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 Dementia is a medical syndrome resulting in substantial memory loss or 

deterioration and other cognitive capabilities, beyond the normal aging 

process. Alzheimer’s disease (AD) is the leading cause of dementia in aged 

adults, affecting up to 70% of the dementia patients, and posing a serious 

public health hazard in the twenty-first century. With the growing lifespan, 

the number of AD patients is also increasing, and estimated that by the year 

2050, 135 million people will be affected. With age being the predominant 

dementia factor, the dominance ranges from 1–2 percent in the age group of 

65 to 30 percent at 85. AD is a progressive, irreversible and neuro-

degenerative disease with a long pre-clinical period, affecting brain cells 

leading to memory loss, misperception, learning problems, and improper 

decisions. Given its significance, presently no treatment options are available, 

although disease advancement can be retarded through medication. 

Unfortunately, AD is diagnosed at a very later stage, after irreversible 

damages to the brain cells have occurred, when there is no scope to prevent 

further cognitive decline. Individual diagnoses of AD are now based mostly 

on neuropsychological testing and clinical examination, but only post-

mortem brain study may confirm the final diagnosis. The use of non-invasive 

neuroimaging procedures capable of detecting AD at preliminary stages is 

crucial for providing treatment retarding disease progression, and has stood 

as a promising area of research. We conducted a comprehensive assessment 

of papers employing machine learning to predict AD using neuroimaging 

data. Most of the studies employed brain images from Alzheimer’s disease 

neuroimaging initiative (ADNI) dataset, consisting of magnetic resonance 

image (MRI) and positron emission tomography (PET) images. The most 

widely used method, the support vector machine (SVM), has a mean accuracy 

of 75.4 percent, whereas convolutional neural networks(CNN) have a mean 

accuracy of 78.5 percent. Better classification accuracy has been achieved by 

combining MRI and PET, rather using single neuroimaging technique. 

Overall, more complicated models, like deep learning, paired with 

multimodal and multidimensional data (neuroimaging, cognitive, clinical, 

behavioural and genetic) produced superlative results. Our work shows that 

promising results have been achieved, but still there is a room for 

performance improvement of the proposed methods, providing assistance to 

healthcare professionals and clinicians. 
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1. INTRODUCTION  

The developing countries are witnessing a rise in the population of elderly people because of increase in 

the people’s life expectancy. Although, this can be considered as a positive reality, it may lead to undesirable 

effects such as rise in the various diseases including AD. Dementia is a medical syndrome resulting in 

substantial memory loss or deterioration and other cognitive capabilities, beyond the normal aging process [2]. 

Many variants of dementia exist, of which Alzheimer Disease (AD) and frontotemporal dementia (FTD) being 

more prevalent types [3]-[5]. Nearly ten million fresh dementia patients are reported every year, with an 

expectancy of 135 million cases having some form of dementia by 2050 [1]. With age being the predominant 

dementia factor; the dominance is 1–2% for the age group of 65, however may increase to 30% for the age 

group of 85. Among the neurodegenerative ailments, nearly 60-90% are categorised to AD dementia subtype 

[6], which cannot be cured.  

 Unfortunately, AD is recognised almost at the end stage, after irreversible damages to the brain cells 

have occurred, where the cognitive decline can no longer be retarded using preventive protocols. It has been 

proven that behavioural and cognitive symptoms can be reduced using Pharmacological and non-

pharmacological treatments, if AD is detected in its early stages [7]. Considering the various available 

treatment options, current research is focusing on identifying Mild Cognitive Impairment (MCI) individuals 

haven’t yet progressed to dementia, so that the disease progression can be reduced or even prevented. MCI, to 

a greater extent, can constitute a prodromal stage of dementia, particularly AD [8]. MCI individuals who 

eventually advance to AD dementia, whose cognitive impairments are not completely manifested, ca be 

considered as the progression of AD. Hence, distinguishing between MCI individuals advancing to AD 

dementia and the stable individuals is critical. 

