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Abstract. Data scarcity is a common issue when training deep learn-
ing models for digital pathology, as large exhaustively-annotated image
datasets are difficult to obtain. In this paper, we propose a self-training
based approach that can exploit both (few) exhaustively annotated im-
ages and (very) sparsely-annotated images to improve the training of
deep learning models for image segmentation tasks. The approach is
evaluated on three public and one in-house dataset, representing a di-
verse set of segmentation tasks in digital pathology. The experimental
results show that self-training allows to bring significant model improve-
ment by incorporating sparsely annotated images and proves to be a
good strategy to relieve labeling effort in the digital pathology domain.

Keywords: Deep learning, image segmentation, self-training, data scarcity,
digital pathology

1 Introduction

Computational pathology is on the brink of revolutionizing traditional pathology
workflows by providing artificial intelligence-based tools that will help pathol-
ogists making their work faster and more accurate. However, the development
of such tools is hindered by data scarcity as pathology training datasets are not
as numerous and large as in other fields of research. This is particularly true
for image segmentation as per-pixel delineation of objects is one of the most
time-consuming types of annotation there is.

In this work, we investigate a method for training a binary image segmen-
tation model in a context where the segmentation ground truth is sparse. More
precisely, we focus on a setup where the training set is composed of an exhaus-
tively labeled subset Dl and a sparsely labeled subset Ds. In particular, the
images in Dl come with exhaustively labeled segmentation masks (i.e. pixels of
all objects of interest have been labeled as positive) whereas in Ds, some (un-
known) pixels belonging to objects of interest have not been labeled, hence the
sparsity. Typically, image segmentation methods require that the training im-
ages come with exhaustive pixel-wise labels. In our setup, they would allow us
to only use Dl and force us to ignore Ds. We believe that it is possible to include
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the sparsely labeled images as well, and hopefully improve the performance over
using only Dl. One way of achieving this would be to somewhat “complete”
the sparse segmentation masks and make them exhaustively labeled. Generating
pseudo-labels is precisely what self-training approaches do, therefore, we devise
an automated self-training workflow to exploit both sets.

Our self-training workflow consists of two separate phases. During the “warm-
up” phase, we train a U-Net [23] model in a classical supervised manner on Dl for
a few epochs. Then, during the “self-training” phase (sketched in Figure 1), we
repeat the following process for an arbitrary number of epochs : pseudo labels are
generated for the unlabeled pixels from images in Ds using the currently trained
model and the pseudo-labeled images are included in the training set for the next
epoch. To control the impact of model uncertainty on pseudo-labeled pixels, we
furthermore study different weighting schemes to tune their contributions to
the training loss. We use binary (“hard”) pseudo-labels and propose an auto-
calibration approach for generating them. Experiments are carried out on three
exhaustively labeled public datasets, namely MoNuSeg [12], GlaS [26] and
SegPC-2021 [7], on which sparsity is artificially enforced for evaluation purpose.
Through these experiments, we investigate the interest of our method and the
impact of its hyperparameters in different scarcity conditions and in comparison
with different baselines. In a second stage, we apply our method on an actual
sparsely labeled dataset for cytology diagnosis.

Our main contributions and conclusions are as follows: (1) We design a self-
training pipeline for binary segmentation to handle datasets composed on both
exhaustively and sparsely annotated images (Section 3). (2) We show on three
public datasets that this self-training approach is beneficial as, even in significant
scarcity conditions, it improves over using only exhaustively labeled data (see
Section 6.1). (3)We confirm the interest of the approach in a real-world scenario,
where a significant improvement of performance is achieved by exploiting sparse
annotations (see Section 6.3). (4) We show that, at fixed annotation budget,
it is not necessarily better to focus the annotation effort on exhaustive labels
rather than sparse labels (see Section 6.2).

