptation to stress situ-
ations. Heat shock and H,O, treatment activate hundreds of
different inducible pseudouridylation sites in mRNAs that
are implicated in transport- and telomere- or chromatin-
related functions, respectively (Li et al. 2015).

Most of the uridine-pseudouridine transformations occur
in tRNAs, rRNAs and snRNAs (Charette and Gray 2000;
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Fig. 1 Isomerisation of uridine,
schematic figure
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Spenkuch et al. 2014), but as described recently, it can also
be found in mRNAs (Carlile et al. 2014; Lovejoy et al. 2014;
Schwartz et al. 2014; Li et al. 2015). More than 100 specific
uridines are known to be pseudouridylated in rRNAs, which
maintain the proper functioning, folding and conformational
stability of the rRNAs, their associations with ribosomal
proteins, and thus ensure the catalytic activity of the ribo-
some (Decatur and Fournier 2002; King et al. 2003; Liang
et al. 2009; Natchiar et al. 2017; Abou Assi et al. 2020). The
modified uridines are typically located in evolutionarily con-
served regions close to functional domains (Natchiar et al.
2017). Alteration of rRNA pseudouridylation thus directly
influences the interactions with tRNAs and mRNAs, modi-
fying translational efficiency, gene expression patterns and
levels (Jack et al. 2011; Bastide and David 2018).

Two main types of enzymes catalyze the pseudouridyla-
tion. Stand-alone pseudouridine synthases (PUSs) — that
are classified into six families (TruA, TruB, TruD, RsuA,
RluA, PUS10) (Hamma and Ferré-D'Amaré 2006; Roovers
et al. 2006; Rintala-Dempsey and Kothe 2017) — can rec-
ognize directly, without a guide RNA, the target uridine(s),
and implement the modification by themselves (Hamma
and Ferré-D'Amaré 2006). While bacteria use only stand-
alone PUSs, eukaryotes also possess H/ACA small nucleo-
lar ribonucleoprotein complexes for this purpose. This lat-
ter type of pseudouridine synthase necessitates a unique
guide RNA specific for the target uridine and four core
proteins: non-histone protein 2 (NHP2), nucleolar protein
10 (NOP10), glycine-arginine-rich protein 1 (GAR1) and
the catalytically active dyskerin (DKC1), the sequence of
which is similar to that of the TruB PUS family members
(Lafontaine et al. 1998; Ramamurthy et al. 1999; Spedaliere
et al. 2000; Kiss et al. 2004; Khanna et al. 2006; Penzo and
Montanaro 2018). The H/ACA box small-nucleolar RNAs
(snoRNA, “SNORA”) guide the enzymatic protein com-
plex to the substrate via site-specific complementary base-
pairing at the target site (Ganot et al. 1997; Sumita et al.
2005; Henras et al. 2008; McMahon et al. 2015; Rintala-
Dempsey and Kothe 2017; Czekay and Kothe 2021). The
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rRNA pseudouridylation is primarily mediated by the H/
ACA snoRNP complex: Knockdown of dyskerin decreases
it by more than half (Schwartz et al. 2014). Nevertheless,
at least 76 so-called orphan snoRNAs are known in human
that are not complementary to any rRNAs (Ono et al. 2010;
Gong et al. 2017), suggesting that they guide the modifica-
tions of mRNAs or other RNA classes (Kishore and Stamm
2006; Chu et al. 2012; Kishore et al. 2013; Bieth et al. 2015;
Falaleeva et al. 2016). Site-specific synthases that modify
mRNAs are also found among stand-alone PUSs (TRUBI,
PUS7 and PUS1) (Li et al. 2015; Safra et al. 2017; Carlile
et al. 2019). PUS enzymes are encoded in humans by 13
genes, out of which four (PUSI, PUS3, PUS7 and DKCI)
are associated with genetic diseases (Bykhovskaya et al.
2004; Shaheen et al. 2016; de Brouwer et al. 2018; Borghesi
et al. 2022).

Besides pseudouridylation, these enzymes also mediate
other processes. Stand-alone PUSs may function as RNA
chaperons or as part of multiprotein complexes, as their
absence causes more severe phenotypes in bacteria and
yeasts than the lack of some pseudouridines per se (Gross-
hans et al. 2001; Ishitani et al. 2003; Hamma and Ferré-
D'Amaré 2006). The H/ACA box small nucleolar ribonu-
cleoprotein complexes also participate in the cleavage of
the precursor of 18S rRNA and in maintaining telomerase
activity (Heiss et al. 1998; Hamma and Ferré-D'Amaré
2006). Dyskerin is associated with — besides the H/ACA
snoRNAs—telomerase RNA, which also contains a H/ACA
RNA motif and serves as template to telomere elongation
(Mitchell et al. 1999a, b).

