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ABSTRACT 

Intelligent transportation system (ITS) is a massive and very significant sector 

in the socio-economic context of contemporary society. The need to use roads 

continues to increase, and this comes with the need to establish more efficient vehicle 

detection methods. Vehicle Make and Model Recognition (VMMR) has become an 

important aspect of vision-based systems, since it is applied to access control systems, 

traffic control, surveillance, and security systems, among others. However, the use of 

VMMR is challenging due to numerous factors, such as camera angle, poor lighting, 

and occlusion. Most of the existing works are focused on designing a VMMR system 

in a normal scenario, where the dataset is set for an ideal scenario, a scenario without 

illumination, or occlusion. Recent studies have used certain methods to extract the 

features by extracting the region of interest (ROI) of the front or the rear view of the 

vehicle to detect and recognize the vehicle. However, the aforementioned methods 

would fail with poor lighting or occlusion cases. In this thesis, a VMMR system is 

introduced, which begins by building the dataset, a combination of a benchmark 

dataset (dataset1) and a self-collected dataset (dataset2). A new approach of image 

enhancement method was applied to improve the low-light dataset. Then, the enhanced 

geographical feature extraction techniques were applied to extract the headlight and 

license plate. For occlusion cases, a new grid-based Speeded-Up Robust Features 

(SURF) was presented to extract the ROI even in the presence of an occluded object. 

Two classification approaches were used to recognize the make and model of the 

vehicle. The first approach is based on the Decision Tree, Support Vector Machine 

(SVM), and K-Nearest Neighbor (KNN) algorithms, where they are called ensemble 

classifiers, which can predict the VMM accurately. This is because the Decision Tree 

classifier predicts instances by sorting them based on feature values, while for SVM, 

the precision of classifying can be enhanced by employing suitable factors. As such, 

Radial basis function (RBF) kernel and optimized factors were chosen for SVM and 

KNN, where the testing data was classified by comparison to the k nearest training 

data based on a distance function. The second approach is the PCANet-II classifier, an 

approach with second-order pooling and binary feature variance with promising 

accuracy. The overall performance of the work in this thesis demonstrates a promising 

outcome, where the overall accuracy reached 96.08% by adopting an ensemble 

classifier and two datasets (dataset1, dataset2), while the PCANet-II classifier 

achieved 97.56% using both datasets (dataset1, dataset2). In conclusion, this approach 

proposed in this thesis showed higher performance than existing methods when bad 

lighting and occlusion are considered.  
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ABSTRAK 

Sistem pengangkutan pintar (ITS) adalah sektor yang besar dan sangat penting 

dalam konteks sosio-ekonomi masyarakat kontemporari. Keperluan untuk 

menggunakan jalan raya terus meningkat, dan ini datang dengan keperluan untuk 

mewujudkan kaedah pengesanan kenderaan yang lebih cekap. Pengecaman Model dan 

Buatan Kenderaan (VMMR) telah menjadi aspek penting dalam sistem berasaskan 

penglihatan kerana ia digunakan untuk sistem kawalan akses, kawalan trafik, 

pengawasan dan sistem keselamatan, antara lainnya. Walau bagaimanapun, 

penggunaan VMMR adalah mencabar kerana pelbagai faktor, seperti sudut kamera, 

pencahayaan yang kurang baik, dan oklusi. Kebanyakan kerja sedia ada tertumpu pada 

mereka bentuk sistem VMMR dalam senario biasa, di mana set data ditetapkan untuk 

senario yang ideal, senario tanpa pencahayaan atau oklusi. Kajian terkini telah 

menggunakan kaedah tertentu untuk mengekstrak ciri dengan mengekstrak kawasan 

yang penting (ROI) bahagian hadapan atau pandangan belakang kenderaan untuk 

mengesan dan mengecam kenderaan. Namun begitu, kaedah yang disebutkan di atas 

akan gagal di bawah pencahayaan yang lemah atau kes oklusi. Dalam tesis ini, sistem 

