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ABSTRACT

We consider mirror symmetry for (essentially arbitrary) hypersurfaces in (possibly noncompact) toric varieties from
the perspective of the Strominger-Yau-Zaslow (SYZ) conjecture. Given a hypersurface H in a toric variety V we construct
a Landau-Ginzburg model which is SYZ mirror to the blowup of V × C along H × 0, under a positivity assumption. This
construction also yields SYZ mirrors to affine conic bundles, as well as a Landau-Ginzburg model which can be naturally
viewed as a mirror to H. The main applications concern affine hypersurfaces of general type, for which our results provide
a geometric basis for various mirror symmetry statements that appear in the recent literature. We also obtain analogous
results for complete intersections.

1. Introduction

A number of recent results [3, 17, 25, 32, 47] suggest that the phenomenon of
mirror symmetry is not restricted to Calabi-Yau or Fano manifolds. Indeed, while mir-
ror symmetry was initially formulated as a duality between Calabi-Yau manifolds, it was
already suggested in the early works of Givental and Batyrev that Fano manifolds also ex-
hibit mirror symmetry. The counterpart to the presence of a nontrivial first Chern class
is that the mirror of a compact Fano manifold is not a compact manifold, but rather a
Landau-Ginzburg model, i.e. a (non-compact) Kähler manifold equipped with a holomor-
phic function called superpotential. A physical explanation of this phenomenon and a num-
ber of examples have been given by Hori and Vafa [29]. From a mathematical point of
view, Hori and Vafa’s construction amounts to a toric duality, and can also be applied to
varieties of general type [16, 25, 32, 33].

The Strominger-Yau-Zaslow (SYZ) conjecture [51] provides a geometric interpre-
tation of mirror symmetry for Calabi-Yau manifolds as a duality between (special) La-
grangian torus fibrations. In the language of Kontsevich’s homological mirror symmetry
[34], the SYZ conjecture reflects the expectation that the mirror can be realized as a
moduli space of certain objects in the Fukaya category of the given manifold, namely, a
family of Lagrangian tori equipped with rank 1 local systems. Note that this homological
perspective eliminates the requirement of finding special Lagrangian fibrations, at the
cost of privileging one side of mirror symmetry: in the Calabi-Yau case, the framework
we follow produces a degenerating family Y0 of complex manifolds (B-side) starting with
a Lagrangian torus fibration on a symplectic manifold X0 (A-side).
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Outside of the Calabi-Yau situation, homological mirror symmetry is still expected
to hold [35], but the Lagrangian tori bound holomorphic discs, which causes their Floer
theory to be obstructed; the mirror superpotential can be interpreted as a weighted count
of these holomorphic discs [6, 7, 21, 28]. We call such a mirror a B-side Landau-Ginzburg

model.
In the Calabi-Yau case, mirror symmetry is expected to be involutive; i.e. when the

symplectic form on X0 is in fact a Kähler form for some degenerating family of complex
structures then the mirror Y should be equipped with its own Kähler form which is mirror
to these complex structures. Involutivity should hold beyond the Calabi-Yau situation,
but requires making sense of a class of potential functions on symplectic manifolds, called
A-side Landau-Ginzburg models, which have well defined Fukaya categories. The idea for
such a definition goes back to Kontsevich [35], and was studied in great depth by Seidel
in [46] in the special case of Lefschetz fibrations.

Remark 1.1. — The general theory of Fukaya categories F(X,W∨) of A-side
Landau-Ginzburg models is still under development in different contexts [2, 4, 5]; we
shall specifically point out where it is being used in this paper. In fact, we will also need to
consider twisted versions of A-side Landau-Ginzburg models, where objects of the Fukaya
category carry relatively spin structures with respect to a background class in H2(X,Z/2)
(rather than spin structures); see Section 7.

On manifolds of general type (or more generally, whose first Chern class cannot
be represented by an effective divisor), the SYZ approach to mirror symmetry seems
to fail at first glance due to the lack of a suitable Lagrangian torus fibration. The idea
that allows one to overcome this obstacle is to replace the given manifold with another
closely related space which does carry an appropriate SYZ fibration. Thus, we make the
following definition:

Definition 1.2. — We say that a B-side Landau-Ginzburg model (Y,W) is SYZ mirror to

a Kähler manifold X (resp. an A-side Landau-Ginzburg model (X,W∨)) if there exists an open dense

subset X0 of X, and a Lagrangian torus fibration π : X0 → B, such that the following properties hold:

(1) Y is a completion of a moduli space of unobstructed torus-like objects of the Fukaya category

F(X0) (resp. F(X0,W∨)) containing those objects which are supported on the fibers of π ;

(2) the function W restricts to the superpotential induced by the deformation of F(X0) to F(X)
(resp. F(X0,W∨) to F(X,W∨)) for these objects.

We say that (Y,W) is a generalized SYZ mirror of X if (after shifting W by a suitable additive

constant) it is an SYZ mirror of a (suitably twisted) A-side Landau-Ginzburg model with Morse-Bott

superpotential, whose critical locus is isomorphic to X.

The last part of the definition is motivated by the expectation that the Fukaya cat-
egory of a Morse-Bott superpotential, twisted by a background class which accounts for
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the non-triviality of the normal bundle to the critical locus, is equivalent (up to an additive
constant shift in the curvature term, which accounts for exceptional curves through the
critical locus) to the Fukaya category of the critical locus; see Corollary 7.8 and Proposi-
tion 7.10.

Definition 1.2 and the construction of moduli spaces of objects of the Fukaya cate-
gory are clarified in Section 2 and Appendix A. To understand the first condition in the
case of an A-side Landau-Ginzburg model, it is useful to note that every object of the
Fukaya category F(X0) of compact Lagrangians also defines an object of F(X0,W∨)
since the objects of the latter are Lagrangians satisfying admissibility properties outside a
compact set and such properties trivially hold for compact Lagrangians. Hence the fibers
of π automatically define objects of F(X0,W∨); we shall enlarge this space by consid-
ering certain non-compact Lagrangians in X0 which can be seen as limits of compact
Lagrangians.

Remark 1.3. — It is important to note that, even in the absence of superpotentials,
the assertion that Y0 is SYZ mirror to X0 may not imply that the Fukaya category of X0

is equivalent to the derived category of Y0; at a basic level, the example of the Kodaira
surface mentioned in [1] shows that there may in general be an analytic gerbe on Y0 so
that the Fukaya category of X0 is in fact mirror to sheaves twisted by this gerbe. Beyond
the Calabi-Yau situation, a complete statement of homological mirror symmetry for SYZ
mirrors would have to consider further deformations of the derived category of sheaves
by (holomorphic) polyvector fields on Y. The superpotential W should be thought of as
the leading order term of this deformation corresponding to discs of Maslov index 2.

More fundamentally, our construction of the analytic completion relies on choices,
and it is expected that different choices will given rise to different mirrors. Indeed, this
phenomenon would provide a mirror symmetry explanation for the existence of derived
equivalent varieties which are birational. Nonetheless, as completely arbitrary choices
of completions give rise to varieties which are not derived equivalent (e.g. a blowup),
the task of passing from our SYZ mirror statement to homological mirror symmetry
would require a more careful understanding of the completions that we have introduced.
This paper begins this task by explaining how some of the points that we add should
correspond to objects of the Fukaya category supported by immersed or non-compact
Lagrangians (see Remark A.12).

In this paper we use this perspective to study mirror symmetry for hypersurfaces
(and complete intersections) in toric varieties. If H is a smooth hypersurface in a toric va-
riety V, then one simple way to construct a closely related Kähler manifold with effective
first Chern class is to blow up the product V × C along the codimension 2 submanifold
H × 0. By a result of Bondal and Orlov [9], the derived category of coherent sheaves
of the resulting manifold X admits a semi-orthogonal decomposition into subcategories
equivalent to Db Coh(H) and Db Coh(V × C); and ideas similar to those of [50] can be
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used to study the Fukaya category of X, as we explain in Section 7 (cf. Corollary 7.8).
Thus, finding a mirror to X is, for many purposes, as good as finding a mirror to H.
Accordingly, our main results concern SYZ mirror symmetry for X and, by a slight mod-
ification of the construction, for H. Along the way we also obtain descriptions of SYZ
mirrors to various related spaces. These results provide a geometric foundation for mir-
ror constructions that have appeared in the recent literature [3, 16, 25, 32, 33, 47, 49].

We focus primarily on the case where V is affine, and other cases which can be
handled with the same techniques. The general case requires more subtle arguments in
enumerative geometry, which should be the subject of further investigation.

1.1. Statement of the results. — Our main result can be formulated as follows (see
Section 3 for the details of the notations).

Let H = f −1(0) be a smooth nearly tropical hypersurface (cf. Section 3.1) in a
(possibly noncompact) toric variety V of dimension n, and let X be the blow-up of V×C
along H × 0, equipped with an S1-invariant Kähler form ωε for which the fibers of the
exceptional divisor have sufficiently small area ε > 0 (cf. Section 3.2).

Let Y be the toric variety defined by the polytope {(ξ, η) ∈ Rn × R | η ≥ ϕ(ξ)},
where ϕ is the tropicalization of f . Let w0 = −Tε + Tεv0 ∈ O(Y), where T is the
Novikov parameter and v0 is the toric monomial with weight (0, . . . ,0,1), and set
Y0 = Y \w−1

0 (0). Finally, let W0 = w0 +w1 + · · · +wr ∈O(Y) be the leading-order super-

potential of Definition 3.10, namely the sum of w0 and one toric monomial wi (1 ≤ i ≤ r)
for each irreducible toric divisor of V (see Definition 3.10). We assume:

Assumption 1.4. — c1(V) · C>max(0,H · C) for every rational curve C � P1 in V.

This includes the case where V is an affine toric variety as an important special
case. Under this assumption, our main result is the following:

Theorem 1.5. — Under Assumption 1.4, the B-side Landau-Ginzburg model (Y0,W0) is

SYZ mirror to X.