Despite being an ubiquitous process, the deficiency in
pseudouridylation leads to organ-specific defects. The
description of the related human disorders (Summary in
Table 1.) (Heiss et al. 1998; Ruggero et al. 2003; Montan-
aro et al. 2006; Jonkhout et al. 2017) and unraveling their
pathophysiology may help to understand what makes these
organs more susceptible than others to the defect of the most
abundant RNA modification.
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Human diseases related to DKC1, dyskerin

Secondary to the Xq28 localization of the DKC1 gene, its
mutations cause X-linked disorders (Devriendt et al. 1997,
Heiss et al. 1998; Mitchell et al. 1999a, b). Most of the
related disorders are recessive: Males and heterozygous
females with extremely skewed X-inactivation are affected
(Alder et al. 2013). There are, however, exceptions: the
DKCI p.E206K-related cataracts and hearing impairment
are transmitted in a dominant fashion: Heterozygous
females are typically affected (Balogh et al. 2020).

As dyskerin contributes to various processes, such as
pseudouridylation of different types of RNA, telomere
lengthening and RNA maturation, the molecular mecha-
nisms of most of the associated disorders are challenging
to differentiate.

Dyskeratosis congenita (DC) (Mitchell et al. 1999a, b;
Vulliamy et al. 2001; Alder et al. 2013; AlSabbagh 2020),
the disease that gave dyskerin its name, results from tel-
omere shortening. Mutations of several genes, some of
which are implicated only in telomere maintenance but not
in pseudouridylation, cause DC, indicating that the patho-
physiology is independent of the pseudouridylation defect.

Telomeres, located at the end of chromosomes, protect
their integrity and structure. Their length and stability are
maintained by complexes of various proteins and RNAs.
The main participants of the telomerase complex are:
TERT: the reverse transcriptase enzyme; TERC: the RNA
template for the telomere elongation; and dyskerin, NHP2,
NOP10 and GARI1: the proteins responsible for the stabil-
ity of the telomerase complex. Several additional regu-
lators, protectors, and repair molecules are not detailed
here, but the failure of either of them can lead to DC with
various severity and different inheritance manner (autoso-
mal dominant, autosomal recessive, X-linked) (Tummala
et al. 2018; Garus and Autexier 2021; Dorgaleleh et al.
2022). Though it is genetically heterogeneous, mutations
of DKC1, with X-linked inheritance fashion, are its most
common causes. The DC-related DKC/ mutations are C-
and N-terminal missense mutations which affect less con-
served regions and are implicated in guide RNA binding,
but some missense variants in the TruB domain were also
described (Aalfs, van den Berg et al. 1995; Knight et al.
1999a, b; Dokal 2000; Kiss et al. 2004; Trahan et al. 2010;
Balogh et al. 2020). Without any alteration in its coding
sequence, DC can also develop as a result of a promoter
mutation and decreased dyskerin expression (Knight et al.
1999a, b; Salowsky et al. 2002; Parry et al. 2011).

In general, the early symptoms of DC represent the
triad of mucocutaneous features (reticular skin hyperpig-
mentation, oral leukoplakia and nail dystrophy) typically
not presenting before late childhood. Bone marrow failure

develops later and gives rise to opportunistic infections,
anemia, thrombocytopenia, and, as a consequence, internal
bleeding events. There is a high risk of pulmonary fibrosis,
which, together with malignancies and opportunistic infec-
tions, are responsible for the early mortality. Life expectancy
is 20-50 years. Most of the severely affected organs and tis-
sues (skin, nail, bone marrow) require a high proliferation
rate (Dokal 2000; Gu et al. 2008; Dorgaleleh et al. 2022).

The p.S121G substitution in the TruB domain (pseudou-
ridine synthase motif) of dyskerin was found in a 15-year-
old patient with metachronous rectal cancer and bone mar-
row failure without other typical DC symptoms (Watanabe
et al. 2019). The same variant of dyskerin was previously
reported in HH (Hoyeraal-Hreidarsson) syndrome, a severe
form of DC characterized by intrauterine growth retarda-
tion, microcephaly, cerebellar hypoplasia, and occasionally,
enteropathy (Aalfs, van den Berg et al. 1995; Knight et al.
1999a, b). Along this line, another TruB domain substitu-
tion (p.R158W) was also described in HH syndrome (Knight
et al. 2001; Vulliamy et al. 2006), suggesting that TruB
domain substitutions cause more severe DC phenotypes than
the N- and C-terminal substitutions.

