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Abstract

A bright optical flare was detected in the high-redshift (z=2.133) quasar CGRaBS J0809+5341

on 2014 April 13. The absolute magnitude of the object reached −30.0 during the flare, making

it the brightest one (in flaring stage) among all known quasars so far. The 15 GHz flux density

of CGRaBS J0809+5341 monitored in the period from 2008 to 2016 also reached its peak

at the same time. To reveal any structural change possibly associated with the flare in the

innermost radio structure of the quasar, we conducted a pilot very long baseline interferometry

(VLBI) observation of CGRaBS J0809+5341 using the European VLBI Network (EVN) at 5

GHz on 2014 November 18, about seven months after the prominent optical flare. Three

epochs of follow-up KaVA (Korean VLBI Network and VLBI Exploration of Radio Astrometry
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Array) observations were carried out at 22 and 43 GHz frequencies from 2015 February 25 to

June 4, with the intention of exploring a possibly emerging new radio jet component associated

with the optical flare. However, these high-resolution VLBI observations revealed only the

milliarcsecond-scale compact “core” that was known in the quasar from earlier VLBI images,

and showed no sign of any extended jet structure. Neither the size, nor the flux density of

the “core” changed considerably after the flare according to our VLBI monitoring. The results

suggest that any putative radio ejecta associated with the major optical and radio flare could

not yet be separated from the “core” component, or the newly-born jet was short-lived.

Key words: techniques: interferometric — radio continuum: galaxies — galaxies: active — quasars:

individual: CGRaBS J0809+5341

1 Introduction

Blazars are active galactic nuclei (AGN) with relativisticjets closely aligned with our line of sight ac-

cording to the radio-loud AGN unification (Urry & Padovani 1995). As a result, the Doppler-boosted

relativistic jet emission dominates their non-thermal spectrum from the radio (Blandford & Königl

1979) through optical (Whiting et al. 2001) to theγ-rays (Ackermann et al. 2011). Phenomenological

relations between optical flaring and radio properties in blazars have been investigated spanning a

duration of more than four decades (e.g., Hackney et al. 1972; Pomphrey et al. 1976; Babadzhanyants

& Belokon 1984; Tornikoski et al. 1994). However, the physics of the inter-relating properties across

the electromagnetic spectrum remains enigmatic.

Recent studies found a significant positive correlation between the optical nuclear luminosity

and the radio flux density of the compact core in quasars, indicating that both the radio and optical

emissions originate from the innermost part of the relativistically beamed pc-scale jets (Arshakian

et al. 2010). Correlations between the optical andγ-ray variability have also been found in blazars

(Hovatta et al. 2014; Cohen et al. 2014), supporting the single-zone leptonic models in which the op-

tical seed synchrotron photons are up-scattered by relativistic electrons toγ-ray energy bands via the

inverse Compton process. As for possible correlations betweenγ-ray flares and the emergence of new

superluminal VLBI components, Jorstad et al. (2001) found acorrespondence between these events

in about half of the cases in their blazar sample, suggestingthat theγ-ray emission is closely related

to the relativistic jet. The physical mechanism producing theγ-ray flares is either synchrotron self-

Compton or external Compton scattering of photons by relativistic electrons in the pc-scale regions
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of the jet. The location of the seed photon sources however may span two orders of magnitude in dis-

tance from the black hole, from the broad-line region (BLR,∼0.1 pc), the molecular torus (∼1−few

pc), or the radio core (∼10 pc) (Dotson et al. 2015).

CGRaBS J0809+5341 (J0809+5341, hereafter) is a flat-spectrum radio quasar (a blazar;

Massaro et al. 2009) at high redshift,z = 2.133 (Healey et al. 2008). Recently it showed a bright

flare in unfiltered optical observations (Shumkov et al. 2014; Balanutsa et al. 2014). The observations

were made with the MASTER-Tunka auto-detection system on the nights of 2014 April 13 and April

19. The absolute magnitude of the flaring source was extremely high,M = −30.0 on April 13 and

M = −30.5 on April 19, making it (during the short flaring period) possibly the brightest among

all known quasars. In the subsequent observation on 2014 May2, the source became significantly

fainter, but it was still about 3 magnitudes brighter than inits quiescent state (Wiersema et al. 2014).