Confirmation of AD becomes much easier at later stages where the symptoms of dementia have already 

manifested using neuroimaging methods and evaluation of cerebrospinal fluid for the existence of 

neurofibrillary clews, tau proteins and beta-amyloid [9], and temporal cortex atrophy [6]. However, despite the 

presence of biomarkers in MRI and PET data in the initial phases, detecting MCI to AD advancement in clinical 

practise poses a great challenge [10],[11]. Furthermore, reliable AD clinical diagnosis remains a tough task, 

with even the most experienced doctors missing the diagnosis in 10–15 percent of patients [12]. Much of the 

procedures for diagnosing Alzheimer's disease are time intensive and involve clinician intervention [13], as 

well as frequent hospital visits, which can be problematic for the elderly. Neuroimaging is becoming more 

widely utilised because it allows physicians to examine patients' brains even when they are still alive. Early 

detection of AD can help people get access to medicines that can help postpone some symptoms [14], if the 

illness hasn't advanced too far [15], and enhance the AD survival rate [16]. To address the issue, research 

community presently been provided access to large set of longitudinal neuroimaging datasets from healthy, 

AD, and MCI individuals, including other factors viz. demographic, cognitive assessments, and genetic, stored 

in open databanks like ADNI (http://adni.loni.usc.edu). Employing the recently established computer assisted 

methods like machine learning (ML) algorithms, the available datasets may be evaluated and compared and 

analysed to accomplish classification and automated identification of AD and MCI development [17][18]. 

Later on, the established tools can assist the clinicians in the forecasting and detection of AD.  

The ML framework involves training the classifier using a labelled dataset; neuroimaging findings 

coupled with medical factors, in order to identify similar elements which can be used to categorise people 

according to a variable of interest. Recent studies have shown that ML algorithms can accurately classify 

images from AD, MCI, and healthy subjects [19, 20]. Even though valuable information has been provided by 

such classification approaches, it remains crucial to predict and ascertain whether MCI subjects will continue 

to be stable or advance to AD dementia, for these methods to prove a significant clinical impact enabling a 

medical practitioner to initiate the adapted treatment protocol. The focus of this paper is to examine prevailing 

ML classification approaches for detecting AD progression, applied to neuroimaging data alongside other 

factors. 

The paper is structured as follows: Section 2 presents the various methods adopted for AD detection, 

Section 3 compares the performance of the available literature, Section 4 gives the authors perspective, Section 

5 summarizes the conclusions from this study. 

 

2. METHODS  

Automated AD detection by means of medical imaging and computers can be considered as an image 

based pattern recognition problem that may be handled in two consecutive stages: feature extraction and pattern 

classification. Image features capable of representing the patterns of AD are computed during the training stage 

using quantitative analysis of brain images. Dimensionality reduction of the computed features is performed 

employing feature selection and/or combination is performed prior to training a supervised classifier [21]. The 
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trained classifier can be considered as a ‘‘black box”, capable of making predictions using the information 

gained in the training phase [22]. During the testing phase, the trained classifier is given the same set of 

extracted, selected and/or combined features for generating the class labels. Figure 1 shows a schematic of a 

standard automated AD detection system. 

In this review, we have selected 41 articles published between 2010 and 2021, employing neuroimaging 

methods and ML algorithms for predicting MCI to AD progression. A follow-up duration of one year 

(AddNeuroMed database) and three years (ADNI dataset) is considered for establishing the advancement of 

MCI to AD, where a subject primarily identified as MCI, is diagnosed with AD (i.e. “progressive MCI” or 

pMCI) evaluated on clinical assessments (MMSE/CDR scales, and NINCDS/ADRDA assessments) [20][ 21]. 

Individuals are classified as having "stable MCI" (sMCI) if identified as MCI at the start of the study and the 

diagnosis remained the same throughout the study. The following data has been taken from each of the selected 

studies: (1) Publication year and author(s), (2) sample group, (3) sample count and average age, (4) dataset 

used, (5) neuroimaging modality and feature extraction, (6) validation approach, (7) classification technique, 

and (8) performance (% accuracy). 

