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Abstract  13 

Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering 14 

the protein function. Thus, systematically curated clinically relevant genotype-phenotype 15 

associations are needed to understand the disease mechanism and improve therapeutic decision-16 

making. 17 

We aggregated genetic and clinical data from 172 individuals with likely pathogenic/ pathogenic 18 

(lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional 19 

data were available for a subset of 126 individuals. We explored the potential associations of 20 

variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular 21 

function, and phenotype severity using bioinformatic approaches.  22 

The GAT1 transmembrane domains 1, 6, and extracellular loop 4 (EL4) were enriched for 23 

patient over population variants. Across functionally tested missense variants (n = 156), the 24 

spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter 25 

activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold 26 
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enrichment in patients having severe disease vs. non-severe disease (P = 2.9e-3, 95% CI: 1.5 - 1 

15.3).  2 

In summary, we delineated associations between the 3D structure and variant pathogenicity, 3 

variant function, and phenotype in SLC6A1-related disorders. This knowledge supports biology-4 

informed variant interpretation and research on GAT1 function. All our data can be interactively 5 

explored in the SLC6A1 Portal (https://slc6a1-portal.broadinstitute.org/). 6 
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 17 

Introduction  18 

SLC6A1 encodes for the GABA transporter protein type 1 (GAT1), a membrane protein 19 

responsible for GABA neurotransmitter reuptake from the synaptic cleft in inhibitory synapses.1 20 

SLC6A1-related developmental and epileptic encephalopathy (DEE) is an autosomal dominant 21 

genetic disorder. Clinical manifestation of SLC6A1 DEE is characterized by childhood onset 22 

seizures and mild to severe intellectual disability. Seizure types include absence, myoclonic and 23 

atonic. Language impairment and behavioral problems have also been observed.2–4 Other 24 

frequently observed SLC6A1-related phenotypes include autism spectrum disorder (ASD) and 25 

motor dysfunction, encompassing stereotypies and ataxia. A fraction of patients have shown 26 
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intellectual disability or ASD without epilepsy (3%).2 Recent GAT1 analyses support complete 1 

or partial loss-of-function (LoF) as the primary disease-associated molecular pathology, which 2 

disrupts the reuptake of GABA.5–9 3 

Despite recent aggregation efforts,2,5,10,11 there is a need for systematically curated clinically 4 

relevant genotype-phenotype associations to understand the disease mechanism and possibly 5 

guide genetic counseling, patient management, and, ultimately, treatment. It has been shown that 6 

32 out of the 88 (36.4%) described SLC6A1 patient variants are located in the helical-7 

transmembrane segments and inter-helical hinges. In contrast, general population variants cluster 8 

in the cytoplasmic domain.2 An analysis using the GAT1 3D structure may increase the 9 

granularity of these preliminary observations and identify clinically relevant variant -to-10 

phenotype or variant-to-function associations. 3D structure analysis has previously been 11 

successful in elucidating genotype-phenotype associations in various genes.12–17 An investigation 12 

into gene variant effects across sodium channelopathies showed clustering of pathogenic 13 

missense variants in functional domains.18–22 However, due to limited available patient data for 14 

most SLC6A1 variants, meaningful associations have been difficult to establish. Currently, 15 

SLC6A1 variant interpretation is still challenging as, to date, there is no single resource with 16 

aggregated and curated data for SLC6A1-related disorders. Previous studies have suggested that 17 

transmembrane segments are important for protein function.2,4,5,10,11,23 However, clear guidance 18 

on which segments or subdomains are particularly affected is lacking. A recent study on the 19 

molecular mechanism of SLC6A1 variants, investigating 182 variants, showed that LoF variants 20 

are found predominantly around the proteins’ vertical axis.10,11 A relationship between 21 

transporter activity and literature-based disease association has been recently proposed.11 22 

However, statistical confirmation of phenotype and variant location needs yet to be established. 23 

The complexity and heterogeneity of SLC6A1-related disorders pose difficulties in 24 

disease recognition, diagnosis, prognosis, and care. The spatial analysis of genetic variants on 3D 25 

protein structures has the potential to identify genotype-phenotype correlations, as has been 26 

shown in other related neurodevelopmental disorders.24–30 As ‘phenotype’ for the analysis, 27 

clinical data of variant carriers or molecular readouts generated for the variant can be used to 28 

study the effect of different variants.30 However, this type of work requires large datasets from 29 

various sources. In our study, we build upon previous data aggregation efforts and bioinformatic 30 
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methods and present the currently most extensive effort to investigate genotype to phenotype 1 

associations for SLC6A1-related disorders. 2 

Here, we aggregated the currently largest collection of individuals with SLC6A1-related 3 

disorders and implemented a 3D-based framework28 to evaluate genetic, clinical, and functional 4 

features. Our study compiled a comprehensive dataset of pathogenic and likely pathogenic 5 