2 Related works

Self-training is not a new family of methods and has been applied more re-
cently in the context of deep learning. A classical approach of a self-training
process is the teacher-student paradigm where the teacher model is used to gen-
erate pseudo-labels that will be used to further train the student model. The
most straightforward approach consists in using a single model alternatively as
a teacher for pseudo-labeling and then as a student for the training step [33,32],
but some approaches have used more complex interactions between the teacher
and the student [30,22]. A critical design choice for a self-training algorithm is
how it will make use of the pseudo-labels. Label uncertainty can be used to filter
out the pseudo-labels not deemed reliable enough [6,15]. Coupled with aggressive
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Fig. 1: Our approach illustrated. The model is first warmed-up on the
exhaustively-labeled data then further traind by self-training on the combined
sparsely- and exhaustively-labeled sets. A more formal definition is provided in
Algorithm 1

data augmentation, consistency between pseudo-labels and model predictions is
often formulated as a training loss [32,34,27,30].

It is not surprising that self-training has also been applied to medical image
tasks to combat data scarcity [29,21] and to computational pathology in partic-
ular. Most works in this domain currently deal with image classification tasks
[20,28,11,8,25] but detection and segmentation have also been explored. Jiayun
Li et al. [17] combine weakly-supervised learning and self-training to predict
per-pixel Gleason score across entire WSIs. Jiahui Li et al. [16] build a signet
ring cell detector by training two models on pseudo-labels generated by one an-
other. Segmentation architectures have also been trained with self-training for
cardiac MRI [1] and COVID 19-related lung infection [5] segmentation. Bokhorst
et al. [4] segment tissues from colorectal cancer patients into 13 classes repre-
senting different types of tissues. Their setup is similar to ours as their dataset
is composed of both exhaustively- and sparsely-labeled images. They apply a
weight map to tune and balance the contribution of individual pixels to the loss
but they ignore unlabeled pixels entirely during training.

Beyond self-training, there exist methods, implemented in software such as
QuPath [2], Ilastik [3] or Cytomine [19] and based on traditional computer vision
or machine learning, that allow users to interactively complete a partial hand-
drawn annotation of a given image. Among these methods are, for instance,
Graph Cut [13] and GrabCut [24], or more recently DEXTRE [18] and NuClick
[10]. While the self-training approach explored in this paper can certainly be
exploited in an interactive mode, this question will be left as future work.
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3 Methods

In the following section, we present our method, a self-training binary image
segmentation algorithm. The self-training aspects and training implementation
details are discussed separately in Sections 3.1 and 3.2 respectively.

We will denote by D = (X,Y ) ⊂ X ×Y a segmentation dataset, where X and
Y respectively represent a set of input images and their corresponding binary
segmentation masks. We will further consider a training dataset composed of two
sets: Dl = (Xl, Yl) ⊂ X × Y, the exhaustively labeled set, and Ds = (Xs, Ys) ⊂
X × Y, the sparsely labeled set. In Dl, the masks Yl are entirely determined,
since the ground truth is known for all pixels (hence the exhaustiveness). In Ds,
ground truth is only partially known: given an image x ∈ Xs, either a pixel xij

belongs to a structure of interest in which case the mask pixel yij = 1, or it is
not labeled in which case yij = 0 and no assumption can be made a priori about
the fact that the pixel belongs to a structure of interest or not. We will denote
nl = |Dl| and ns = |Ds| the sizes of the sets. The total number of training images
for a dataset will be denoted n = nl + ns.

3.1 Self-training

Our self-training algorithm is described in Algorithm 1 (and depicted in Figure
1). It features a warm-up phase during which the model is classically trained
on the set Dl (training implementation details are given in Section 3.2). The
number of warm-up epochs W > 0 is fixed so that the model is able to converge
on the labeled data. The warmed-up model is used as starting point for the
self-training phase. Each self-training round e starts by pseudo-labeling Ds with
the model θe−1. For an image x ∈ Xs, the pseudo-label assigned to pixel xij is
given by:

y
(pl)
ij =

{
1, if yij = 1

g(ŷij), otherwise
(1)

where ŷij is the sigmoid output of model θe−1 for pixel (i, j) given x as input
and g is a function for generating the pseudo-label from ŷij (see below). In other
words, we preserve the expert ground truth as pseudo-labels when available and
use the model predictions for unlabeled pixels (this is the Combine step from
Algorithm 1). With this strategy, entirely unlabeled images can also be included
in Ds. Our algorithm uses a single model (i.e. teacher = student) which is not
reset between self-training rounds.

