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Hybrid molecular-plasmonic nanostructures have demonstrated their potential for surface en-
hanced spectroscopies, sensing or quantum control at the nanoscale. In this work, we investigate
the strong coupling regime and explicitly describe the hybridization between the localized plasmons
of a metal nanoparticle and the excited state of a quantum emitter, offering a simple and precise un-
derstanding of the energy exchange in full analogy with cavity quantum electrodynamics treatment
and dressed atom picture. Both near field emission and far field radiation are discussed, revealing
the richness of such optical nanosources.

Optical microcavities can store light for a long time
allowing efficient light-matter interaction with important
applications in quantum technologies, low threshold laser
[1], supercontinuum laser [2] or indistinguishable single
photon source [3]. It relies on the extremely high quality
factor of the cavity mode but at the price of diffraction
limited sizes. That is why strong efforts have be done
since a decade to transpose cavity quantum electrody-
namics (cQED) concepts to nanophotonics and plasmon-
ics [4–8]. Particular attention has been devoted to the
strong coupling regime [9–12] since it offers the possibil-
ity of a control dynamics of the light emission, as e.g.
photon blockade [13, 14] or coherent control [15, 16].

In this letter, we build an effective Hamiltonian that
fully transposes the cQED description to an hybrid
plasmon-quantum emitter nanosource. We demonstrate
it can be exactly described in full analogy with cQED
representation. Specifically, the coupled plasmon-emitter
system behaves like an emitter in a multimodal lossy cav-
ity. We notably determine the structure of the emitter
states dressed by the plasmon modes.

We consider the hybrid system displayed in Fig. 1.
A two level system (TLS) quantum emitter is located
close to a metal nanoparticle (MNP). The optical tran-
sition is characterized by the frequency ωeg, the dipole
moment deg and the operator σ̂†eg = |g〉〈e|. For the sake
of clarity, we consider a TLS emitter coupled to spherical
MNP since the localized surface plasmon (LSP) modes
involved in the coupling process are well identified and
the hybridization of the emitter and MNP modes will be
unambiguously demonstrated.
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FIG. 1. Scheme of the hybrid system embedded in a back-
ground material with permittivity εb = 1.

The Hamiltonian of the coupled system writes

Ĥ =
∑
i=e,g

~ωiσ̂ii − i~
γd
2
σ̂ee +

∫
dr

∫ +∞

0

dω ~ω f̂†(r, ω) · f̂(r, ω)

−
[
σ̂eg

∫ +∞

0

dω deg · Ê(rd, ω) +H.c.

]
(1)

The first term refers to the TLS energy and we have phe-
nomelogically introduced the decay rate of the excited
state γd in the second term.The third term describes the

total energy of the electromagnetic field where f̂† (f̂) is
the LSP polaritonic vector field operator associated to
the creation (annihilation) of a quantum of electromag-
netic mode in presence of the MNP. The last term de-
scribes the emitter-field interaction under the rotating-
wave approximation.

The electromagnetic field has to be quantized by taking
into account the dispersing and absorbing nature of the
metal [17–19]. The electromagnetic mode dispersion and
absorption are governed by the real and imaginary parts
of the metal dielectric constant εm(r, ω) = εR(r, ω) +
iεI(r, ω), that satisfy the Kramers-Kronig relations. As
a situation, we assume a Drude-like behaviour εm(ω) =
ε∞−ω2

p/(ω
2 + iγpω)[20]. We use ε∞ = 6, ~ωp = 7.90 eV

and ~γp = 51 meV for silver [18].
The quantization can be performed by introducing a

noise polarization operator expressed in terms of the cre-
ation (annihilation) operators f̂† (f̂) [17]. The electric

field operator can be expressed as Ê(r) = Ê(+)(r) +

Ê(−)(r) with

Ê(+)(r) =

∫ ∞
0

dω Ê(r, ω), Ê(−)(r) = [Ê(+)(r)]†,

Ê(r, ω) =i

√
~
πε0

k20

∫
dr′
√
εI(r′, ω)G(r, r′, ω)f̂(r′, ω),

(2)

where k0 = ω/c and G is the Green’s tensor. It contains
all the information about the field response of the MNP.
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In the following, we investigate the optical response of
the emitter-MNP system. We assume an emitter initially
in its excited state |e〉 and the LSP field in the ground
state (vacuum). The wave function of the hybrid system
in the interaction picture writes at time t [18, 19]

|ψ(t)〉 = Ce(t)e
−iωet|e〉|∅〉 (3)

+

∫
dr

∫ ∞
0

dω e−i(ω+ωg)tCg(r, ω, t) · |g〉|1(r, ω)〉

where |e〉|∅〉 corresponds to the emitter in its excited
state and no LSP mode excited whereas |g〉|1(r, ω)〉 cor-
responds to the emitter in its ground state and a sin-
gle excited LSP mode of energy ~ω. The elementary
excitation of a LSP is defined through the action of
the bosonic vector field operator on the vacuum state
f†(r, ω)|∅〉 = |1(r, ω)〉. The dynamics of the probability
amplitudes Ce(t) and Cg(t) are derived from the time-
dependent Schrödinger equation [18, 19].

