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Abstract

Introduction: Blood infections from multi-drug-resistant Salmonella pose a major health burden. This is especially true because
Salmonella can survive and replicate intracellularly, and the development of new treatment strategies is dependent on expensive and
time-consuming in vivo trials. The aim of this study was to develop a Salmonella-infection model that makes it possible to directly
observe Salmonella infections of macrophages in vivo and to use this model to test the effect of antimicrobials against intra- and extracel-
lular Salmonella in order to close the gap between in vitro and rodent-infection models. Methods: We established suitable Salmonella-
infection conditions using genetically engineered zebrafish and Salmonella-expressing fluorescent proteins (green fluorescent protein
(GFP) and/or mCherry). Results: We detected Salmonella inside and outside zebrafish larvae macrophages. Administration of the cell-
impermeable antibiotic tobramycin removed Salmonella residing outside macrophages but did not affect Sa/monella in macrophages,
whereas ceftriaxone successfully cleared both types of Salmonella. Salmonella inside and outside macrophages experienced substantial
DNA damage after administration of fluoroquinolones consistent with the excellent cell penetration of these antibiotics. Conclusions:
The zebrafish-larvae model enables testing of antimicrobials for efficacy against extra- and intracellular Sa/monella in a complex in vivo

environment. This model thus might serve for antimicrobial lead optimization prior to using rodent models.
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1. Introduction

Salmonella is a major cause of systemic infections
with a high fatality rate in low- and middle-income coun-
tries. As such, it is an significant health burden in those
countries [1]. Salmonella can survive and replicate intracel-
lularly in many cellular types, including macrophages [2].
This is particularly problematic because a number of reg-
ularly used antibiotics are unable to cross cell membranes
and therefore cannot reach intracellular Salmonella [3-5].
After termination of the antibiotic intervention, these sur-
viving intracellular pathogens can reemerge and lead to a
reinfection of the organism [6].

Increasing resistance to currently used antibiotics [7,
8] and the low number of promising novel antibiotics pose a
major threat to modern medicine and human health world-
wide. This threat has the potential to become one of the
most serious challenges in modern medical practice [9—13].
However, the development of anti-invective treatment regi-
mens is expensive and the return of investment is relatively
small, as efficient antibiotics rarely make it onto the market
[14].

Due to poor biodistribution and pharmacokinetic-
model properties, in vitro tests often do not mirror the ef-
ficiency of antibiotic compounds and formulations in vivo

[15]. Thus, in addition to in vitro testing, novel antibiotics
need to show activity in expensive and time-consuming in
vivo trials. Several in vitro and in vivo models have been
described, suitable to investigate Sa/monella infections in-
cluding underlying molecular mechanisms and pathogen-
host interactions. The wide variety of described models in-
cludes in vitro models like enteroids and organoids, and in
vivo models like C.elegans, insect larvae, zebrafish larvae,
chicken embryos, rodents and calves [16-20].

In this work, we describe a zebrafish-larvae-(ZFL)-
based vertebrate model, optimized for the screening of an-
tibiotics. We can distinguish between their intra- and extra-
cellular efficiency against Salmonella. The proposed model
is an alternative to commonly used rodent models, enabling
researchers to reduce the costs for the development of novel
anti-infectives or treatment regimens and to increase the
throughput of compound screenings. The advantages of
ZFL include the ease of nursing and drug injection, their
transparency, which allows for fluorescence-based imag-
ing, and a much higher throughput compared to other an-
imal models due to their short reproductive cycle and high
number of offspring [21]. In contrast to in vitro screen-
ing models, a ZFL-based model makes it possible to ob-
tain pharmacological information, to identify the toxicity of
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compounds, and to observe the effects of compounds that
only work in vivo (e.g., prodrugs, effects on pathogen—host
interactions, etc.). Due to its unique properties, the ZFL an-
imal model was already proposed as an early-stage screen-
ing tool for studying pharmacological aspects like the cir-
culation behavior and the renal and macrophage clearance
of a variety of drugs [22-25]. Early macrophages in ZFL
appear 22 hours post fertilization (hpf). Macrophages are
capable of phagocytosing bacteria within the ZFL blood 30
hpf [26,27]. ZFL have previously been used as infection
models including for Salmonella [28-30] and in antibiotic
activity testing against extracellular pathogens [29,31-33].
Here, we established ZFL as a model for testing antimicro-
bials against intracellular Salmonella by infecting geneti-
cally engineered zebrafish selectively expressing KAEDE
within macrophages [34] with Salmonella expressing fluo-
rescent reporter proteins (GFP and/or mCherry).