In the general case, the mirror of X differs from (Y0,W0) by a correction term
which is of higher order with respect to the Novikov parameter (see Remark 6.3).

Equipping X with an appropriate superpotential, given by the affine coordinate of
the C factor, yields an A-side Landau-Ginzburg model whose singularities are of Morse-
Bott type. Up to twisting by a class in H2(X,Z/2), this A-side Landau-Ginzburg model
can be viewed as a stabilization of the sigma model with target H.

Theorem 1.6. — Assume V is affine, and let WH
0 =−v0 +w1 +· · ·+wr ∈O(Y) (see Def-

inition 3.10). Then the B-side Landau-Ginzburg model (Y,WH
0 ) is a generalized SYZ mirror of H.

Unlike the other results stated in this introduction, this theorem strictly speaking re-
lies on the assumption that Fukaya categories of Landau-Ginzburg models satisfy certain
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properties for which we do not provide complete proofs. In Section 7, we give sketches of
the proofs of these results, and indicate the steps which are missing from our argument.

A result similar to Theorem 1.6 can also be obtained from the perspective of mir-
ror duality between toric Landau-Ginzburg models [16, 25, 29, 32]. However, the toric
approach is much less illuminating, because geometrically it works at the level of the open
toric strata in the relevant toric varieties (the total space of O(−H)→ V on one hand,
and Y on the other hand), whereas the interesting geometric features of these spaces lie
entirely within the toric divisors.

Theorem 1.5 relies on a mirror symmetry statement for open Calabi-Yau mani-
folds which is of independent interest. Consider the conic bundle

X0 = {
(x, y, z) ∈ V0 × C2

∣∣ yz = f (x)
}

over the open stratum V0 � (C∗)n of V, where f is again the defining equation of the hy-
persurface H. The conic bundle X0 sits as an open dense subset inside X, see Remark 3.5.
Then we have:

Theorem 1.7. — The open Calabi-Yau manifold Y0 is SYZ mirror to X0.

In the above statements, and in most of this paper, we view X or X0 as a symplectic
manifold, and construct the SYZ mirror Y0 (with a superpotential) as an algebraic moduli
space of objects in the Fukaya category of X or X0. This is the same direction considered
e.g. in [3, 17, 47]. However, one can also work in the opposite direction, starting from
the symplectic geometry of Y0 and showing that it admits X0 (now viewed as a complex
manifold) as an SYZ mirror. For completeness we describe this converse construction in
Section 8 (see Theorem 8.4); similar results have also been obtained independently by
Chan, Lau and Leung [12].

The methods we use apply in more general settings as well. In particular, the as-
sumption that V be a toric variety is not strictly necessary—it is enough that SYZ mirror
symmetry for V be sufficiently well understood. As an illustration, in Section 11 we derive
analogues of Theorems 1.5–1.7 for complete intersections.

1.2. A reader’s guide. — The rest of this paper is organized as follows.
First we briefly review (in Section 2) the SYZ approach to mirror symmetry, fol-

lowing [6, 7]. Then in Section 3 we introduce notation and describe the protagonists of
our main results, namely the spaces X and Y and the superpotential W0.

In Section 4 we construct a Lagrangian torus fibration on X0, similar to those
previously considered by Gross [23, 24] and by Castaño-Bernard and Matessi [10, 11].
In Section 5 we study the Lagrangian Floer theory of the torus fibers, which we use to
prove Theorem 1.7. In Section 6 we consider the partial compactification of X0 to X,
and prove Theorem 1.5. Theorem 1.6 is then proved in Section 7.
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In Section 8 we briefly consider the converse construction, namely we start from a
Lagrangian torus fibration on Y0 and recover X0 as its SYZ mirror.

Finally, some examples illustrating the main results are given in Section 9, while
Sections 10 and 11 discusses various generalizations, including to hypersurfaces in abelian
varieties (Theorem 10.4) and complete intersections in toric varieties (Theorem 11.1).

2. Review of SYZ mirror symmetry

In this section, we briefly review SYZ mirror symmetry for Kähler manifolds with
effective anticanonical class; the reader is referred to [6, 7] for basic ideas about SYZ,
and to Appendix A for technical details.

2.1. Lagrangian torus fibrations and SYZ mirrors. — In first approximation, the
Strominger-Yau-Zaslow conjecture [51] states that mirror pairs of Calabi-Yau manifolds
carry mutually dual Lagrangian torus fibrations (up to “instanton corrections”). A refor-
mulation of this statement in the language of homological mirror symmetry [34] is that
a mirror of a Calabi-Yau manifold can be constructed as a moduli space of suitable ob-
jects in its Fukaya category (namely, the fibers of an SYZ fibration, equipped with rank 1
local systems); and vice versa. In Appendix A, we explain how ideas of Fukaya [19] yield
a precise construction of such a mirror space from local rigid analytic charts glued via
the equivalence relation which identifies objects that are quasi-isomorphic in the Fukaya
category.

We consider an open Calabi-Yau manifold of the form X0 = X\D, where (X,ω, J)
is a Kähler manifold of complex dimension n and D ⊂ X is an anticanonical divisor
(reduced, with normal crossing singularities). X0 can be equipped with a holomorphic n-
form 	 (with simple poles along D), namely the inverse of the defining section of D. The
restriction of 	 to an oriented Lagrangian submanifold L ⊂ X0 is a nowhere vanishing
complex-valued n-form on L; the complex argument of this n-form determines the phase

function arg(	|L) : L → S1. Recall that L is said to be special Lagrangian if arg(	|L) is
constant; a weaker condition is to require the vanishing of the Maslov class of L in X0, i.e.
we require the existence of a lift of arg(	|L) to a real-valued function. (The choice of such
a real lift then makes L a graded Lagrangian, and yields Z-gradings on Floer complexes.)

The main input of the construction of the SYZ mirror of the open Calabi-Yau
manifold X0 is a Lagrangian torus fibration π : X0 → B (with appropriate singularities)
whose fibers have trivial Maslov class. (Physical considerations suggest that one should
expect the fibers of π to be special Lagrangian, but such fibrations are hard to produce.)

The base B of the Lagrangian torus fibration π carries a natural real affine struc-
ture (with singularities along the locus Bsing of singular fibers), i.e. B \ Bsing can be covered
by a set of coordinate charts with transition functions in GL(n,Z)� Rn. A smooth fiber
L0 = π−1(b0) and a collection of loops γ1, . . . , γn forming a basis of H1(L0,Z) determine
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an affine chart centered at b0 in the following manner: given b ∈ B \ Bsing close enough
to b0, we can isotope L0 to L = π−1(b) among fibers of π . Under such an isotopy, each
loop γi traces a cylinder �i with boundary in L0 ∪ L; the affine coordinates associated to
b are then the symplectic areas (

∫
�1
ω, . . . ,

∫
�n
ω).

In the examples we will consider, “most” fibers of π do not bound nonconstant
holomorphic discs in X0; we call such Lagrangians tautologically unobstructed. Recall that a
(graded, spin) Lagrangian submanifold L of X0 together with a unitary rank one local
system ∇ determines an object (L,∇) of the Fukaya category F(X0) [20] whenever
certain counts of holomorphic discs cancel; this condition evidently holds if there are
no non-constant discs. Thus, given an open subset U ⊂ B \ Bsing such that all the fibers
in π−1(U) are tautologically unobstructed, the moduli space of objects (L,∇) where
L ⊂ π−1(U) is a fiber of π and ∇ is a unitary rank 1 local system on L yields an open
subset U∨ ⊂ Y0 of the SYZ mirror of X0.

A word is in order about the choice of coefficient field. A careful definition of Floer
homology involves working over the Novikov field (here over complex numbers),

(2.1) �=
{ ∞∑

i=0

ciTλi
∣∣ ci ∈ C, λi ∈ R, λi →+∞

}
.

Recall that the valuation of a non-zero element of � is the smallest exponent λi that ap-
pears with a non-zero coefficient; the above-mentioned local systems are required to have
holonomy in the multiplicative subgroup

U� =
{

c0 +
∑

ciTλi ∈� ∣∣ c0 = 0 and λi > 0
}

of unitary elements (or units) of the Novikov field, i.e. elements whose valuation is zero. The
local system ∇ ∈ hom(π1(L),U�) enters into the definition of Floer-theoretic operations
by contributing holonomy terms to the weights of holomorphic discs: a rigid holomorphic
disc u with boundary on Lagrangians (Li,∇i) is counted with a weight

(2.2) Tω(u) hol(∂u),

where ω(u) is the symplectic area of the disc u, and hol(∂u) ∈ U� is the total holon-
omy of the local systems ∇i along its boundary. (Thus, local systems are conceptually an
exponentiated variant of the “bounding cochains” used by Fukaya et al. [20, 21].) Gro-
mov compactness ensures that all structure constants of Floer-theoretic operations are
well-defined elements of �.

Thus, in general the SYZ mirror of X0 is naturally an analytic space defined
over �. However, it is often possible to obtain a complex mirror by treating the Novikov
parameter T as a numerical parameter T = e−2π t with t > 0 sufficiently large; of course
it is necessary to assume the convergence of all the power series encountered. The local
systems are then taken to be unitary in the usual sense, i.e. ∇ ∈ hom(π1(L),S1), and
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the weight of a rigid holomorphic disc, still given by (2.2), becomes a complex number.
The complex manifolds obtained by varying the parameter t are then understood to be
mirrors to the family of Kähler manifolds (X0, tω).

To provide a unified treatment, we denote by K the coefficient field (� or C), by
UK the subgroup of unitary elements (either U� or S1), and by val : K → R the valuation
(in the case of complex numbers, val(z)=− 1

2π t
log |z|).