The source has recently been detected at high energies in thedecaying part after the 2014 optical flare

as well. It has been detected with theFermi Large Area Telescope (LAT) (Acero et al. 2015); this

observation indicated variability in the high-energy bands. It remained undetected during the first 2

years ofFermi operations but became active and continuously detected in the last year (Paliya et al.

2015). In the same study, the source was also tracked in the X-rays with theNuclear Spectroscopic

Telescope Array (NuSTAR) andSwift satellites.

The strong optical flare and the recent highγ-ray state in J0809+5341 would be expected to

cause a radio flux density outburst with the emergence of a newjet component (e.g., Jorstad et al.

2001; Marscher et al. 2008, 2010; Orienti et al. 2013). High-resolution VLBI imaging observations

are essential to confirm this. Motivated by the discovery of the prominent optical flare, we have

carried out a short exploratory VLBI observation of J0809+5341 with the European VLBI Network

(EVN), with the aim of searching for possible structural changes and radio flux density variation

associated with the event. The experiment was conducted on 2014 November 18, seven months after

the optical flare. Then, we continued monitoring the source with the KaVA, a VLBI array combining

the Korean VLBI Network (KVN) and the Japanese VLBI Exploration of Radio Astrometry (VERA)

array, at frequencies of 22 and 43 GHz. The dual-frequency KaVA observations of J0809+5341 were

conducted at three epochs (2015 February 25/26, 2015 April 2/3, and 2015 June 3/4), in order to trace

possible structural variations, flux density variability,and the change of radio spectral index with time.

Here we report on the results of our VLBI observations of J0809+5341. The paper is organized

as follows: Section 2 describes the EVN and KaVA observations and the data analysis. Section 3

presents the results which are then discussed in Section 4. Asummary of the current study is then

presented in Section 5.
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Fig. 1. Left: The (u,v)-covergae of our initial e-EVN observations of J0809+5341 at 5 GHz. Right: An example of the (u,v)-coverage of KaVA observations

of J0809+5341 at 22 GHz. The u and v components of the baseline vectors projected onto the plane perpendicular to the line of sight are expressed in the

units of million wavelengths. As can be seen, the EVN and the KaVA observations have sampled similar spatial frequencies, but the distribution of the

baselines is different.

2 Observations and data reduction

2.1 EVN observation and data reduction

The observation of J0809+5341 was carried out with the EVN inelectronic VLBI (e-VLBI) mode

(Szomoru 2008) at 5 GHz on 2014 November 18. Eight antennas participated in this experiment:

Effelsberg (Germany), Jodrell Bank Mk2 (United Kingdom), Noto (Italy), Onsala (Sweden), Yebes

(Spain), Toruń (Poland), Sheshan (China), and the Westerbork Synthesis Radio Telescope (WSRT, the

Netherlands). The data observed at the telescopes were transmitted via wide-band optical fibre net-

works in real time to the EVN software correlator (SFXC; Keimpema et al. 2015) at the Joint Institute

for VLBI in Europe (JIVE), Dwingeloo, the Netherlands. The data were recorded in eight interme-

diate frequency channels (IFs) in both left and right circular polarizations at a maximum recording

rate of 1024 Mbit s−1. The total bandwidth was 128 MHz. The observation was conducted in phase-

reference mode (Beasley & Conway 1995). The telescopes nodded between the target and a nearby

calibrator, J0809+5218,1.◦37 away from the target. The target–reference duty cycle was 7 min long,

with 4 min spent on J0809+5341. The total observing time was 2h, and the effective on-target inte-

gration time was 1.2 h.

