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ABSTRACT

Bacterial cellulose (BC) is an advanced biocompatible polymeric biomaterial 
with a wide range of biomedical uses, including tissue engineering scaffolds and 
wound dressings. The main barriers to employing BC in tissue engineering (TE) were 
the collapse phenomena (the inability to reabsorb water after dehydration) and poor 
cell adhesion. This research focuses on modifying the nata-de-coco-based BC through 
thermal crosslinking with citric acid (CA) monohydrate in the absence of a catalyst as 
the first phase. This is to enhance the BC’s biomineralization ability and 
biocompatibility for application as a bone tissue scaffold. Morphological, 
physicochemical, and mechanical characterizations of the modified BC were done by 
means of scanning electron microscopy (SEM), attenuated total reflectance Fourier 
transformed infrared (ATR-FTIR) spectroscopy, x-ray diffraction (XRD), energy- 
dispersive x-ray (EDX), thermal gravimetric analysis (TGA), swelling rate (SR), water 
contact angle (WCA) and tensile analyses. The second phase of the work explored the 
hydroxyapatite (HA) biomineralization potential of the MBC via a biomimetic 
synthesis in simulated body fluid (SBF). Selected modified BC (MBC) samples were 
immersed in SBF and incubated at 37 °C in a water bath for 1, 7, 14, and 21 days. 
Biomineralized samples (BMBC) were freeze-dried and characterized by means of 
field emission scanning electron microscopy (FE-SEM), ATR-FTIR, XRD, TGA, and 
wet samples for compressive modulus. The third phase was the evaluation of the 
biological responses of the BMBC scaffolds to human fetal osteoblast cells. MTS (3- 
[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) reagent and trypan blue 
dye were employed for cell viability and cytotoxicity while glutaraldehyde fixation 
was used to evaluate the cell attachment. The finding shows the emergence of ester 
bond associated FTIR peaks and additional crystalline XRD peaks on all MBC samples 
which were evidence of the CA crosslinking on the BC. The MBC samples have shown 
potential antibacterial activity against some bacterial species at certain concentrations 
based on the disc diffusion technique (DDT) and minimum inhibitory concentration 
(MIC) assays. Antioxidant activity evaluation has also revealed some radical atom 
scavenging activity of the MBC in 1-diphenyl-2-picrylhydrazyl (DPPH) solution. 
Samples showing the best HA nucleation were tested in vitro for cell viability, 
cytotoxicity, and attachment. Osteoblast cell proliferation and attachment on the 
BMBC samples after 3, 5 and 7 days of culture were the proof of its biocompatibility. 
Based on the in vitro study results presented here, it is apparent that the developed 
BMBC scaffold is bioactive and biocompatible; thus, it can be considered as a potential 
alternative for bone tissue engineering application.
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ABSTRAK