As a first step, the coupling between the emitter and
the MNP can be studied in the near field through the
polarization spectrum P (ω) = 〈σ̂†ge(ω)σ̂ge(ω)〉 [18]

P (ω) =

∣∣∣∣∣∣ 1

ωeg − ω − iγd2 −
k20
~ε0 d

2
egG

scatt
uu (rd, rd, ω)

∣∣∣∣∣∣
2

(4)

Guu is the dyadic component along the direction u of
the dipolar emitter (deg = degu). Note that the free-
space contribution of the Green’s tensor is included in
the transition frequency ωeg (Lamb shift) and decay rate
γd (Weisskopf-Wigner theory). Therefore, only the scat-
tering part of the Green’s tensor appears in Eq. (4).

The polarization spectrum characterizes the near field
emission properties of the coupled system. It is also nec-
essary to define the signal radiated in the far field zone.
Following Ref. [19], the spectrum recorded at the detec-
tor position r expresses

S(r, ω) =

1

2π

∫ ∞
0

dt2

∫ ∞
0

dt1 e
−iω(t2−t1)〈Ê(−)(r, t2) · Ê(+)(r, t1)〉

=
1

2π

∣∣∣∣ k20~ε0
d2egGuu(r, rd, ω)

∣∣∣∣2 P (ω). (5)

Both expressions can be applied in the weak and strong
coupling limits since no Markov approximation has been
made. For comparison purpose, we consider an emitter
with ~γd = 15 meV and dipole moment|deg| = 24 D,
radially oriented, as in Ref. [18, 19], see Fig. 2a. The
polarization (near field) spectrum P (ω) presents a split
of ~∆ω = 144 meV, revealing the strong coupling regime.
The signal recorded in the far field is radically different,
see Fig. 2b). We observe three peaks: the dominant one
at 2.8 eV is associated to the LSP dipolar resonance (de-
noted LSP1), known to be strongly radiative. The two
others peaks show reminiscence of the mode splitting,
with one of them dominant (near 2.85 eV) and the last
one hardly observable (near 3 eV). These 3 peaks can
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FIG. 2. Top line: Near (a) and far (b) field spectra calculated
for an emitter located 2 nm away from a MNP of radius R = 8
nm, including all the MNP modes (N=25 ensures the conver-
gence). The detector is located at (r=1µm,θ = π/2). The ver-
tical line refers to the emitter emission frequency (~ωeg = 2.94
eV). Bottom line: Recorded signal as a function of the detec-
tor position for a sphere radius R = 8 nm (c) and R = 20nm
(d). The three curves are calculated at the three peaks of the
far field spectrum S(ω). Blue curves: ~ω = 2.79 eV (c) or
2.76 eV (d). Black solid curves: ~ω = 2.86 eV (a) or 2.89 eV
(b). Black dashed curves: ~ω = 3 eV (c) or 3.02 eV (d).

present similar amplitudes for large particles. We also
represent the radiation diagram in Fig. 2c,d for two par-
ticle radii. We recover the dipolar angular emission for
all the wavelength [S(θ) ∝ sin θ] except at the emission
energy close to ~ω = 2.9 eV for which forward scattering
occurs for the largest particle (solid black curve, Fig. 2d).
This reveals the role of the quadrupolar mode (LSP2) in
the coupling process [21].

More understanding of the emitter-MNP coupling pro-
cess is achievable using the effective model we recently
developed [16, 22]. In particular, it makes a complete
analogy with cQED description, paving the way towards
direct transposition of cavity controlled dynamics at the
nanoscale. To this aim, the hybrid emitter-MNP system
is described as a quantum emitter coupled to a reservoir
of N LSP modes structured by the local density of states.
The interaction Hamiltonian can be written as

ĤI = i~
∫ +∞

0

dω

N∑
n=1

κ∗n(ω, rd)b̂ω,n(rd)
†σ̂ge − h.c. , (6)

|κn(ω, rd)|2 =
k20

~πε0
deg · Im[Gn(rd, rd, ω)]d?eg (7)

κn quantifies the coupling between the emitter and the
MNP nth mode. It is expressed in terms of the Green’s
dyad, linking the preceding description with the following
effective model. The excitation of a single LSP of order n