 

 
Fig. 1. Schematic of a Standard Automated AD Detection System 

 

3. RESULTS  

Table 1 lists the studies that were chosen for qualitative analysis. The most prevalent neuroimaging 

method was MRI (38 out of 41 research), 2 articles used PET data, a mix of MRI and PET data was used by 

10 studies.   

Considering variously available public data repositories, ADNI dataset (ADNI-1/2/3, or GO) has been 

used in 38 articles for obtaining healthy, AD, and MCI subject samples. Two studies have utilised the 

AddNeuroMed (https://consortiapedia.fastercures.org/consortia/anm/) dataset, and one study have obtained 

samples on their own. dataset. Both ADNI and Australian Imaging, Biomarker & Lifestyle Flagship Study of 

Ageing (AIBL) were employed by Li et al. [23]. Despite the fact that virtually all of the investigations 

employed the same dataset, the groups differ. The majority of the studies grouped the subjects into four 

categories: healthy individuals, sMCI patients, pMCI patients, and AD patients.  

The size of the selected samples also differed across various studies. The least sample size was 74 subjects 

in Plant et al. [24], and the largest being 3940 individuals in Bae et al. [25], with an average sample size of 

546 participants. There has been an increasing trend in sample size over time, related to the ADNI database's 

enhanced data availability. The average age was in the range of 56 to 79 years old. 

The most common feature selection methods adopted were whole-brain volumes (26 publications) and 

glucose metabolism intensity assessments (9 PET studies). There were also 4 research that incorporated genetic 

variables (APOE4 genotype). Among the other features selected include neuropsychological assessment values 

(05 studies) and demographic factors viz. age (02 studies). 31 articles employed a single feature, like whole-

brain grey matter volumes or 3D MRI data, whereas 10 studies used two or more types. According to the 

algorithm's findings, the frontal, temporal, and parietal lobes were the major beneficial regions for 

distinguishing between healthy/sMCI individuals and AD patients. The hippocampus, entorhinal cortex, 

amygdala, cingulate gyrus, precuneus, and caudal and rostral parts of the medial frontal lobe were the most 

important regions. 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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The most prominent machine learning algorithms for classifying patients and detecting likely progression 

from MCI to AD were the one employing SVM. 19 of 41 investigations have employed SVM, that has been 

shown to be useful in applications using neuroimaging, particularly in forecasting future clinical outcomes 

[26]. SVM treats each subject's measurement as a single point in a multidimensional space, with the number 

of dimensions equal to the total number of features in that dataset. When SVM is combined with additional 

approaches, it is possible to enhance feature selection and reduce data overfitting, allowing the model to be 

more generalised (improving the accuracy when applied to dissimilar datasets). 

Considering the validation approaches, 35 articles utilised cross-validation, with varying amounts of folds 

and/ or iterations. The procedure of cross-validation involves splitting the original sample dataset into two 

partitions, one called the training set for training the algorithm, and the other called testing set for validating 

the performance of the algorithm. 

The performance of ML classifiers is evaluated considering the sensitivity (true positive ratio or % of 

properly diagnosed pMCI patients) and specificity (true negative ratio or % of healthy or sMCI subjects 

accurately recognised), or accuracy (% of correctly classified subjects). 

Investigations employing MRI achieved an average accuracy of 74.5%, compared to 76.8% for PET 

scans. With an average accuracy of 77.5 percent, the combination of two strategies produced even better results. 

 

Table 1. Comparison of Literature Studies Listed in Chronological Sequence 

Publication year 

and Author(s) 

Sample 

Group 

Sample 

count 

(avg. age) 

Dataset 
Neuroimaging modality & 

feature extraction 

Cross  

Validation 
Classifier 

Performance 

(% accuracy) 

(2010) Plant et al. 
[24] 

HC 18 (64.8) 
Sample 

collected 
MRI: whole-brain 

AD + HS for 
training 

SVM pMCI vs. sMCI: 

 AD 32 (68.8) for the study volume measures MCI as test set Bayes SVM: 50 

 MCI 24 (69.7)    VFI Bayes: 58.3 
       VFI: 75 

       AD vs. HC 

       Bayes: 92 
       SVM: 90 

       VFI: 78 
(2011) Costafreda 

et al. [32] 
HC 88 (73.6) AddNeuroMed MRI: 3D hippocampal Four-fold Cross 

SVM coupled 

with RBF 

pMCI vs. sMCI: 