2. Materials and Methods
2.1 Materials

Peptone (No. 8952.2), yeast extract (No. 2904.4),
and agar (No. 5210.2) were obtained from Carl Roth
GmbH, Karlsruhe, Germany. Methanol (Art. No.
34860), triethylamine (No. 471283), triton X-100 (No.
648466), N-phenylthiourea (No. P7629), tricaine (ethyl-3-
aminobenzoate methane sulfonate) (No. E10521), ceftriax-
one (No. C5793), tobramycin (No. T4014), ciprofloxacin
(No. 17850), moxifloxacin (No. SML1581), and gemi-
floxacin (No SML1625). were purchased from Merck
& Cie, Buchs, Switzerland. Ethanol (No. 24562) was
obtained from Honeywell, Riedel-de-Haén, Seelze, Ger-
many. Sodium chloride (No. A2942) was obtained from
AppliChem GmbH, Darmstadt, Germany. LB Lennox
medium: peptone (20 g), yeast extract (10 g), and sodium
chloride (10 g) were dissolved in 2 liters of water, and
the pH was adjusted to 7. Agar plates: microbiological
grade agar (15 g) was dissolved in 1 liter of water and
autoclaved for 20 min at 15 psi liquid cycle; 50 pg/mL
kanamycin was added, and the medium was distributed to
10 cm petri plates (25 mL per plate) and allowed to cool
down to 25 °C. An attenuated Salmonella SDB15 SL1344
AaroA strain was used for the infection models [35]. For
constitutive mCherry expression, Salmonella were trans-
formed with a pSC101-derived episomal construct express-
ing mCherry under the constitutively active Pybal promoter
[36,37]. For the DNA damage reporter system, Salmonella
were transformed with a pSC101 backbone containing the
Pcad promoter of colicin D, fused to gfp-ova encoding an
unstable variant of the green fluorescent protein (GFP) and
the PrecA promoter fused to mCherry [38—42].

2.2 Methods
2.2.1 Growth Curve of Salmonella

Bacteria from a glycol stock kept at —80 °C were
streaked on LB agar containing 50 pg/mL kanamycin at

37 °C o/n. A single colony of bacteria was taken the next
day, inoculated in 3 mL of LB medium with 50 pg/mL
kanamycin, and incubated overnight at 37 °C and 250 rpm.
Then 0.5 mL of the culture was added to 50 mL fresh LB
medium with 50 pg/mL kanamycin and incubated at 37 °C
and 200 rpm. The optical density at 600 nm was measured,
and samples were taken from the culture every 15 min for
3 h. The samples were each diluted in 1:10 steps in D-PBS
until a final dilution of 10~7 and plated. The plates were
incubated at 37 °C o/n, and colonies were counted the next
day. Average colony-forming units (CFUs) were plotted
against ODgg( values of each time point.

2.2.2 Preparing Salmonella for Injection

Bacteria were prepared for injections with an
overnight culture followed by inoculation of a 50 mL
culture as described above. Then 1 mL samples were
taken in 30 min steps until the ODggy Was between 0.8
and 1 (experimentally validated exponential growth phase;
data not shown). From then on, the bacteria were kept on
ice. Next 6 mL of the 50 mL culture were centrifuged at
2000 G for 10 min. The supernatant was discarded. The
amount of CFU was calculated according to the calibration
described in 2.2.1, and the pellet was resuspended in
Dulbecco’s phosphate-buffered saline to get the desired
CFU concentration.

2.2.3 Zebrafish Husbandry and Larvae Collection

Zebrafish (Danio rerio) larvae (kindly provided
by Prof. Dr. M. Affolter and Dr. H. Belt-
ing, University of Basel, Switzerland) were obtained
from adult Tg(mpegl:Gal4;UAS:Kaede) fish [34,43] with
macrophages expressing EGFP or wild-type (AB/TU) fish
[44] and were kept at 28 °C in a zebrafish-culture medium
supplemented with 30 ug/mL 1-phenyl-2-thiourea (PTU).
All fish were kept in accordance with Swiss animal-welfare
regulations [22,23].