DKC1 and NOP10-related nephrotic syndrome,
cataracts, hearing impairment and enterocolitis

Dyskeratosis and HH syndrome already represented a sig-
nificant pleiotropy of DKCI mutations. Nevertheless, a novel
syndrome was recently described in two families with either
a DKCI mutation (p.E206K) or a NOP10 homozygous muta-
tion (p.T16M) (Balogh et al. 2020). The affected children
are asymptomatic during the first months of life, but stop
growing in late infancy, develop cataracts, hearing impair-
ment, diarrhea, nephrotic syndrome and later bone marrow
failure. The majority of patients died during the first three
years of life due to opportunistic infections, long before the
potential appearance of DC-related mucocutaneous features.
Some organ involvements are transmitted in a dominant
fashion: Heterozygous females also develop cataracts and
hearing impairment, typically in the second decade of life.
The phenotype of a girl with a highly skewed X inactivation
was similarly severe to that of the males, but no bone mar-
row failure or diarrhea was associated, indicating the rescue
effect of cells expressing the wild type X and allowing her
to reach adulthood.

Intriguingly, the two affected amino acids, DKC1 E206
and NOP10 T16, are known to interact with each other in
the ribonucleoprotein complex (Rashid et al. 2006), and
both pathogenic substitutions disrupt the catalytic pseudou-
ridylation pocket, detaching the catalytic D125 of dyskerin
from the uridine of the substrate RNA (Balogh et al. 2020).
Though the telomeres of the affected patients are shortened,
similarly to DC and HH syndrome, the highly different
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clinical presentation suggests different underlying patho-
physiology. Accordingly, decreased pseudouridine levels
were found in the patients’ rRNA. Zebrafish dkc/ mutants
recapitulated the human phenotype and showed reduced 18S
pseudouridylation, ribosomal dysregulation and a cell-cycle
defect in the absence of telomere attrition. This novel disor-
der is thus the consequence of defective snoRNP pseudou-
ridylation and ribosomal dysfunction (Balogh et al. 2020).

Tumor predisposition

Patients with DC are susceptible to malignancies (Bellodi
et al. 2010). Loss of dyskerin has a negative impact on the
translation of specific mRNAs with IRES (internal riboso-
mal entry site) elements. Many antiapoptotic proteins belong
to this group, where the IRES elements foster their transla-
tion under stress conditions, and help the survival of the cell
(Holcik and Sonenberg 2005). The p27 tumor suppressor
is one of them: its inappropriate expression predisposes to
pituitary tumor (Slingerland and Pagano 2000; Bellodi et al.
2010). The DKC1 p.S485G somatic mutation was identified
in a patient with recurring pituitary tumor. The p.S485G
dyskerin was found less stable and active, the 18S rRNA
pseudouridylation as well as the p27 quantity decreased with
a preserved expression at the mRNA level (Bellodi et al.
2010). The p.H259P variant of dyskerin was also identified
in pituitary adenoma with lower P27 protein levels (Martins
et al. 2016). A similar telomere independent mechanism was
described in breast cancer, affecting the translation of the
pS53 tumor suppressor (Montanaro et al. 2010). These find-
ings together suggest a tumor suppressor role for dyskerin.
Even though, DKC1 variants are rarely found in sporadic
malignancies (Penzo et al. 2013).

Nevertheless, the role of dyskerin in tumor development
is contradictory. Dyskerin overexpression was described
in breast- (Montanaro et al. 2006, 2008; Elsharawy et al.
2020), and prostate cancer (Sieron et al. 2009; Stockert et al.
2019, 2021) and malignant glioma (Miao et al. 2019). High
DKC1 expression levels are associated with worse prognosis
in these malignancies (Miao et al. 2019; Elsharawy et al.
2020). In vitro knock-down experiments in glioma cell lines
indicate the role of DKC1 in proliferation, migration and
invasion (Miao et al. 2019). In addition, dyskerin expression
was found to be regulated by N-Myc and c-Myc oncogenes,
and its downregulation resulted in reduced proliferation of
neuroblastoma cells, which process was independent from
the telomere length and p53 level (O'Brien et al. 2016).
Dyskerin is often regarded also as an oncogene, but its role
and the underlying molecular mechanisms are still to be
elucidated.