80 

 AD 71 (74.9)  morphometric measurement Validation kernel  
 MCI 103 (74.1)      

(2011) Westman et 

al. [33] 
HC 112 (73) AddNeuroMed MRI: whole-brain volume, 51 samples OPLS AD vs. HC: 82 

 AD 117 (76)  and age   
pMCI vs. sMCI: 

73 

 MCI 122 (75)      
(2011) Zhang et al. 

[34] 
HC 52 (75.3) ADNI MRI + PET: CSF measures, 10-fold SVM AD vs. HC: 93.2 

 AD 51 (75.2)  and volume concentration   
MCI vs. HC: 

76.4 

 sMCI 56 (75.3)     sMCI: 73.4 

 pMCI 43 (75.3)      
(2012) Gray et al. 

[35] 
HC 54 (NA) ADNI PET: signal power and 

1000 iterations 

with 

SVM with 

RBF kernel 
AD vs. HC: 88 

 AD 50 (-)  comparative variation 75/25 partition  
pMCI vs. sMCI: 

63.1 

 sMCI 64 (-)  over 12 months    

 pMCI 53 (-)      
(2012) Li et al. 

[36] 
HC 40 (73.7) ADNI 

MRI: cortical thickness 

along 
Leave-one-out SVM AD vs. HC: 96.1 

 AD 37 (74.8)  with clustering coefficient   
pMCI vs. sMCI: 

81.7 

 sMCI 36 (75.3)      

 pMCI 39 (75.6)      
(2013) Babu et al. 

[37] 
HC 232 (76) ADNI MRI: gray matter volume 95(train)/5(test) 

PBL-

McqRBFN 

pMCI vs. HC: 

88 

 sMCI 236 (74.9)  concentration partition  
pMCI vs. sMCI: 

79 

 pMCI 167 (74.6)      

(2013) Wee et al. 
[38] 

HC 200 (75.8) ADNI MRI: cortical thickness 10-fold Mk-SVM 
AD vs. HC : 

92.35 

 AD 198 (75.7)  and correlation of cortical   
MCI vs. HC: 

83.75 
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Publication year 

and Author(s) 

Sample 

Group 

Sample 

count 

(avg. age) 

Dataset 
Neuroimaging modality & 

feature extraction 

Cross  

Validation 
Classifier 

Performance 

(% accuracy) 

 sMCI 111 (75.3)  thickness between pairs of   
pMCI vs. sMCI: 

75 

 pMCI 89 (74.8)  ROIs    

(2014) Apostolova 
et al. [39] 

HC 111 (-) ADNI MRI: hippocampal volumes Leave-one-out SVM AD vs. HC: 80 

 AD 95 (-)  and demographic, APOE   
pMCI vs. sMCI: 

68 

 MCI 182 (-)  genotype, and CSF measures    

(2014) Lebedev et 
al. [40] 

HC 225 (75.9) ADNI MRI: cortical thickness, 
Independent test 

set 
RF AD vs. HC:86.7 

 AD 185 (75.2)  demographic variables,   
pMCI vs. sMCI: 

82.3 
 MCI 165 (75.5)  and APOE4 genotype    

(2014) Liu M. et 

al. [41] 
HC 229 (76) ADNI 

MRI. whole-brain gray 

matter 
10-fold SVM AD vs. HC:90.2 

 AD 198 (75.7)  volume   
MCI vs. HC: 

87.2 

 sMCI 236 (74.9)     
pMCI vs. sMCI: 

70.8 

 pMCI 167 (74.8)      

(2014) Liu F. et al. 
[42] 

HC 52 (75.3) ADNI MRI + PET: intensity and 10-fold MK-SVM 
AD vs. 