The post-correlated data were imported into the NRAO Astronomical Image Processing

System (AIPS), to calibrate the amplitudes and the fringe phases (Diamond 1995). After perform-

ing fringe-fitting (Schwab et al. 1983) for the phase-reference calibrator, the data were exported to

the Caltech DIFMAP package (Shepherd et al. 1994) for imaging and calibrating the residual phase
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Fig. 2. Left: naturally weighted 5-GHz EVN image of J0809+5341. The image parameters (the lowest positive and negative contour level corresponding to

the ∼ 3σ image noise, the peak brightness, and the restoring beam size and major axis position angle) are given in Table 1. The positive contour levels

increase by a factor of 2. Right: visibility amplitude versus projected baseline length. The visibilities with close (u,v) distances are binned together for

illustration puproses only. The plot shows the weighted mean amplitudes and standard deviations. The solid curve indicates the best-fit circular Gaussian

model.

errors. We performed a traditional hybrid mapping procedure consisting of several iterations of

CLEAN ing (Högbom 1974), phase and amplitude self-calibration.The brightness distribution model

of J0809+5218 was then used as input for a repeated fringe fitting in AIPS, to account for the small

residual phase errors caused by the non-pointlike structure of the calibrator. The derived gain solu-

tions obtained for the calibrator were interpolated and applied to the target, J0809+5341. Then the

visibility data were exported to DIFMAP for imaging.

As the target J0809+5341 itself was bright enough for fringefitting, we repeated the procedure

without using the complex gains from the phase-reference calibrator. For a comparison, the result-

ing image (shown in Fig. 2) was similar to that obtained from the phase-referencing data reduction.

The flux density uncertainty assumed as 10% for the EVN originates from the errors of amplitude

calibration based on the antenna gain curves and system temperature measurements.

2.2 KaVA observations and data reduction

The KVN (Kim et al. 2004) comprises of three radio telescopesof 21 m diameter, located at Seoul,

Ulsan, and Jeju Island. The network is dedicated to high radio frequency (22, 43, 86, and 129 GHz)

observations (Han et al. 2013). The VERA array (Kobayashi etal. 2003) consists of four telescopes

of 20 m diameter located at Mizusawa, Iriki, Ogasawara, and Ishigaki-jima in Japan. It is dedicated to

high-precision VLBI astrometric measurements. VERA antennas have been installed with dual-beam
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Fig. 3. Naturally weighted KaVA images of J0809+5341 at 22 GHz (top) and 43 GHz (bottom). The observing epochs and image parameters (the lowest

positive and negative contour level corresponding to the ∼ 3σ image noise, the peak brightness, and the restoring beam size and major axis position angle)

are presented in Table 1. The positive contour levels increase by a factor of 2. The ellipse in the bottom-left corner indicates the restoring beam.

and 22/43 GHz receiver systems for efficient phase-reference VLBI observations. The combination of

KVN and VERA yields a new, powerful VLBI facility called KaVA(KVN and VERA array). KaVA

thus consists of seven radio telescopes with the longest andshortest interferometric baselines of 2270

km and 305 km, respectively. The array is remarkable for its evenly distributed(u,v) spacings (Fig. 1).

The imaging capability of KaVA for extended radio structures in bright AGN has been demonstrated

by Niinuma et al. (2014).

Our KaVA observations of J0809+5341 were made at two frequencies, 22 and 43 GHz. Since

the aim of the project was to detect changes in the putative jet structure, the observations were sched-

uled in three sessions separated by about 5 and 8 weeks: 2015 February 25/26, 2015 April 2/3,

and 2015 June 3/4. All seven KaVA antennas participated in these experiments. Occasionally, for

periods of time, the measured system temperatures at certain individual antennas significantly ex-

ceeded the nominal values. Affected data were omitted from the subsequent analysis. The KaVA

data were recorded in 16 IFs in left-hand circular polarization with two-bit quantization, at a rate of

1024 Mbit s−1. The total bandwidth was 256 MHz. The observing time at each frequency on each

date was 4 h. Apart from five 4-min scans on a bright calibrator(4C 39.25) which were used for
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fringe finding, the remaining time was spent on J0809+5341. The effective observing time spent on

the target was nearly 3.7 h at both frequencies in each session.

The data at the VERA and the KVN telescopes were recorded on magnetic tapes and disks,

respectively. After completing the experiments, the tapesand disks were shipped from the stations

to the Korea–Japan Correlation Center (KJCC) located in Daejeon, Korea (Lee et al. 2014, 2015a),

where the correlation was performed. The correlated interferometric visibility data were imported

into AIPS where the amplitudes and phases were calibrated. The data reduction followed the stan-

dard procedure described in Section 2.1 (see also Lee et al. 2015b) with direct fringe-fitting to the

J0809+5341 data. An amplitude calibration uncertainty of 15% is assumed for KaVA (e.g., Niinuma

et al. 2014). The imaging with CLEAN and phase self-calibration cycles was performed in DIFMAP.