VMMR diperkenalkan, bermula dengan membina set data, gabungan set data penanda 

aras (dataset1) dan set data terkumpul sendiri (dataset2). Pendekatan baharu kaedah 

peningkatan imej telah digunakan untuk menambah baik set data dalam keadaan 

cahaya malap. Kemudian, teknik pengekstrakan ciri geografi yang dipertingkatkan 

digunakan untuk mengekstrak lampu depan dan plat lesen. Untuk kes oklusi, Ciri-ciri 

yang Teguh Dipercepatkan (SURF) berasaskan grid baharu telah dibentangkan untuk 

mengekstrak ROI walaupun dengan kehadiran objek oklusi. Dua pendekatan 

klasifikasi telah digunakan untuk mengenali jenama dan model kenderaan. Yang 

pertama adalah berdasarkan algoritma Pohon Keputusan, Mesin Vektor Sokongan 

(SVM), dan K Jiran Terdekat (KNN), di mana ia dipanggil pengelas ensembel yang 

mampu meramalkan VMM dengan tepat. Ini kerana pengelas Pokok Keputusan 

meramalkan keadaan dengan mengisihnya berdasarkan nilai ciri, manakala bagi SVM, 

ketepatan pengelasan boleh dipertingkatkan dengan menggunakan faktor yang sesuai. 

Oleh itu, kernel fungsi basis radial (RBF) dan faktor yang dioptimumkan telah dipilih 

untuk SVM dan KNN, di mana data ujian dikelaskan dengan perbandingan kepada k 

data latihan terdekat berdasarkan fungsi jarak. Yang kedua dipanggil pengelas 

PCANet-II, iaitu pendekatan dengan pengumpulan tertib kedua dan varians ciri binari 

dengan ketepatan yang menjanjikan. Prestasi keseluruhan kerja dalam tesis ini 

menunjukkan hasil yang menjanjikan, di mana ketepatan keseluruhan mencapai 

96.08% dengan mengguna pakai pengelas ensembel dan dua set data (dataset1, 

dataset2), manakala pengelas PCANet-II mencapai 97.56% menggunakan kedua-dua 

set data (dataset1, dataset2). Kesimpulannya, kerja yang dicadangkan dalam tesis ini 

menunjukkan prestasi yang lebih tinggi berbanding kaedah sedia ada apabila 

pencahayaan dan oklusi yang buruk dipertimbangkan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The transportation system is one of the massive industries in contemporary 

society. The need to use of roads is, therefore, ever-increasing, and this comes with the 

need to have better ways to detect and identify vehicles. Among the critical 

applications that have been used for video systems in traffic surveillance, studies have 

been done on visual-based intelligent transportation systems for traffic planning to 

develop accurate traffic information, planning and traffic flow. In the past few years, 

video cameras have been widely utilized to monitor traffic as it is viewed as an efficient 

means of collecting information on traffic in general and its flow in particular. 

Furthermore, the rapid advances in computer vision, computational and camera 

knowledge and skills, tin tandem with advances in automated video applications for 

analyzing and processing information have significantly raised interest in the use of 

video systems to monitor traffic [1]. 

The use of computer vision approaches in monitoring traffic is currently 

considered crucial for an intelligent transportation system (ITS). ITS employs visual 

appearance to detect and identify vehicles and for tracking that is significantly 

beneficial in analyzing and understanding traffic incidents, and human behavior. 

Besides, it provides traffic flow details such as vehicle class, count, trajectory etc. 

However, despite the level of work done to enhance the effectiveness of video-based 

traffic monitoring systems, and the application of ITS continues to face some practical 

challenges [2]. 

A camera-based approach to monitor traffic is an essential aspect of an ITS, 

which essentially involves automatic surveillance of digital cameras to capture 

snapshots of passing vehicles and other moving objects. The captured images are of 
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high-resolution and static in nature, and from which police and other security 

authorities can obtain crucial information pertaining to a vehicle plate number, the 

precise moment it passed, its movement path and even the driver's face, etc. In the past, 

the very substantial number of captured images were manually processed, which took 

time besides being inefficient [2]. 

Traffic environments varies and comprises of straight highways, parts of urban 

roads, intersections, corners as well as tunnels, which give rise to a number of 

challenges of varying magnitudes such as congested traffic, and the unpredictability 

of weather and illumination circumstances. However, the diversity in vehicle types, 

including size, shape and color among other factors, poses constraints on vehicle 

identification and tracking to specific scenes [1]. 

In recent years, there has been increasing emphasis on road safety and security 

by ensuring roads are adequate and safe, but transportation systems still face problems 

that have motivated researchers to be more concerned about road safety and made them 

consider the development of novel algorithms to address these issues.  

Due to the extensive applications of vehicle detection and recognition, 

challenges have become real concerns and need to be resolved to enhance security and 

to avoid any mistakes on the urban roads or in traffic systems. One of these problems 

is occlusion. Occlusion is typically a significant challenge in vehicle detection, and 

which can significantly affect the vehicle identification process and make the vehicle 

identification impossible [53][55]. 