HC:94.37 

 AD 51 (75.2)  volume measures   
MCI vs. HC: 

78.8 

 MCI 99 (75.3)     
pMCI vs. sMCI: 

67.9 

(2014) Min et al. 
[43] 

HC 128 (76.1) ADNI MRI: multi-atlas gray matter 10-fold SVM 
AD vs. 

HC:91.64 

 AD 97 (75.9)  volume concentration   
pMCI vs. sMCI: 

72.4 
 sMCI 117 (75.1)      

 pMCI 117 (75.2)      

(2014) Suk et al. 
[44] 

HC 101 (75.8) ADNI MRI + PET: volume 10-fold DBM 
AD vs. 

HC:95.35 

 AD 93 (75.5)  and intensity measures   
MCI vs. 

HC:85.67 

 MCI 204 (74.9)     
pMCI vs. sMCI: 

75.9 

(2015) Moradi et 
al. [45] 

HC 231 (-) ADNI MRI: gray matter 10-fold RF 
pMCI vs. sMCI: 

81 

 AD 200 (-)  volume, cognitive    

 sMCI 100 (-)  scores, and age    
 pMCI 164 (-)      

(2015) Xu et al. 

[46] 
HC 117 (75.4) ADNI MRI and PET: intensity 10-fold wmSRC AD vs. HC:94.8 

 AD 113 (75.6)  and volume measures   
MCI vs. 

HC:74.5 

 MCI 110 (75.2)     
pMCI vs. sMCI: 

77.8 

(2016) Zhang et al. 

[47] 
AD 194 (-) ADNI MRI: multivariate Leave-one-out AdaBoost 

pMCI vs. sMCI: 

77 
 HC 228 (-)  hippocampal surface    

 MCI 388 (-)  TBM and radial distance    

(2017) Long et al. 
[48] 

HC 135 (76.2) ADNI MRI: whole-brain white 10-fold SVM AD vs. HC:96.5 

 AD 65 (75.6)  matter and gray matter   pMCI vs. sMCI: 

 sMCI 132 (75.2)     with GM: 85.9 
 pMCI 95 (75.1)     with WM: 68.7 

(2017) Suk et al. 
[49] 

HC 226 (-) ADNI MRI: gray matter volume 10-fold CNN 
AD vs. 

HC:90.28 

 AD 186 (-)     
pMCI vs. sMCI: 

74.8 
 sMCI 226 (-)      

 pMCI 167 (-)      

(2018) Gao et al. 
[50] 

HC 94 (76.3) ADNI MRI + PET:  GPR pMCI vs. sMCI: 

 AD 58 (74.2)  hippocampal texture 
AD + HS 

(training) 
PLS GPR:82.2 
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Publication year 

and Author(s) 

Sample 

Group 

Sample 

count 

(avg. age) 

Dataset 
Neuroimaging modality & 

feature extraction 

Cross  

Validation 
Classifier 

Performance 

(% accuracy) 

 MCI 147 (74.8)  features, medical MCI (testing)  PLS:85.5 
    history, and    

    neuropsychological tests    

(2018) Lin et al. 
[51] 

HS 229 (-) ADNI MRI: hippocampal Leave-one-out 
LASSO + 

ELM 
pMCI vs. sMCI: 

79.9 

 
AD sMCI 

pMCI 
188 (-)  whole- brain cortical    

  139 (-)  volume, cortical    

  169 (-)  thickness, surface area    

(2018) Liu et al. 
[52] 

HS 230 (77.1) ADNI 
MRI: whole-brain 

 
10-fold 

Multiple 

Kernel 

Boost 

AD vs. 

HC:94.65 

 

 AD 200 (76.6)  hierarchical structural   
AD Vs. MCI: 

89.63 

 sMCI 160 (76.2)  network   
MCI vs. 

HC:85.79 

 pMCI 120 (75.9)     
pMCI vs. sMCI: 

72.9 
(2018) Lu et al. 

