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ABSTRACT 

Membrane distillation (MD), which is capable of achieving high solute 

rejection, has recently attracted significant attention for desalination. However, 

membrane fouling and wetting are still the major challenges in membrane distillation 

systems. Hence, it is essential to prepare an omniphobic membrane for anti-fouling 

and anti-wetting performance to overcome the issue. This work suggested a facile 

fabrication method of omniphobic mullite hollow fibre membrane via a one-step 

synthesis of growing hierarchical titania (TiO2) particles on the membrane surface 

through hydrothermal method and followed by surface fluorination. Mullite hollow 

fibre membrane (HFM) was prepared as a substrate from ball clay using phase 

inversion and sintering technique. The composition of raw ball clay consisted of 85.9% 

kaolinite, 9.5% illite, 3.6% quartz and 1% maghemite. The particles of raw ball clay 

were irregular in shape, and some particles reach dimensions of over 50 µm size. After 

pre-treatment processes, the particle size of ball clay powder was remarkably reduced 

to 4.96 µm. The physico-chemical and permeation properties of a membrane were 

investigated by varying ball clay loading and sintering temperature. After the sintering 

process, major composition of the hollow fibre membranes was mullite with minor 

traces of quartz. When the membrane with ball clay loading of 47.5 wt.% was sintered 

at 1250 °C, its mechanical strength and permeability were comparable to that of 

membranes fabricated from pure metal oxides. The membrane had an average porosity 

and pore size of about 50.5 ± 2.1% and 0.61μm, respectively. Subsequently, 

hydrothermal treatment was carried out at 150°C to acquire re-entrant structures on 

the hollow fibre membrane’s surface followed by the fluorination with 1H, 1H, 2H, 

2H-perfluorodecyltriethoxysilane (C8). The formation of rod-like (RL) and flower-

like (FL) TiO2 structures was observed after 5 and 10 hours of hydrothermal process. 

After surface texturing and fluorination at 48 hours, the hollow fibre membrane, which 

was initially hydrophilic in nature, exhibited high liquid repellence towards water and 

low surface tension liquids such as ethylene glycol and olive oil. The order of the 

membranes in terms of wetting resistance for low surface tension liquids is as follows: 

C8-FL/TiO2-HFM > C8-RL/TiO2-HFM> C8-HFM. The value of contact angle for 

water on C8-FL/TiO2-HFM was around 162o, which is among the highest of 

previously reported contact angle of ceramic membranes in MD system. Also, the 

membrane exhibited nearly superomniphobic properties towards olive oil, ~140o. In 

addition, the formation of air layers was observed on submerged C8-FL/TiO2-HFM 

and C8- RL/TiO2-HFM, which significantly reduced the deposition of organic 

substances after 500 minutes of MD with an aqueous NaCl (3.5 wt.%) containing 

humic acid (10 mg/L). A rise in the permeate salt concentration was observed for C8-

HFM but not for C8-FL/TiO2-HFM and C8-RL/TiO2-HFM. Moreover, no significant 

fouling was observed for C8-FL/TiO2-HFM and the membrane exhibited the most 

stable flux and the highest salt rejection compared to other membranes. These results 

suggest that the fabricated membrane with micro/nano-roughness from flower-like 

structures is potential for a robust MD process as compared to other membranes. 
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ABSTRAK 

Penyulingan membran (MD), yang mampu mencapai penyahan zat terlarut 

yang tinggi, telah menarik banyak perhatian baru-baru ini untuk proses 

penyahgaraman. Walau bagaimanapun, kekotoran dan pembasahan membran masih 

menjadi cabaran utama. Oleh yang demikian, penyediaan membran omnifobi yang anti 

kepada kotoran dan pembasahan adalah penting untuk mengatasi masalah itu. Kajian 

ini mencadangkan kaedah pembikinan mudah membran omnifobik mulit gentian 

geronggang melalui satu langkah sintesis pertumbuhan zarah titanium dioksida (TiO2) 

yang berhierarki pada permukaan membran melalui kaedah hidrotermal dan diikuti 

dengan pemfluorinan. Membran mulit gentian geronggang (HFM) yang dijadikan 

sebagai substrat dari lempung bebola dihasilkan menggunakan teknik penyongsangan 

fasa dan pensinteran. Komposisi lempung bebola mentah terdiri daripada 85.9% 

kaolinit, 9.5% illit, 3.6% kuarza dan 1% magemit. Zarah-zarah dalam lempung bebola 

mentah tidak mempunyai saiz yang sekata dan sesetengah zarah mencapai ukuran 

lebih dari 50 µm. Selepas proses pra-rawatan, serbuk lempung bebola mengecil kepada 