SLC6A1 variants from the literature, ClinVar,31 and our clinical research network. We also 6 

incorporated population variants from gnomAD as controls for comparative analysis (gnomAD, 7 

public release 2.1.1). Subsequently, we performed linear sequence and 3D protein structure-8 

based genotype-phenotype analysis using in vitro assay and clinical phenotype data to identify 9 

structure, to function to phenotype relationships for SLC6A1-related disorders. Finally, we 10 

deployed all data and analysis tools into the SLC6A1 Portal, a joint effort of clinical and basic 11 

science investigators in collaboration with advocacy groups, to enhance further analysis, 12 

awareness, and variant interpretation of SLC6A1-related disorders. 13 

 14 

Materials and methods  15 

Genotype and phenotype data from patients with SLC6A1-related 16 

disorders 17 

We aggregated published genetic and corresponding phenotype data from SLC6A1-18 

related disorder studies.2,5,6,11 Investigators provided unpublished genetic and phenotype data (n 19 

= 51) from the Danish Epilepsy Centre, Filadelfia, Denmark (Dr. Katrine M Johannesen and Dr. 20 

Rikke S Møller). We also included genetic and syndrome-level data from the Epi25 21 

Collaborative for Large-Scale Whole Exome Sequencing in the Epilepsy Collaborative 22 

database.32 Epi25 data are limited to genotype and International League Against Epilepsy (ILAE) 23 

syndrome categorization. The data for all patient variants (n = 172) that was evaluated, curated, 24 

and harmonized in collaboration with clinical experts, including comprehensive annotations, can 25 

be viewed in Supplementary Table 1.  26 

The functional data were aggregated from two recent studies.5,11 One study quantified 27 

GABA uptake for 182 variants from 15 cohorts, including individuals with epilepsy, 28 
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8 

developmental disorders, and healthy controls. The dataset contains pathogenic and likely 1 

pathogenic variants, variants of uncertain significance, variants that had been classified as benign 2 

or likely benign, and variants that were unclassified or had conflicting annotations.11 3 

Additionally, we included functional readouts of two variants (p.Pro361Thr & p.Leu73Phe) from 4 

a recent publication.5 Patients or their legal guardians provided signed informed consent 5 

according to the Declaration of Helsinki and local IRB requirements. 6 

 7 

Genotype data from public repositories 8 

We retrieved general population SLC6A1 missense variants (n = 158) from the genome 9 

Aggregation Database (gnomAD, public release 2.1.1) in Variant Call Format.33 Missense 10 

variant annotation was performed with Variant Effect Predictor (VEP)34, including information 11 

from public repositories.33 Pathogenic variation in SLC6A1-related disorders is mostly de novo 12 

and rarely expected to be found in general population repositories such as gnomAD.2 Thus, we 13 

used general population variants from the gnomAD database as controls. Although most variants 14 

are expected to be fully penetrant, we also calculated a gnomAD frequency cut-off for ultra-rare 15 

SLC6A1 disorder variants with incomplete penetrance using the cardiodb allele frequency app.35 16 

We accessed pathogenic and likely pathogenic ClinVar31 missense variants from the FTP site 17 

(ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/) (ClinVar, July 2021). We obtained ClinVar variants 18 

classified as of uncertain significance (VUS) from the FTP site 19 

(ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/) (ClinVar, December 2022). All genetic variants were 20 

mapped onto the canonical isoform, P30531, as defined by the UniProt database (The UniProt 21 

Consortium, 2021). 22 

 23 

Domain-specific analysis: mapping variants onto the 3D protein 24 

structure 25 

We obtained the human wild-type GABA transporter type 1 3D structure from the Protein Data 26 

Bank (PDB ID: 7SK2).23 The variants were mapped onto the structure using PyMOL.36 For each 27 

residue, we calculated a normalized functional score. First, we annotated the functional scores on 28 
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the GAT1 protein structure using the bio3d R-package.37 Second, we normalized the functional 1 

activity by calculating the average functional score reported across all residues located within a 2 