Consider as above a contractible open subset U ⊂ B \ Bsing above which all
fibers of π are tautologically unobstructed, a reference fiber L0 = π−1(b0) ⊂ π−1(U),
and a basis γ1, . . . , γn of H1(L0,Z). A fiber L = π−1(b) ⊂ π−1(U) and a local system
∇ ∈ hom(π1(L),UK) determine a point of the mirror, (L,∇) ∈ U∨ ⊂ Y0. Identifying
implicitly H1(L,Z) with H1(L0,Z), the local system ∇ is determined by its holonomies
along the loops γ1, . . . , γn, while the fiber L is determined by the symplectic areas of the
cylinders �1, . . . ,�n. This yields natural coordinates on U∨ ⊂ Y0, identifying it with an
open subset of (K∗)n via

(2.3) (L,∇) �→ (z1, . . . , zn)=
(
T

∫
�1
ω∇(γ1), . . . ,T

∫
�n
ω∇(γn)

)
.

One feature of Floer theory that is conveniently captured by this formula is the fact that,
in the absence of instanton corrections, the non-Hamiltonian isotopy from L0 to L is
formally equivalent to equipping L0 with a non-unitary local system for which val(∇(γi))=∫
�i
ω.

The various regions of B over which the fibers are tautologically unobstructed
are separated by walls (real hypersurfaces in B, or thickenings of real hypersurfaces) of
potentially obstructed fibers (i.e. which bound non-constant holomorphic discs), across which
the local charts of the mirror (as given by (2.3)) need to be glued together in an appropriate
manner to account for “instanton corrections”.

The discussion preceding Equation (A.4) makes precise the idea that we can embed
the moduli space of Lagrangians equipped with unitary local systems in an analytic space
obtained by gluing coordinate charts coming from non-unitary systems. This will be the
first step in the construction of the mirror manifold as a completion of the moduli space
of Lagrangians.

Consider a potentially obstructed fiber L = π−1(b) of π , where b ∈ B\Bsing lies in a
wall that separates two tautologically unobstructed chambers. By deforming this fiber to
a nearby chamber, we obtain a bounding cochain (with respect to the Floer differential)
for the moduli space of holomorphic discs with boundary on L. While local systems on
L define objects of F(X0), the quasi-isomorphism type of such objects depends on the
choice of bounding cochain, which in our case amounts to a choice of this isotopy. In
the special situation we are considering, we use this argument to prove in Lemma A.13
that any unitary local system on L can be represented by a non-unitary local system on a
fiber lying in a tautologically unobstructed chamber. This implies that the space obtained
by gluing the mirrors of the chambers contains the analytic space corresponding to all
unitary local systems on smooth fibers of π .
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The gluing maps for the mirrors of nearby chambers are given by wall-crossing
formulae, with instanton corrections accounting for the disc bubbling phenomena that
occur as a Lagrangian submanifold is isotoped across a wall of potentially obstructed
Lagrangians (see [6] for an informal discussion, and Appendix A.1 for the relation with
the invariance proof of Floer cohomology in this setting [19, 20]). Specifically, consider
a Lagrangian isotopy {Lt}t∈[0,1] whose end points are tautologically unobstructed and
lie in adjacent chambers. Assume that all nonconstant holomorphic discs bounded by
the Lagrangians Lt in X0 represent a single relative homotopy class β ∈ π2(X0,Lt) (we
implicitly identify these groups with each other by means of the isotopy), or its multiples
(for non-simple discs). The weight associated to the class β defines a regular function

zβ = Tω(β)∇(∂β) ∈O
(
U∨

i

)
,

in fact a monomial in the coordinates (z1, . . . , zn) of (2.3). In this situation, assuming
its transversality, the moduli space M1({Lt}, β) of all holomorphic discs in the class β
bounded by Lt as t varies from 0 to 1, with one boundary marked point, is a closed
(n − 1)-dimensional manifold, oriented if we fix a spin structure on Lt . Thus, evaluation
at the boundary marked point (combined with identification of the submanifolds Lt via
the isotopy) yields a cycle Cβ = ev∗[M1({Lt}, β)] ∈ Hn−1(Lt). The instanton corrections
to the gluing of the local coordinate charts (2.3) are then of the form

(2.4) zi �→
(
h(zβ)

)Cβ ·γi
zi,

where h(zβ)= 1+zβ+· · · ∈ Q [[zβ]] is a power series recording the (virtual) contributions
of multiple covers of the discs in the class β . In practice, we shall only use the weaker
property that these transformations are of the form

(2.5) zi �→ hi(zβ)zi,

where hi(zβ) ∈ 1 + zβQ [[zβ]].
In the examples we consider in this paper, there are only finitely many walls in B,

and the above considerations are sufficient to construct the SYZ mirror of X0 out of
instanton-corrected gluings of local charts. In general, intersections between walls lead,
via a “scattering” phenomenon, to an infinite number of higher-order instanton correc-
tions; it is conjectured that these Floer-theoretic corrections can be determined using the
machinery developed by Kontsevich-Soibelman [36, 37] and Gross-Siebert [26, 27].

Remark 2.1. — We have discussed how to construct the analytic space Y0

(“B-model”) from the symplectic geometry of X0 (“A-model”). When Y0 makes sense
as a complex manifold (i.e., assuming convergence), one also expects it to carry a natural
Kähler structure for which the A-model of Y0 is equivalent to the B-model of X0. We will
however not emphasize this feature of mirror symmetry.
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2.2. The superpotential. — In the previous section we explained the construction of
the SYZ mirror Y0 of an open Calabi-Yau manifold X0 = X \ D, where D is an an-
ticanonical divisor in a Kähler manifold (X,ω, J), equipped with a Lagrangian torus
fibration π : X0 → B. We now turn to mirror symmetry for X itself.

The Fukaya category of X is a deformation of that of X0: the Floer cohomology
of Lagrangian submanifolds of X0, when viewed as objects of F(X), is deformed by
the presence of additional holomorphic discs that intersect the divisor D. Let L be a
Lagrangian fiber of the SYZ fibration π : X0 → B: since the Maslov class of L in X0

vanishes, the Maslov index of a holomorphic disc bounded by L in X is equal to twice its
algebraic intersection number with D. Following Fukaya, Oh, Ohta, and Ono [20] we
associate to L and a rank 1 local system ∇ over it the obstruction

(2.6) m0(L,∇)=
∑

β∈π2(X,L)\{0}
zβ(L,∇)ev∗

[
M1(L, β)

] ∈ C∗(L;K),

where zβ(L,∇)= Tω(β)∇(∂β) is the weight associated to the class β , and M1(L, β) is the
moduli space of holomorphic discs with one boundary marked point in (X,L) represent-
ing the class β . In the absence of bubbling, one can achieve regularity, and [M1(L, β)]
can be defined as the fundamental class of the manifold M1(L, β). To consider a more
general situation, we appeal to the work of Fukaya, Oh, Ohta, and Ono who define such
a potential for Lagrangian fibers in toric manifolds in [21]. While the examples we con-
sider are not toric, their construction applies more generally whenever the moduli spaces
of stable holomorphic discs with non-positive Maslov index contribute trivially to the
Floer differential. The situation is therefore simplest when the divisor D is nef, or more
generally when the following condition holds:

Assumption 2.2. — Every rational curve C � P1 in X has non-negative intersection number

D · C ≥ 0.

Consider first the case of a Lagrangian submanifold L which is tautologically unob-
structed in X0. By positivity of intersections, the minimal Maslov index of a non-constant
holomorphic disc with boundary on L is 2 (when β · D = 1). Gromov compactness im-
plies that the chain ev∗[M1(L, β)] is actually a cycle, of dimension n− 2+μ(β)= n, i.e.
a scalar multiple n(L, β)[L] of the fundamental class of L; whereas the evaluation chains
for μ(β) > 2 have dimension greater than n and we discard them. Thus (L,∇) is weakly

unobstructed, i.e.

m0(L,∇)= W(L,∇)eL

is a multiple of the unit in H0(L,K), which is Poincaré dual to the fundamental class
of L. More generally, Assumption 2.2 excludes discs of negative Maslov index, while the
vanishing of the contribution of discs of Maslov index 0 is explained in Appendix A.2.
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Given an open subset U ⊂ B \ Bsing over which the fibers of π are tautologically
unobstructed in X0, the coordinate chart U∨ ⊂ Y0 considered in the previous section now
parametrizes weakly unobstructed objects (L = π−1(b),∇) of F(X), and the superpotential

(2.7) W(L,∇)=
∑

β∈π2(X,L)
β·D=1

n(L, β)zβ(L,∇)

is a regular function on U∨. The superpotential represents a curvature term in Floer
theory: the differential on the Floer complex of a pair of weakly unobstructed objects
(L,∇) and (L′,∇′) squares to (W(L′,∇′)− W(L,∇)) id. In particular, the family Floer
cohomology [18] of an unobstructed Lagrangian submanifold of X with the fibers of the
SYZ fibration over U is expected to yield no longer an object of the derived category of
coherent sheaves over U∨ but rather a matrix factorization of the superpotential W.

In order to construct the mirror of X globally, we again have to account for in-
stanton corrections across the walls of potentially obstructed fibers of π . As before, these
corrections are needed in order to account for the bubbling of holomorphic discs of
Maslov index 0 as one crosses a wall, and encode weighted counts of such discs. Under
Assumption 2.2, positivity of intersection implies that all the holomorphic discs of Maslov
index 0 are contained in X0; therefore the instanton corrections are exactly the same for
X as for X0, i.e. the moduli space of objects of F(X) that we construct out of the fibers
of π is again Y0 (the SYZ mirror of X0).

A key feature of the instanton corrections is that the superpotential defined by (2.7)
naturally glues to a regular function on Y0; this is because, by construction, the gluing
via wall-crossing transformations identifies quasi-isomorphic objects of F(X), for which
the obstructions m0 have to match, as explained in Corollary A.11. Thus, the mirror of
X is the B-side Landau-Ginzburg model (Y0,W), where Y0 is the SYZ mirror of X0 and
W ∈O(Y0) is given by (2.7). (However, see Remark 1.3.)