The failure to identify a vehicle due to bad lighting is another challenge faced 

in any ITS. Color is among the significant factors to describe the entire image of the 

object that is included. On the contrary, the color of the object can be substantially 

different because of the variations of intensity, source of illumination, weather, among 

other factors. Besides, capturing an image of the same object can produce different 

results because of a color change brought about by the surface reflection or camera 

angles [53][55]. 
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Currently, such challenges have become obstacles in the field of ITS when it 

comes to the detection or recognition of a vehicle. One question often asked is: What 

if the researchers want to build a system to detect and recognize the make and the 

model of a vehicle? Vehicle make and model recognition (VMMR) has become an 

important aspect of vision-based systems as it is applied in access control systems, 

traffic control and surveillance and security systems among others. The rationale 

behind VMMR is the extraction of the desired features of an image to identify the 

make and model of a vehicle.  

The majority of research begins with the detection of a vehicle, which yields 

regions of interest (ROIs) that contain the vehicles' face (front) distinguished from the 

background. The vehicle classification systems then work on the ROIs, and Figure 1.1 

shows the general architecture of the VMMR system. 

 
Figure 1.1 The general architecture of the VMMR system 

Depending on the granular quality of the classification, vehicle classification 

systems can be grouped into three categories: Type, make (Logo), or make and model 

recognition, as shown in Figure 1.2. 

 

Figure 1.2 Vehicle classification showing Vehicle Type Recognition (VTR), 

Vehicle Make (logo) Recognition (VMR or VLR), and Vehicle Make and Model 

Recognition (VMMR) 
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1.2 Problem Statement  

Recently, much work has been done focusing on the use of video cameras for 

traffic monitoring applications, which are viewed as rich sources of useful information 

regarding traffic flow. Applying computer vision approaches to monitor traffic has 

come to be viewed as crucial for ITS, which employs observable images in detecting 

vehicles, identification, and tracking that is beneficial for detecting incidents, 

analyzing, and understanding human behavior. Besides, it provides traffic flow 

information such as number of vehicles, trajectory, etc. 

Despite concerted efforts being made for the improvement of video-based 

traffic monitoring systems, several issues still remain that challenge the practical 

application of ITS and researchers. If these issues are addressed, the ITS will be more 

secure, efficient, and powerful in enhancing security in urban roads and facilitate 

society in detecting all possible vehicles and identifying them. Some issues also need 

to be looked into, including vehicle occlusion with other objects, so it is going to be 

difficult to detect and identify the vehicle. Another interesting challenge is lighting and 

illumination that arise due to inadequate lighting. Hence, this thesis will describe these 

problems in detail. 

• The roads today have hundreds of vehicles passing through. The question is 

whether the VMMR systems would be able to detect all vehicles without 

missing any. Occlusion is one of the main problems in video surveillance 

systems. In this thesis, there is a need to detect and recognize vehicles 

efficiently. Still, the challenge is when the detected object in a scene is behind 

another object, whereby some parts in the object are undetected due to 

occlusion. The camera needs a clear vision of the vehicle but will fail due to 

occlusion. In this case, the occlusion is caused by human activity or another 

vehicle. Recently some researches tried to address the problem of occlusion by 

applying certain samples of occlusion dataset to VMMR system like in 

[53][106] the authors proposed a new symmetrical SURF descriptor to extract 

the make and model of the vehicle, but it fails when it comes to occlusion 

samples due to the missing parts of symmetrical pairs. The author in [55] 
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applied real-time automated VMMR according to a collection of expedited 

robust features (BoSURF), as it claims that can handle the occlusion scenario, 

this work did not take enough samples of the occlusion dataset. The author in 

[107] proposed Random Forest-based VMMR system while in [109], a new 

cascaded part-based system was suggested for VMMR. Ghassemi, S [112] 

suggested a deep convolutional structure based on multi-scale attention 

windows to address the problem of VMMR classification system. In [113] 

suggested a novel configurable on-road VMMR framework and took advantage 

of the unsupervised feature learning approaches and employed Locality-

constraint Linear Coding (LLC) technique as a fast feature encoder to encode 

the input SIFT. In conclusion, most of these works failed to address and solve 

the occlusion problem. Figure 1.3 below shows a sample of an occlusion case. 