4.96 µm. Sifat fiziko-kimia dan sifat telapan air membran telah diselidiki dengan 

pelbagai kandungan lempung bebola dan suhu pensinteran. Selepas proses 

pensinteran, komposisi utama membran seramik gentian geronggang adalah mulit dan 

sedikit kuarza. Apabila membran dengan kandungan 47.5 wt.% lempung bebola di 

sinter pada suhu 1250oC, kekuatan mekanik dan kebolehtelapan air adalah setanding 

dengan membran diperbuat daripada logam oksida tulen. Saiz liang dan keporosan 

membran tersebut adalah sekitar 0.61 μm dan 50.5 ± 2.1%. Selepas itu, kaedah 

hidroterma dilaksanakan pada suhu 150oC untuk memperoleh struktur ceruk pada 

permukaan membran diikuti dengan pemfluorinan dengan 1H, 1H, 2H, 2H-

peifluorodekiltrietoxisilana (C8). Penghasilan TiO2 yang berbentuk seperti batang 

(RL) dan seperti bunga (FL) dapat dilihat selepas 5 dan 10 jam proses hidroterma. 

Setelah tekstur permukaan dan fluorinasi pada 48 jam, membran gentian geronggang 

yang pada awalnya bersifat hidrofilik, menunjukkan penolakan cecair yang tinggi 

terhadap air dan cecair yang mempunyai tegangan permukaan yang rendah seperti 

etilena glikol dan minyak zaitun. Urutan membran dari segi anti pembasahan adalah 

seperti berikut: C8-FL/TiO2-HFM>C8-RL/TiO2-HFM>C8-HFM. Nilai sudut sentuh 

air untuk C8-FL/TiO2-HFM adalah lebih kurang 162o dan merupakan antara nilai yang 

tertinggi dikalangan membran seramik yang telah dilaporkan sebelum ini untuk 

penggunaan penyulingan membran. Membran itu juga menunjukkan sifat hampir 

superomnifobik terhadap minyak zaitun, ~140o. Selain itu, pembentukan lapisan udara 

juga dapat dilihat pada C8-FL/TiO2-HFM dan C8-RL/TiO2-HFM bila direndamkan 

dalam air, yang secara signifikan terbukti dapat mengurangkan pemendapan bahan 

organik pada permukaan membran tersebut setelah 500 minit proses MD dilakukan 

dengan air larutan NaCl (3.5 wt.%) yang mengandungi asid humik (10 mg/L). 

Kenaikan kepekatan garam dapat dilihat jika C8-HFM digunakan tetapi tidak untuk 

C8-FL/TiO2-HFM dan C8-RL/TiO2-HFM. Selain itu, tiada kotoran yang ketara dapat 

dilihat pada C8-FL/TiO2-HFM dan membran itu juga menunjukkan aliran wap air 

yang paling stabil dan penyahgaraman yang paling tinggi berbanding dengan membran 

yang lain. Hasil dapatan ini menunjukkan bahawa membran yang mana permukaannya 

diperbuat daripada kekasaran mikro/nano dari struktur bunga, menunjukkan potensi 

untuk penggunaan MD yang lebih mantap berbanding dengan membran yang lain.  
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CHAPTER 1 

 

 

 

INTRODUCTION 
 
 
 
 

1.1 Research Background 

 

 