2.2.4 Zebrafish-Larvae Experiments

The ZFL were mechanically dechorionized 2 days
post fertilization (dpf) using two jeweler’s forceps (Du-
mont No. 5, L 4 % in., Inox alloy), anaesthetized with
0.01% tricaine, embedded in 0.3% agarose containing tri-
caine and PTU, and injected with the indicated amounts of
the selected Salmonella strain into the duct of Cuvier (if
not stated differently) using a micromanipulator (Wagner
Instrumentenbau KG, Schoffengrund, Germany), a pneu-
matic PicoPump PV830 (WPI, Sarasota, Florida, USA),
and a Leica S8APO microscope (Leica, Wetzlar, Germany).
From then on, the ZFL were kept at 35 °C until the end of
the experiment unless stated differently. At the indicated
time points, the infected ZFL were injected with the given
amounts of antibiotics.
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Fig. 1. Infection-model validation: Treatment of systemic Salmonella infection with ceftriaxone or tobramycin. (A) Experimental

procedure. ZFL expressing KAEDE (green) under macrophage-specific promoter mpeg, were injected intra venously (i.v.) with mCherry-

expressing Salmonella (300 CFU) and incubated at 35 °C. Then 1 h after Salmonella injection, the fish were injected i.v. with either

PBS (control), ceftriaxone, or tobramycin (600 pg per antibiotic per fish). Confocal images were taken 7 h and 1 day after Salmonella

injection, and survival studies were carried out until 2 days post Salmonella injection. (B) Kaplan—Meier curve of survival studies 048 h

after Salmonella injection. Survival probability including 95% confidence intervals (dotted lines, n > 10). Observable heartbeat served

as the survival criterium. (C) Confocal images of ZFL tail region 7 h and 24 h post Salmonella injection. Green: KAEDE (macrophages),

red: mCherry (Salmonella).

2.2.5 Imaging and Data Analysis

At the indicated time points, the fish were imaged us-
ing either a confocal-laser scanning microscope (either an
SP5-II-MATRIX, Leica, Wetzlar, Germany, equipped with
a 25x HCX IRAPO L (NA 0.95) objective or an Olympus
FV 1000 inverted microscope, Olympus Ltd, Tokyo, Japan,
with a 20x UPLSAPO (NA 0.75) objective) and, where in-
dicated, the number of surviving fish was counted. Visual
inspection to discriminate between living and dead larvae
was done with a Leica SSAPO microscope (Leica, Wetzlar,
Germany). The presence of a heartbeat was chosen as the
survival criterion. Only living larvae (with an observable
heartbeat) were used for confocal imaging. The image anal-
ysis was carried out using Fiji ImageJ v. 1.52n (U.S. Na-
tional Institutes of Health, Bethesda, Maryland, USA) and
OMERO.web v. 5.9.1 (https://www.openmicroscopy.org/).
A minimum of 3 ZFL were imaged in all settings. The area
for the quantification of the fluorescent area fraction was
chosen based on a phase-contrast image of the tail region
of one ZFL. Subsequent measurements in the same exper-
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iment were done based on the same region. The statisti-
cal analysis and data plotting was carried out using Orig-
inPro 2018 (64-bit) SR1 b9.5.1.195 (Academic) Software
(OriginLab Corporation, Northampton, MA, USA). A min-
imum of 10 ZFL per group were used for survival analysis.