[53] 
HS 360 (73.4) ADNI MRI + PET: intensity, 10-fold Deep Neural 

pMCI vs. sMCI: 

82.9 

 AD 238 (75)  CSF, and volume  Networks  
 sMCI 409 (74)  measurement    

 pMCI 217 (74)      

(2018) Sun et al. 
[54] 

HS 162 (76.3) ADNI MRI: GM densities 50/50 partition 
LASSO + 

SVM 
AD vs. HC:92.6 

 AD 137 (76)     
pMCI vs. sMCI: 

65.4 
 sMCI 134 (74.5)      

 pMCI 76 (74.8)      

(2019) Basaia et 
al. [55] 

HS 352 (74.5) ADNI 
MRI: gray matter, white 

matter 
Independent test 

set 
CNN AD vs. Hc:98 

 AD 294 (75.1)  and CSF measures   
pMCI vs. sMCI: 

74.9 
 sMCI 510 (72.3)      

 pMCI 253 (73.8)      

(2019) Cheng et 
al. [56] 

HS 112 (-) ADNI 
MRI: gray matter volumes 

and 
10-fold SVM AD vs. HC:95.2 

 AD 102 (-)  CSF measures   
pMCI vs. sMCI: 

76.3 
 MCI 192 (-)      

(2019) Gupta et al. 

[57] 
HS 38 (76.7) ADNI MRI + PET: whole- 10-fold Mk-SVM AD vs. HC:98.4 

 AD 38 (77.1)  brain volume, intensity   
pMCI vs. sMCI: 

94.9 

 sMCI 36 (74.2)  and CSF measures    
 pMCI 46 (76.7)      

(2019) Lee et al. 

[58] 
HS 229 (76) ADNI MRI: gray matter volumes 10-fold rDNN + SVM 

pMCI vs. sMCI: 

88.5 
 AD 198 (75.4)      

 sMCI 214 (75)      

 pMCI 160 (74.9)      

(2019) Oh et al. 
[59] 

HS 230 (76) ADNI MRI data 5-fold CNN 

AD vs. HC: 86.6 

pMCI vs. sMCI: 

73.9 
 AD 198 (75.6)      

 sMCI 101 (74.1)      

 pMCI 166 (74.8)      
(2019) Spasov et 

al. [60] 
HS 184 (74.7) ADNI 

MRI: brain volume 

measures, 
90(training)/ CNN AD vs. HC:100 

 AD 192 (75.6)  demographic, 10(testing)  
pMCI vs. sMCI: 

86 

 sMCI 228 (72.2)  neuropsychological, and    
 pMCI 181 (73.7)  genetic (APOE4) measures    

(2019) Zhu et al. 

[61] 
HS 101 (75.7) ADNI MRI + PET: gray matter 10-fold SVM AD vs. HC:91.7 

 AD 93 (75.4)  volumes and average   
pMCI vs. sMCI: 

72.6 

 MCI 202 (75.1)  intensities    
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Publication year 

and Author(s) 

Sample 

Group 

Sample 

count 

(avg. age) 

Dataset 
Neuroimaging modality & 

feature extraction 

Cross  

Validation 
Classifier 

Performance 

(% accuracy) 

(2020) Abrol et al. 
[62] 

HS 237 (74.3) ADNI 
MRI: 3D whole brain 

volumes 
80(training)/ ResNet AD vs. HC: 89.3 

 AD 157 (75.1) ADNI  20 (testing)  
pMCI vs. sMCI: 

75.2 
 sMCI 245 (72.1) ADNI     

 pMCI 189 (74.2) ADNI     
(2020) Khatri et al. 

[63] 
HS 57 (75.5) ADNI 

MRI: cortical thickness, 

MMSE 
10-fold 

SVM with 

RBFk 

AD vs. 

HC:97.31 

 AD 53 (74.4)  surface area, gray matter  Linear SVM 
pMCI vs. 

sMCI:83.38 

 MCI 77 (74.1)  volumes, and CSF measures  ELM  

(2020) Lin et al. 
[64] 

HS 200 (73.9) ADNI 
MRI + PET: cortical 

thicknesss 
10-fold 

LASSO + 
ELM with 

AD vs. HC: 84.7 

 AD 102 (75.7)  intensity, volume,  
Gaussian 

kernel 
 

 sMCI 205 (71.8)  existence of APOE4, and    

 pMCI 110 (73.9)  CSF measurements    

(2020) Xiao et al. 
[65] 