Soft and hard pseudo-labels. We considered two different pseudo-labeling
strategies, or two different g functions (see Equation 1). Initially, we decided
to simply take g to be the identity function g(x) = x in which case the sig-
moid output of the model was used as pseudo-label. This strategy is commonly
called “soft” labeling. During the next self-training round, this soft label will be
compared to the network prediction which can be seen as a form of consistency
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Algorithm 1: Our self-training approach. The Train operation trains
the given model on the provided dataset according to the protocol ex-
plained in Section 3.2. The Predict operation produces segmentation
masks for a set of input images using the model. The Combine operation
combines ground truth masks and pseudo labels from the given sets as
explained in Section 3.1.

Data: The exhaustively- and sparsely labeled sets Dl and Ds, a segmentation
model θ0, W and E respectively the number of warm up epochs and
the total number of epochs.

Result: A self-trained segmentation model θE .
1 // Warm up
2 for e← 1 to W do
3 θe = Train(θe−1,Dl)

4 end
5 for e←W + 1 to E do
6 // Pseudo labeling

7 Ŷs = Predict(θe−1, Xs)

8 Ypl = Combine(Ŷs, Ys)

9 Dpl = (Xs, Ypl)
10 // Self-training
11 θe = Train(θe−1,Dl ∪ Dpl)

12 end
13 return θE

constraint similar to those in [14,30,27]. However, early experiments have shown
that this approach causes training instabilities. Therefore, we investigated a sec-
ond strategy where the sigmoid output is binarized using a threshold Te ∈ [0, 1]:

g(x) =

{
1, ifx > Te

0, otherwise
(2)

where e is a self-training round. We call this strategy “hard” labeling as pseudo-
labels are either 0 or 1. In addition to ensuring some sort of consistency between
the pseudo-labels and the predictions, as in the “soft” approach, this threshold-
ing also encourages the model to produce confident predictions (closer to 0 or
1). Because we want to avoid Te to be an additional hyperparameter to tune, we
propose an auto-calibration strategy based on the Dice score:

DiceT (y, ŷ) =
2×∑

i,j

[
1ŷij≥T × yij

]∑
i,j 1ŷij≥T +

∑
i,j yij

(3)

where T is the threshold applied to the model output to generate a binary
prediction. The auto-calibration procedure selects Te such that the Dice score in
(3) is maximized for the images from an exhaustively labeled set Da:

Te = argmax
T

∑
(x,y)∈Da

DiceT (y, h(x; θe)) . (4)
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The ideal choice for Da would be to use an external validation set but, in extreme
data scarcity conditions, extracting such a validation set would penalize the
performance of the algorithm by removing a significant amount of training data.
Therefore, in this context, we consider using the training subset Dl as Da. This
approach has the advantage of not requiring additional training data but also
induces a risk of overfitting which might hurt generalization performance. We
hope that the overfitting problem would be compensated by the improvement
brought by hard labeling.

3.2 Training

In this section, we will provide more information about the Train procedure from
Algorithm 1 which trains a model θ with a dataset D. We use U-Net [23] as a
segmentation architecture. We set the initial number of feature maps to 8 instead
of 64 in the original article, with the rest of the network scaled accordingly.
The main goal of this reduction of model capacity is to limit overfitting given
the highly scarce data conditions explored in this work, but it would be worth
exploring more complex architectures as future work.