One iteration of amplitude and phase self-calibration was done to improve the dynamic range of the

image, but no more amplitude self-calibration step was performed, to avoid the inclusion of a scaling

error of the visibility amplitude.

3 Results

3.1 The VLBI structure

Figure 2 shows the 5-GHz EVN image of J0809+5341, characterized by a single compact component,

apparently the radio “core”. It is conventionally interpreted as the inner section of the synchrotron-

emitting jet that becomes optically thick at the given observing frequency (Blandford & Königl 1979).

This image resulted from fringe-fitting to the J0809+5341 data. The position of the emission peak in

the phase-referenced image (not reproduced here) is right ascension08h09m41.s7330 and declination

+53◦41′25.′′093 (J2000), which is in good agreement with that derived from the analysis of the data

from the VLBI calibrator database1.

Figure 3 shows the 22 and 43 GHz emission structure observed with KaVA at three epochs.

The images are made with natural weighting. The highest resolution is 0.57 mas at 43 GHz and

0.75 mas at 22 GHz, corresponding to a projected linear size of 4.7 pc and 6.2 pc, respectively2.

The image parameters are listed in Table 1. The source does not show any obvious extended radio

structure on these scales down to the brightness level of0.3 mJy beam−1.

For a simple characterization of the brightness distribution of the compact “core”, we fitted

circular Gaussian model components to the self-calibratedVLBI visibility data in DIFMAP. The

results of the model fitting are presented in Table 2. The fit tothe 5 GHz EVN data gave a159±16mJy

1 Data from http://astrogeo.org maintained by L. Petrov, solution rfc 2014d

2 We assume a flat cosmological model with H0=70 km s−1 Mpc−1, Ωm=0.3, and ΩΛ =0.7, which gives a scaling parameter of 8.3 pc mas−1.
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Table 1. Parameters of the VLBI images.

Epoch Array ν Restoring beam FWHM Lowest contours Peak brightness Figure

(GHz) (major axis× minor axis, PA) (mJy beam−1) (Jy beam−1)

2014 Nov 18 EVN 5.0 4.65 mas×1.37 mas,23.◦3 0.3 0.158 2

2015 Feb 25 KaVA 21.8 1.27 mas×0.93 mas,−41.◦4 1.2 0.154 3a

2015 Feb 26 KaVA 43.5 1.43 mas×0.69 mas,18.◦7 0.7 0.114 3b

2015 Apr 02 KaVA 21.8 1.34 mas×0.75 mas,−53.◦7 0.7 0.154 3c

2015 Apr 03 KaVA 43.5 0.80 mas×0.57 mas,−1.◦1 0.8 0.134 3d

2015 Jun 03 KaVA 21.8 1.36 mas×1.11 mas,−33.◦5 0.7 0.171 3e

2015 Jun 04 KaVA 43.5 0.86 mas×0.70 mas,13.◦1 0.9 0.126 3f

flux density and0.31± 0.06 mas de-convolved angular size (full width at half-maximum,FWHM).

The error in the core size was estimated by using Monte Carlo simulations and allowing for a 10%

variation in the visibility amplitudes. The right panel of Fig. 2 shows the visibility amplitudes as a

function of the projected baseline length, demonstrating that the source is slightly resolved. The 0.31-

mas diameter circular Gaussian model fitted in DIFMAP using all individual visibility data points is

also indicated as solid line, as well as a point source model with 159 mJy flux density shown as dashed

line.

The fitted core size from the KaVA data ranges from 0.06 to 0.10mas (Table 2). While the

resolution of the EVN and KaVA observations are similar (cf.Fig.1), the core size derived from the

KaVA data is about three times smaller than that from the EVN data. This is not surprising as at the

4–8 times higher observing frequencies, as the KaVA is getting emission from the inner-most region

of the jet, and the core size is expected to scale withν−1 (Blandford & Königl 1979). We therefore

note that the highest frequency KaVA data may actually be consistent with a point source and the

fitted sizes are upper limits.