3. Results
3.1 Model Optimization

To evaluate the appropriate number of colony-forming
units (CFU) that need to be injected into the ZFL for drug
screening, we injected either 30,000, 20,000, 10,000, 7500,
5000, 3000, or 1500 CFU Salmonella into the ZFL and
kept them at 28 °C. At each inoculum size, the Salmonel-
lae were easily detectable within the whole ZFL using con-
focal imaging (Supplementary Figs. 1,2). Some colo-
calization of the green (KAEDE of the macrophages) and
the red (mCherry of Salmonella) fluorescence could be ob-
served 2 h post injection of 3000 and 1500 CFU, indi-
cating a fraction of intracellular Salmonella, while other
Salmonella seemed to remain in the vasculature. After in-
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Fig. 2. The effect of gyrase inhibitors on SOS-DNA damage-reporter Salmonella in ZFL blood vessels. (A) ZFL were injected i.v.
with SOS-DNA damage-reporter Salmonella (300 CFU) and incubated at 35 °C. Reporter Salmonella constitutively express mCherry
with an increased mCherry expression after DNA damage. gfp is exclusively expressed after DNA damage. Ninety min after Salmonella

injection, the fish received either no treatment (control), or an i.v. injection of either ciprofloxacin, moxifloxacin, or gemifloxacin

(600 pg of antibiotic per fish). Confocal images were taken 90 min after the antibiotic injection. (B) Confocal images of GFP and

mCherry fluorescence. Green: GFP (cda promoter), red: mCherry (recA promoter). (C) Percentages of areas with GFP or mCherry

fluorescence, respectively, 90 min after antibiotic injection. Bars: average; horizontal line: median; whiskers: SE; n > 3.

jections lower than 5000 CFU, the red mCherry signal of
Salmonella largely vanished from ZFL circulation within
24 h. Survival was clearly observable to be dependent on
the dose: doses higher than 5000 CFU led to a rapid death
of the fish within 24 h.

We tested infections at 35 °C, which lies within the
optimal temperature range for Salmonella growth (35-37
°C) [45]. While 35 °C is still well tolerated by ZFL, higher
temperatures (nearer to 37 °C) lead to an unsatisfactory sur-
vival rate [46]. Keeping the model as close as possible to
human body temperature is important since the efficacy of
some antibiotics is highly temperature dependent. For ex-
ample, the EC5( of ciprofloxacin decreases by >75% with
a 10 °C temperature increase [47]. Injections higher than
300 CFU at 35 °C led to rapid deaths of the ZFL. An injec-
tion of 300 CFU led to a survival rate comparable to 3000
or 1500 CFU in fish maintained at 28 °C, but a bacterial
spread more comparable to an injection of 10,000 CFU or
more when maintained at 28 °C (Supplementary Fig. 3),
thus providing a more informative setting.

3.2 Validation of the ZFL Blood-Infection Model

We determined the impact of ceftriaxone and to-
bramycin treatment on ZFL infected with 300 CFU of
Salmonella. Differentiating between intra- and extracellu-

lar efficiency is a major strength of the proposed model.
Ceftriaxone and tobramycin were chosen to validate the
model because of their known distinct efficiencies in killing
intracellular Salmonella [48,49]. Ceftriaxone is used to
treat salmonellosis in humans [50].

The EDs5g of tobramycin was 600 pg and at higher
doses 80-90% of ZFL survived 24 h post infection (Fig. 1,
Supplementary Fig. 4). Based on an larval blood volume
of ~80 nL [51], this corresponds to a dose of 7.5 mg/kg as
recommended for treating a “serious infection” in human
patients [52]. Confocal imaging of tobramycin-treated ZFL
revealed a large number of remaining Sa/monella, but these
bacteria were all confined to macrophages, consistent with
the poor cell penetration of tobramycin and other amino-
glycosides [48]. At later time points, a reemergence of an
mCherry signal in the vasculature indicated a release of sur-
viving Salmonella from macrophages and a restarting of
proliferation. In contrast to tobramycin, ceftriaxone-treated
ZFL showed a high survival rate and almost no residual bac-
teria in the circulation and macrophages. These results were
consistent with the poor cell penetration of tobramycin and
excellent cell penetration and clinical efficacy of ceftriax-
one [48,49], and they validate ZFL as a model for deter-
mining extra- and intracellular antimicrobial activity in live
animals.
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Fig. 3. The effect of gyrase inhibitors on SOS-DNA damage-reporter Salmonella within Salmonella containing vacuoles (SCVs).
ZFL were injected i.v. with SOS-DNA damage-reporter Salmonella (300 CFU) and incubated at 35 °C. Reporter Salmonellae constan-
tively express mCherry, with an increased mCherry expression after DNA damage. gfp is exclusively expressed after DNA damage. (A)
Sites of imaging. Imaging of (B): A2 and of (D): Al. (B) GFP and mCherry fluorescence (DNA damage response within SCVs) 4 h
after moxifloxacin injection. Ninety min after Sa/monella injection, fish were injected i.v. with either 600 pg tobramycin only or 600 pg
tobramycin and 600 pg moxifloxacin. Confocal images were taken 4 h after antibiotic injection. (C) Percentages of areas with GFP or
mCherry expression, respectively, 4 h after antibiotic injection. (D) GFP and mCherry expression (DNA damage response within SCVs)
1 day after gyrase inhibitor treatment. 90 min after Salmonella injection, fish were injected i.v. with 600 pg tobramycin to eradicate
free Salmonella outside of SCVs. Ninety min after tobramycin injection, ZFL received either no second treatment (control), or a second
injection of either ciprofloxacin, moxifloxacin, or gemifloxacin (600 pg per antibiotic per fish). Confocal images were taken 1 day post
Salmonella injection. (E) Percentages of total areas with GFP signal 1 day after gyrase inhibitor treatment. (B) and (D): Green: GFP