The number of rounds W and E and the number of training iteration per
round are chosen independently per dataset. Every training iteration, we build
a minibatch by sampling B = 8 images uniformly at random with replacement
from Dl ∪ Dpl and by extracting one randomly located 512x512 patch and its
corresponding mask from each of these images. The batch size was selected based
on hardware memory constraints. We apply random data augmentation following
best practices for machine learning in general and for self-training in particular
[32,27]. We apply horizontal and vertical flips, color perturbation in the HED
space [31] (bias and coefficient factors up to 2.5%), Gaussian noise (standard
deviation up to 10%) and Gaussian blur (standard deviation up to 5%).

As a training loss, we average the per-pixel binary cross-entropy ℓ over all
pixels of the batch, as defined in:

ℓ(ŷ; y) = y log ŷ + (1− y) log(1− ŷ) (5)

L = − 1

B

B∑
b=1

1

|yb|
∑
i

∑
j

wij,bℓ(ŷij,b; yij,b) (6)

We multiply the per-pixel loss by a weight wij,b for pixel (i, j) of the bth

image of the batch in order to tune the contribution of this pixel to the loss (see
below). We use Adam [9] as an optimizer with initial learning rate γ = 0.001
and default hyperparameters (β1 = 0.9, β2 = 0.999, no weight decay).

Weighting schemes. Different strategies are evaluated for generating the per-
pixel weight wij,b in Equation 6. For the sake of simplicity, we will drop the
batch identifier b in the subsequent equations and denote this weight by wij . We
introduced this weight term to have the possibility to tune the contribution of
pseudo-labeled pixels when computing the loss. It is important to note that this
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weight only applies to pseudo-labeled pixels and, therefore, the ground truth
pixels will always be attributed a weight of wij = 1. It is also important to note
that the weight is inserted as a constant in our loss and the weight function is
not differentiated during back-propagation.

We study four different weighting strategies each producing an intermediate
weight wξ

ij where ξ is the strategy identifier. Because we want to avoid the
amplitude of the loss and gradients to be impacted by the weighting strategy,
we normalize it to obtain the final weight wij = wξ

ij/w
ξ, where wξ is the average

weight over all pixels of a patch. Our weighting strategies are as follows.

– “constant”: weight wcst
ij given by hyperparameter constant C ∈ R+,

– “entropy”: weight went
ij given by the entropy of the model prediction,

– “consistency”: weight wcty
ij based on model predictions spatial consistency,

– “merged”: weight wmgd
ij computed by combining the two previous strategies.

These four strategies are detailed further in Supplementary Section B.

4 Data

In this section, we describe the datasets we use to evaluate our method. It in-
cludes three public exhaustively labeled segmentation datasets: MoNuSeg [12],
GlaS [26] and SegPC-2021 [7]. The datasets are described in Table 1 and illus-
trated in Supplementary Section D. MoNuSeg contains images of tissues coming
from different organs, patients and hospitals where epithelial and stromal nuclei
are annotated. Given the variety of sources, the images exhibit significant vari-
ations of staining and morphology. The density of annotations is also quite high
compared to the other datasets. GlaS features images containing both benign
tissues and malignant tissues with colonic carcinomas. The gland annotations
vary greatly in shape and size. Originally, SegPC-2021 contains 3 classes: back-
ground, cytoplasm and nucleus. In this work, we merge the two latter classes
as we focus on binary segmentation. One of the challenges of this dataset is the
presence of non-plasma cells which should be ignored by the algorithm although
they are very similar to plasma cells. Moreover, artefacts are present on the im-
ages (e.g. cracked scanner glass in foreground, scale reference or magnification
written on the image).

Additionally, we use a dataset that actually motivated the development of
our method, a sparsely labeled dataset for thyroid nodule malignancy assess-
ment. Pathologists3 sparsely annotated nuclei and cell aggregates with polygon
annotations in 85 whole-slide images on Cytomine [19]. The training set is a set
of 4742 crops, one for each polygon annotation. The test set is a set of 45 regions
of interest (2000x2000 pixels each) with annotations highlighting structures of
interest (nuclei features and architectural cell patterns) made by a computer
science student. This dataset is illustrated in Supplementary Section E.