Selulosa bakteria (BC) ialah biomaterial polimer bioserasi yang inovatif 
dengan pelbagai aplikasi yang luar biasa dalam bioperubatan, seperti perancah 
kejuruteraan tisu dan pembalut luka. Halangan utama untuk menggunakan BC dalam 
kejuruteraan tisu (TE) adalah disebabkan oleh fenomena. Penyelidikan ini memberi 
tumpuan kepada pengubahsuaian BC berasaskan nata-de-coco melalui pemautan 
silang terma dengan asid sitrik (CA) monohidrat tanpa kehadiran mangkin sebagai fasa 
pertama. Ini adalah untuk meningkatkan keupayaan biomineralisasi BC dan 
biokompatibiliti untuk aplikasi sebagai perancah tisu tulang. Pencirian morfologi, 
fizikokimia dan mekanikal BC yang diubah suai telah dilakukan melalui mikroskopi 
elektron imbasan (SEM), pengurangan jumlah pantulan-Inframerah pengubah Fourier 
(ATR-FTIR), pembiasan sinar-X (XRD), sinar-X penyebaran tenaga (EDX), analisis 
termogravimetrik (TGA), kadar pembengkakkan (SR), sudut sentuhan air (WCA) dan 
analisis tegangan. Fasa kedua dalam kajian ini telah meneroka potensi biomineralisasi 
hidroksiapatit (HA) MBC melalui sintesis biomimetik dalam cecair badan simulasi 
(SBF). Sampel MBC yang terpilih telah direndam dalam SBF dan diinkubasi pada 
suhu 37 °C dalam air selama 1, 7, 14, dan 21 hari. Sampel yang telah di biomineralis 
(BMBC) telah dikeringkan secara beku dan dicirikan dengan kaedah mikroskop 
elektron pengimbasan pelepasan medan (FE-SEM), ATR-FTIR, XRD, TGA, dan 
sampel basah untuk modulus mampatan. Fasa ketiga ialah penilaian tindak balas 
biologi perancah BMBC terhadap sel osteoblas janin manusia. Reagen MTS (3-[4,5- 
dimetiltiazol-2-il]-2,5 difenil tetrazolium bromida) dan pewarna biru trypan digunakan 
untuk daya maju sel dan sitotoksisiti manakala penetapan glutaraldehid digunakan 
untuk menilai perlekatan sel. Kemunculan puncak FTIR yang berkaitan dengan ikatan 
ester dan puncak XRD kristal tambahan pada semua sampel yang diubah suai (MBC) 
membuktikan pemautan silang CA pada BC. Sampel MBC telah menunjukkan potensi 
aktiviti antibakteria melawan beberapa spesies bakteria pada kepekatan tertentu, 
berdasarkan teknik resapan cakera (DDT) dan ujian kepekatan perencatan minimum 
(MIC). Penilaian aktiviti antioksidan juga telah mendedahkan beberapa aktiviti 
penghapusan atom radikal MBC dalam larutan 1-difenil-2-pikrilhidrazil (DPPH). 
Sampel yang menunjukkan nukleasi HA terbaik telah diuji secara in vitro untuk daya 
maju sel, sitotoksisiti dan perlekatan. Percambahan sel osteoblas dan lekatan pada 
sampel BMBC selepas di kultur selama 3, 5 dan 7 hari adalah bukti 
biokompatibilitinya. Berdasarkan keputusan kajian in vitro yang dibentangkan di sini, 
adalah jelas bahawa perancah BMBC yang dibangunkan adalah bioaktif dan bioserasi 
maka, ia boleh dianggap sebagai alternatif yang berpotensi untuk aplikasi kejuruteraan 
tisu tulang.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Diseases, injuries, and trauma were the significant causes of tissue damage and 

degeneration that often require treatments to speed up the regeneration, repair and/or 

replacement of the damaged tissue [1, 2]. Among the previously established treatments 

methods, tissue/organ transplantation and regeneration were the most efficient [3]. 

Unfortunately, these methods (autograft, allograft, and xenograft) were all challenged 

by some drawbacks such as patient to patient rejection and cross-infection risk [4-6]. 

Limited donor availability is another challenge, necessitating the quest for an 

alternative treatment option to complement the prevailing situation. Tissue 

engineering (TE), often synonymous with regenerative medicine (RM), a 

multidisciplinary approach covering a broad range of life sciences and engineering 

areas tend to address these issues [7, 8].

Tissue engineering is an interdisciplinary field of study combining the 

knowledge of biology, biochemistry, clinical medicine, material and pharmaceutical 

sciences, and engineering to understand biological functions and develop substitutes 

able to replace, restore, maintain, and/or improve an impaired biological system [8

10]. It is a multistep process involving the use of cells seeded on a three-dimensional 

(3D) carrier material (the scaffold) with appropriate growth factors [4] to mimic the 

extracellular matrix (ECM). The success of TE is tightly connected to an appropriate 

scaffold that enables easy cell attachment and adequate energy transfer for the cells to 

proliferate and differentiate [9, 11, 12]. TE has long been a promising tool for 

repairing/restoring the function of different tissues, organs, and systems such as skin, 

bone, cartilage, nervous system, vascular system, urinogenital, and gastrointestinal 

tissues [5]. Bone tissue engineering (BTE) is an essential aspect of TE and a promising 

alternative to the traditional treatment methods for critical bone defects due to trauma,
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infection, and tumor resection. It relies mainly on a bioactive scaffold with sufficient 

mechanical integrity to tolerate the bone remodeling process [9, 13].

Advancement in material science and engineering has led to unveiling the 

potential application of polymeric biomaterials as scaffolds for TE due to their 

physicochemical and material properties. Polymeric biomaterials have attracted much 

attention here, owing to their tunable properties able to resemble the ECM of a native 

tissue [14, 15], such as biodegradability, biocompatibility, and cell adhesive ability 

[8]. Bacterial cellulose (BC) is one of the explored polymeric biomaterials in BTE [16, 

17] due to its fascinating properties such as excellent tensile strength, high purity, 

degree of polymerization, and crystallinity index [18]. While a native BC lacks 

sufficient bioactivity, and osteoconductivity as BTE scaffold, its hydroxyapatite (HA) 

composite was found to support in-vitro osteoblast cell attachment, proliferation, and 

alkaline phosphatase (ALP) expression [19-21]. Composite scaffolds of HA with other 

polymeric biomaterials have also been reported to support cell attachment, 

proliferation, and differentiation [22-24]