Remark 2.3. — The regularity of the superpotential W is a useful feature for the
construction of the SYZ mirror of X0. Namely, rather than directly computing the in-
stanton corrections by studying the enumerative geometry of holomorphic discs in X0, it
is often easier to determine them indirectly, by considering either X or some other partial
compactification of X0 (satisfying Assumption 2.2), computing the mirror superpotential
in each chamber of B \ Bsing , and matching the expressions on either side of a wall via a
coordinate change of the form (2.4).

When Assumption 2.2 fails, the instanton corrections to the SYZ mirror of X might
differ from those for X0 (hence the difference between the mirrors might be more subtle
than simply equipping Y0 with a superpotential). However, this only happens if the (vir-
tual) counts of Maslov index 0 discs bounded by potentially obstructed fibers of π in X
differ from the corresponding counts in X0. Fukaya-Oh-Ohta-Ono have shown that this
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issue never arises for toric varieties [21, Corollary 11.5]. In that case, the deformation
of the Fukaya category which occurs upon (partially) compactifying X0 to X (due to the
presence of additional holomorphic discs) is accurately reflected by the deformation of
the mirror B-model given by the superpotential W (i.e., considering matrix factorizations
rather than the usual derived category).

Unfortunately, the argument of [21] does not adapt immediately to our setting;
thus for the time being we only consider settings in which Assumption 2.2 holds. This
will be the subject of further investigation.

The situation is in fact symmetric: just as partially compactifying X0 to X is mirror
to equipping Y0 with a superpotential, equipping X0 or X with a superpotential is mirror
to partially compactifying Y0. One way to justify this claim would be to switch to the
other direction of mirror symmetry, reconstructing X0 as an SYZ mirror of Y0 equipped
with a suitable Kähler structure (cf. Remark 2.1). However, in simple cases this statement
can also be understood directly. The following example will be nearly sufficient for our
purposes (in Section 7 we will revisit and generalize it):

Example 2.4. — Let X0 = C∗, whose mirror Y0 � K∗ parametrizes objects (L,∇)
of F(X0), where L is a simple closed curve enclosing the origin (up to Hamiltonian iso-
topy) and ∇ is a unitary rank 1 local system on L. The natural coordinate on Y0, as given
by (2.3), tends to zero as the area enclosed by L tends to infinity. Equipping X0 with the
superpotential W(x)= x, the Fukaya category F(X0,W) also contains “admissible” non-
compact Lagrangian submanifolds, i.e. properly embedded Lagrangians whose image
under W is only allowed to tend to infinity in the direction of the positive real axis. Denote
by L∞ a properly embedded arc which connects +∞ to itself by passing around the ori-
gin (and encloses an infinite amount of area). An easy calculation in F(X0,W) shows that
HF∗(L∞,L∞)� H∗(S1;K); so L∞ behaves Floer cohomologically like a torus. In partic-
ular, L∞ admits a one-parameter family of deformations in F(X0,W); these are repre-
sented by equipping L∞ with a bounding cochain in HF1(L∞,L∞) = K of sufficiently
large valuation (with our conventions, the valuation of 0 is +∞). Given a point cTλ ∈ K,
the Floer differential on the Floer complex of (L∞, cTλ) with another Lagrangian counts,
in addition to the usual strips, triangles with one boundary puncture converging to a time
1 chord of an appropriate Hamiltonian (equal to a positive multiple of Re(x) near +∞)
with ends on L∞ (this is the implementation of the Fukaya category F(X0,W) appear-
ing in [48]); these triangles are counted with Novikov weights equal to their topological
energy.

Except for the case c = 0, these additional objects of the Fukaya category turn
out to be isomorphic to simple closed curves (enclosing the origin) with rank 1 local sys-
tems. More precisely, let Lλ be the fiber enclosing an additional amount of area λ ∈ R
compared to a suitable reference Lagrangian L0, and ∇c the local system with holon-
omy c. (Fixing a Liouville 1-form θ , we choose L0 so that

∫
L0
θ is equal to the action A

of the Hamiltonian chord from L∞ to itself; so
∫

Lλ
θ =A+ λ.) Then an easy computa-



BLOWUPS AND MIRROR SYMMETRY FOR HYPERSURFACES 211

tion shows that the pairs (L∞, cTλ) and (Lλ,∇c) represent quasi-isomorphic objects of
F(C∗,W). Thus, in F(C∗,W) the previously considered moduli space of objects con-
tains an additional point L∞; this naturally extends the mirror from Y0 � K∗ to Y � K,
and the coordinate coming from identifying bounding cochains on L∞ with local systems
on closed curves defines an analytic structure near this point.

Alternatively, one can geometrically recover the Lagrangians Lλ (together with a
trivial noncompact component which is quasi-isomorphic to zero) as self-surgeries of the
immersed Lagrangian obtained by deforming L∞ to a curve with one self-intersection,
enclosing the same amount of area as Lλ. This self-intersection corresponds to a generator
in HF1(L∞,L∞), giving rise to a bounding cochain. The Floer-theoretic isomorphisms
between bounding cochains on admissible Lagrangians and embedded Lagrangians then
become an instance of the surgery formula of [22].

3. Notations and constructions

3.1. Hypersurfaces near the tropical limit. — Let V be a (possibly non-compact) toric
variety of complex dimension n, defined by a fan �V ⊆ Rn. We denote by σ1, . . . , σr the
primitive integer generators of the rays of �V. We consider a family of smooth algebraic
hypersurfaces Hτ ⊂ V (where τ → 0), transverse to the toric divisors in V, and degener-
ating to the “tropical” limit. Namely, in affine coordinates x = (x1, . . . , xn) over the open
stratum V0 � (C∗)n ⊂ V, Hτ is defined by an equation of the form

(3.1) fτ =
∑

α∈A

cατ
ρ(α)xα = 0,

where A is a finite subset of the lattice Zn of characters of the torus V0, cα ∈ C∗ are
arbitrary constants, and ρ : A → R satisfies a certain convexity property.

More precisely, fτ is a section of a certain line bundle L over V, determined by
a convex piecewise linear function λ : �V → R with integer linear slopes. (Note that L
need not be ample; however the convexity assumption forces it to be nef.) The polytope P
associated to L is the set of all v ∈ Rn such that 〈v, ·〉 + λ takes everywhere non-negative
values; more concretely, P = {v ∈ Rn | 〈σi, v〉 + λ(σi)≥ 0 ∀1 ≤ i ≤ r}. It is a classical fact
that the integer points of P give a basis of the space of sections of L. The condition that
Hτ be transverse to each toric stratum of V is then equivalent to the requirement that
A ⊆ P ∩ Zn intersects nontrivially the closure of each face of P (i.e., in the compact case,
A should contain every vertex of P).

Consider a polyhedral decomposition P of the convex hull Conv(A)⊆ Rn, whose
set of vertices is exactly P (0) = A. We will mostly consider the case where the decom-
position P is regular, i.e. every cell of P is congruent under the action of GL(n,Z) to a
standard simplex. We say that ρ : A → R is adapted to the polyhedral decomposition P
if it is the restriction to A of a convex piecewise linear function ρ̄ : Conv(A)→ R whose
maximal domains of linearity are exactly the cells of P .
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FIG. 1. — A regular decomposition of the polytope for OP1×P1 (3,2), and the corresponding tropical hypersurface

Definition 3.1. — The family of hypersurfaces Hτ ⊂ V has a maximal degeneration
for τ → 0 if it is given by equations of the form (3.1) where ρ is adapted to a regular polyhedral

decomposition P of Conv(A).

The logarithm map Logτ : x = (x1, . . . , xn) �→ 1
| log τ |(log |x1|, . . . , log |xn|) maps Hτ

to its amoeba �τ = Logτ (Hτ ∩ V0); it is known [41, 44] that, for τ → 0, the amoeba
�τ ⊂ Rn converges to the tropical hypersurface �0 ⊂ Rn defined by the tropical polynomial

(3.2) ϕ(ξ)= max
{〈α, ξ〉 − ρ(α) ∣∣α ∈ A

}

(namely, �0 is the set of points where the maximum is achieved more than once). Com-
binatorially, �0 is the dual cell complex of P ; in particular the connected components of
Rn \�0 can be naturally labelled by the elements of P (0) = A, according to which term
achieves the maximum in (3.2).

Example 3.2. — The toric variety V = P1 ×P1 is defined by the fan � ⊆ R2 whose
rays are generated by σ1 = (1,0), σ2 = (0,1), σ3 = (−1,0), σ4 = (0,−1). The piecewise
linear function λ : � → R with λ(σ1) = λ(σ2) = 0, λ(σ3) = 3, and λ(σ4) = 2 defines
the line bundle L=OP1×P1(3,2), whose associated polytope is P = {(v1, v2) ∈ R2 : 0 ≤
v1 ≤ 3, 0 ≤ v2 ≤ 2}. Let A = P ∩ Z2. The regular decomposition of P shown in Fig-
ure 1 (left) is induced by the function ρ : A → R whose values are given in the figure. The
corresponding tropical hypersurface �0 ⊆ R2 is shown in Figure 1 (right); �0 is the limit
of the amoebas of a maximally degenerating family of smooth genus 2 curves Hτ ⊂ V as
τ → 0.

When the toric variety V is non-compact, P is unbounded, and the convex hull
of A is only a proper subset of P. For instance, Figure 1 also represents a maximally
degenerating family of smooth genus 2 curves in V0 � (C∗)2 (where now P = R2).