5Å radius. We define the distance from the ligand as the distance in Angstrom (Å) between the 3 

variant wild-type residue and the ligand. Since no GABA is bound to the GAT1 7SK2 protein 4 

structure, we calculated the minimum distance in Angstrom (Å) between the variant wild -type 5 

residue and Tiagabine. This GAT1 inhibitor is bound to the GAT1 structure at the GABA 6 

binding site (https://www.rcsb.org/structure/7SK2). We considered all atoms of each protein 7 

residue and the Tiagabine for the minimum distance calculation.  8 

 9 

Functional data curation 10 

We next aggregated data for 184 electrophysiologically tested variants,5,11 for which the average 11 

transporter activity has been experimentally measured. Both studies have employed a 12 

radiolabeled assay to measure the GABA reuptake activity in HEK293T cells. However, 13 

Mermer5 used scintillation counting to quantify the amount of radiolabeled GABA taken up by 14 

the cells, whereas Trinidad11 used mass spectrometry to create a high-throughput GABA 15 

trafficking assay. Despite the methodological variations between the two studies, the deviations 16 

from previous percent-wild-type (WT) levels were minimal. Mermer5 conducted their analysis 17 

without utilizing two mass spectrometry detectors (MSMS), employed different cell lines that 18 

lacked the CRISPER-Cas9 SLC6A1-knockout present in Trinidad’s11 research, and did not 19 

account for variable expression efficiencies using the Beta-lactamase (BLA)-reporter, as done by 20 

Trinidad.11 Each variants’ transporter activity is reported as a percentage of the wild -type 21 

activity.5,11 All functionally tested pathogenic variants but one (p.Val342Met) showed an LoF 22 

effect with an average WT activity below 42.8%, relative to WT activity. The threshold for LoF 23 

(42.8%) has been derived from the observed behavior of ClinVar variants predicted to be 24 

synonymous or classified as benign.11 To date, pathogenic or likely pathogenic gain-of-function 25 

has not been reported.11 We stratified all variants into three activity groups based on their 26 

average relative-to-WT GABA uptake activity: (1) 0-10% - nearly complete LoF, (2) 10-42.8% - 27 

low activity, and (3) >42.8% - WT. 28 

 29 
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Phenotypic data curation  1 

In collaboration with clinical experts, we summarized and harmonized the cognitive and 2 

syndrome level data into six cognitive and twelve epilepsy syndrome categories, respectively 3 

(Cognitive level: Severe DD/ID, Moderate DD/ID, Mild DD/ID, Learning disability, 4 

Unclassified DD, Normal; Epilepsy syndrome: Childhood Absence Epilepsy (CAE), 5 

Developmental and epileptic encephalopathy (DEE), Epilepsy with Myoclonic-Atonic Seizures 6 

(EMAS), Intractable primary Generalized Epilepsy, Generalized Epilepsy, Genetic Generalized 7 

Epilepsy (GGE), Intractable Absence Epilepsy, Lennox-Gastaut syndrome (LGS), Non-Acquired 8 

Focal Epilepsy (NAFE), Temporal Lobe Epilepsy (TLE), unclassified epilepsy, and No seizures. 9 

The classifications were regrouped for consistency by experienced epileptologists (K.M.J. and 10 

K.G.). We opted for a binary categorization for disease severity and activity into (1) severe 11 

disease and (2) non-severe disease. A clinical diagnosis of one of the following syndromes 12 

indicates a severe disease: DEE, EMAS, LGS, and intractable absence epilepsy. All the patients 13 

diagnosed with one of the four syndromes were considered severe because they impose serious 14 

life challenges due to their high seizure burden, often with significant developmental delay, and 15 

are typically resistant to many seizure medications. There was no normal cognition reported in 16 

individuals with EMAS after seizure onset. Individuals with no seizures, a diagnosis of CAE, 17 

unclassified epilepsy, generalized epilepsy, GGE, and TLE or NAFE were classified as having a 18 

non-severe disease. Individuals for which no syndrome level data were available or a binary 19 

categorization impossible were classified as ‘other’. The complete regrouping and 20 

reclassification can be found in Supplementary Table 1. 21 

 22 

Portal Design 23 

The SLC6A1 Portal utilizes the Shiny R framework from RStudio (https://shiny.rstudio.com/) 24 

to build the interactive web Portal for compatibility, expendability, and portability. The Portal is 25 

publicly available and hosted at the Broad Institute and was deployed with Google Cloud service 26 

using a self-contained Docker image (https://slc6a1-portal.broadinstitute.org/). The Portal code 27 

is available on GitHub (https://github.com/LalResearchGroup/SLC6A1_Portal). We produced a 28 

short educational video with whiteboard animation and utilized the software VideoScribe to 29 
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11 

increase the accessibility to knowledge about SLC6A1-related disorders (VideoScribe 3.9.5, 1 