Following the same procedure, we also analyzed the archival5 GHz VLBA data from the

VIPS project (Helmboldt et al. 2007), and 2.3/8.4 GHz data from the VLBA Calibrator Survey (VCS1,

Beasley et al. 2002). The fitted model parameters are listed together with those derived from our EVN

and KaVA observations in Table 2.

3.2 Flux density variability and radio spectrum

The modelfits to the VLBI data (Table 2) do not exclude the variability of the compact radio com-

ponent. However, these flux densities are measured at one (2.3 and 8.4 GHz), two (5 GHz) or three

(22 and 43 GHz) epochs only, and the assumed 10-15% amplitudecalibration uncertainties make the

different values consistent with each other within the uncertainties.
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Table 2. The results of circular Gaussian model fitting to VLBI data of J0809+5341 and the source

physical parameters derived.

Epoch ν S θ Tb δ Reference

(GHz) (mJy) (mas) (1011 K)

1994 Aug 12 2.3 171±17 1.17±0.06 0.9±0.1 1.8±0.2 Beasley et al. (2002)

1994 Aug 12 8.4 143±14 0.24±0.02 1.3±0.2 2.6±0.3 Beasley et al. (2002)

2006 May 31 4.8 184±18 0.24±0.03 5.3±1.4 10.6±2.4 Helmboldt et al. (2007)

2014 Nov 18 5.0 159±16 0.31±0.07 2.5±0.6 5.0±1.1 this paper

2015 Feb 25 21.8 154±23 0.06±0.01 1.2±0.3 2.4±0.5 this paper

2015 Feb 26 43.5 116±17 0.10±0.02 >0.20±0.05 >0.4±0.1 this paper

2015 Apr 02 21.8 155±23 0.07±0.02 2.2±0.7 4.4±1.4 this paper

2015 Apr 03 43.5 135±20 0.07±0.03 >0.6±0.3 >1.2±0.6 this paper

2015 Jun 03 21.8 170±25 0.10±0.02 1.3±0.3 2.6±0.7 this paper

2015 Jun 04 43.5 127±19 0.09±0.03 >0.3±0.1 >0.6±0.2 this paper

The historical total flux density measurements of J0809+5341, collected in the NASA/IPAC

Extragalactic Database3 (NED) hint at variability. The single-dish Green Bank observation at 1.4 GHz

made by White & Becker (1992) yields a 180 mJy flux density, while at 5 GHz in 1987 October, it was

197 mJy (Becker et al. 1991; Gregory & Condon 1991). The integrated 1.4 GHz flux density in the

U.S. National Radio Astronomy Observatory (NRAO) VLA Sky Survey ([NVSS, Condon et al. 1998)

is 140.4± 4.2 mJy. This made use of the most compact D-array configuration of the VLA (providing

an angular resolution of 45′′). The flux density measured by the B-array configuration in the VLA

Faint Images of the Radio Sky at Twenty-Centimeters (FIRST)survey (Becker et al. 1995) is131.7±

0.2 mJy. The difference between the VLA interferometer and Green Bank single-dish measurements

is ∼40 mJy (nearly 30%). This could in principle be a resolution effect, but the source is known

to be compact on arcsec scales and below, as is obvious from, among others, our own EVN and

KaVA observations. Thus the flux density difference cannot be attributed to arcmin-scale extended

emission, but rather the time variability of the compact component. We note that J0809+5341 appears

as an unresolved optical object in the Sloan Digital Sky Survey (SDSS, Abazajian et al. 2009) image

on arcsec scale.

J0809+5341 is being monitored at 15 GHz with the Owens ValleyRadio Observatory (OVRO)

40-m radio telescope4 as part of a large blazar sample (Richards et al. 2011). Figure 4 shows the

OVRO light curve of J0809+5341 covering a period of more than8 years, from 2008 to 2016. For

3 http://ned.ipac.caltech.edu/

4 http://www.astro.caltech.edu/ovroblazars/
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more details on the OVRO blazar monitoring program and data reduction, we refer to Richards et al.