We now turn to the symplectic geometry of the situation we just considered. As-
sume that V is equipped with a complete toric Kähler metric, with Kähler form ωV.
The torus Tn = (S1)n acts on (V,ωV) by Hamiltonian diffeomorphisms; we denote by
μV : V → Rn the corresponding moment map. It is well-known that the image of μV is
a convex polytope �V ⊂ Rn, dual to the fan �V. The preimage of the interior of �V is
the open stratum V0 ⊂ V; over V0 the logarithm map Logτ and the moment map μV are
related by some diffeomorphism gτ : Rn ∼→ int(�V).
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For a fixed Kähler form ωV, the diffeomorphism gτ gets rescaled by a factor of
| log τ | as τ varies; in particular, the moment map images μV(Hτ ) = gτ (�τ) ⊆�V of a
degenerating family of hypersurfaces collapse towards the boundary of �V as τ → 0.
This can be avoided by considering a varying family of Kähler forms ωV,τ , obtained
from the given ωV by symplectic inflation along all the toric divisors of V, followed by
a rescaling so that [ωV,τ ] = [ωV] is independent of τ . (To be more concrete, one could
e.g. consider a family of toric Kähler forms which are multiples of the standard complete
Kähler metric of (C∗)n over increasingly large open subsets of V0.)

Throughout this paper, we will consider smooth hypersurfaces that are close
enough to the tropical limit, namely hypersurfaces of the form considered above with
τ sufficiently close to 0. The key requirement we have for “closeness” to the tropical limit
is that the amoeba should lie in a sufficiently small neighborhood of the tropical hyper-
surface �0, so that the complements have the same combinatorics. Since we consider a
single hypersurface rather than the whole family, we will omit τ from the notation.

Definition 3.3. — A smooth hypersurface H = f −1(0) in a toric variety V is nearly tropical
if it is a member of a maximally degenerating family of hypersurfaces as above, with the property that the

amoeba �= Log(H)⊂ Rn is entirely contained inside a neighborhood of the tropical hypersurface �0

which retracts onto �0.

In particular, each element α ∈ A determines a non-empty open component of
Rn \�; we will (abusively) refer to it as the component over which the monomial of f

with weight α dominates.
We equip V with a toric Kähler form ωV of the form discussed above, and denote

by μV and �V the moment map and its image. Let δ > 0 be a constant such that a
standard symplectic tubular neighborhood UH of H of size δ embeds into V and the
complement of the moment map image μV(UH) has a non-empty component for each
element of A (i.e. for each monomial in f ).

Remark 3.4. — The assumption that the degeneration is maximal is made purely
for convenience, and to ensure that the toric variety Y constructed in Section 3.3 below
is smooth. However, all of our arguments work equally well in the case of non-maximal
degenerations.

3.2. Blowing up. — Our main goal is to study SYZ mirror symmetry for the blow-
up X of V × C along H × 0, equipped with a suitable Kähler form.

Recalling that the defining equation f of H is a section of a line bundle L → V,
the normal bundle to H × 0 in V × C is the restriction of L⊕O, and we can construct
explicitly X as a hypersurface in the total space of the P1-bundle P(L⊕O)→ V × C.
Namely, the defining section of H × 0 projectivizes to a section s(x, y) = (f (x) : y) of
P(L⊕O) over the complement of H× 0; and X is the closure of the graph of s. In other
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terms,

(3.3) X = {(
x, y, (u : v)) ∈ P(L⊕O)

∣∣ f (x)v = yu
}
.

In this description it is clear that the projection p : X → V × C is a biholomorphism
outside of the exceptional divisor E = p−1(H × 0).

The S1-action on V×C by rotation of the C factor preserves H×0 and hence lifts
to an S1-action on X. This action preserves the exceptional divisor E, and acts by rotation
in the standard manner on each fiber of the P1-bundle p|E : E → H × 0. In coordinates,
we can write this action in the form:

(3.4) eiθ · (x, y, (u : v)) = (
x, eiθy,

(
u : eiθv

))
.

Thus, the fixed point set of the S1-action on X consists of two disjoint strata: the proper
transform Ṽ of V × 0 (corresponding to y = 0, v = 0 in the above description), and the
section H̃ of p over H × 0 given by the line subbundle O of the normal bundle (i.e., the
point (0 : 1) in each fiber of p|E).

The open stratum V0 × C∗ of the toric variety V × C carries a holomorphic
(n + 1)-form 	V×C = in+1

∏
j d log xj ∧ d log y, which has simple poles along the toric di-

visor DV×C = (V × 0) ∪ (DV × C) (where DV = V \ V0 is the union of the toric divisors
in V). The pullback 	= p∗(	V×C) has simple poles along the proper transform of DV×C,
namely the anticanonical divisor D = Ṽ ∪ p−1(DV × C). The complement X0 = X \ D,
equipped with the S1-invariant holomorphic (n+1)-form	, is an open Calabi-Yau man-
ifold.

Remark 3.5. — X \ Ṽ corresponds to v = 0 in (3.3), so it is isomorphic to an affine
conic bundle over V, namely the hypersurface in the total space of O⊕L given by

(3.5)
{
(x, y, z) ∈O⊕L

∣∣ f (x)= yz
}
.

Further removing the fibers over DV, we conclude that X0 is a conic bundle over the open
stratum V0 � (C∗)n, given again by the equation { f (x)= yz}.

We equip X with an S1-invariant Kähler form ωε for which the fibers of the
exceptional divisor have a sufficiently small area ε > 0. Specifically, we require that
ε ∈ (0, δ/2), where δ is the size of the standard tubular neighborhood of H that em-
beds in (V,ωV). The most natural way to construct such a Kähler form would be to
equip L with a Hermitian metric, which determines a Kähler form on P(L⊕O) and,
by restriction, on X; on the complement of E the resulting Kähler form is given by

(3.6) p∗ωV×C + iε

2π
∂∂̄ log

(| f (x)|2 + | y|2),
where ωV×C is the product Kähler form on V × C induced by the toric Kähler form ωV

on V and the standard area form of C.
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However, from a symplectic perspective the blowup operation amounts to delet-
ing from V × C a standard symplectic tubular neighborhood of H × 0 and collapsing
its boundary (an S3-bundle over H) onto E by the Hopf map. Thus, X and V × C are
symplectomorphic away from neighborhoods of E and H × 0; to take full advantage of
this, we will choose ωε in such a way that the projection p : X → V × C is a symplecto-
morphism away from a neighborhood of the exceptional divisor. Namely, we set

(3.7) ωε = p∗ωV×C + iε

2π
∂∂̄

(
χ(x, y) log

(| f (x)|2 + | y|2)),

where χ is a suitably chosen S1-invariant smooth cut-off function supported in a tubular
neighborhood of H×0, with χ = 1 near H×0. It is clear that (3.7) defines a Kähler form
provided ε is small enough; specifically, ε needs to be such that a standard symplectic
neighborhood of size ε of H × 0 can be embedded (S1-equivariantly) into the support
of χ . For simplicity, we assume that χ is chosen so that the following property holds:

Property 3.6. — The support of χ is contained inside p−1(UH × Bδ), where UH ⊂ V is a

standard symplectic δ-neighborhood of H and Bδ ⊂ C is the disc of radius δ.

Remark 3.7. — ωε lies in the same cohomology class [ωε] = p∗[ωV×C]− ε[E] as the
Kähler form defined by (3.6), and is equivariantly symplectomorphic to it.

3.3. The mirror B-side Landau-Ginzburg model. — Using the same notations as in the
previous section, we now describe a B-side Landau-Ginzburg model which we claim is
SYZ mirror to X (with the Kähler form ωε , and relatively to the anticanonical divisor D).

Recall that the hypersurface H ⊂ X has a defining equation of the form (3.1),
involving toric monomials whose weights range over a finite subset A ⊂ Zn, forming the
vertices of a polyhedral complex P (cf. Definition 3.1).

We denote by Y the (noncompact) (n+ 1)-dimensional toric variety defined by the
fan �Y = R≥0 · (P × {1})⊆ Rn+1 = Rn ⊕ R. Namely, the integer generators of the rays
of �Y are the vectors of the form (−α,1), α ∈ A, and the vectors (−α1,1), . . . , (−αk,1)
span a cone of �Y if and only if α1, . . . , αk span a cell of P .

Dually, Y can be described by a (noncompact) polytope �Y ⊆ Rn+1, defined in
terms of the tropical polynomial ϕ : Rn → R associated to H (cf. (3.2)) by

(3.8) �Y = {
(ξ, η) ∈ Rn ⊕ R

∣∣η ≥ ϕ(ξ)}.
Remark 3.8. — The polytope �Y also determines a Kähler class [ωY] on Y. While

in this paper we focus on the A-model of X and the B-model of Y, it can be shown
that the family of complex structures on X obtained by blowing up V × C along the
maximally degenerating family Hτ ×0 (cf. Section 3.1) corresponds to a family of Kähler
forms asymptotic to | log τ |[ωY] as τ → 0.
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Remark 3.9. — Even though deforming the hypersurface H inside V does not mod-
ify the symplectic geometry of X, the topology of Y depends on the chosen polyhedral de-
composition P (i.e., on the combinatorial type of the tropical hypersurface defined by ϕ).
However, the various possibilities for Y are related to each other by crepant birational
transformations, and hence are expected to yield equivalent B-models. (The A-model
of Y, on the other hand, is affected by these birational transformations and does depend
on the tropical polynomial ϕ, as explained in the previous remark.)

The facets of �Y correspond to the maximal domains of linearity of ϕ. Thus the
irreducible toric divisors of Y are in one-to-one correspondence with the connected com-
ponents of Rn \�0, and the combinatorics of the toric strata of Y can be immediately
read off the tropical hypersurface �0 (see Example 3.12 below).

It is advantageous for our purposes to introduce a collection of affine charts on
Y indexed by the elements of A (i.e., the facets of �Y, or equivalently, the connected
components of Rn \�0).