3 Isabelle Salmon’s team from Erasme Hospital, Brussels, Belgium.
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Table 1: Summary statistics for the four datasets used in this work. An image is
a region of interest extracted from a whole-slide image, except for the training
set of Thyroid FNAB where it is a crop of an annotation.

Dataset
Training set Test set

Images Annots Images Annots

MoNuSeg 30 17362 14 11484
GlaS 85 763 80 781

SegPC-2021 298 1643 300 900
Thyroid FNAB 4742 45 307

5 Experimental setup

In this section, we present context information for our experiments: what are
our baselines, how we have simulated sparse datasets from the public datasets
and what evaluation protocol we have applied.

Transforming the datasets. In order to fit the sparsely labeled settings de-
scribed in Section 3, we generate new datasets from SegPC-2021, GlaS and
MoNuSeg. This generation is controlled by two parameters: nl and ρ. The for-
mer is the number of images to keep in the exhaustively labeled set Dl. These
images are chosen at random without replacement in the original training set.
The latter parameter ρ is the percentage of annotations to remove from the
images to make the remaining images sparsely labeled.

Baselines. We compare our self-training approach to three baselines. The first
one, referred to as “upper”, consists in using the full dataset, without removing
any ground truth (i.e. |Dl| = n and |Ds| = 0). Since it has access to all the
annotations, this baseline is expected to represent an upper bound for all other
strategies.

The second baseline consists in using the sparsely-annotated set Ds as if
it was exhaustively annotated (Dtrain = Dl ∪ Ds). This strategy makes sense
especially for moderately sparse datasets. Indeed, convolutional layers (as in U-
Net) are able to cope with a bit of label noise given that gradients are averaged
over feature maps to update the model parameters. Therefore, a bit of noise in
certain parts of the images can be compensated by the feedback of ground truth
labels in other locations. This baseline will be referred to as “Dl ∪ Ds”.

The third and last baseline, referred to as “Dl only”, consists in not using at
all the sparsely-annotated images during the training process (i.e. Dtrain = Dl).

Our self-training approach is of practical interest if it outperforms the two
latter baselines. Moreover, the closer to the “upper” baseline the better.

Evaluation. We have built an evaluation protocol in order to ensure a fair
comparison between the different strategies and the baselines. Ultimately, all
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approaches produce a segmentation model θ that will be the one evaluated. As
an evaluation metric, we use the Dice score introduced in Equation 3 which
requires a threshold T to turn the probability map produced by the model into
a binary segmentation. To assess the performance of a model independently of
the thresholding strategy, we pick T so that the Dice score is maximized on
the test set. In other words, in order to determine the threshold, we apply the
optimization procedure described in Equation 4 where Da is the test set Dtest.
The Dice score resulting from this optimization will be referred to as “Dice∗”.
Obviously, in a context of extreme data scarcity, it will not be possible to tune
the threshold this way because of the lack of a sufficiently large validation or
test set. We will leave the design of fully automatic strategies to tune such
threshold as future work but we believe that visually tuning such threshold on
new images would be feasible in interactive applications where the segmentation
models would be mostly used to assist the labeling of new images.

Every experiment and hyperparameters combination we evaluate is run with
ten random seeds to evaluate the variability. The seed affects the dataset sparsity
(nl and ρ), model initialization, mini-batch sampling and data augmentation. We
report Dice average and standard deviation over these random seeds.

6 Results

6.1 Self-training performance at fixed nl

In order to study how our self-training approach performs under different data
scarcity conditions, we have generated several versions of our datasets by vary-
ing ρ with nl fixed and have run the baselines and different hyperparameters
combinations on the generated datasets. As discussed in Section 3.1, we have
used hard labels exclusively. The detailed hyperparameter combinations used in
this section are provided in Supplementary Section A.