(2011). According to Fig. 4, J0809+5341 is highly variable with flux densities ranging from∼120

to 360 mJy. The light curve is characterized by a number of subsequent flares. The large flares

last for about 2 years. Each large flare appears to show a double peak with a separation of several

months. Starting from 2013 February, the source went into a flaring phase. The prominent optical

flare discovered in 2014 April (Shumkov et al. 2014; Balanutsa et al. 2014) coincides with the peak

of radio emission, but since the source has reached similar brightness at two other occasions during

the 8-yr monitoring period, this might be just coincidental.

Overall, the source J0809+5341 shows a flat radio spectrum with a spectral indexα = 0.04

(S ∝ να, whereν is the frequency andS is the flux density), as derived from the non-simultaneous

data with the inhomogeneous resolutions available in NED. We can also use our nearly simultaneous

22 and 43 GHz KaVA data to estimate the spectral index of the compact core. That results inα22
43 =

−0.4± 0.2 in the first and third epochs, andα22
43 =−0.2± 0.1 in the second epoch.

4 Discussion

4.1 Source variability

As was described in Sect. 3.2, the source has a flat radio spectrum and shows strong variability in

the radio. This is consistent with the blazar classificationof J0809+5341. Following Arshakian et al.

(2010), we calculated the radio-loudness parameterR, defined as the ratio of the radio flux density at

5 GHz to the nuclear optical flux density at 4400Å (Kellermann et al. 1989). For a source atz=2.133,

the above bands used for calculatingR correspond to 1.6 GHz and 13800Å in the observer’s frame.

J0809+5341 shows a practically flat radio spectrum, allowing us to assume a 1.6 GHz flux density of

160 mJy in the quiescent state, and 320 mJy at the flare peak. Inthe flaring state, the MASTER OT

observatory detected the unfiltered R-band magnitude of 16.2 (Shumkov et al. 2014; Balanutsa et al.

2014). Compared to the historical R-band data, it is 3.4 mag lower. When converting to flux density at

13800Å, it corresponds to about 4.5 mJy. Then, the radio-loudnessof J0809+5341 isR = 70 during

the 2014 optical flare. As a comparison,R = 1800 is estimated during quiescence, reinforcing the

classification of the object as a radio-loud quasar.

Optical flaring of blazars have been studied for over five decades (e.g., Goldsmith & Kinman

1965; Pollock et al. 1979; Angel & Stockman 1980), and correlations between optical and radio

flares have been detected in some cases, e.g., in the prominent radio AGN AO 0235+164 and 3C 345

(Balonek & Dent 1980; Babadzhanyants & Belokon 1984). Long-term multi-band monitoring of a

sample of blazars shows a tight correlation between the radio and optical luminosities (Arshakian et

10



Fig. 4. The radio light curve of J0809+5341 observed in the OVRO monitoring programme (Richards et al. 2011) at 15 GHz, from 2008 to 2016 (circles). The

date of the major optical flare in 2014 is indicated with a dashed vertical line. Our VLBI “core” flux density data points are plotted with different symbols:

5-GHz EVN (up triangle), 22-GHz KaVA (square) and 43-GHz KaVA (right triangle).

al. 2010; Wierzcholska et al. 2015). At the moment, it is not clear yet whether a similar correlation

exists for J0809+5341, but we note that the major optical flare in 2014 took place at the same time

when the 15 GHz radio flux density reached its the peak in April(Fig. 4). Our VLBI observations

were performed several months later, when the total radio flux density had already dropped consider-

ably. The VLBI flux densities at various frequencies and epochs reported in this paper show a good

consistency with the total flux density of the 15 GHz OVRO light curve (Fig. 4), indicating that the

total flux density is dominated by the compact VLBI core, and the core has a flat radio spectrum

during this relatively quiet stage.