For each α ∈ A, let Yα = (K∗)n ×K, with coordinates vα = (vα,1, . . . , vα,n) ∈ (K∗)n

and vα,0 ∈ K (as before, K is either � or C). Whenever α,β ∈ A are connected by an
edge in the polyhedral decomposition P (i.e., whenever the corresponding components
of Rn \�0 share a top-dimensional facet, with primitive normal vector β − α), we glue
Yα to Yβ by the coordinate transformations

(3.9)

{
vα,i = vβi−αi

β,0 vβ,i (1 ≤ i ≤ n),

vα,0 = vβ,0.
These charts cover the complement in Y of the codimension 2 strata (as Yα covers the
open stratum of Y and the open stratum of the toric divisor corresponding to α). In
terms of the standard basis of toric monomials indexed by weights in Zn+1, vα,0 is the
monomial with weight (0, . . . ,0,1), and for i ≥ 1 vα,i is the monomial with weight
(0, . . . ,−1, . . . ,0,−αi) (the i-th entry is −1).

Denoting by T the Novikov parameter (treated as an actual complex parameter
when K = C), and by v0 the common coordinate vα,0 for all charts, we set

(3.10) w0 =−Tε + Tεv0.

With this notation, the above coordinate transformations can be rewritten as

vα,i =
(
1 + T−εw0

)βi−αi
vβ,i, 1 ≤ i ≤ n.

More generally, for m = (m1, . . . ,mn) ∈ Zn we set vm
α = vm1

α,1 · · ·vmn
α,n. Then

(3.11) vm
α =

(
1 + T−εw0

)〈β−α,m〉
vm
β.

We shall see that w0 and the transformations (3.11) have a natural interpretation in terms
of the enumerative geometry of holomorphic discs in X.
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Next, recall from Section 3.1 that the inward normal vectors to the facets of
the moment polytope �V associated to (V,ωV) are the primitive integer generators
σ1, . . . , σr of the rays of �V. Thus, there exist constants �1, . . . ,�r ∈ R such that

(3.12) �V = {
u ∈ Rn

∣∣ 〈σi, u〉 +�i ≥ 0 ∀1 ≤ i ≤ r
}
.

Then for i = 1, . . . , r we set

(3.13) wi = T�i vσi
αi

where αi ∈ A is chosen to lie on the facet of P defined by σi , i.e. so that 〈σi, αi〉 is minimal.
Hence, by the conditions imposed in Section 3.1, 〈σi, αi〉+λ(σi)= 0, where λ :�V → R
is the piecewise linear function defining L=O(H). By (3.11), the choice of αi satisfying
the required condition is irrelevant: in all cases vσi

αi
is simply the toric monomial with

weight (−σi, λ(σi)) ∈ Zn ⊕ Z. Moreover, this weight pairs non-negatively with all the
rays of the fan �Y, therefore wi defines a regular function on Y.

With all the notation in place, we can at last make the following definition, which
clarifies the statements of Theorems 1.5 and 1.6:

Definition 3.10. — We denote by Y0 the complement of the hypersurface DY =w−1
0 (0) in the

toric (n + 1)-fold Y, and define the leading-order superpotential

(3.14) W0 =w0 +w1 + · · · +wr =−Tε + Tεv0 +
r∑

i=1

T�i vσi
αi
∈O(Y).

We also define

(3.15) WH
0 =−v0 +w1 + · · · +wr =−v0 +

r∑

i=1

T�i vσi
αi
∈O(Y).

Remark 3.11. — Since there are no convergence issues, we can think of (Y0,W0)

and (Y,WH
0 ) either as B-side Landau-Ginzburg models defined over the Novikov field or

as one-parameter families of complex B-side Landau-Ginzburg models defined over C.

Example 3.12. — When H is the genus 2 curve of Example 3.2, the polytope �Y

has 12 facets (2 of them compact and the 10 others non-compact), corresponding to the
12 components of Rn \�0, and intersecting exactly as pictured on Figure 1 (right). The
edges of the figure correspond to the configuration of P1’s and A1’s along which the toric
divisors of the 3-fold Y intersect.

Label the irreducible toric divisors by Da,b (0 ≤ a ≤ 3, 0 ≤ b ≤ 2), corresponding to
the elements (a, b) ∈ A. Then the leading-order superpotential W0 consists of five terms:
w0 = −Tε + Tεv0, where v0 is the toric monomial of weight (0,0,1), which vanishes
with multiplicity 1 on each of the 12 toric divisors; and up to constant factors, w1 is the



218 MOHAMMED ABOUZAID, DENIS AUROUX, AND LUDMIL KATZARKOV

toric monomial with weight (−1,0,0), which vanishes with multiplicity a on Da,b; w2 is
the toric monomial with weight (0,−1,0), vanishing with multiplicity b on Da,b; w3 is the
monomial with weight (1,0,3), with multiplicity (3− a) on Da,b; and w4 is the monomial
with weight (0,1,2), with multiplicity (2− b) on Da,b. In particular, the compact divisors
D1,1 and D2,1 are components of the singular fiber {W0 = −Tε} ⊂ Y0 (which also has a
third, non-compact component); and similarly for {WH

0 = 0} ⊂ Y.
(In general the order of vanishing of wi on a given divisor is equal to the intersec-

tion number with�0 of a semi-infinite ray in the direction of −σi starting from a generic
point in the relevant component of Rn \�0.)

This example does not satisfy Assumption 1.4, and in this case the actual mirror
of X differs from (Y0,W0) by higher-order correction terms. On the other hand, if we
consider the genus 2 curve with 10 punctures H∩V0 in the open toric variety V0 � (C∗)2,
which does fall within the scope of Theorem 1.5, the construction yields the same toric
3-fold Y, but now we simply have W0 =w0 (resp. WH

0 =−v0).

4. Lagrangian torus fibrations on blowups of toric varieties

As in Section 3.2, we consider a smooth nearly tropical hypersurface H = f −1(0) in
a toric variety V of dimension n, and the blow-up X of V×C along H×0, equipped with
the S1-invariant Kähler form ωε given by (3.7). Our goal in this section is to construct
an S1-invariant Lagrangian torus fibration π : X0 → B (with appropriate singularities)
on the open Calabi-Yau manifold X0 = X \ D, where D is the proper transform of the
toric anticanonical divisor of V × C. (Similar fibrations have been previously considered
by Gross [23, 24] and by Castaño-Bernard and Matessi [10, 11].) The key observation is
that S1-invariance forces the fibers of π to be contained in the level sets of the moment
map of the S1-action. Thus, we begin by studying the geometry of the reduced spaces.

4.1. The reduced spaces. — The S1-action (3.4) on X is Hamiltonian with respect
to the Kähler form ωε given by (3.7), and its moment map μX : X → R can be deter-
mined explicitly. Outside of the exceptional divisor, we identify X with V × C via the
projection p, and observe that μX(x, y) =

∫
D(x,y) ωε , where D(x, y) is a disc bounded by

the orbit of (x, y), namely the total transform of {x} × D2(| y|)⊂ V × C. (We normalize
μX so that it takes the constant value 0 over the proper transform of V × 0; also, our
convention differs from the usual one by a factor of 2π .)

Hence, for given x the quantity μX(x, y) is a strictly increasing function of | y|.
Moreover, applying Stokes’ theorem we find that

(4.1) μX(x, y)= π | y|2 + ε2 | y|
∂

∂| y|
(
χ(x, y) log

(| f (x)|2 + | y|2)).
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In the regions where χ is constant this simplifies to:

(4.2) μX(x, y)=
{
π | y|2 + ε | y|2

| f (x)|2+| y|2 where χ ≡ 1 (near E),

π | y|2 where χ ≡ 0 (away from E).

(Note that the first expression extends naturally to a smooth function over E.)
The critical points of μX are the fixed points of the S1-action. Besides Ṽ = μ−1

X (0),
the fixed points occur along H̃, which lies in the level set μ−1

X (ε); in particular, all the
other level sets of μX are smooth. Since for any given x the moment map μX is a strictly
increasing function of | y|, each level set of μX intersects p−1({x} × C) along a single
S1-orbit. Hence, for λ > 0, the natural projection to V (obtained by composing p with
projection to the first factor) yields a natural identification of the reduced space Xred,λ =
μ−1

X (λ)/S
1 with V.

For λ� ε, μ−1
X (λ) is disjoint from the support of the cut-off function χ , and the

reduced Kähler form ωred,λ on Xred,λ
∼= V coincides with the toric Kähler form ωV. As λ

becomes closer to ε, ωred,λ differs from ωV near H but remains cohomologous to it. At
the critical level λ = ε, the reduced form ωred,ε is singular along H (but its singularities
are fairly mild, see Lemma B.1). Finally, for λ < ε the Kähler form ωred,λ differs from
ωV in a tubular neighborhood of H, inside which the normal direction to H has been
symplectically deflated. In particular, one easily checks that

(4.3) [ωred,λ] = [ωV] − max(0, ε − λ)[H].
Our goal is to exploit the toric structure of V to construct families of Lagrangian

tori in Xred,λ. The Kähler form ωred,λ on Xred,λ
∼= V is not Tn-invariant near H; in fact

it isn’t even smooth along H for λ = ε. However, there exist (smooth) toric Kähler
forms ω′

V,λ, depending piecewise smoothly on λ, with [ω′
V,λ] = [ωred,λ]; see (B.5) for an

explicit construction. The following result will be proved in Appendix B.

Lemma 4.1. — There exists a family of homeomorphisms (φλ)λ∈R+ of V such that:

(1) φλ preserves the toric divisor DV ⊂ V;

(2) the restriction of φλ to V0 is a diffeomorphism for λ = ε, and a diffeomorphism outside of

H for λ= ε;
(3) φλ intertwines the reduced Kähler form ωred,λ and the toric Kähler form ω′

V,λ;

(4) φλ = id at every point whose Tn-orbit is disjoint from the support of χ ;

(5) φλ depends on λ in a continuous manner, and smoothly except at λ= ε.
The diffeomorphism (singular along H for λ = ε) φλ given by Lemma 4.1 yields

a preferred Lagrangian torus fibration on the open stratum X0
red,λ = (μ−1

X (λ) ∩ X0)/S1

of Xred,λ (naturally identified with V0 under the canonical identification Xred,λ
∼= V),

namely the preimage by φλ of the standard fibration of (V0,ω′
V,λ) by Tn-orbits:
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Definition 4.2. — We denote by πλ : X0
red,λ → Rn the composition πλ = Log◦φλ, where

Log : V0 ∼= (C∗)n → Rn is the logarithm map (x1, . . . , xn) �→ 1
| log τ |(log |x1|, . . . , log |xn|), and

φλ : (Xred,λ,ωred,λ)→ (V,ω′
V,λ) is as in Lemma 4.1.