It is worth quoting that, “water is a driving force of all nature”. Water is a basic 

need and a foundation of human life. Lack of access to fresh water may lead to 

competition and struggle in getting new water resources that will possibly trigger crises 

in the future. Water shortage around the world is no fiction but a real global 

phenomenon as fresh water systems are not enough for all uses, whether domestic, 

agricultural, and industrial. A billion people have no access to drinkable water and 

many fresh water systems from lakes and rivers are too polluted to be used [1] and are 

drying up day by day at alarming rates. In addition, the world population is growing 

gradually from 7.6 billion as of mid-2017 to 8.5 billion and 9.7 billion of people to 

populate the whole world by 2030 and 2050, respectively [2]. The growing human 

population as well as climate change and industrialization are likely to result in water 

stress for the many fresh water systems around the world [3]. The rising demand of 

fresh water in many countries has made seawater desalination an attractive option to 

supply drinking water [4].  

 

 

To date, membrane-based technologies have become a centre of attention as an 

effective method for seawater desalination. Among many desalination technologies, 

reverse osmosis (RO) is the most commonly used and is the most efficient pressure-

driven technology for the production of clean water [5,6]. However, there are some 

disadvantages to this technology. In most cases, it requires high osmotic pressure, is 

cost-inefficient for small-scale applications and cannot be used in harsh conditions 

(e.g., high salinity, high temperature or corrosive) [5]. In this regard, membrane 

distillation (MD) seems to be a promising alternative for the production of sustainable 

freshwater due to its numerous distinct advantages over the pressure-driven 

desalination technology. Owing to its separation mechanism, MD has rejection rates 
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of up to 100% for non-volatile compounds and produces extremely pure water. 

Besides, MD can operate at relatively low operating pressure and temperature [7]. In 

fact, the heat demand required by MD could be provided by waste heat and renewable 

solar energy [8]. Its ability to be potentially compact and more adaptable than 

conventional thermal desalination processes further raises MD to renown as a cost-

effective candidate for portable and off-grid applications [9].  

 

 

MD is a non-isothermal process and this emerging membrane technology 

requires a micro-porous hydrophobic membrane to separate vapour phase from liquid 

phase within the membrane pores. Water molecules evapourate and diffuse through 

the membrane and then condense at the permeate side, giving high rejection (nearly 

100%) of dissolved and non-volatile species. The permeate vapour flux is driven by 

vapour pressure difference, which is induced by the temperature gradient across the 

hydrophobic membrane. Generally, there are four basic MD configurations which are 

direct contact membrane distillation (DCMD), air gap membrane distillation (AGMD), 

vacuum membrane distillation (VMD), and sweep-gas membrane distillation 

(SGMD). Among the four different configurations of MD, direct contact membrane 

distillation (DCMD) is the most attractive route because it is simple and less complex 

for operations [10]. 

 

 

Hydrophobic microfiltration (MF) membranes are widely used in the MD field 

[11] and hydrophobic polymeric membranes such as polyvinylidene fluoride (PVDF), 

polytetrafluoroethylene (PTFE), and polypropylene (PP) are often considered for MD 

membranes [12]. However, these membranes are well known for their susceptibility 

to harsh environments - high temperature and high pressure, which consequently 

results in a short life span of the membranes. The poor stability of polymeric 

membranes has raised concern for long-term operations of MD systems [13]. Despite 

the broad potential offered by the MD technology, the unviability of having the 

appropriate membrane for MD systems results in limited commercial uptake. In 

contrast to the polymeric membrane, the ceramic membrane is an ideal candidate when 

long-term stability and porous membrane structure is required [14]. This membrane is 

robust under harsh environments owing to its superior chemical, mechanical, and 

thermal stabilities [15,16]. To date, ceramic materials such as alumina (Al2O3), titania 
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(TiO2), and zirconia (ZnO) are the common materials in fabricating ceramic 

membranes. Non-oxide ceramic materials like silicon nitride (SiN) and silicon carbide 

(SiC) have also been documented by a number of studies [16,17]. However, most of 

the materials are expensive in bulk and the application cost of these kinds of 

membranes for industrial purpose is one- and three-orders of magnitude more per unit 

of membrane in comparison to the polymeric membrane [18]. Due to that, some efforts 

have been devoted to achieving low-cost ceramic membranes from natural-occurring 

materials such as bauxite [19], kaolin clay [20], rice husk [21], and even inorganic 

industrial waste like fly ash [22]. 