Results are shown for all three datasets in Figure 2. In general, self-training
is always able to outperform significantly the “Dl only” and “Dl ∪Ds” baselines
with a significantly reduced amount of sparse annotations (the exact value is
dataset dependant, see below). Regarding the baselines, “upper” outperforms
the two others. Moreover, using sparsely labeled images as if they were exhaus-
tively labeled (i.e. Dl ∪Ds) appears not to be a good idea as it is outperformed
by all self-training approaches and baselines in almost all scarcity conditions.
The performance of this baseline increases as one adds more sparse annotations
however and is able to catch up with the “Dl only” baseline in the lowest scarcity
conditions validating the hypothesis presented in Section 5.

MoNuSeg. On this dataset, we can divide the analysis by differentiating three
scarcity regimes: extreme (ρ ∈ [95%, 100%]), significant (ρ ∈ [80%, 90%]) and
medium (ρ ∈ [25%, 75%]). Overall, most self-training approaches benefit from
additional sparse annotations as their score increase when ρ decreases. This
statement is true for all weighting strategies but the “constant” with C = 0.1 of
which the performance plateau near ρ = 85%, before decreasing as ρ decreases.
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Fig. 2: Performance of our baselines and self-training approaches with different
hyperparameters combinations with a varying ρ and a fixed labeled set size nl.
We only report the weighting schemes that show representative behaviour. Other
weighting strategies are evaluated and reported in Supplementary Section C.

In the extreme regime, all self-training approaches exhibit high variance and
are outperformed by the “Dl only” baseline, or yield comparable performance.
In this situation, it appears to be better to work in a fully supervised fashion
using only images from Dl rather then using our self-training approach. Indeed,
it seems that the noise brought by the extreme annotation sparsity (or complete
lack of annotation when ρ = 100%) degrades the model significantly which
cannot even make efficient use of the exhaustively labeled images anymore. For
ρ = 95%, two self-training approaches (“constant” with C = 0.1 and “entropy”)
are on average better then the baseline but variance is still high making it difficult
to really conclude that they are more efficient.

The situation is reversed in the significant regime where most self-training
approaches (except the “consistency” weighting strategy) outperform the “Dl

only” baseline and variance decreases significantly as well. As for the “upper”
baseline, it remains more efficient than self-training. For ρ = 90%, the most
efficient weighting strategy on average is “constant” with C = 0.1 which also
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exhibits the smallest variance of all the self-training approaches. We believe that
such a low constant is particularly helpful to combat the noise brought by the
high sparsity as pseudo-labeled pixels contribute way less during training. For
ρ = 85% and 90%, the “constant” with C = 0.1 strategy plateaus whereas others
catch up in terms of performance and variance decrease with the “entropy”
and “merged” (plot for this strategy can be found in Supplementary Figure 1)
approaches taking up the lead.

In the medium regime, three self-training approaches reach, and even slightly
surpass, the upper baseline: “constant” with C = 0.5, “entropy” and “merged”.
This result is interesting because it means that our self-training approach is able
to reach the performance of a fully supervised approach but using only ∼ 30%
of the original annotations (i.e. ρ = 75%, approximately 5k annotations instead
of 17k) which is a significant annotation budget saving. The approach “constant
(C = 0.1)” decreases with ρ indicating that such a low C prevents the model
to learn efficiently from the additional annotations (compared to the significant
regime). This strategy even finished below the Dl ∪ Ds baseline at ρ = 25%.

Overall, results on MoNuSeg are quite satisfactory. Although our approach is
struggling in an extreme scarcity regime, it quickly catches up with the “upper”
baseline as one adds more annotations to Ds. In this case, the choice of weighting
strategy matters and depends on the sparsity of the dataset.

SegPC-2021. Regarding the trend, our self-training approach behaves similarly
on SegPC-2021 (see Figure 2b) compared to MoNuSeg: all self-training ap-
proaches without exception seem to benefit from additional annotations in Ds.
Moreover, the Dl ∪ Ds baseline is particularly inefficient and finishes just be-
low the “Dl only” baseline at ρ = 25%. However, in the extreme regime, the
gap between self-training and the “Dl only” baseline is less than on MoNuSeg.
The rate at which our approach improves over the “Dl only” is also slower as
it takes a larger ρ (around 75%) for the performance of self-training to become
significantly better than this baseline. The best-performing weighting strategies
also differ. The best strategies overall are “constant” (with C = 0.5 or 1) and
“consistency”. The “merged” and “entropy” are worse than the others, although
the latter catches up at ρ = 25%. Only the “constant“ and “entropy” strategies
come close to catching up with the upper baseline but it takes proportionally
more annotations compared to MoNuSeg as it happens around ρ = 25%.