(LSPn) obeys |1ω,n〉 = b̂†ω,n(rd)|∅〉 with the bosonic op-
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erator b̂ω,n(rd)
† = deg · Ên(rd, ω)/~κn, Ên is the electric

field associated to mode n.
Each resonance follows a lorentzian profile so that the

coupling constant with a given mode can be represented
by

κn(ω, rd) =

√
γn
2π

gn(rd)

ω − ωn + iγn2
, (8)

where gn is the coupling strength of the emitter to the
MNP nth mode. ωn and γn are the mode resonance
frequency and width, respectively. ωn and γn depend
on the MNP material and size whereas the coupling
strength gn depends also on the distance to the sur-
face. We calculated that the coupling strength to a given
mode fastly decay with distance, but can overcome the
Joule losses in the MNP (gn > γp) for separation dis-
tances below few nanometers, suggesting the feasibility
of strong coupling. Specifically, we observe that high or-
der modes play a significant role. Finally, the effective
Hamiltonian is obtained by tracing out the continuous
degrees of freedom of the modes in order to establish a
set of N discrete modes. In the tensor product basis
{|e〉|∅〉, |g〉|11〉, · · · , |g〉|1N 〉}, its matrix representation is
[16]

Heff = ~


−iγd2 ig1 ig2 · · · igN
−ig1 ∆1 − iγ12 0 · · · 0

−ig2 0 ∆2 − iγ22
. . .

...
...

...
. . .

. . . 0
−igN 0 · · · 0 ∆N − iγN2

 ,
(9)

where ∆n = ωn−ωeg is the detuning from the resonance.
This effective Hamiltonian provides a very practical rep-
resentation of the hybrid configuration. The emitter cou-
ples to each LSPn mode with the coupling strength gn.
The losses γn reflect the population leakage from the ex-
cited state |g〉|1n〉 to the ground state |g〉|∅〉. In order to
interpret the degeneracy breaking in the strong coupling
regime (Fig.2a,c), let us first consider the interaction be-
tween the quantum emitter and one single LSP mode of
the MNP. Detailed analysis reveals that the third mode
(LSP3) presents the main contribution to the coupling
process. Therefore, we approximate the effective Hamil-
tonian by

Heff ≈ ~
[
−iγd2 ig3
−ig3 ∆3 − iγ32

]
. (10)

If we neglect the loss rates γd and γ3, the diagonalization
of the effective Hamiltonian leads to the dressed state of
the hybrid emitter-LSP3 system with angular frequencies
Ω± = (ωeg +ω3)/2±

√
g23 + ∆2

3/4. If the emission is res-
onant with the LSP3 mode (ωeg = ω3 so that ∆3 = 0),
the energy splitting is ~∆ω = ~(Ω+ − Ω−) = 2~g3 = 47
meV, that is close to the splitting observed in the polar-
ization spectrum calculated in Fig.3a) (~∆ω = 43 meV),
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FIG. 3. (a) Polarization spectrum keeping the LSP3 mode
contribution only. The emitter is resonant with the third
mode (~ωeg = ~ω3 = 2.92 eV, green line). The blue and
black lines characterize the frequencies Ω+ and Ω− of the
two dressed states calculated from the approximated effective
Hamiltonian 10. (b) Energy diagram of hybrid nanosource.

where only the LSP3 mode is considered. Taking into ac-
count the dissipation of the modes, the angular frequen-
cies of the dressed states become Ω± = ωeg + Re[λ±]
where λ± are the complex eigenvalues of the effective
Hamiltonian (Eq. 10). We recover ~∆ω = 43 meV,
as expected. However, the energy splitting is still low
compared to the one observed in Fig. 2a) (~∆ω = 144
meV), that takes into account all the LSP modes of the
MNP . We therefore consider all the 25 LSP modes in
the effective Hamiltonian (Eq. 9). Its diagonalisation
leads to 26 dressed states with angular frequencies Ωm =
ωeg + Re[λm] , (m = 1, . . . , 26) (λm are the eigenvalues).
For such dissipative systems, we have to define right
and left eigenvectors |ΠR

m〉 and |ΠL
m〉, respectively, sat-

isfying Heff |ΠR
m〉 = λm|ΠR

m〉 and H†eff |ΠL
m〉 = λ?m|ΠL

m〉,
〈ΠL

m|ΠR
m〉 = δmn. For Hamiltonian of the form (9), one

can simply connect them as follows [23]

|ΠR
m〉 = m0|e〉|∅〉+

N∑
n=1

mn|g〉|1n〉, (11)

|ΠL
m〉 = −m?