Sparkol 2012: https://www.videoscribe.co/en/download/).  2 

 3 

 4 

Results  5 

Data aggregation and description 6 

We present genotype and phenotype data from the largest cohort of individuals with SLC6A1-7 

disorders to date, including 172 individuals (DS-172) with 94 unique variants, three copy 8 

number variants (CNVs), and 19 recurring variants found in 75 patients (For details on the 9 

cohort, see Supplementary Tables 1, 2, and 3). Our clinical dataset of 172 SLC6A1 variants 10 

contains 51 variants that have not been previously published (Supplementary Table 1 & 2). The 11 

most frequent variant in our cohort is p.Val342Met, which was identified in 11 patients. In 12 

addition, we report on in vitro GAT1 functional readouts for 184 unique variants (DS-184) from 13 

two sources.5,11 For 70 variants from 126 individuals (DS-126), clinical and in vitro transporter 14 

function data was available. For 57 variants from 79 individuals (DS-79), clinical and variant 15 

information, including syndrome classification, was available together with functionally tested 16 

variants to investigate the relationship between disease severity and function (Supplementary 17 

Figure 1 & Supplementary Table 1). Additionally, we mapped 162 out of 195 ClinVar missense 18 

variants of uncertain significance (VUS) onto the GAT1 3D protein structure and observed that 19 

those variants are dispersed throughout the protein’s structure (Supplementary Figure 2). 20 

We obtained general population missense variants from gnomAD (n = 158) as controls 21 

for our analyses. The majority of gnomAD variants included do not overlap with patient variants, 22 

and only 11 variants (4%) overlap between our patient dataset (n = 172) and gnomAD. To 23 

further explore these variants, we calculated the maximum allele frequency in gnomAD 24 

(Maximum credible population AF = 6.05e-05) and added the results to Supplementary Table 1.35 25 

The maximum credible population AF was determined using an estimated disease prevalence of 26 

1/619.6 (161.38/100k),38 an incidence of 2.65 per 100,000 live births,39 and a disease duration of 27 

60.9 years40 (1.65 x 60.9 = 100.485). Because the lifespan of individuals with SLC6A1-related 28 
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disorders is unavailable, we selected a population-based estimation of life years lost. In our 1 

cohort, the largest proportion of cases is attributable to the missense variant p.Val342Met, found 2 

in 11 of 172 SLC6A1 disorder patients. The allelic heterogeneity was therefore estimated as 0.06 3 

(11/172), while the genetic heterogeneity, representing the number of genes associated with the 4 

disorder, was set to 1 as our study inclusion criterion is a variant in SLC6A1. For the above 5 

calculation, we estimated an 80% variant penetrance given that few patients have been reported 6 

with an inherited variant. Using these parameters to calculate the maximum credible population 7 

frequency, we identified a gnomAD variant cut-off of 6.05e-05. None of the eleven patient 8 

variants that were also present in gnomAD exceeded the threshold set by the maximum credible 9 

allele filter. 10 

 11 

Data sharing through the SLC6A1 Portal 12 

All the aggregated datasets are integrated to enable scientists to use our rich data source for their 13 

research studies and educate providers and families on SLC6A1-related disorders. The datasets 14 

can be explored in the SLC6A1 Portal (https://slc6a1-portal.broadinstitute.org/) (Figure 1), an 15 

interactive and user-friendly web application that combines genetic and clinical data of 16 

individuals with SLC6A1-related disorders with experimental functional and annotation data on 17 

variants. Users can navigate through four sections: (1) Basic Information, (2) Educational 18 

Resources, (3) Variant Analysis, and (4) Research. By utilizing these data within the Portal 19 

infrastructure, we enable the exploration of genotype to structure, function, and phenotype 20 

associations (Supplementary Figure 4). Here, we present the SLC6A1 Portal, which provides 21 

access to the largest cohort of patients with SLC6A1-related disorders, including their clinical 22 

phenotypes and the largest dataset for in vitro GAT1 functional readouts. We include a versatile 23 

variant entry interface and a visual comparison tool that shows variant location and molecular 24 

activity within the GAT1 3D protein structure. Additionally, the portal includes a domain-wide 25 

comparison of patient vs. population variants and a functional interface for data analysis, 26 

including tools to display each variants’ distance from Tiagabine vs. GABA uptake rate and to 27 

identify hot zones on the GAT1 3D structure based on user-selected variant filters. All 28 

aggregated data is shared according to the FAIR principles to make it findable, accessible, 29 

interoperable, and reusable.41 30 
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 1 