Along this line, elevated pseudouridine level in blood
or urine was suggested to be a potential biomarker of sev-
eral malignancies (Seidel et al. 2006; Patejko et al. 2018):
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breast (Zheng et al. 2005), colorectal (Feng et al. 2005),
oesophageal (Masuda et al. 1993), gallbladder (Jiao et al.
2014), prostate (Stockert et al. 2021), ovarian (Chen et al.
2012; Zeleznik et al. 2020), small cell lung cancer (Tamura
et al. 1986a, b; Tamura et al. 1987), hepatocellular carci-
noma (Tamura et al. 1986a, b; Amuro et al. 1988), leukemia
(Li et al. 1992) and lymphoma (Rasmuson and Bjork 1983;
Masaki et al. 2006).

The role of dyskerin in tumor development seems to
depend on the specific tumor type.

Plasma and urine pseudouridine levels as potential bio-
markers were also suggested in cardiovascular diseases, such
as heart failure or cardiac hypertrophy. The role of pseudou-
ridines in these conditions is not yet elucidated, but presum-
ably the mitochondrial function and oxidative phosphoryla-
tion may be impaired via mitochondrial RNA modifications
(Razavi et al. 2020; Wu et al. 2021).

The double-edged role of dyskerin, acting potentially
both as tumor suppressor or oncogene, is intriguing. Sus-
tained telomerase activity due to dyskerin overexpression
or altered expression of pro- and anti-apoptotic factors
secondary to dyskerin dysfunction can contribute to tumor
progression. A minor isoform of dyskerin (Iso3) with cyto-
plasmic localization was found to have a role in oxidative
metabolism. Its overexpression might also contribute to can-
cer progression by protecting cells from oxidative stress and
apoptosis (Angrisani et al. 2018). On the other hand, loss-of-
function of dyskerin seems to inhibit cell proliferation and
tumor progression. Accordingly, cells expressing the mutant
allele in heterozygous females with p.E206K undergo natu-
ral selection and X-inactivation tends to be skewed toward
the mutant allele by the second decade of life (Balogh et al.
2020). Furthermore, the immortalized cell line established
from the leukocytes of heterozygous females expressed
exclusively the wild-type allele (our unpublished data).
Autophagy and heat shock response have been similarly
found to have such a dual role in cancer (Santagata et al.
2011; Chavez-Dominguez et al. 2020; Cyran and Zhitkovich
2022). As the stress response pathways are also associated
with dyskerin functions (Li et al. 2015) and tumor progres-
sion (Santagata et al. 2011; Chavez-Dominguez et al. 2020;
Cyran and Zhitkovich 2022), their causality remains to be
explored in the double-edged relationship between dyskerin
in cancer.

Human diseases related to stand-alone
pseudouridine synthases

PUS1

MLASA (mitochondrial myopathy, lactic acidosis, side-
roblastic anemia)(Inbal et al. 1995) is a rare autosomal
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recessive, oxidative phosphorylation disorder, character-
ized primarily by muscle and bone marrow defects leading
to exercise intolerance and anemia. Cognitive impairment,
skeletal and dental abnormalities, delayed motor milestones,
cardiomyopathy, dysphagia and respiratory insufficiency can
be associated. Loss of function of the YARS2 gene, encod-
ing the mitochondrial tyrosyl-tRNA synthase, results in a
similar phenotype. It remains to be explored how the defect
of the pseudouridine synthase PUS1 disrupts the oxida-
tive phosphorylation. PUS1, a member of the TruA stand-
alone pseudouridylation synthase family, is necessary for
the pseudouridylation of cytoplasmic and mitochondrial
tRNAs. Its R116W substitution in the highly conserved
catalytic center of the protein was the first reported causal
variant in MLASA (Bykhovskaya et al. 2004; Zeharia et al.
2005). Since then, several other loss of function mutations
have been described (listed in Table 1.) resulting the same
(Fernandez-Vizarra et al. 2007; Cao et al. 2016, Kasapkara
C, Timer et al. 2017), or a similar disorder. (Metodiev et al.
2015) In a mouse model, it was shown that the rate of the
muscle fibers expressing myosin heavy chain I1IB and ITA
is altered in the PUS1 null mutants, resulting in an altered
muscle metabolism, and causing a very similar phenotype
to the human (Mangum et al. 2016, Kasapkara C, Tiimer
et al. 2017).

Recently, PUS1 overexpression was found in breast can-
cer, and its knockdown was proved to suppress tumor pro-
liferation and invasion in breast cancer cell lines (Fang et al.
2022).