Hydroxyapatite (HA), having the chemical formula (Ca1o(PO4)6(OH)2, is an 

inorganic calcium phosphate mineral found in bone with a Ca/P ratio between 1:6 and 

1:5. HA is also said to constitute almost 50% (by weight) of the bone [7, 25]. It is a 

well-known mineral for developing bioactive scaffolds for BTE due to its outstanding 

osteoinductive, osteoconductive, and cell adhesive potentials [26, 27]. Compositing 

BC with HA was also found to enhance the BC’s bioactivity [20]. However, the 

nonuniform dispersibility and low HA nucleation due to insufficient functionality on 

the BC’s surface is still a challenge [28]. To overcome this, researchers explore the 

multifunctional potential of citric acid (CA) to tune the BC’s surface chemistry for 

better HA nucleation and enhanced cell attachment [29-32].

CA is one of the organic acids enlisted as generally regarded as safe (GRAS) 

by the US food and drug administration (FDA) [33, 34]. Owing to its three carboxylic 

(COO-) groups and a single hydroxyl (-OH) group, CA can participate actively in 

hydrogen bonding interaction with OH-polymers and transform them into reactive 

functional polymers known as citrate-based-biopolymers (CBBs) through crosslinking
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reaction [30, 35]. CBBs are advantageous in TE for the pendent chemistry that 

accorded them the diverse biological and material characteristics such as antioxidant, 

antimicrobial, and bio-adhesive properties [36]. They can further be conjugated with 

other bioactive molecules such as proteins and vitamins through post-polymerization 

reaction to suit a specific application [37]. CA has long been used as a modifier on 

different polymeric biomaterials via crosslinking, including the BC [38-42].

Over the last decade, research on cellulose production using microorganisms 

has intensively been conducted to provide an alternative for plant cellulose [43, 44]. 

Bacterial cellulose exhibits higher purity compared to plant cellulose, as it contains 

neither hemicellulose nor lignin. Moreover, a small amount of time is needed to 

synthesize BC, compared to plant cellulose, which takes a more extended period to 

grow and mature. These features make BC an attractive material for a wide range of 

applications, including biomedicine. Nata-de-coco, a jelly desert of Philippines origin, 

is a pure and cheapest form of bacterial cellulose (BC) produced through the 

fermentation of coconut water with unique physicochemical properties all within the 

range of those reported for pure bacterial cellulose [45-47]. Owing to this, nata-de- 

coco-based BC can serve as a promising model for exploring BC’s application 

potentials in areas such as biomedicine, where high material purity is a fundamental 

demand.

Attempts have been made to develop a simple, efficient, and green method to 

fabricate bio-functional TE compliant BC scaffolds and implants possessing the 

needed biocompatibility, bioactivity, and mechanical strength. Many of these methods 

aimed to incorporate the commercial HA on the BC surface or synthesize it in 

simulated body fluid (SBF). However, these methods were challenged by the low HA 

nucleation and nonuniform dispersion that may be associated with limited reactivity 

of the BC’s surface [48, 49]. Furthermore, the collapse phenomenon (inability to 

reabsorb water after dehydration) associated with the native BC [42] is another concern 

that needs to be addressed for the BC to fit better BTE scaffold.

Here, a nata-de-coco-based BC was surface-modified through CA crosslinking 

reaction for enhanced HA biomineralization. The modified BC (MBC) was
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characterized based on physical, chemical, mechanical, and morphological properties. 

Antibacterial activity and antioxidant (radical scavenging activity) of the MBC were 

analyzed through disc diffusion technique (DDT), minimum inhibitory concentration 

(MIC), and 1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. HA nucleation 

was initiated and evaluated on the MBC’s surface through the cheap and 

straightforward SBF immersion method. Finally, the modified biomineralized BC 

(BMBC) biological activity was assessed on human fetal osteoblast cell lines for 

potential application in BTE.

1.2 Problem Background

Bone regeneration at the fracture site is a complex process involving a series 

of intracellular and extracellular signaling pathways to ensure a continuous 

osteoinduction and osteoconduction that leads to a complete ossification of a new bone 

[50, 51]. The inherent regenerative ability of a bone falls limited when there is a severe 

injury to the bone due to trauma or tumor [1, 2]; thus, alternative treatment options are 

mostly needed. For many decades, grafting techniques, autografts, allografts, and 

xenografts were the gold standards that later fall short due to limited bone donors, 

possible risk of an immune response, and infection risk at the graft site [6]. The 

strategies employed in TE and RM using stem cells often seeded on polymeric 

biodegradable scaffolds proved a remarkable potential for correcting damaged and/or 

diseased organ or tissue [4].