Structure to clinical phenotype relationship 2 

To elucidate critical regions for transporter function, we retrieved, for each GABA transporter 3 

type 1 (GAT1) residue, its functional domain as classified on the recently published human 4 

structure (PDB ID: 7SK2).23 We investigated the GABA uptake activity of SLC6A1 variants by 5 

domain and found varying activity levels.5,11 Our final dataset contains functional readouts for 6 

156 missense variants (DS-156). It shows that the transmembrane helices 1/6 (TM1/6), scaffold, 7 

and extracellular loop 4 (EL4) regions harbor 83.3% of variants with low activity (<42.8%), and 8 

16.7% of variants with WT activity (>42.8%) (n = 40 variants vs. n = 8 variants with in vitro 9 

transporter activity below 42.8%).11 The scaffold in GAT1 comprises helices H3 and H8 and 10 

Linkers H3-H4 and H8-H9 primarily located in the transmembrane region and serves scaffolding 11 

functions.23,42 The domain with the lowest average transporter activity of tested variants was 12 

scaffold (18.6% average GAT1 activity); the second and third lowest were TM1/6 and EL4, with 13 

23% and 31.1% average activity, respectively. The fourth lowest is Extracellular loop 3 (EL3), 14 

with 38.2% average activity. The Linker, TMD-other, and N-terminal domains have an average 15 

activity above the threshold of WT activity at 42.8% with 44%, 45.9%, and 49.4%, respectively, 16 

but harbor variants with a wide range of activity levels ranging from nearly complete LoF to 17 

WT. In contrast, Extracellular loop 2 (EL2) and C-terminal regions showed no change in their 18 

activity, with 56.9% and 90.5% of average activity, respectively (Figure 2 A). We found no 19 

enrichment truncating/frameshift variants across different GAT1 domains. Next, we compared 20 

the enrichment of patient vs. population variants per region in the SLC6A1 gene to identify those 21 

regions that are predominantly affected by patient variants. For variants that are in the TM1/6 22 

and EL4 regions (n = 51), we found an 8.7 and 8.5-fold enrichment of patient vs. population 23 

variants (TM1/6: 95% CI: 3.6 - 23.9, P = 7.5e-9 and EL4: 95% CI: 1.9 - 78.7, P = 1.1e-3; Figure 2 24 

B). Variants in the TM1/6 and EL4 were in agreement with their functional data presented in 25 

Figure 2 A. Variants in both the N- and C-terminal regions were depleted for patient variants 26 

with an odds ratio of 0.22 for N-terminal (95% CI: 0.06 - 0.61, P = 1.3e-3) and 0.14 for C-27 

terminal (95% CI: 0.03 - 0.5, P = 2.8e-4). However, only variants in the C-terminal region were 28 

concordant with the functional data, as the N-terminal region harbored variants with a wide 29 

range of average transporter activity. We observed no enrichment for patient variants in all other 30 
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regions. The domain-wide analysis of patient vs. population variants identified the TM1/6 and 1 

EL4 regions as the most essential and the N-/C-terminal as least essential for GABA transport. 2 

 3 

Structure to molecular function relationship 4 

To explore the association between the pathogenicity of a variant and its transporter activity, we 5 

localized the missense variants, stratified them into severe LoF (0-10% activity), moderate LoF 6 

(10-42.8% activity), and WT (>42.8% activity), onto the GAT1 3D structure. Annotated 7 

functional scores were normalized over proximal residues across the entire GAT1 3D structure 8 

(see Methods). A visual inspection of the GAT1 3D structure suggests regions that harbor 9 

predominantly severe LoF mutations (Figures 3 A & B). A similar analysis on 162 out of 195 10 

ClinVar missense VUS for which a 3D normalized score (For details on the normalized score, 11 

see methods) was available did not reveal the same pattern. The variants were dispersed, and 12 

only 29/162 (17.9%) and 64/162 (39.5%) fall into the complete LoF and moderate LoF group, 13 

respectively (Supplementary Figure 2 & 3). We used a spatial distance scoring framework to 14 

explore spatial position-to-function relationships that measure each variant’s distance from the 15 

ligand.28 We calculated the ligands’ distance from each variant in all three activity groups 16 

(Figure 3 C) and performed a two-tailed Wilcoxon rank sum test. The <10% WT activity group 17 

showed the lowest mean ligand distance, and the >42.8% WT activity group was the highest (P = 18 