Remark 4.3. — By construction, the natural affine structure (see Section 2.1) on
the base of the Lagrangian torus fibration πλ identifies it with the interior of the moment
polytope �V,λ associated to the cohomology class [ω′

V,λ] = [ωred,λ] ∈ H2(V,R).

4.2. A Lagrangian torus fibration on X0. — We now assemble the Lagrangian torus
fibrations πλ on the reduced spaces into a (singular) Lagrangian torus fibration on X0:

Definition 4.4. — We denote by π : X0 → B = Rn × R+ the map which sends the point

x ∈ μ−1
X (λ)∩ X0 to π(x)= (πλ(x̄), λ), where x̄ ∈ X0

red,λ is the S1-orbit of x.

The map π is continuous, and smooth away from λ = ε. The fiber of π above
(ξ, λ) ∈ B is obtained by lifting the Lagrangian torus π−1

λ (ξ) ⊂ Xred,λ to μ−1
X (λ) and

“spinning” it by the S1-action.
Away from the fixed points of the S1-action, μ−1

X (λ) is a coisotropic manifold with
isotropic foliation given by the S1-orbits. Moreover, the S1-bundle μ−1

X (λ)→ Xred,λ is
topologically trivial for λ > ε (setting y ∈ R+ gives a global section), trivial over the com-
plement of H for λ= ε, and the circle bundle associated to the line bundle O(−H) for
λ < ε; in any case, its restriction to a fiber of πλ is topologically trivial. The fibers of πλ
are smooth Lagrangian tori (outside of H when λ= ε, which corresponds precisely to the
S1-fixed points); therefore, we conclude that the fibers of π are smooth Lagrangian tori
unless they contain fixed points of the S1-action.

The only fixed points occur for λ= ε, when μ−1
X (λ) contains the stratum of fixed

points H̃. The identification of the reduced space with V maps H̃ to the hypersurface H,
so the singular fibers map to

(4.4) Bsing =�′ × {ε} ⊂ B,

where �′ = πε(H ∩ V0)⊂ Rn is essentially the amoeba of the hypersurface H (up to the
fact that πε differs from the logarithm map by φε ). The fibers above the points of Bsing

differ from the regular fibers in that, where a smooth fiber π−1(ξ, λ) � Tn+1 is a trivial
S1-bundle over π−1

λ (ξ)� Tn ⊂ V0, for λ= ε some of the S1 fibers (namely those which
lie over points of H) are collapsed to points.

Because the fibration π has non-trivial monodromy around Bsing , the only globally
defined affine coordinate on B is the last coordinate λ (the moment map of the S1-action);
other affine coordinates are only defined over subsets of B\Bsing , i.e. in the complement of
certain cuts. Our preferred choice for such a description relates the affine structure on B
to the moment polytope�V ×R+ of V×C. Namely, away from a tubular neighborhood
of�′ × (0, ε) the Lagrangian torus fibration π coincides with the standard toric fibration
on V × C:
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Proposition 4.5. — Outside of the support of χ (a tubular neighborhood of the exceptional

divisor E), the Kähler form ωε is equal to p∗ωV×C, and the moment map of the S1-action is the standard

one μX(x, y) = π | y|2. Moreover, outside of π(suppχ), the fibers of the Lagrangian fibration π are

standard product tori, i.e. they are the preimages by p of the orbits of the Tn+1-action in V × C.

Proof. — The first statement follows immediately from formulas (3.7) and (4.1). The
second one is then a direct consequence of the manner in which π was constructed and
condition (3) in Lemma 4.1. �

Recall that the support of χ is constrained by Property 3.6. Thus, the fibration π is
standard (coincides with the standard toric fibration on V × C) over a large subset Bstd =
(Rn × R+) \ (Log(UH)× (0, δ)) of B. Since ωε = p∗ωV×C over π−1(Bstd), we conclude
that over Bstd the affine structure of B agrees with that for the standard toric fibration of
V × C, i.e. as an affine manifold Bstd can be naturally identified with the complement of
μV(UH)× (0, δ) inside int(�V)× R+.

This description of the affine structure on B \ Bsing can be extended from Bstd to
the complement of a set of codimension 1 cuts. Recall from Section 2.1 that the affine
coordinates of b ∈ B \ Bsing relative to some reference point b0 are given by the symplectic
areas of certain relative 2-cycles (�1, . . . ,�n+1) with boundary on π−1(b) ∪ π−1(b0); the
above identification of Bstd with a subset of�V ×R+ arises from taking the boundaries of
�i to be (homologous to) orbits of the various S1 factors of the Tn+1-action on V × C.

When b and b0 have the same last coordinate λ > ε, we can choose �1, . . . ,�n to
be contained in μ−1

X (λ), and obtained as the lifts of relative 2-cycles �i,red in Xred,λ with
boundary on fibers of πλ; we can fix such lifts by requiring that y ∈ R+ on �i . Since∫
�i
ωε =

∫
�i,red
ωred,λ, the affine structure on the level set Rn × {λ} ⊂ B is the same as that

on the base of the fibration πλ on the reduced space Xred,λ, which can be identified via
the diffeomorphism φλ with the standard toric fibration on (V,ω′

V,λ). For λ > ε we have
[ωred,λ] = [ω′

V,λ] = [ωV], so the base is naturally identified with the interior of the moment
polytope �V; moreover, this identification is consistent with our previous description of
the affine structure over Bstd , since in that region the various Kähler forms agree point-
wise.

In other terms, over Rn × (ε,∞) ⊂ B, the affine structure is globally a product
int(�V) × (ε,∞) of the affine structure on the moment polytope of (V,ωV) and the
interval (ε,∞), in a manner that extends the previous description over Bstd .

For λ < ε, the affine structure on Rn × {λ} ⊂ B can be described similarly, by
choosing relative 2-cycles �i,red in Xred,λ with boundary on fibers of πλ and lifting them
to relative 2-cycles �′

i in μ−1
X (λ). Since the lifts may intersect the exceptional divisor E,

we cannot require y ∈ R+ as in the case λ > ε. Instead, we use the monomial xα0 for
some α0 ∈ A to fix a trivialization of L = O(H) over V0, and choose the lifts so that
x−α0z = x−α0 f (x)/y ∈ R+ on �′

i . Since
∫
�′

i
ωε =

∫
�i,red
ωred,λ, the affine structure on the

level set Rn ×{λ} ⊂ B is again identical to that on the base of the fibration πλ on Xred,λ, or
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FIG. 2. — The base of the Lagrangian torus fibration π : X0 → B. Left: H = {point} ⊂ CP1. Right: H = {x1 + x2 = 1} ⊂ C2

equivalently via φλ, the standard toric fibration on (V,ω′
V,λ). Thus, the affine structure

identifies Rn × {λ} ⊂ B with the interior of the moment polytope �V,λ associated to the
Kähler class [ω′

V,λ] = [ωred,λ] = [ωV]−max(0, ε−λ)[H]. However, this description is no
longer consistent with that previously given for Bstd , because the boundary of �′

i does not
represent the expected homology class in π−1(b).

Specifically, assume b0 and b ∈ (Rn \ Log(UH))× {λ} lie in the connected compo-
nents corresponding to α0 and α ∈ A respectively. Then the boundary of �′

i in π−1(b0)

does represent the homology class of the orbit of the i-th S1-factor, while the boundary in
π−1(b) differs from it by αi − α0,i times the orbit of the last S1-factor. Moreover,

∫

�i,red

ωV −
∫

�i,red

ωred,λ = (ε − λ)(�i,red · H)= (ε − λ)(αi − α0,i).

This formula also gives the difference between the ωε-areas of the relative cycles �′
i

and the relative cycles �i ⊂ π−1(Bstd) previously used to determine affine coordinates
over Bstd . Hence, the affine coordinates determined by the relative cycles �′

i differ from
those constructed previously over Bstd by a shear

(4.5) (ζ1, . . . , ζn, λ) �→
(
ζ1 + (ε − λ)(α1 − α0,1), . . . , ζn + (ε − λ)(αn − α0,n), λ

)

or more succinctly, (ζ, λ) �→ (ζ + (ε − λ)(α− α0), λ).
More globally, over Rn × (0, ε)⊂ B the affine structure can be identified (using the

relative cycles �′
i to define coordinates) with a piece of the moment polytope for the total

space of the line bundle O(−H) over V (equipped with a toric Kähler form in the class
[ωV] − ε[H]), consistent with the fact that the normal bundle to Ṽ inside X is O(−H);
but this description is not consistent with the one we have given over Bstd .

On the other hand, the shears (4.5) map the complement of the amoeba of H
in �V,λ to the complement of a standard (ε − λ)-neighborhood of the amoeba of H
in �V. Thus, making cuts along the projection of the exceptional divisor, we can extend
the affine coordinates previously described over Bstd , and identify the affine structure on
B \ (�′ × (0, ε]) with an open subset of int(�V)× R+, obtained by deleting an (ε − λ)-
neighborhood of the amoeba of H from int(�V)× {λ} for all λ ∈ (0, ε].