0|e〉|∅〉+

N∑
n=1

m?
n|g〉|1n〉, (12)

where m0 and mn gives the weight of each mode |e〉|∅〉
or |g〉|1n〉. We have now all the ingredients to interpret
the polarization spectrum in the strong coupling regime
(see Fig. 4). The mode hybridization, deduced from the
diagonalization of the Hamiltonian is depicted in Fig.
4b). We indicate the main LSP modes involved for each
dressed state. We observe that the energy of the dressed
states Π2 and Π5 exactly match the two peaks in the po-
larization spectrum. These dressed states mainly result
from the hybridization of the excited level of the emitter
with either the LSP2 and LSP3 (Π2) or LSP6 to LSP11

(Π5) modes of the MNP. In addition, the shoulder visible
in the polarization spectrum near ~ω ≈ 2.9 eV originates
from the dressed states Π3. Note that the Π1 and Π2

states present a large contribution of the TLS or radia-
tive LSP1,2 modes that radiate in the far field zone (see
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Fig. 2b and 2c,d). On the contrary, the dressed state Π5

appears as a dark mode in agreement with the far field
spectrum calculated in Fig. 2b).
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FIG. 4. (a) Polarization spectrum (Fig. 2a). Black lines
indicate the 26 hybrid modes. (b) Energy diagram of the
hybrid system deduced from the full effective Hamiltonian
diagonalization. A thicker line indicates a stronger weight
m0 of the atom (|e〉|∅〉, left part) or mn of the LSPn mode
(|g〉|1n〉, right part of the diagram). In (a) the green line
corresponds to the emission frequency of the emitter (~ωeg =
2.94 eV) leading to the strong coupling. The blue (magenta)
line refers to the frequency Ω2 (Ω5) of the dressed state Π2

(Π5). The cyan line near ~ω ≈ 2.9 eV indicates the frequency
of the Π3 dressed state.

It is worthwile to note that the strong coupling regime
can be achieved at the single molecule level thanks to
cumulative effect of coupling to several LSP modes. An-
other possibility would be to increase the number N
of emitters coupled to the MNP. Indeed, the effective
Hamiltonian presents a similar structure than atom in
a cavity so that we also expect a Rabi splitting propor-
tional to

√
N . Taking benefit of both the number of in-

volved LSP modes in the coupling process and increasing
the number of molecules would relax the strong coupling
conditions.

The effective model also unravels the dynamics of
the strongly coupled system. Indeed, the wavefunction

writes at time t: |ψ(t)〉 =
∑N+1
m=1 ηm|ΠR

m〉e−iλmt , with
ηm = 〈ΠL

m|ψ(0)〉 = −m0 if we assume an emitter initially
in its excited state and no LSP mode populated. The evo-
lution of the populations obey |Ce(t)|2 = |〈e,∅|ψ(t)〉|2 =

|
∑N+1
m=1m

2
0e
−iλmt|2 for the excited state of the emitter

and |Cn(t)|2 = |〈g, 1n|ψ(t)〉|2 = |
∑N+1
m=1m0mne

−iλmt|2
for the nth LSP mode. Figure 5 presents the popula-
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FIG. 5. Emitter and LSP population dynamics for different
dipole moment value: d = 24 D (strong coupling), d = 6 D
(showing a quasi-exponential decay) and in vacuum.

tions dynamics. Although strongly damped, a clear Rabi
oscillation is visible revealing reversible ultrafast energy
transfert with a period TRabi = 2π/∆ω = 0.03 ps, as ex-
pected. The energy transfer between the emitter and the
MNP is mainly governed by the LSP2 and LSP3 modes,
the other being poorly populated. Optimized configu-
rations, such as nanoprism that facilitates the strong
coupling regime [12] would permit to improve the en-
ergy transfer efficiency. Additionnally, we check that we
recover a fast exponential decay in the weak coupling
regime (for d = 6 D), in agreement with the Fermi’s
golden rule.

To summarize, we have described the optical response
of the hybrid MNP-quantum emitter nanosource in anal-
ogy with a cQED description and dressed atom picture.
Specifically, we clarified the nature of the dressed states
in the strong coupling regime. Since the effective Hamil-
tonian parameters are easily extracted from the Green’s
tensor of the plasmonic nanostructures, this formalism
can be generalized to more complex system as e.g. plas-
monic nanostructures of arbitrary shape, three-level sys-
tem in Λ configuration or adding an external driving field.
Additionnally, this description offers a simple and very
intuitive understanding of the spectroscopic properties
of the hybrid nanosource. Finally, although relying on
a different paradigm (mode confinement instead of mode
lifetime), this formalism permits a direct transposition of
cQED concept to the nanoscale and constitutes therefore
a powerful tool to propose and design original nanopho-
tonics or plasmonics devices.
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