2.2e-10). Overall, we observed that the higher the average transporter activity, the greater its 19 

distance from the ligand in a sub-analysis with removed missense variants whose wild-type 20 

residue is glycine or proline residues which are known to be “helix breakers”.43,44 We found the 21 

lowest mean ligand distance for variants in the <10% WT activity group and the highest for the 22 

>42.8% WT group (P = 1.1e-8) (Supplementary Figure 5). When considering variants whose 23 

wild-type residue was either glycine or proline, an insufficient number of variants remaining 24 

impeded a meaningful result (Supplementary Figure 6). We also investigated the distance from 25 

the GABA transporter axis (defined as the distance in Angstrom (Å) of each variant from the 26 

GAT1 axis), from TM1 and from TM6. Similarly, we observed an increasing average transporter 27 

activity with increased distance from the transporter axis, TM1 and TM6. Variants in the <10% 28 

WT activity group showed the lowest mean transporter axis distance, and the >42.8% WT 29 
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activity group showed the highest for the transporter axis, TM1, and TM6. The strongest signal 1 

observed was the distance from TM6 (P = 8.6e-9) (Supplementary Methods and Figures 7-9). 2 

 3 

Molecular function to clinical phenotype relationship 4 

The clinical spectrum of SLC6A1-related disorders is broad. To determine if in vitro functional 5 

readouts are associated with disease severity, we compared the number of patients with severe 6 

vs. non-severe disease for variants grouped by their average functional activity in relation to WT 7 

(0-10% - complete LoF, 10-42.8% - moderate LoF, and >42.8% - WT). Severe disease is defined 8 

by a reported high seizure burden, often with significant developmental delay and refractory 9 

seizures resulting in pronounced life challenges and inability to support themselves as prevalent 10 

in epilepsy syndromes such as DEE or LGS (see Methods). For variants with complete loss of in 11 

vitro GAT1 reuptake, we found a 4.6-fold enrichment of patients with severe vs. non-severe 12 

disease (P = 2.9e-3, 95% CI: 1.5 - 15.3) compared to variants with moderate LoF and WT 13 

function. Other comparisons were not significant. 14 

 15 

Discussion 16 

We aggregated SLC6A1 data from various sources to perform joined genetic, protein 17 

structure, molecular, and clinical data analysis to study genotype-phenotype relationships in 18 

SLC6A1-related disorders. We show that a reduced distance from the ligand was associated with 19 

a greater reduction in transporter activity and that lower GAT1 transporter function is associated 20 

with more severe phenotypic SLC6A1-related disorder presentations marked by significant life 21 

challenges (i.e., intractable epilepsy, moderate to severe ID, and ASD). To make all aggregated 22 

data available for educational purposes and research projects, we developed the SLC6A1 Portal 23 

(https://slc6a1-portal.broadinstitute.org/). In addition to data access, we provide tools that allow 24 

the evaluation of genetic, clinical, and functional features of SLC6A1-related disorders on the 25 

GAT1 3D structure.  26 

Patient and population variant positions along its protein sequence or 3D protein structure 27 

can inform whether a particular variant within a specific region is more likely to cause disease.45–28 
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48 Previous studies suggested that pathogenic missense variants primarily cluster near the GABA 1 

binding pocket, located around the sixth and seventh transmembrane domains of the GAT1 2 

protein.4,10,11 However, quantification and validation using a statistical approach were lacking. 3 

We demonstrate for the first time that the variants within the transmembrane region of GAT1 are 4 

predominantly LoF. Additionally, we observe that missense variants classified as VUS are 5 

dispersed throughout the protein’s structure and that 42.6% of those variants fall into the WT 6 

group (>42.8% WT activity) and 17.9% fall into the complete LoF group (<10%), indicating that 7 

potentially a subset of VUS might be pathogenic. Future patient variant reports, and functional 8 

analysis will likely resolve the clinical significance of this subset of VUS. As previously 9 

suggested, we could not confirm any cluster of low-activity variants within the seventh 10 

transmembrane domain.4,10 Further, we refine the association using two orthogonal approaches. 11 

First, we investigated domain-wide changes in the transporter activity of tested patient variants. 12 

Second, we compared the enrichment of patient vs. population variants across all domains and 13 

demonstrated that the TM1/6 and EL4 domains harbor variants exclusively with a high decrease 14 

in in vitro transporter assay activity (<42.8%) compared to WT. Both TM1/6 and EL4 were 15 

enriched for patient variants. In line with our observation, previous studies on paralogous 16 

SLC6A1-14 genes also pinpoint the TM1/6 region as crucial based on substantial sequence 17 

conservation in central regions of the protein structure and the sodium ion binding sites.49–54   18 