 
(a)                                                              (b) 

Figure 1.3 Occlusion scenario (a) From [53] and (b) Self-collected dataset 

• The dataset must be of good visual quality. On the other hand, due to variances 

in illumination and camera distortions, various cameras could give quite 

substantially different visual qualities. Hence, detecting and recognizing a 

targeted object that moves across the cameras can be a challenge. Police also 

needs to be able to detect different vehicles by camera confidently. Not many 

studies focused on low light scenarios because it requires a lot of work, robust 

tools and classifiers to extract the ROI and image enhancement techniques to 

make a still image with a better contrast. Chen, L [106] and Hsieh, J.W [53] 

used the symmetrical SURF descriptor for vehicle detection on roads and tried 

to apply it on low light dataset, the system failed to detect the symmetrical pairs 
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due to low light and weak contrast. However, [55] used some samples for low 

light cases and managed to extract the make and model of the vehicle but as 

mentioned earlier, the author used only a few samples to test the system. The 

works done in [109],[111],[112],[113], came up with an ideal VMMR system, 

but none of them dealt with the low light scenario. Figure 1.4 shows samples 

of bad lighting case. 

(a)                                                               (b) 

Figure 1.4 Bad lighting scenario (a) From [53] and (b) From self-collected 

dataset 

1.3 Research Objectives 

Due to the problems mentioned in the previous section, the main goal of this 

work is to design a vehicle make and model recognition system with the ability to 

perform well under the low light condition and in the presence of occlusion. The main 

objectives are listed below:  

a) To propose an image enhancement technique to enhance vehicle images in poor 

lighting for VMMR system. 

b) To improve geographical feature extraction technique for vehicle frontal view 

feature extraction. 
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c) To propose a novel scheme to extract the region of interest (ROI) using SURF 

features in the presence of occlusion. 

d) To build an image dataset for low lighting and occlusion for the purpose of 

training and testing. 

1.4 Scope of Work 

The following is the scope of this work: 

a) Collect a suitable database for the research. This database should contain all 

possible vehicles under different conditions and different types of cars used for 

this work. The database collected using a camera on the local road, and the 

databases used in previous works are also used for comparison.  

b) The benchmark dataset contains 5,610 samples with twenty vehicle makes and 

models. While the self- collected dataset contains 680 samples with six vehicle 

makes and models. 

c) In this thesis, only the front view of the vehicle was considered. 

d) This thesis will focus on occlusion and bad lighting as main issues in 

recognition systems.  

e) Experimental work was performed offline using software implementation on 

MATLAB. The simulation was performed on Intel Core i7 CPU (2.4 GHz), 

8GB of RAM and Windows 10 64-bit operating system. 
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1.5 List of Contributions  

a) Built an image database of self- collected dataset and existing benchmark 

dataset. 

b) This thesis introduced a new approach to enhance vehicle images in low light 

using a multiple exposure technique. 

c) In this work, existing geographical feature extraction has been improved that 

can be applied on frontal view of vehicle images and able to extract headlight 

pairs. 

d) To overcome the occlusion, in this thesis, an improved and modified method 

has been shown that is based on SURF. The method can handle occlusion more 

accurately than existing approaches. 

1.6 Thesis Organization  

This thesis is presented in five chapters. This chapter presents a brief research 

background of the investigated topic, identifying the motivations which have led to 

this research. The scientific objectives and the scope of work are outlined and 

highlighted with a clear identification of the research goals. The remaining chapters of 

this thesis organized as follows:  

Chapter 2 presents a literature review of the whole VMMR system starting 

from the detection stage to describe the latest VMMR works. Algorithms of 

recognition processes, classifiers, feature selection techniques and classification 

performance evaluations were presented. Also, this chapter presents and discusses the 

problems that face VMMR algorithm such as bad lighting and occlusion in detail.  
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Chapter 3 describes the whole VMMR system of this study and presents every 

stage in detail. A suitable database for the research is collected and the dataset 

contained all possible vehicles under different conditions and different types of cars 

used for this work. 

In Chapter 4, the experimental results are presented in detail. The results from 

both classifiers (ensemble classifier and PCANet-II) were evaluated and then 

compared with the state of art works to check the accuracy and the validity of this 

study.  

In Chapter 5, results obtained in Chapter 4 discussed along with theoretical 

expectations. The chapter then gives a conclusion by summarizing the work done in 

this thesis and presents future directions of research for VMMR works.
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