PUS3

Intellectual disability is usually caused by chromosomal
rearrangements or single gene mutations. Several tRNA
modification enzymes were found defected indicating that
brain development is especially sensitive to tRNA dysfunc-
tion (Ropers 2010; Torres et al. 2014; Shaheen et al. 2016;
Abdelrahman et al. 2018; de Paiva et al. 2019; Borghesi et al.
2022). During their maturation tRNAs undergo several post-
transcriptional modifications, which stabilize their structure
and function and prevent translational frameshifting via sta-
bilizing the codon-anticodon base pairing. Hypomodified
tRNAs are often degraded, and the imbalances of tRNA pool
may affect protein synthesis (Phizicky and Hopper 2010;
Torres et al. 2014, Pereira, Francisco et al. 2018).

PUS3, a TruA family member is a general pseudouridine
synthase of tRNAs, the alterations of which cause global
developmental delay/intellectual disability (GDD/ID),
microcephaly, short stature, severe hypotonia, gray sclera
and severe syndromic features. The p.R435* mutation trun-
cates the protein in the C-terminal region which is highly
conserved in mammals. The mutation abolishes the isomeri-
zation of the U at least in six different tRNAs (Shaheen
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et al. 2016). Along this line, the p.S394Cfs*18 mutation
was also described to be disease causing and triggering
complete degradation of the mRNA by nonsense-mediated
decay (Abdelrahman et al. 2018). The p.R166Q and p.L366P
variants were reported to cause also renal involvement (de
Paiva et al. 2019). The reported variants are listed in Table 1.

PUS7

PUS7, similarly to PUS3, targets several tRNAs and
mRNAs. The catalytic domain of the TruD family mem-
ber enzyme is located to its C-terminal. The phenotype of
patients with PUS7 loss of function mutations is very similar
to those with PUS3 variants. Intellectual disability, short
stature, and microcephaly are common. Aggressive behav-
ior was reported in most of the cases. The altered enzymes
seem to lose the isomerization capacity of the U ; of at least
ten cytosolic tRNAs. In addition, dysregulation of general
protein translation also follows (de Brouwer et al. 2018;
Shaheen et al. 2019; Han et al. 2022). The reported muta-
tions can be found in Table 1.

Mutation of the target U in a human disease

Besides enzyme function loss, the substitution of the tar-
get uridine may also inhibit the process, which, in case of
a cardinal uridine site, can result in a phenotype by itself.
Wang et al. found that the substitution of the Us; in the mito-
chondrial tRNASM by cytosine (m.14692A > G) results in
maternally inherited diabetes and deafness (MIDD). Us;
pseudouridylation is a very conserved and essential step in
the maturation of mitochondrial tRNAS!M. In absence of the
¥ss. the tRNAS" becomes unstable and due to its structural
alterations it cannot bind properly to the components of the
translational machinery. As a consequence, the mitochon-
drial protein translation becomes hampered, and the ATP
synthesis and the mitochondrial membrane potential will be
reduced (Wang et al. 2016).

Hypothetical therapeutic usage

Due to the methodological development, hundreds of mRNA
pseudouridylation sites were recently detected (Cerneckis
et al. 2022). A modified stop codon (UAA, UAG, UGA)
to YAA, YAG or PGA results in readthrough in yeast. It is
tempting to speculate about its potential use in human non-
sense mutation-caused disorders, i.e., to pass the premature
termination codon in a directed way and thus translate the
whole peptide (Mort et al. 2008; Karijolich and Yu 2011;
Fernandez et al. 2013; Adachi and Yu 2020). Targeted pseu-
douridylation with designed guide RNAs would change the
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STOP codon to serine or threonine (FAA, YAG); tyrosine
or phenylalanine (¥GA) (Cerneckis et al. 2022).

This hypothetical method was studied by Nir et al. (2022)
and they made the following conclusions: snoRNA-mediated
pseudouridylation can occur on mRNA targets, but at very
low levels, the snoRNA complementary region should be
longer than required in rRNAs and the natural intron clev-
eage is an important part of the process, that should be
considered at the experimental design. Very recently two
parallel methods were published (Adachi, Pan et al. 2023;
Song et al. 2023), where the pseudouridylation of prema-
ture termination codons restored the translation at a low but
promising level.

In vivo studies have been performed only in yeast to date
(Karijolich and Yu 2011; Huang et al. 2012; Fernandez et al.
2013).

Conclusion

Pseudouridylation, the most abundant modification of
RNAs, has been found implicated in several human dis-
orders. While the underlying pathophysiology is being
unraveled, its potential in therapeutic interventions is to be
explored.
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