Recently, Paliya et al. (2015) reported the first detection of J0809+5341 in the X-ray and

γ-ray bands. This increase in high-energy emission is coincidental and likely associated with the

giant optical flare. As mentioned earlier, the seed photon sources for inverse Compton scattering
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may originate in the BLR, the molecular torus, or the radio core. Paliya et al. (2015) found that the

γ-ray properties are consistent with an emission region outside of the BLR. In this case the flaring

radio emission is expected to be completely synchrotron self-absorbed, and the observed maximum

in radio flux density is likely a chance coincidence. When theshocked ejecta travel along the jet, we

expect to see an increase of radio emission as it becomes transparent, first at the highest frequencies,

as predicted by the shock-in-jet model (Marscher & Gear 1985; Valtaoja et al. 1992). The fact that

there has been no increase at 43 GHz in our monitoring impliesthat the flaring radio emission was

either very short-lived, or the shocked ejecta has not propagated yet to the optically thin region.

Alternatively, the optical flare and the radio outburst, as well as the increase in the high-

energy flux are physically related. Most blazar outbursts are known to occur at pc-scale distances

from the central engine, around the radio core region (see e.g. Marscher 2013, for a review). This

can be confirmed by long-term monitoring observations with dense time sampling, from radio toγ-

rays, supplemented with high-resolution VLBI monitoring in the radio. Such programmes are being

undertaken for some of the most prominent blazars (e.g., Marscher et al. 2008, 2010; Agudo et al.

2011, 2011?; Orienti et al. 2013; Jorstad et al. 2013) but notfor J0809+5341. However, it is also

possible that no new jet component was associated with the flare of J0809+5341, as, e.g., found for

the blazar Mrk 421 by Piner & Edwards (2005). This would suggest that the jet rapidly loses its

kinetic energy and does not reach the region that can be imaged with the resolution offered by VLBI.

4.2 The brightness temperature and the implications for the Doppler-boosting factor

Based on the VLBI-measured flux density and source size presented in Sect. 3.1, we calculated the

apparent brightness temperature of J0809+5341 using the following equation (Kellermann & Owen

2015):

Tb = 1.22× 1012
Score

ν2θ2
(1+ z), (1)

whereTb is the brightness temperature in Kelvin,Score [Jy] is the flux density of the “core” at the

observing frequencyν [GHz], θ [mas] is the FWHM size of the best-fit circular Gaussian model. The

redshift isz = 2.133 (Healey et al. 2008). The calculated brightness temperatures for the different

VLBI experiments are listed in Table 2. The brightness temperatures are in the range of(0.2−5.3)×

1011 K. These values are typical for most other radio-loud quasars observed with VLBI at around

z = 3 (Gurvits et al. 1992, 1994; Frey et al. 1997; Paragi et al. 1999).

TheTb values at 43 GHz appear consistently smaller than those measured at lower frequencies

(Table 2). This phenomenon has also been found in previous high-frequency VLBI surveys (Lee et al.

2008). The difference derived from the statistical investigation of large samples is not simply due to
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source variability or other observing effects. A possible reason might be related to non-zero gradients

in the physical conditions in the jet flow, and high-frequency (43- and 86-GHz) VLBI observations

probe the optically thin region whereTb is intrinsically lower (Lee et al. 2008). On the other hand, as

we pointed out in Sect. 3.1, the core is not completely resolved, and in our case the fitted component

size represents an upper limit at the highest frequencies. This means that the calculatedTb values at

43 GHz are in fact lower limits. Therefore we cannot independently confirm the decrease ofTb with

frequency for J0809+5341.

The brightness temperature of blazars is amplified by the Doppler boosting effect as the ap-

proaching jets are oriented close to the line of sight. Usually, the equipartition brightness temper-

atureTb,eq ≃ 5× 1010 K (Readhead 1994) is considered to be a reasonable estimate of the intrinsic

valueTb,int. The Doppler boosting factor is thus derived from the observed brightness temperature

asδ = Tb/Tb,eq. The estimated Doppler factors (lower limits in cases wheretheTb values are lower

limits as well) for J0809+5341 listed in Table 2 range from atleast 0.4 to 10.6. The observations of

δ < 1 at some epochs might indicate a non-stationary flow of plasmaresulting in both deviations from

equipartition as well as projection effects of a curved plasma flow trajectory. However we note that

the δ values somewhat below unity in Table 2 are all estimated at 43GHz and, as discussed above,

are lower limits because the source is unresolved at this frequency. Therefore the lower values are not

inconsistent with the presence of Doppler boosting in the jet.