We show for the first time a spatial association of transporter activity and the distance 19 

between the variant position and the ligand Tiagabine. We could statistically quantify that the 20 

distance from the ligand was significantly different for the nearly complete LoF activity group of 21 

variants (<10%) compared to the 10-42.8% and >42.8% average activity groups to WT groups. 22 

Overall, the greater the distance of a variant from the ligand, the closer the transporter activity 23 

was to WT activity and vice versa. Our results align with previous observations from our team 24 

and other research groups that indicated that missense variants with a higher decrease in activity 25 

compared to WT were predominantly located in the protein’s transmembrane domain and 26 

suggested upon visual inspection that LoF variants might be enriched near the transporter axis.11 27 

Concordant with the suggestive preliminary data by Trinidad,11 our 3D variant mapping also 28 

shows that variants with very low to low activity, compared to WT, tend to be closer to the 29 

proteins’ vertical axis. In contrast, variants with WT-like activity tend to face outwards, meaning 30 

that those variants tend to be consistently on the exterior of the protein structure and might have 31 
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less interference with the protein’s transporter function. This pattern agrees with GAT1 function 1 

as a gateway for GABA, and anything that could obstruct that gateway is potentially impairing 2 

its function as a transporter.11,23,55 We observed individual variants clustering around the vertical 3 

protein axis, causing a decreased channel function through defective transporter function. 4 

However, it’s important to note that impaired trafficking to the cell surface in cell culture has 5 

been demonstrated also to cause channel dysfunction.5,6,11 Variants that cause channel 6 

dysfunction through impaired trafficking are, however, not captured in our analysis. Also, an 7 

assay in HEK cells is not a model for investigating cellular trafficking. Further trafficking-8 

specific functional evaluation of these variants is required to determine a trafficking defect. 9 

Additionally, it has been shown for related proteins from the SLC6A1-14 transport family 10 

that the transmembrane region around transmembrane helices 1 and 6 is a crucial element for a 11 

functioning transporter protein.49–51,56–59 Although previous studies could show a relation 12 

between function and pathogenicity5,11 in selected SLC6A1 variants, no study has yet established 13 

an association with disease severity. This study could show now that in vitro functional readouts 14 

of SLC6A1 variants were associated with disease severity. We observe an enrichment of LoF 15 

variants near the ligand. As this area is essential for GABA transport, disruptions within the 16 

transmembrane domain can cause devastating disease, potentially due to complete LoF – instead 17 

of partial LoF. Other research groups also identified crucial regions within the transmembrane 18 

domain near the GAT1 axis.2,11,23,54 We found that variants with low activity compared to WT 19 

and disease severity were associated with a 4.6-fold enrichment of patients with severe disease 20 

vs. non-severe disease. Here, severe disease is defined as having major challenges in life, such as 21 

any report of refractory seizures, developmental delay, or intellectual disability. Children with 22 

non-severe phenotypes have fewer challenges, such as no refractory or milder seizures (see 23 

Methods). We could not delineate an association of the ligand distance with the age of seizure 24 

onset as this feature was only reported for a small subset of individuals (n = 27). This was 25 

expected considering previous information from studies on SLC6A1 that were all limited by 26 

small cohort sizes and sparse clinical information.5,10,11 Researchers had previously encountered 27 

this same challenge with other genes but could overcome these limitations over time with more 28 

data.60 Examples from the literature show a clear path for exploiting the relationship between 29 

variant location and patient phenotype.60–64 30 
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Our study has several limitations. First, although our SLC6A1 patient cohort is the largest 1 

to date, it is still small, which may prevent findings from being extrapolated. Further, the clinical 2 

data has not been ascertained through standardized procedures, instead was post-hoc curated by 3 

clinical experts who ascertained data from many sites. For rare diseases, like SLC6A1-related 4 

disorders, that only recently have been identified with specific phenotypes, such as specific EEG 5 

features, the task of correctly coding phenotypic information in routine care represents a 6 

challenge.65–67 Cohort size and data standardization both affect statistical analysis power. 7 

