
Bounds for the electrical resistance for
non-homogeneous conducting body

István Ecsedi and Attila Baksap

Institute of Applied Mechanics, Faculty of Mechanical Engineering and Informatics, University of
Miskolc, H-3515 Miskolc-Egyetemváros, Hungary

Received: February 22, 2022 • Revised manuscript received: June 9, 2022 • Accepted: June 30, 2022
Published online: October 21, 2022

ABSTRACT

A mathematical model is developed to determine the steady-state electric current flow through in non-
homogeneous isotropic conductor whose shape has a three-dimensional hollow body. The equations of
the Maxwell’s theory of electric current flow in a non-homogeneous isotropic solid conductor body are
used to formulate the corresponding electric boundary value problem. The determination of the steady
motion of charges is based on the concept of the electrical conductance. The derivation of the upper and
lower bound formulae for the electrical conductance is based on Cauchy-Schwarz inequality. Two
numerical examples illustrate the applications of the derived upper and lower bound formulae.
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1. INTRODUCTION

Electrical resistance of an electrical conductor is a measure of the difficulty to pass a steady
electric current through the conductor. The well-known elementary form of Ohm’s law states
that when the conductor carries a current I from a point P1 at potential U1 to a point P2 at
potential U2 then U1–U2 5 RI, where R is the resistance of the conductor between points P1
and P2, it depends only on the shape and temperature and the material of the conductor. The
inverse of electric resistance is the electric conductance G 5 1/R. This paper deals with the
electric resistance of a three-dimensional non-homogeneous conductor body. Examination of
non-homogeneous structural elements is a very important task. Maróti’s study [1] deals with
the bending vibration of axially non-homogeneous beams. The buckling problem of axially
functionally graded beams is considered in paper [2]. For prescribed frequency and buckling
loads Maróti and Elishakoff [2] determined the Young’s modulus in axial direction as a
function of axial coordinate. The non-homogeneous isotropic hollow conductor is bounded
by two closed surfaces vV1 and vV2, which have no common point. The current flows inside
the conductor from inner boundary surface vV1 whose potential is U1 to the outer boundary
surface vV2 whose potential is U2, U1>U2. Two-side estimation will be proven for the elec-
trical conductance of non-homogeneous isotropic hollow three-dimensional conductor. The
mathematical formalism follows the methods, which were used in papers [3–5]. In paper [3]
upper and lower bounds are proven for the electrical resistance of homogeneous isotropic
ring like axisymmetric conductor. In paper [4] the capacitance of two-dimensional cylindrical
capacitor, which consists of non-homogeneous dielectric materials is studied. Examples
illustrate the applications of the derived bounding formulae of capacitance [4]. A mathe-
matical heat transfer model is developed for the steady-state heat transfer problem for ho-
mogeneous isotropic body of rotation in [5] and it is used to obtain estimations of thermal
heat transfer conductance.

Let us consider the steady motion of charges in the non-homogeneous hollow conductor
shown in Fig. 1. The conductor body occupies the space domain V and its boundary surfaces
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are vV1 and vV2. The electric potential U on the boundary
surfaces vV1 and vV2 are prescribed, so the following
boundary conditions are valid [6–8],

UðrÞ ¼ Ui ¼ constant; r ∈ vVi ði ¼ 1; 2Þ; (1)

where r denotes the position vector (Fig. 1). According to
Maxwell’s theory [6–8] the steady motion of charges is
described by the next equations:

j ¼ σE; ∇$j ¼ 0; E ¼ −∇U : (2)

Differential form of Ohm’s law formulates that at con-
stant temperature in isotropic conductor the current density
vector j is proportional to the electric field vector E: Here
σ ¼ σðrÞ is the conductivity of the non-homogenous hollow
conductor. In Eq. (2) ∇ is the del operator and the dot be-
tween two vectors denotes the scalar product [9]. From the
above equations it follows that

σðrÞΔU þ ∇σ$∇U ¼ 0; r ∈V; Δ ¼ ∇$∇: (3)

Introducing a new function u ¼ uðrÞ by the next
definition,

UðrÞ ¼ ðU1 � U2Þ uðrÞ þ U2 U1 ≠U2: (4)

It is evident that u ¼ uðrÞ satisfies the following boundary
value problem,

σðrÞΔuþ ∇σ$∇u ¼ 0; r ∈V ;
u ¼ 1; r ∈ vV1; u ¼ 0; r ∈ vV2 :

(5)

The function u ¼ uðx; yÞ plays crucial role in the ex-
pressions of electrical resistance and electrical conductance.
An electric current in the conductor is the continuous
passage of the current along that conductor. The constant
potential difference between the closed surfaces vV1 and
vV2 maintains the steady flow of the electric current. The
amount of charge flowing through surface vV1 per unit
time is I. The determination of I is based on the next
equation

I ¼ −

Z
vV1

j$n dA ¼ ðU1 � U2Þ
Z
vV1

σðrÞ n$∇u dA ¼

ðU1 � U2Þ
Z
vV1

σðrÞ vu
vn

dA :

(6)