 

 

Among the many major classifications of clay such as pure kaolinite and 

montmorillonite, ball clay is an attractive candidate to substitute the expensive 

commercial ceramic materials in tackling the issue of large-scale uptakes. This clay is 

one of the cheapest, abundant, and environmentally friendly minerals [23]. Ball clay 

is aluminosilicate and is rich in kaolinite, which makes up over 70% of the ball clay 

[23,24]. Thermal treatment of the aluminosilicate clay involves the formation of 

mullite, which is another type of ceramic that is hard, resistant to chemicals, and 

provides great strength due to its elongated crystal structure [25]. In Malaysia, ball 

clay can be found in abundance in the state of Perak and is rich in kaolinite (>75%), 

with low content of impurities [24]. Besides, because ball clay is an aluminosilicate 

system and presumably contains trace impurities such as iron oxide (Fe2O3), lower 

temperature is expected for sintering process [19]. The use of ball clay to fabricate 

ceramic planar membranes for water treatment has been reported in these existing 

literatures [26,27]. Meanwhile, to the best of my knowledge, no works have been 

carried out to use ball clay for the fabrication of ceramic membrane in a hollow fibre 

configuration. Since MD requires microfiltration membranes, enabling ball clay as a 

material for the fabrication of ceramic hollow fibre membranes is highly advantageous.  

 

 

Despite being highly resistant to extreme conditions, ceramic membranes are 

inherently hydrophilic in nature, meaning that they cannot be directly applied for MD 

technology. Hence, surface modification is vital to acquire a hydrophobic surface prior 

to MD application. So far, the grafting of ceramic membrane surfaces with the low 

surface energy material of Fluoroalkylsilane (FAS) has been the most frequently used 
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technique to obtain hydrophobic properties [14]. The FAS includes 1H,1H,2H,2H-

perfluorooctyltriethoxysilane (C6), 1H,1H,2H, 2H-perfluorodecyltriethoxysilane 

(C8), 1H,1H,2H,2Hperfluorododecyltriethoxysilane (C10) and 1H,1H,2H,2H-

perfluorotetradecyltriethoxysilane (C12). Generally, the grafting of ceramic 

membranes from previous studies was mainly applied with C6 and C8 [28] since the 

hindrance steric effect was observed for more hydrophobic molecules like C10 and 

C12 [29].  

 

 

Though successful hydrophobic modification of ceramic membrane was 

achieved through FAS functionalization, hydrophobic membranes still fail to perform 

under the harsh conditions due to fouling and wetting [12]. By shifting towards 

superhydrophobicity, surface modification of membranes can be an effective method 

to alleviate pore fouling and wetting [30]. Meanwhile, omniphobic membranes are 

more effective in combatting incoming feed liquids because they exhibit super-

repellency towards both high and low surface tension materials [31–35]. Omniphobic 

surfaces can be fabricated with the combination of appropriate surface roughness and 

low surface energy functional groups [36–38]. At present, numerous studies on the 

omniphobic membrane surface have used nanoparticles to construct nanoroughness. 

For instance, an omniphobic membrane was successfully fabricated after depositing 

silicon dioxide (SiO2) [32,34,39] and ZnO nanoparticles [12]. Wetting and fouling 

experiments on the omniphobic membranes indicated higher resistance not only 

towards low surface tension feed liquid but also foulants as compared to hydrophobic 

membranes. 

 

 

Designing an omniphobic surface that remains unwetted to any liquid requires 

re-entrant structures and a layer of low surface energy at the composite interface 

[12,31,38]. When it is immersed in liquids, a protective air layer called plastron will 

be formed [31], thus making it capable of being an antifouling and antiwetting agent. 

Deposition of sphere-like nanoparticles including TiO2, SiO2, and ZnO has been 

intensively reported to compose re-entrant structures on membrane surfaces for MD 

to mimic the “lotus effect” [12,40–42]. Meanwhile, to prepare a more robust 

omniphobic surface, a hierarchical re-entrant structure should be created in addition to 

having specific chemical composition. Typically, micro/nano-structured surface is 
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fabricated to create hierarchical re-entrant surface through a multiple step, where a 

finer length scale texture is deposited on an underlying coarser length scale texture. 