HS 50 (77.8) ADNI 
MRI: gray matter 

measurement 
10-fold LR 

AD vs. 
HC:96.10 

 AD 51 (75.8)     
pMCI vs. sMCI: 

72.9 
 sMCI 45 (71.8)      

 pMCI 51 (72.5)      

(2021) Bae et al. 
[66] 

HS 
2084 
(76.5) 

ADNI 
MRI: 3D whole brain 

volume 
70 (training) CNN 

AD vs. MCI: 
82.4 

 AD 
1406 

(76.2) 
 combined with 15 (validation)   

 sMCI 222 (72.2)  neuropsychological scores 15 (testing)   

 pMCI 228 (74.2)      

(2021) Mofrad et 
al. [67] 

sMCI 333 (-) ADNI 
MRI: hippocampal 

entorhinal 
15-fold 

Ensemble 
Learning 

AD vs. MCI: 77 

 pMCI 134 (-)  cortex, ventricles, and    

    neuropsychological measures    
(2021) Phan et al. 

[68] 
HS 242 (73.6) ADNI PET: 3D images 5-fold CNN AD vs. MCI: 83 

 AD 237 (75)      
 sMCI 360 (71.7)      

 pMCI 166 (73.9)      

(2021) Syaifullah 
et al. [69] 

HS 543 (-) ADNI MRI + PET combined with 50/50 partition SVM 
AD vs. HC:88-

94.2 

 AD 359 (-)  MMSE Scores   
pMCI vs. sMCI: 

87.8 
 MCI 544 (-)      

(2021) Wen et al. 

[70] 
HS 46 (72.7) ADNI MRI: gray matter volume 10-fold SVM 

AD vs. HC:82 

pMCI vs. sMCI: 
80 

 AD 46 (74.4)      

 MCI 97 (72.9)      
 sMCI 54 (72.6)      

 pMCI 24 (74.2)      

(2021) Zhang et al. 
[71] 

HS 275 (76.3) ADNI MRI: 3D whole brain 70 (training) CNN 
AD vs. 

HC:97.35 

 AD 280 (76.1)  measurements 15 (validation)  
pMCI vs. sMCI: 

78.9 
 sMCI 251 (77.6)   15 (testing)   

 pMCI 162 (75.1)      

Note. rDNN (Randomized deep neural network), AD-NET (Age-adjust neural network), OPLS (Orthogonal partial least squares), VFI  
(Voting feature intervals), MMSE (Mini Mental State Examination), ELM (Extreme learning machine), PBL- McqRBFN 

(Projection-based learning for meta-cognitive q-Gaussian radial basis function network), PLS (Partial least squares), EN (Elastic 

nets), GPR (Gaussian process regression), MKL (Multiple kernel learning), wmSRC (Weighted multi-modality sparse 
representation-based classification), HS (Healthy subjects), RF (Random forest), CNN (Convolutional neural network),  nl-SVM-

RBFk (Non-linear SVM with radial basis function kernel), Res-Net (deep residual neural network), SVM (Support vector 

machine),ANN (Artificial neural network), AB (Ada-Boost), DBM (Deep Boltzmann Machine), AIBL (Australian Imaging 
Biomarkers and Lifestyle Flagship Study of Aging), LR (Logistic regression) 

 

SVM and CNN being the widely used classification algorithms achieved mean accuracies of 75.4 and 

78.5 percent respectively. Pusil et al. [27] achieved the best accuracy of 100 percent with SVM method, but 
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with a tiny sample size of 54, leaving the classifier ungeneralizable. As for the bigger sample size, the best 

results (97.2% with 511 samples) was obtained by Guerrero et al. [30], followed by Lin et al. [31] (97.3% with 

164 samples). Plant et al. [24] reported the lowest accuracy (50%), by taking a small sample size of 63 

individuals. 

 

4. DISCUSSION 

In the present study, we looked at 41 papers over the previous ten years employing neuroimaging data 

and ML algorithms for foreseeing advancement from MCI to AD dementia. Given the complication of 

neuroimaging analysis, the magnitude of the structural decline and indications present in many AD brain 

regions makes it difficult to identify MCI patients just by analysing only one individual brain imaging data. 