Thermoplastic materials have, in this respect, attracted the attention of 

biomedical engineers. Although approved by the Food and Drugs Administration 

(FDA), thermoplastics lack some essential features of a suitable TE scaffold. 

Poly(glycol-sebacate), the first biodegradable elastomer reported by Wang et a l, 2002 

[52], was later found to be limited due to its hash polymerization conditions and low 

mechanical strength [37]. Notably, some of the synthetic scaffold materials have also 

suffered certain drawbacks like the presence of toxic chemicals and limited 

controllability of structure and properties [53], which may be undesirable for TE 

application.

4



In bone tissue engineering, polymer-based biomaterials of high purity and 

excellent properties that can be turned to simulate the three-dimensional (3D) 

architecture of the ECM of a native bone have attracted the researcher’s attention. In 

this respect, BC's suitability is due to its unique properties, such as good mechanical 

strength, biocompatibility, biodegradability, microporosity, and tunable surface 

chemistry. These, with ease of mouldability into different shapes and structures, made 

BC a promising BTE scaffold material. Despite its advantages, BC has not been 

investigated much in BTE [9] although extensively used in other biomedical 

applications such as artificial blood vessels, wound dressings, specialty membranes, 

and artificial skin [25].

1.3 Problem Statement

Numerous challenges facing bone regeneration, such as delayed fracture 

healing due to serious bone injuries and/or disease, have necessitated the quest for 

alternative treatment options. The gold standard grafting technique (autografts, 

allografts, and xenografts) that fall short due to limited donors, risk of immune 

response and infection was relieved by the new approach of TE [6]. Meanwhile, the 

TE approach employing polymeric biodegradable scaffolds seeded with cells is also 

constrained by limited bioactivity, biocompatibility, and mechanical strength. 

Furthermore, some scaffolds were reported to contain toxic chemicals either during 

fabrication or within their chemical structure, which may be released via the scaffold's 

degradation.

To contain these challenges, especially in BTE, non-toxic polymeric 

biomaterials of high purity and excellent physicochemical properties moldable to 

mimic the 3D architecture of the ECM of a native bone became of utmost interest. 

Cellulose is one of the advantaged polymers owing to its purity, a high degree of 

polymerization and water holding capacity, non-toxicity, and biodegradability. 

Although animals lack the enzyme for cellulose degradation [54], cellulose scaffold 

was reported to undergo a slow degradation in rat subcutaneous tissue [55]. While this 

may be a potential limitation for cellulose scaffolds, on the one hand, it can as well be
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advantageous on the other hand considering the mechanical strength and time needed 

for complete bone regeneration [9, 56].

Bacterial cellulose has long been investigated as a scaffold for some TE 

applications such as drug delivery systems [57], wound dressings [58], vascular grafts 

[59], and musculoskeletal systems [28, 60]. Coupled with the ease of mouldability into 

diverse shapes, biocompatibility and microporosity, the unique controllable surface 

chemistry has made BC a polymer of choice in BTE. Conversely, the irreversible fiber 

collapse after drying [42, 56], limited functionality and poor cell attachment have 

impeded the applicability of BC scaffolds in BTE where the cells to be seeded needs 

an enabling space for efficient adherence, energy transfer and metabolic exchange to 

optimally proliferate and differentiate.

While attempts have been made to improve the bioactivity and poor cell 

attachment associated with cellulose scaffolds through the incorporation of HA [5, 9, 

20, 61-63], the nucleation of HA is said to be dependent on the materials’ surface 

chemistry. It is established that the hydroxyl (-OH) groups of cellulose have a very 

poor HA induction compared to carboxyl (-COOH) groups [48, 49]. This could be the 

basis for the low HA nucleation leading to poor cell attachment on the BC’s surface, 

hence the need for further modification. Leveraging BC’s tunable chemistry and the 

osteoconductive nature of HA, surface modification can enhance a better HA 

nucleation, thus, improving the poor cell attachment.