This hierarchical texture exhibited better omniphobicity as compared to surfaces with 

a single scale texture [43]. The hydrothermal synthesis of TiO2 can be an effective 

method for the impartment of hierarchical re-entrant structures due to its capability of 

constructing particles with various morphologies (flower-like, rod-like, etc.) [44] at 

fast reaction velocities and low-costs [45]. Different morphologies of rod-like and 

flower-like can be obtained by controlling reaction times [46]. This modification has 

been applied in various fields such as solar cells, electrical systems, and photocatalytic 

systems [47]. Through this simple hydrothermal process, TiO2 particles can be grown 

directly on the substrate surface, thus simplifying the complex process of creating 

micro/nano-roughness besides, the adhesion of particles can be improved [48]. 

Hierarchical structures such as the flower-like morphology have been used to develop 

re-entrant structures for the preparation of omniphobic surfaces on other various 

substrates [44,49,50]. The hierarchical particles have the ability to introduce more air 

pockets around them, consequently imparting a stable Cassie-Bexter regime with a 

high water contact angle (>150o) [51] 

 

 

Meanwhile, for the ceramic membrane support, it is worth noting that its 

properties (pore size, porosity, mechanical strength, etc.) are crucial for MD [52] and 

it can change significantly under the process conditions of sintering, the composition 

of ceramic suspension, the distribution of particle size as well as the parameters of 

extrusion [53–55]. For instance, the particle size distribution of ceramic powder can 

affect the pore size and selectivity of membrane [56]. Other factors include the ceramic 

composition in ceramic-solvent-polymer suspension solution that can affect the 

mechanical strength and quality of sintered membrane [57]. Besides, during the 

process of sintering, a compromise always has to be made between the pore size and 

porosity, and the mechanical strength of membrane [56]. As a reference, it has been 

suggested that the accepted values of membrane porosity and pore size for MD vary 

from 30% to 85% [58] and from 0.2µm to 1µm [16,59], respectively. Meanwhile, the 

mechanical strength of ceramic membrane has to be more than 50 MPa in order to be 

on par with the strength of some high purity metal oxide ceramic membranes [60]. 
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1.2 Problem Statement 

 

 

Ceramic membranes offer long-term stability as their lifespan was reported to 

be 20 years, which is generally fourfold longer than that of polymeric membranes 

[61,62]. Because of that, hydrophobic ceramic membranes have been developed and 

applied for MD applications [12,21,32,63,64]. Among the many ceramic materials, 

ball clay serves as a promising aluminosilicate material for ceramic membrane 

fabrication. Mullite can be produced through thermal decomposition of ball clay, 

which is one of the most attractive ways of preparing mullite because of the abundance 

of clay and the relatively low sintering temperature for mullitisation [23]. Because of 

its potential, ball clay can be highly advantageous for MD membranes. To make 

hydrophobic ceramic membranes, fluorination with FAS has been a common method 

[16,64–68]. However, the membranes’ surface hydrophobicity does not seem to reach 

extreme water repellency as most of the water contact angle results were below 150o. 

Therefore, membrane fouling and wetting are still major hitches for hydrophobic 

ceramic membranes. FAS-functionalized ceramic membranes can be easily wetted 

with low surface tension materials (e.g. dissolved organic matter, surfactants and 

hydrophobic species) that exist in wastewater or seawater [12,37,69,70]. The high 

affinity of these contaminants towards hydrophobic membrane surfaces contributes to 

membrane fouling and wetting and consequently severe declines in permeate flux, salt 

rejection, and energy efficiency [31,71,72].  