(cda promoter), red: mCherry (recA promoter). (C) and (E): Bars: average; horizontal line: median; whiskers: SE; n > 3.
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3.3 DNA-Damage-Reporter Model

We also tested a model using ZFE embryos infected
with DNA-damage reporter Sa/monella, in which genotoxic
stress induces red and green fluorescence. These reporter
Salmonella carry the following two promoter fusions re-
sponding to DNA damage on a pSC101 backbone: The
Pcad promoter of colicin D fused to gfp-ova encoding an
unstable variant of the green fluorescent protein and the
PrecA promoter fused to mCherry [38—42]. PrecA has mod-
erate activity even in absence of genotoxic stress resulting
in baseline red fluorescence of the reporter strain, with an
increasing mCherry expression and red fluorescence after
genotoxic stress. A detectable GFP signal is expected to
only appear after induction of a DNA damage response. In-
fection of ZFE with these bacteria without any additional
treatment yielded detectable mCherry but no GFPsignals,
as expected (Fig. 2).

To validate the capability of this model to assess the
in vivo efficiency of antibiotic compounds targeting bacte-
rial DNA in- and outside host Macrophages, we tested the
effect of 3 distinct fluroquinolones (which inhibit DNA gy-
rase and cause DNA damage), known to be effective against
Salmonella, namely ciprofloxacin, moxifloxacin and gemi-
floxacin [53-55].

After administering all three of the tested fluoro-
quinolones, GFP and intensified mCherry fluorescence ap-
peared, indicating that the antibiotics had reached their
Salmonella targets (Fig. 2). To evaluate the effectiveness
of gyrase inhibitors on intracellular Salmonella, extracel-
lular Salmonella were eradicated by co-administering to-
bramycin. The remaining intracellular Salmonella still re-
ported substantial DNA damage consistent with excellent
cell penetration of the fluoroquinolones (Fig. 3).

4. Conclusions

Testing antimicrobials in vivo in rodents is resource
consuming and raises ethical concerns. Efficacy data
are usually end-point measurements only. ZFL are easy
to generate in large numbers, and their transparency en-
ables real-time monitoring of infections and treatment re-
sponses using fluorescence microscopy. We established
suitable infection conditions and localized Salmonella in-
side macrophages using fluorescent zebrafish lines and flu-
orescent Sa/monella strains. Using these methods, we could
demonstrate differential access of tobramycin and ceftriax-
one to intra- versus extracellular Salmonella. Using DNA
damage-reporter, we could even directly monitor the action
of fluoroquinolones on extra- and intracellular Salmonella.
The results from this ZFL model were entirely consistent
with the well-characterized permeability properties of the
three antibiotics and their suitability for treating systemic
Salmonella infections in human patients [56—59]. Even the
effective doses of tobramycin were comparable to recom-
mendations for extracellular infections in humans. Our ZFL
model thus appeared to be suitable as an informative and

predictive in vivo model for antimicrobial-activity testing
against intra- and extracellular pathogens in vivo, closing
the gap between in vitro assays and rodent models.
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