In Eq. (6), n is the outer normal unit vector of the inner
boundary surface vV1 and dA is the area element of vV1. The
electrical resistance R and the conductance G of the hollow
conductor is defined as [6, 8],

R ¼ U1 � U2

I
¼ 1R

vV1
σðrÞ vu

vn
dA

;

G ¼ I
U1 � U2

¼
Z
vV1

σðrÞ vu
vn

dA :

(7)

From Eq. (5) it follows thatZ
V

u½σðrÞΔuþ ∇σ$∇u�dV ¼
Z
vV1

uσðrÞ n$∇udA

�
Z
V

σðrÞj∇uj2dV

¼ 0; (8)

G ¼
Z
V

σðrÞj∇uj2dV; R ¼ 1R
VσðrÞj∇uj2dV

: (9)

Note that if

∇σ$∇u ¼ 0; r ∈V ; (10)

then uðrÞ ¼ u0ðrÞ; where u0ðrÞ is a unique solution of the
following Dirichlet type boundary-value problem

Δu0 ¼ 0; r ∈V ; u0 ¼ 1; r ∈ vV1; u0 ¼ 0; r ∈ vV2: (11)

In this case

G ¼
Z
V

σðrÞj∇u0j2dV : (12)

There are several approximation methods to get the
solution of the boundary-value problem Eq. (5), most of
which use the results of variational calculus for example as
Ritz method, finite element method [8, 9]. Other methods
are also known and they used, for example finite difference
methods, method of weighted residuals, boundary element
method [10]. It must be mentioned that, many numerical-
analytical method are used R-functions to solve the
boundary value problems of electrodynamics [11–13]. The
efficiency of the R-Function Method (RFM) to solving the
boundary value problems of electrostatics in very compli-
cated domain is illustrated in paper by Kravchenko and
Basarab [14]. They considered a boundary-value problem
of electrodynamics in the fractal regions of the Sierpiski
carpet and the Koch island types [14]. Iványi solved a
number of two-dimensional boundary value problems of
static and stationary electromagnetisms by variational
method connecting of them with the use of R-functions

Fig. 1. Hollow non-homogeneous conductor body bounded by
closed surfaces
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[12, 13, 15, 16]. It is not the aim of this paper is to give a
detailed list of different analytical and numerical methods,
which are used widespread in electrical engineering
calculations.

2. UPPER BOUND FOR G AND LOWER BOUND
FOR R

Theorem 1. If the function F ¼ FðrÞ which is continuously
differentiable in V∪vV satisfies the boundary
conditions (13) then the inequality relation (14)
is valid

FðrÞ ¼ 1; r ∈ vV1; FðrÞ ¼ 0; r ∈ vV2; (13)

G≤

Z
V

σðrÞj∇Fj2dV: (14)

Proof. The proof of inequality (14)3 can be derived by the
Cauchy-Schwarz inequality relation (15),

0
@Z

V

σðrÞ∇F$∇u dV

1
A

2

≤

Z
V

σðrÞj∇Fj2dV$

Z
V

σðrÞj∇uj2dV:

(15)

A simple computation leads to the resultZ
V

σðrÞ∇F$∇u dV ¼
Z
vV1

σðrÞn$∇u dA ¼
Z
V

σðrÞj∇uj2dV :

(16)

The combination of the inequality relation (15) with
Eq. (16) and using formula (9) gives (14). A brief discussion
shows that the sign of equality in relation (14) is valid only
if FðrÞ≡ uðrÞ:

3. LOWER BOUND FOR G, UPPER BOUND
FOR R

Theorem 2. Let q ¼ qðrÞ be a vector field defined in the
hollow space domain V∪vV, which satisfies
the following equations

∇$q ¼ 0; r ∈V ; n$q ¼ 0; r ∈ vV1; (17)

in this case

G≥

�R
vV1

σðrÞ n$qdA
�2

R
VσðrÞq2dV

;

Z
V

q2dV ≠ 0: (18)

In lower bound formula (18) equality is reached only if
q≡ λ∇u; where λ is an arbitrary constant which is different
from zero.

Proof. The proof of lower bound formula (18) is based on the
Cauchy-Schwarz inequality relation (19)

0
@Z

V

σðrÞ p$qdV
1
A

2

≤

Z
V

σðrÞp2dV
Z
V

σðrÞq2dV : (19)

Let

p ¼ ∇u (20)

be in inequality relation (19). A simple calculation yields the
resultZ

V

σðrÞ∇u$qdV ¼
Z
vV

uσðrÞn$qdA�
Z
V

u∇$ σðrÞq½ �dV

¼
Z
vV1

σðrÞn$qdA:

(21)

Substitution Eq. (21) into Cauchy-Schwarz inequality (19)
gives0
B@

Z
vV1

σðrÞ n$qdA

1
CA

2

≤

Z
V

σðrÞj∇uj2dV
Z
V

σðrÞq2dV : (22)

From inequality relation (22) the proof of lower bound
formula, (18) can be obtained immediately.