 

 

To date, applications of micro/nanomaterials have been widely explored on 

polymeric membranes to enhance the membranes’ omniphobicity, and these 

omniphobic surfaces display contact angles greater than 150° with a wide range of 

surface tensions [37,73,74]. Meanwhile, the application of omniphobic surfaces with 

hierarchical textures for ceramic membranes is still scarce since many of the previous 

works focused on polymeric membranes as substrates and the methods were complex 

as they involved multiple steps in developing the hierarchical textures. Recently a one-

step synthesis of hierarchical texture on the surface of ceramic membranes was 

developed by growing flower-like silicon oxynitride (Si2N2O) nanowires via a vapour–

solid process [63]. The membrane had a water contact angle of 160o. However, the 

method required a high operating temperature that was around 1400oC to grow the 
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particles. To the best of my knowledge, studies have yet to report the use of a one-step 

synthesis of the hydrothermal method to prepare omniphobic ceramic membranes with 

hierarchical re-entrant structure at the interface, particularly for MD applications. In 

comparison with various other ceramic membrane configurations, ceramic hollow 

fibre membranes could enhance performance in terms of flux as they have higher 

packing densities and are less resistant to water vapour [12]. These advantages show 

that this type of membranes provides promising membrane substrates to extend the 

membranes’ application for desalination via MD. Therefore, this study aims to develop 

a novel omniphobic ceramic hollow fibre membrane with hierarchical re-entrant 

structure by growing hierarchical TiO2 particles via a one-step synthesis of the 

hydrothermal method that is followed by fluorination. The morphology of the TiO2, 

which has rod-like or flower-like structure, is controlled through hydrothermal 

reaction time. Moreover, the ceramic hollow fibre membrane, which is mullite, is 

synthesised from aluminosilicate ball clay. Its properties are controlled via the 

composition of ball clay suspension as well as the temperature of sintering.  

 

 

 

 

1.3 Objective of Research 

 

 

The main objective of this present study is to develop mullite hollow fibre 

membranes with omniphobic properties, where the substrate is made from naturally-

occurring ball clay and the omniphobic surface is made from fluorinated (FAS-

modified) TiO2 particles, namely nanorods and hierarchical microflowers. To achieve 

this goal, the following objectives need to be accomplished. 

 

 

i. To investigate the properties of mullite hollow fibre membrane by fabricating 

at different ball clay powder loading and sintering temperature in order to 

produce microfiltration membrane for MD application. 

 

 

ii. To examine the omniphobicity of the mullite hollow fibre membranes through 

pre-roughening at different hydrothermal reaction time and post-fluorination at 

different grafting time. 
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iii. To evaluate the desalination performance, and antifouling and antiwetting 

properties of the omniphobic mullite hollow fibre membranes via DCMD 

process and subsequent surface characterization with a feed of saline solution 

that contains humic acid as a fouling agent. 

 

 

 

 

1.4 Scopes of Study 

 

 

The present study is conducted for facial fabrication of omniphobic mullite 

ceramic hollow fibre membranes as potential robust membranes with antiwetting and 

antifouling properties for MD. In order to achieve the objectives of this research, the 

following scopes are outlined 

 

 

i. Ball clay powder was prepared via the sequence of pretreatment processes such 

as purifying, milling, drying, and calcination to reduce its particle size, 

narrowing its distribution size and forming anhydrous ball clay, respectively. 

 

 

ii. Fabricating mullite hollow fibre membranes as substrates from ball clay 

through phase inversion-based extrusion followed by sintering process. 

Ceramic suspension containing ball clay powder in the range of 37.5 to 50 

wt.% and sintering temperatures in the range of 1150˚C to 1300˚C were 

performed. 

 

 

iii. Characterizing the physicochemical properties of the ball clay and the as-

prepared mullite hollow fibre membranes such as particle size distribution, 

morphological, mineralogical, thermal and mechanical properties, water 

permeability as well as pore size and porosity. The physical properties of the 

membrane were evaluated to ensure that the membrane is suitable for MD 

application. 
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iv. Preparing omniphobic surfaces with re-entrant structures on the mullite hollow 

fibre membranes via pre-roughening by TiO2 particles via hydrothermal 

method at different reaction times (0 to 10 hours) and post-flourinating with 

1H,1H,2H,2H-Perfluorodecyltriethoxysilane (C8) at different grafting times 

(24 to 74 hours). 

 

 

v. Characterizing the physicochemical properties of the omniphobic membranes 

in terms of morphologies, surface composition, surface roughness and pore 

size and porosity.  