GlaS. On this dataset, all self-training approaches benefit from additional sparse
annotations in Ds. Compared to the “Dl only” baseline, the self-training ap-
proaches are never worse, even in the extreme scarcity regime, and it takes a
ρ between 60% and 75% for self-training to become significantly better. Self-
training is not able to catch up the “upper” baseline in this case.

6.2 Labeling a new dataset: sparsely or exhaustively?

The fact that self-training is able to equal or outperform the “Dl only” and “up-
per” baselines suggests that it might be more interesting to consider an alterna-
tive annotation strategy to exhaustive labeling when annotating a new dataset.
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0 20 40 60 80 100
Annotations (% of total)

0.72

0.74

0.76

0.78

0.80

0.82

D
ic

e∗

2

5

10
15

ρ = 90%

ρ = 50%

ρ = 25%

self-training

Dl only

upper

(a) MoNuSeg , nl = {2, 5, 10, 15}

0 20 40 60 80 100
Annotations (% of total)

0.65

0.70

0.75

0.80

D
ic

e∗

30

50

100 150

ρ = 90%

ρ = 50%

ρ = 25%

self-training

Dl only

upper

(b) SegPC-2021 , nl = {30, 50, 100, 150}

0 20 40 60 80 100
Annotations (% of total)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

D
ic

e∗

8

16
32

40

ρ = 90%

ρ = 50%

ρ = 25%

self-training

Dl only

upper

(c) GlaS , nl = {8, 16, 32, 40}

Fig. 3: Self-training vs. the baselines for varying ρ and nl. A point corresponds to
10 runs of a given approach (see line color) and some sparsity parameters, ρ (see
line style) and nl (see subcaptions, increasing from left to right on a constant
ρ curve, see “Dl only” for example). A new dataset is generated for each run,
with the corresponding nl and ρ values. The x value of a point corresponds to
the average percentage of annotations used by the 10 datasets, or, alternatively,
to the annotation budget dedicated for labeling the dataset.

At fixed annotation budget, it might indeed be more interesting to combine
sparse labeling and self-training rather than performing fully supervised train-
ing on an exhaustively labeled dataset (i.e. Dl only). To answer this question, we
have conducted a set of experiments where we compare a self-training approach
(entropy weighting strategy, wmin = 0.1) and the baselines all run against dif-
ferent sparsity regimes, varying both ρ ∈ {90%, 50%, 25%} and nl (values are
dataset specific). The results of these experiments are given in Figure 3 where
the values of nl we have used are also specified. In these plots, the performance
of all methods are reported over a common metric, the percentage of annotations
used, which can be equated with the annotation budget for creating the dataset.

Our experiments show very dataset-dependent results. On MoNuSeg, we ob-
serve that self-training outperforms supervised training for all tested budgets.
This indicates that it would have been more interesting to sparsely annotate this
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Table 2: Experiment on the Thyroid FNAB dataset. The self-training approach
uses the “entropy” weighting strategy and wmin = 0.1.

Method Dice∗

Self-training 89.05± 0.85
Dl only 80.30± 5.39
Dl ∪ Ds 83.62± 3.52

dataset. However, this conclusion does not hold for the other datasets as, within
the same annotation budget, using “Dl only” outperforms self-training.