Theorem 3. Let f ¼ f ðrÞ be non-identically constant function
in V∪vV, which satisfies the Laplace equation
in V

∇$∇f ¼ Δf ¼ 0; r ∈V : (23)

The following lower bound formula is valid for G

G≥

�R
vV1

vf
vn dA

�2

R
V
j∇f j2
σðrÞ dV

: (24)

Proof. The proof of (24) can be obtained from (18) with
under-mentioned qðrÞ

qðrÞ ¼ ∇f
σðrÞ; r ∈V∪vV : (25)

4. NUMERICAL EXAMPLES

In the numerical examples the spherical coordinate system is
used. The connection between the Cartesian coordinates
x; y; z and the spherical coordinates r;f; ϑ is x ¼ rcosfsinϑ;
y ¼ rsinfsinϑ; z ¼ rcosϑ: Developed numerical example
relate to axisymmetric electrical problems.

Example 1. The meridian section of hollow spherical domain
is shown in Fig. 2. The specific conductivity is a
given function of the radial coordinate
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σðr; αÞ ¼ σ0exp

�
α
r
a1

�
:

Application of Theorem 1 to the function FðrÞ ¼ FðrÞ ¼
1− 1=r − 1=a1

1=a2 − 1=a1
gives

GðαÞ≤GUðαÞ ¼

−
1

ða1 � a2Þ2

8><
>:4πσ0a1a2

2
64 a1exp

�
αa2
a1

�
þ Ei

�
1;�αa2

a1

�
αa2

�a2expðαÞ � a2Eið1;�αÞα

3
75
9>=
>;;

(26)

here Eið1; xÞ is the exponential integral [17, 18]. Putting the
following function f ðrÞ ¼ f ðrÞ ¼ r−1 in the lower bound
formula (24) gives

GðαÞ≥GLðαÞ ¼
4πσ1a1a2

−a1exp
�
−
αa2
a1

�
þ Ei

�
1; αa2a1

�
αa2 þ a2expð−αÞ � a2Eið1; αÞα

:

(27)

Lengthy, but elementary calculations shows that, the exact
value of electrical conductivity which is obtained from the
solution of boundary value problem (5) is

GðαÞ ¼
4πσ1a1a2

−a1exp
�
−
αa2
a1

�
þ a2expð−αÞ þ αa2Ei

�
1; αa2a1

�
� αa2Eið1; αÞ

(28)

that in this case is GðαÞ ¼ GLðαÞ. The validity of upper
bound (14) for α ¼ −2:5 and α ¼ 2:5 examplifies as follows

GL −2:5ð Þ ¼ G −2:5ð Þ ¼ 2:6511693106
1
Ω
≦GU −2:5ð Þ

¼ 3:30149731061
�
Ω; (29)

GLð2:5Þ ¼ Gð2:5Þ ¼ 1:591053106
1
Ω
≦GUð2:5Þ

¼ 1:98133331061
�
Ω: (30)

Figure 3 shows the upper and the lower bounds of the
conductance G as a function of α for −2≤ α≤ 2: In this
example a1 ¼ 0:3 m; a2 ¼ 0:5 m; σ0 ¼ 7:6931061=Ωm:

Figure 4 shows the plot of function F ¼ FðrÞ, the plot of
exact analytical solution u ¼ uðrÞ and the plot of uF ¼ uFðrÞ
which is obtained from Finite Element (FE) approximation
in the case of Example 1 for α ¼ 2:5. The FE model is
developed in ABAQUS with DC3D8 elements (node
numbers are 706 356) and for definition of the nonlinear
material a special user subroutine usdfld() is applied.

Example 2. The meridian section of axisymmetric hollow
domain bounded by two spherical surfaces
as it is shown in Fig. 5. The following data
are used a1 ¼ 0:3 m; a2 ¼ 0:5 m; b ¼ 0:025;

σ1 ¼ 7:693106 1=mΩ; σðr; nÞ ¼ σ1
�

r
a1

�n
:

Let Fðr; ϑÞ ¼ ln RðϑÞ
r

�
ln RðϑÞ

a1

�−1
be in Theorem 1 and in

Theorem 3 f ðrÞ ¼ r−1:

Fig. 3. Upper and lower bounds for the conductance of
non-homogeneous spherical conductor as a function of α

for −1:5≤ α≤ 1:5

Fig. 4. Comparison of exact solution, approximate solution and
FE approximation

Fig. 2. Meridian section of hollow spherical domain
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Figure 6 shows the upper and the lower bounds as a
function of power index for −2≤ n≤ 2:

5. CONCLUSIONS

A mathematical model is developed to determine the steady-
state electric current flow through in non-homogeneous
isotropic conductor whose shape is a three-dimensional
hollow body. The hollow body considered is bounded by two
closed surfaces which have no common points. The deriva-
tion of the upper and lower bound formulae for the electrical
conductance is based on the two types of Cauchy-Schwarz
inequality. Two numerical examples illustrate the applications
of the derived upper and lower bounds for the conductance.
The derived upper and lower bound formulae of electric

conductance can be used to check the results of numerical
computations obtained by finite element method, boundary
element method and by any other numerical methods.
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Fig. 5. The meridian section of axisymmetric hollow domain
bounded by two spherical surfaces with different centre points

Fig. 6. Upper and lower bounds for the conductance as a function
of power index n
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