4.3 Comparison to jet parameters derived from high-energy observations

The spectral energy distribution (SED) of the source duringthe flare was fitted by Paliya et al. (2015)

with a synchrotron self-Compton model, confirming that J0809+5341 is a powerful blazar. Paliya et

al. (2015) note however that the high-energy properties of J0809+5341 are reminiscent of low-redshift

blazars rather than high-redshift ones. Its optical spectrum is dominated by synchrotron emission from

the jet rather than an extremely luminous accretion disk; its γ-ray spectrum is flat rather than steep;

and, it hosts a relatively low-mass black hole (108.4M⊙ ) (cf. Ghisellini et al. 2011, 2013). Our VLBI

result reveals a relativistic jet with a moderate Doppler boosting factor, consistent with typical blazar

radio properties in general. From the SED, Paliya et al. (2015) estimate a bulk Lorentz factor of

Γ = 20 in the jet, and suggest that the jet becomes radiatively efficient during the flare.

Assuming the jet parameters obtained from SED fitting by Paliya et al. (2015), we indepen-

dently estimate the Doppler factorδ, following, e.g., Urry & Padovani (1995):

δ = [Γ(1− β cosϑ)]−1, (2)

where the bulk velocity measured in the units of the speed of light c is
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β = (1−Γ−2)
1

2 . (3)

SubstitutingΓ = 20 and the jet viewing angleϑ = 3.0◦ (Paliya et al. 2015), we getδ = 19.1. It is

higher compared to the values we derived from VLBI data (Table 2). A possible reason is that we

overestimate the intrinsic brightness temperatureTb,int by a factor of∼2 by adopting the equipartition

valueTb,int (cf. Homan et al. 2006), and thus underestimate the Doppler factor by the same factor.

In the relativistic beaming model applied to the parametersof J0809+5341, the observed trans-

verse speed of a radio-emitting blob in the jet, expressed inthe units ofc is

βapp =
β sinϑ

1− β cosϑ
= 19.95. (4)

Assuming the jet model for J0809+5341 proposed by Paliya et al. (2015), usingδ = 19.1 for the

Dopler factor, we can estimate the expected apparent propermotionµ of a putative newly-ejected

superluminal jet component possibly associated with the optical flare (and the coincident radio and

high-energy emission peak) in 2014 April, following Bach etal. (2005):

µ= βappc(1+ z)D−1
L . (5)

HereDL = 16809.4 Mpc (Wright 2006), and thusµ = 0.23 mas yr−1. This slow apparent proper

motion is consistent with our results, in particular with the fact that we did not detect any sign of

a new jet component in our follow-up VLBI observations within 1.1 yr after the flare, with angular

resolutions>∼ 0.6 mas (see Table 1). If there was an emerging blob in the jet, then it was still blended

with the “core”. Another possibility is that the flare did notgenerate a jet component. Follow-up

VLBI imaging over a sufficiently long time interval may eventually reveal a jet ejection, unless the

blob is expanding and fading too rapidly to be detected several years after the flare.

5 Summary

We presented 5-GHz EVN and 22/43-GHz KaVA imaging results ofJ0809+5341 observed 7 months

to 1.1 yr after the detection of its largest optical flare in 2014 April. Our high-resolution radio images

(Figs. 2 and 3) reveal a compact unresolved core with the flux density of∼160 mJy. Frequent single-

dish monitoring observations at 15 GHz with the OVRO 40-m radio telescope (Fig. 4) in the period

between 2008 and 2016 showed that source flux density was changing within about a factor of two

compared to its quiescent level. Brightness temperature and Doppler boosting factor estimated for

J0809+5341 from the VLBI data are consistent with the presence of a relativistically beamed blazar

jet. This conclusion, and the blazar identification of J0809+5341 is reinforced by recent X-ray and

γ-ray data (Paliya et al. 2015) which also provides evidence for relativistic jet beaming. If there

was any jet ejection associated with the major flare, the estimated slow apparent proper motion (µ =
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0.23 mas yr−1) of the blob explains why no significant structural change ofthe compact radio source

could be detected within only 1.1 yr after the event.
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