 

 

vi. The assessment of surface wettability with water and low surface tension 

liquids (humic acid, glycol, olive oil, etc.) via contact angle test.  

 

 

vii. Performing integrity studies in terms of thermal, mechanical, and acid and base 

stability of the omniphobic mullite hollow fibre membranes prior to MD 

application. 

 

 

viii. Evaluating the performances of the omniphobic ceramic hollow fibre 

membranes in terms of permeate flux, flux reduction factor, and salt rejection 

in DCMD process with feed of water and saline solution (3.5 wt%), 

respectively. 

 

 

ix. Evaluating the antifouling and antiwetting properties through normalized flux, 

salt rejection, and humic acid rejection of the omniphobic membranes by 

adding humic acid (10 mg/L) as a fouling agent in saline solution (3.5 wt%). 

 

 

x. Post-fouling analysis was carried out on fouled membranes to assess the 

surface morphology, chemistry, and omniphobicity. 
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1.5 Research Contribution 

 

 

 This study contributes a facile approach in terms of surface development of 

ceramic membranes towards omniphobicity that will benefit their antifouling and 

antiwetting properties during membrane distillation operations. Besides, this work 

aims to contribute to the growing area of MD research by exploring surface with re-

entrant structures using particles with different geometries, particularly rod-like and 

hierarchical flower-like structures, which were grown in one-step through 

hydrothermal method, in which has not been reported so far in literatures. Moreover, 

this study would provide opportunities for mullite hollow fibre membranes fabricated 

from the abundantly available ball clay for membrane technology applications.  

 

 

 

 

1.6 Thesis Organization 

 

 

This thesis shows a facile approach to fabricating omniphobic ceramic hollow 

fibre membranes by constructing re-entrant structures (TiO2 nanorods and 

microflowers) with a low surface energy material (C8) on the surface. The 

organization of this thesis is as follows. 

 

 

Chapter One describes issues and gaps of current membrane distillation-related 

work. Three objectives are stated along with the project scopes that serve to 

accomplish the objectives. The benefits of this work are also presented. Chapter Two 

reviews the current literature related to water scarcity, advantages of MD, fouling and 

wetting in MD, as well as the fundamental design of an omniphobic surface. The 

review also includes recent progress in the fabrication technique of omniphobic 

membranes for MD. The benefits of using ceramic membranes are also reviewed in 

this chapter. Chapter Three describes the framework of the research methodology, 

which consists of step-by-step approaches that lead towards the goals of this project. 

The complete framework includes all materials, experimental setups, working 

procedures, and analytical methods required to fabricate ceramic hollow fibre 

membranes and omniphobic coatings. The characterization technique and membrane 

performance test of the DCMD system are also described in detail. 
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Results and discussion are elaborated in Chapter Four, Five, and Six. Chapter 

Four explains the fabrication, characterization, and permeation property of ceramic 

hollow fibre membranes fabricated from naturally-occurring ball clay. Firstly, the 

properties of ball clay powder in terms of thermal, morphological, mineralogical, and 

chemical properties before and after a sequence of pre-treatment processes were 

evaluated. The prepared ball clay powder was then subjected to membrane fabrication 

at different ball clay powder loading and sintering temperature. The physicochemical 

properties of the fabricated hollow fibre membrane are also discussed. In Chapter 5, 

the fabrication steps of omniphobic ceramic hollow fibre membrane are described. The 

morphologies and the distribution of TiO2 particles on the surface of hollow fibres 

were investigated in detail by controlling the hydrothermal reaction times and grafting 

times. The surface chemistry, surface wettability, coating integrity, pore size, and 

porosity of the omniphobic ceramic hollow fibre membranes were also evaluated. In 

Chapter 6, membrane distillation studies and subsequent membrane surface 

characterizations were carried out. Organic fouling on the omniphobic membranes was 

evaluated using DCMD test with feed of saline solution, containing humic acid as a 

fouling agent. Post-fouling analysis on the fouled membranes, in terms of morphology, 

chemistry, and omniphobicity, is discussed in detail. Finally, Chapter 7 provides 

general conclusions of the study as well as some recommendations for future work to 

fill the knowledge gaps. 
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