Other than accurately differentiating brain images of AD patients and healthy individuals, researchers are also 

able to forecast the evolution of MCI patients' condition using openly available datasets deposited over the past 

decades employing recently established ML algorithms. Clinicians can use this information to get a more 

accurate prognosis and, as a result, create treatment regimens that can delay disease advancement and prevent 

greater levels of cognitive damage. 

Using classification methods built on top of ML algorithms, the 41 papers examined achieved various 

levels of accuracy. Majority of the articles targeted solely the MCI progression, looking for key characteristics 

between healthy individuals and patients with AD dementia. Considering the available literature, the hunt for 

AD biomarkers is far more extensive than the one on forecasting advancement from MCI or even healthy 

patients. As far as the literature is concerned, studies focusing on the distinction between AD and healthy 

subjects are more precise, than the ones differentiating sMCI vs pMCI, or combination of both as well as 

forecasting the progression of AD, thereby indicating the complexity of identifying the biomarkers prior to the 

manifestation of cognitive decline or dementia. 

One of the most difficult aspects of this study was comparing articles with widely disparate methodology, 

such as distinct samples, pre-processing procedures, varieties of neuroimaging data, and various validation and 

classification approaches. Studies using more advanced classification techniques coupled with multimodal and 

multidimensional data have achieved better level of accuracy. Conventional algorithms, such as SVM are 

making way for advanced ML algorithms built on deep learning techniques like neural networks, capable of 

detecting minor dementia-related brain morphological changes, thereby improving the classification accuracy. 

The integration of demographic and cognitive characteristics, as well as genetic data if available, proved to be 

beneficial for all the methods. However, for the methods to be advantageous for clinicians, there should be a 

trade-off between the progressed algorithms as well as data, and the methods and data available in the clinical 

practice. In order for these procedures to be therapeutically effective, the algorithms performance need to be 

evaluated on varying and diverse group of individuals, rather than the ADNI sample. 

Another intriguing effect of incorporating neuroimaging data into machine learning algorithms is the 

prospect of determining susceptible or prominent brain areas for predicting the transformation from MCI to 

AD dementia. Considering the accuracy, while the algorithms are beneficial and capable of differentiating the 

AD brain characteristics, their performance further needs to be evaluated to transfer the whole diagnosis to 

automated approaches, thereby making clinical judgement vital in the near future. 

 

5. CONCLUSION 

Early detection of neurodegenerative diseases using automated methods has shown a great potential in 

the recent days. Before the manifestation of clinical symptoms, structural deviations tend to appear providing 

a valuable time period for forecasting morphological and functional changes, beneficial for detecting and 

delivering effective treatment to retard the progression of neurological disease.  

With the establishment of increasingly complex algorithms, research in this field is progressing at a rapid 

pace, coupled with access to higher levels of processing power, and accuracy of neuroimaging methods. In the 

near future with a simple scan of a patient's brain, neuroimaging procedures may be directly integrated with 

expeditious, accurate, and efficient classification algorithms, allowing for the formation of a diagnostic 

hypothesis. Nevertheless, transforming this information into everyday practice remains a challenge. The 

solution to the problem lies on enhancing the generalization ability of classifiers when executed on varied and 

diverse samples, also by balancing the higher accuracy achieved with sophisticated data and promising 

performance incorporating readily available medical data. Future research should concentrate on producing 

better results utilising data readily available in clinical practise (viz. sMRI, demographic information, and 

neuropsychological scores) and employing more generalised models incorporating varied and wide-ranging 

samples. 
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In this paper, we started with the diagnosing the various stages of AD, followed by different machine 

learning methods employed in the classification process such as SVM, CNN, Random Forest, Ensemble 

learning, Multiple Kernel Boost, and ResNet. Considering the importance of AD classification by machine 

learning methods, it comes with associated challenges for dealing with the dataset. In this review, we have 

highlighted the challenges and the solutions to these problems. 
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