This experiment also allows to compare which labeling scheme is better for
self-training: for a given annotation budget, is it better to favor a larger set
Dl or to add more sparse annotations in Ds? For MoNuSeg and SegPC-2021 ,
it appears that, for a similar annotation budget, self-training performance are
comparable whatever the values of nl and ρ. Therefore, for those datasets, it
does not really matter if the annotation budget is spent for exhaustive or sparse
labeling. For GlaS, however, there is a performance loss when switching from
a lower ρ value to a higher (e.g. going from (ρ, nl) = (90%, 40) to (50%, 8) in
Figure 3c). It indicates that, it is more interesting to label images exhaustively
rather than sparsely for this dataset.

At this point, the experiments in this section do not allow us to provide
definitive guidelines on how to focus annotation efforts to achieve optimal per-
formance on a new dataset, but at least, they show that it can be beneficial to
sparsely annotate more images than to exhaustively annotate fewer images.

6.3 Experiments on Thyroid cytologyFNAB

The Thyroid FNAB dataset presents a great opportunity to test our method
on a real case of sparsely labeled dataset. It is also interesting to note that this
dataset is larger than the three public datasets used in this study (almost 5k
images in total). In order to fit the sparsely-labeled settings we have introduced,
we split the dataset in two subsets based on the nature of the annotations. The
set Dl is assigned annotations of cell aggregates and Ds is assigned annotations
of individual cells and nuclei. The motivation for this split is presented in Sup-
plementary Section E.

Based on the results of Section 6.1, we have chosen to use the “entropy”
weighting strategy with wmin = 0.1 for our self-training approach, as it provides
consistently good results across datasets. We compare this approach with two of
our three baselines: “Dl only” and “Dl ∪ Ds”. The “upper” baseline obviously
cannot be evaluated because we do not have access to the complete ground truth.
The resulting performances are given in Table 2.

We observe that our self-training approach significantly outperforms the two
baselines and remains quite stable as its standard deviation is below 1%. This
confirms the interest of self-training when working with a sparse dataset.
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7 Conclusion

In this work, we have introduced a method based on self-training for training a
deep binary segmentation model with sparsely labeled data. Using 4 datasets,
including an actual sparsely labeled one, we have shown that the method could
indeed make use of sparse annotations to improve model performance over using
only exhaustively labeled data. For one of our datasets, our self-training ap-
proach using only 30% of the original training annotations is even able to reach
performance comparable to using all of them in a supervised way.

In the future, we want to extend the method to multi-class segmentation
and further study the impact of various training choices and hyperparameters
(model complexity, weighting strategies, soft pseudo-labeling, etc.) that we could
not explore due to time and computing resources constraints. We also want to
further study how the type of dataset (variability in images, density of ground
truth, large or small annotations, etc.) impacts the performance margins of self-
training. Moreover, in this work, we have removed annotation randomly from
the datasets. In practice, it is unlikely that the existing annotations are really
randomly chosen and it would be interesting to study the effect of the labeling
process. This work has mostly been focused on high scarcity conditions but self-
training methods have also shown to be beneficial with very large labeled and
unlabeled sets in other contexts. In computational pathology, whole slide images
usually offer a great potential for a large pool of unlabeled data. Therefore, we
would like to study how our method would perform in such a context. Finally,
we would also like to explore how our self-training algorithm could be used
in an interactive mode to assist new dataset labeling. Eventually, we want to
implement the algorithm on the Cytomine [19] platform.
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16. Li, J., Yang, S., Huang, X., Da, Q., Yang, X., Hu, Z., Duan, Q., Wang, C., Li,
H.: Signet ring cell detection with a semi-supervised learning framework. In: In-
ternational conference on information processing in medical imaging. pp. 842–854.
Springer (2019)

17. Li, J., Speier, W., Ho, K.C., Sarma, K.V., Gertych, A., Knudsen, B.S., Arnold,
C.W.: An em-based semi-supervised deep learning approach for semantic segmenta-
tion of histopathological images from radical prostatectomies. Computerized Med-
ical Imaging and Graphics 69, 125–133 (2018)

18. Maninis, K.K., Caelles, S., Pont-Tuset, J., Van Gool, L.: Deep extreme cut: From
extreme points to object segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 616–625 (2018)
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