Notably, the variant position-based analysis performed in this study does not account for 8 

trafficking defects that have been shown to contribute to SLC6A1 deficiency.5 9 

Nevertheless, we validated previous suggestive evidence and identified novel genotype-10 

phenotype associations. Data from the current prospective natural history of disease studies68 and 11 

larger retrospective data aggregations will likely identify additional genotype-phenotype 12 

associations and potentially enable risk prediction models.20,69,70 Another limitation of this study 13 

is the lack of complete genome and environmental data. We noticed that several patients with the 14 

same recurrent variant had heterogeneous (non-severe vs. severe) expressions of SLC6A1-related 15 

disorders. For example, the most frequent recurring variant p.Val342Met is classified as CAE for 16 

one individual, EMAS for three, and unclassified epilepsy in four individuals with cognition 17 

ranging from normal to severe DD/ID (Supplementary Table 1). Due to the clinical SLC6A1 18 

heterogeneity, the categorization into non-severe vs. severe is limited. This was confirmed in 19 

personal discussions with the treating physicians to rule out a coding bias. Future studies should 20 

investigate genetic modifiers such as rare variation, the polygenic risk for epilepsy, autism, or 21 

low intelligence quotient71–74 since several recent studies showed that genomic background could 22 

modify the expression of the disease.75–78 Similarly, environmental factors, including drug 23 

history, need to be incorporated into statistical models.75 24 

In summary, our results show the relationship between each variant’s distance from the 25 

ligand and the level of average transporter activity in SLC6A1-related disorders. Future 26 

functional characterization of variants is needed to investigate the hypothesis presented in this 27 

study and determine whether the association between genetic location and disease severity found 28 

in this study can also be found in other clinical phenotypes, such as age at seizure onset. More 29 

data needs to be aggregated to develop a reliable pathogenicity predictor, as this would be a 30 

major step forward in improving the clinical management of patients with SLC6A1-related 31 
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disorders. Our SLC6A1 Portal will contribute to this endeavor. Future studies could potentially 1 

elucidate the relationship between variant location and treatment response, paving the way for a 2 

personalized medicine approach. 3 

 4 
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 1 

Figure legends 2 

Figure 1 SLC6A1 Portal: User Interface and Functionality (https://slc6a1-3 

portal.broadinstitute.org/). Four main menu items hold different functionalities of the SLC6A1 4 

Portal. Basic Information: Key milestones in SLC6A1 research and summary statistics of the 5 

clinical information. Educational Resources: Resources, links to family advocacy groups, and 6 

our in-house produced an animated whiteboard explainer video. Variant Analysis: Clinical 7 

significance according to ClinVar and comparative information on the selected variant with other 8 

similar variants. Research: Visualizations of variant annotations, clinical phenotypes, and 9 

functional data based on multiple filter options. Efforts to add more data to our online resource 10 

are motivated by an increased ability to understand the logic of structure to function to 11 

phenotype relations. Furthermore, easy access, the ability to explore the data, and educational 12 

resources are additional features of our web Portal. Given that very few clinicians and caregivers 13 

can collect data and perform bioinformatics analyses, the Portal enables anyone with access to 14 

the internet to explore the data, understand, and develop hypotheses. 15 

 16 

Figure 2 Domain-wide analysis of patient and population variants. (A) The TM1/6, scaffold, 17 

and EL4 regions harbored mainly variants with low-activity, whereas the N-/C-terminal domain 18 

contained mostly variants with wild-type activity. The dotted line represents the cutoff that 19 

separates WT activity variants (>42.8% of WT activity) from low activity variants (<42.8% of 20 

WT activity). (B) A domain-wide comparison of patient vs. population variants shows 21 

enrichment of patient variants in TM1/6 and EL4. The N- and C-terminal regions are depleted 22 

for patient variants. The dotted line represents a balance between patient and population variants. 23 

Abbreviations: TM1/6: Transmembrane helix 1/6; TMD-other: Transmembrane domain other; 24 

EL2/3/4: Extracellular loops 2/3/4; OR: Odds ratio; WT: wild-type. 25 

 26 

Figure 3 The spatial relation of SLC6A1 variants is associated with function and position 27 

within the GAT1 protein structure 3D structure (PDB ID: 7SK2).23  (A) GAT1 3D structure 28 
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color-coded in red regions with nearly complete LoF variants (<10% of normalized WT activity) 1 

and in yellow regions with WT activity variants (>42.8% of normalized WT activity). (B) Side 2 

view of the GAT1 3D structure. SLC6A1 variants were categorized in the same three activity 3 

groups [0-10% (red), 10-42.8% (orange), >42.8% (yellow)] and mapped onto the GAT1 3D 4 

structure. The variants with the lowest and medium average functional activity tend to be closer 5 

to the ligand, whereas variants with WT activity tend to face outwards. (C) Box plot showing the 6 

quantification of each variant’s distance (Å) from the ligand by the three activity groups. 7 

Abbreviations: **: Significant after Bonferroni multiple test correction; *: Nominally significant; 8 

n.s.: not significant; LoF: loss-of-function; WT: wild-type. 9 

 10 
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