CA is an organic acid and a prominent intermediate in the tricarboxylic acid 

(TCA) cycle of cellular respiration reported to improve the BC’s rehydration ability 

and fiber porosity [42]. CA was also reported to enhance the nucleation of HA [31, 64] 

and modulate the cellular response of some polymeric scaffolds [65]; thus, it can be 

used to crosslink the BC. Therefore, the CA crosslinking is expected to impart 

functionality on the BC’s surface that can enhance homogenous nucleation of HA in 

SBF [25, 66]. It is also envisaged to improve the BC's physicochemical, mechanical, 

and biological properties, sufficient for cell attachment and proliferation.
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1.4 Objectives of the Study

The following objectives were outlined to address the problems mentioned

above:

(a) To modify Nata-de-Coco-based BC with citric acid at optimal crosslinking 

conditions towards enhanced HA biomineralization.

(b) To characterize the mechanical, chemical, and physical properties of the 

modified BC (MBC).

(c) To evaluate hydroxyapatite (HA) growth on the MBC through simulated body 

fluid (SBF) immersion method.

(d) To evaluate the in-vitro cell cytotoxicity, proliferation, and adhesion of human 

fetal osteoblast (hFOB) cell lines on the modified and biomineralized BC 

(BMBC).

1.5 Scope of the Study

Within the scope of this study, a nata-de-coco-based BC was modified for BTE 

application. A multifunctional modifier of OH-polymers CA was used at different 

concentrations in a simple hydrothermal crosslinking reaction to produce the modified 

BC (MBC). The resultant MBC samples were subjected to morphological, chemical, 

physical, and mechanical characterization through SEM, FTIR, XRD, WCA, SR, 

TGA, and tensile analysis. Antibacterial, antioxidant, and in-vitro degradation 

properties of the MBC samples were also assessed. Selected MBC samples were then 

subjected to HA nucleation study by SBF immersion method to produce a 

biomineralized, modified BC (BMBC). Samples were then characterized through 

FTIR, XRD, TGA and compressive strength. The study is however limited to in-vitro

testing of the BMBC, where human fetal osteoblast (hFOB) 1.19 (ATCC® CRL

11372TM) cell lines were employed to evaluate the cytotoxicity (MTS assay),
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proliferation, and attachment in complete Dulbecco’s modified eagle medium 

(CDMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin.

1.6 Significance of the study

In line with the sustainable development goals, using green and efficient 

technology to develop products, equipment, and systems are a step ahead to address 

the numerous global challenges in different areas of human endeavor, including health 

and medicine. Biotechnological innovations emerged to attract much of researchers’ 

interest due to their potential of preserving natural resources and minimizing the 

unnatural entities’ adverse effects on human lives. The strategic and innovative 

research measures through which biopolymers are alternatively employed to replace 

or reduce synthetic polymers' demand have led the to many scientific discoveries. 

Biomaterials modified with CA, known as citrate-based-biomaterials (CBBs), are 

among the numerous alternatives to the synthetic polymers used in many TE 

applications.

BTE seeks a porous, biocompatible, mechanically compliant, and bioactive 

scaffolding material and BC is said to only lack sufficient bioactivity due to low HA- 

inducing functional groups. It is an eco-friendly biomaterial with superior chemical 

and material properties that can be tuned through a modification to suit a specific 

application purpose. Therefore, the CA crosslinking here addresses the major 

impediments (collapse phenomenon and limited functionality) limiting BC’s 

application as a BTE scaffold. While the improved water absorption rate is vital for 

BTE scaffold material, the additional carboxylic (COO-) groups also enhance the 

uniform HA nucleation, which subsequently improves the BC’s bioactivity and cell 

adhesive ability. Furthermore, nata-de-coco-based BC preferred in this study is to 

explore the cheapest and purest BC from the easiest large scale production method. 

This is expected to save time and reduce the high cost incurred in small scale laboratory 

BC production.
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1.7 Thesis Organization

The thesis was organized to contain five (5) chapters for easy comprehension 

by readers. Chapter 1 was designed to introduce the background, objectives, scope, 

and significance of the research. Chapter 2 captures the literature review of the 

important aspect of the study that comprises of a general overview on cellulose, 

bacterial cellulose, characterization techniques, and application, especially in 

biomedical field. Chapter 3 covers the general description of methods used in 

addressing the 3-phases of the research. Phase 1 describes the methods employed in 

crosslinking modification and characterization of the samples succeeded by in-vitro 

biosynthesis and characterization techniques used for HA biomineralization in phase

2 and biocompatibility evaluation methods in phase 3. Chapter 4 covers the major 

research outcomes from the crosslinking modification and characterization, HA 

biosynthesis and characterization of bacterial cellulose., to the cell cytotoxicity, 

proliferation, and adhesion testing of the biomineralized BC on hFOB cell lines. The 

conclusion of the research findings and recommendation for future work were 

presented in Chapters 5.
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