This is the picture of B that we choose to emphasize, depicting it as the complement
of a set of “triangular” cuts inside �V × R+; see Figure 2.
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Remark 4.6. — While the fibration we construct is merely Lagrangian, it is very
reasonable to conjecture that in fact X0 carries an S1-invariant special Lagrangian fibration
over B. The holomorphic (n + 1)-form 	= p∗	V×C on X0 is S1-invariant, and induces
a holomorphic n-form on the reduced space X0

red,λ, which turns out to coincide with
the standard toric form 	V = in

∏
j d log xj . Modifying the construction of the fibration

πλ : X0
red,λ → Rn so that its fibers are special Lagrangian with respect to 	V would then

be sufficient to ensure that the fibers of π are special Lagrangian with respect to 	. In
dimension 1 this is easy to accomplish by elementary methods. In higher dimensions,
making πλ special Lagrangian requires the use of analysis, as the deformation of product
tori in V0 (which are special Lagrangian with respect to ω′

V,λ and 	V) to tori which
are special Lagrangian for ωred,λ and 	V is governed by a first-order elliptic PDE [40]
(see also [30, §9] or [6, Prop. 2.5]). If one were to argue as in the proof of Lemma 4.1
(cf. Appendix B), the 1-forms used to construct φλ should be chosen not only to satisfy
the usual condition for Moser’s trick, but also to be co-closed with respect to a suitable
rescaling of the Kähler metric induced by ωt,λ. When V = (C∗)n this does not seem
to pose any major difficulties, but in general it is not obvious that one can ensure the
appropriate behavior along the toric divisors.

5. SYZ mirror symmetry for X0

In this section we apply the procedure described in Section 2 to the Lagrangian
torus fibration π : X0 → B of Section 4 in order to construct the SYZ mirror to the
open Calabi-Yau manifold X0 and prove Theorem 1.7. The key observation is that, by
Proposition 4.5, most fibers of π are mapped under the projection p to standard product
tori in the toric variety V × C; therefore, the holomorphic discs bounded by these fibers
can be understood by reducing to the toric case, which is well understood (see e.g. [15]).

Proposition 5.1. — The fibers of π : X0 → B which bound holomorphic discs in X0 are those

which intersect the subset p−1(H × C).
Moreover, the simple holomorphic discs in X0 bounded by such a fiber contained in μ−1

X (λ) have

Maslov index 0 and symplectic area |λ − ε|, and their boundary represents the homology class of an

S1-orbit if λ > ε and its negative otherwise.

Proof. — Let L ⊂ X0 be a smooth fiber of π , contained in μ−1
X (λ) for some λ ∈ R+,

and let u : (D2, ∂D2)→ (X0,L) be a holomorphic disc with boundary in L. Denote by
L′ the projection of L to V (i.e., the image of L by the composition pV of p and the
projection to the first factor). The restriction of pV to μ−1

X (λ) coincides with the quotient
map to the reduced space Xred,λ � V; thus, L′ is in fact a fiber of πλ, i.e. a Lagrangian
torus in (V0,ωred,λ), smoothly isotopic to a product torus inside V0 � (C∗)n.

Since the relative homotopy group π2(V0,L′) � π2((C∗)n, (S1)n) vanishes, the
holomorphic disc pV ◦ u : (D2, ∂D2)→ (V0,L′) is necessarily constant. Hence the im-
age of the disc u is contained inside a fiber p−1

V (x) for some x ∈ V0.
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If x /∈ H, then p−1
V (x)∩X0 = p−1({x}×C∗)� C∗, inside which p−1

V (x)∩L is a circle
centered at the origin (an orbit of the S1-action). The maximum principle then implies
that the map u is necessarily constant.

On the other hand, when x ∈ H, p−1
V (x) ∩ X0 is the union of two affine lines in-

tersecting transversely at one point: the proper transform of {x} × C, and the fiber of E
above x (minus the point where it intersects Ṽ). Now, p−1

V (x)∩L is again an S1-orbit, i.e. a
circle inside one of these two components (depending on whether λ > ε or λ < ε); either
way, p−1

V (x)∩L bounds exactly one non-constant embedded holomorphic disc in X0 (and
all of its multiple covers). The result follows. �

Denote by Breg ⊂ B the set of those fibers of π which do not intersect p−1(UH ×C).
From Property 3.6 and Propositions 4.5 and 5.1, we deduce:

Corollary 5.2. — The fibers of π above the points of Breg are tautologically unobstructed in X0,

and project under p to standard product tori in V0 × C.

With respect to the affine structure, Breg = (Rn \ Log(UH))× R+ is naturally iso-
morphic to (�V \μV(UH))× R+.

Definition 5.3. — The chamber Uα is the connected component of Breg over which the mono-

mial of weight α dominates all other monomials in the defining equation of H.

Remark 5.4. — By construction, the complement of Log(UH) is a deformation
retract of the complement of the amoeba of H inside Rn; so the set of tautologically
unobstructed fibers of π retracts onto Breg = ⊔

Uα .

As explained in Section 2.1, Uα determines an affine coordinate chart U∨
α for the

SYZ mirror of X0, with coordinates of the form (2.3).
Specifically, fix a reference point b0 ∈ Uα , and observe that, since L0 = π−1(b0) is

the lift of an orbit of the Tn+1-action on V × C, its first homology carries a preferred
basis (γ1, . . . , γn, γ0) consisting of orbits of the various S1 factors. Consider b ∈ Uα , with
coordinates (ζ1, . . . , ζn, λ) (here we identify Uα ⊂ Breg with a subset of the moment poly-
tope �V × R+ ⊂ Rn+1 for the Tn+1-action on V × C), and denote by (ζ 0

1 , . . . , ζ
0
n , λ

0) the
coordinates of b0. Then the valuations of the coordinates given by (2.3), i.e., the areas of
the cylinders �1, . . . ,�n,�0 bounded by L0 and L = π−1(b), are ζ1 − ζ 0

1 , . . ., ζn − ζ 0
n , and

λ− λ0 respectively. In order to eliminate the dependence on the choice of L0, we rescale
each coordinate by a suitable power of T, and equip U∨

α with the coordinate system

(5.1) (L,∇) �→ (vα,1, . . . , vα,n,wα,0)=
(
Tζ1∇(γ1), . . . ,Tζn∇(γn),Tλ∇(γ0)

)
.

(Compare with (2.3), noting that ζi = ζ 0
i + ∫

�i
ωε and λ= λ0 + ∫

�0
ωε .)
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As in Section 3.3, we set vα = (vα,1, . . . , vα,n), and for m ∈ Zn we write vm
α =

v
m1
α,1 · · ·vmn

α,n. Moreover, we write w0 for wα,0; this is a priori ambiguous, but we shall see
shortly that the gluings between the charts preserve the last coordinate.

The “naive” gluings between these coordinate charts (i.e., those which describe the
geometry of the space of (L,∇) up to Hamiltonian isotopy without accounting for instan-
ton corrections) are governed by the global affine structure of B \ Bsing . Their description
is instructive, even though it is not necessary for our argument.

For λ > ε the affine structure is globally that of �V × (ε,∞). Therefore,
(5.1) makes sense and is consistent with (2.3) even when b does not lie in Uα ; thus, for
λ > ε the naive gluing is the identity map (vα = vβ , and wα,0 =wβ,0).

On the other hand, for λ ∈ (0, ε) we argue as in Section 4.2 (cf. Equation (4.5) and
the preceding discussion). When b = (ζ1, . . . , ζn, λ) lies in a different chamber Uβ from
that containing the reference point b0 (i.e., Uα ), the intersection number of a cylinder
�′

i constructed as previously with the exceptional divisor E is equal to βi − αi , and its
symplectic area differs from ζi −ζ 0

i by (βi −αi)(ε−λ). Moreover, due to the monodromy
of the fibration, the bases of first homology used in Uα and Uβ differ by γi �→ γi + (βi −
αi)γ0 for i = 1, . . . , n. Thus, for λ < ε the naive gluing between the charts U∨

α and U∨
β

corresponds to setting

vα,i = T−(βi−αi)(ε−λ)∇(γ0)
βi−αivβ,i =

(
T−εw0

)βi−αi
vβ,i, 1 ≤ i ≤ n.

The naive gluing formulas for the two cases (λ > ε and λ < ε) are inconsistent.
As seen in Section 2.1, this is not unexpected: the actual gluing between the coordinate
charts {U∨

α }α∈A differs from these formulas by instanton corrections which account for
the bubbling of holomorphic discs as L is isotoped across a wall of potentially obstructed
fibers.

Given a potentially obstructed fiber L ⊂ μ−1
X (λ), the simple holomorphic discs

bounded by L are classified by Proposition 5.1. For λ > ε, the symplectic area of these
discs is λ − ε, and their boundary loop represents the class γ0 ∈ H1(L) (the orbit of
the S1-action), so the corresponding weight is Tλ−ε∇(γ0) (= T−εw0); while for λ < ε
the symplectic area is ε − λ and the boundary loop represents −γ0, so the weight is
Tε−λ∇(γ0)

−1 (= Tεw−1
0 ). As explained in Section 2.1, we therefore expect the instanton

corrections to the gluings to be given by power series in (T−εw0)
±1.

While the direct calculation of the multiple cover contributions to the instanton
corrections would require sophisticated machinery, Remark 2.3 provides a way to do so by
purely elementary techniques. Namely, we study the manner in which counts of Maslov
index 2 discs in partial compactifications of X0 vary between chambers. The reader is
referred to Example 3.1.2 of [7] for a simple motivating example (corresponding to the
case where H = {point} in V = C).

Recall that a point of U∨
α corresponds to a pair (L,∇), where L = π−1(b) is the

fiber of π above some point b ∈ Uα , and ∇ is a unitary rank 1 local system on L. Given
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a partial compactification X′ of X0 (satisfying Assumption 2.2), (L,∇) is a weakly unob-
structed object of F(X′), i.e. m0(L,∇) = WX′(L,∇)eL, where WX′(L,∇) is a weighted
count of Maslov index 2 holomorphic discs bounded by L in X′. Varying (L,∇), these
weighted counts define regular functions on each chart U∨

α , and by Corollary A.11, they
glue into a global regular function on the SYZ mirror of X0.

We first use this idea to verify that the coordinate w0 = wα,0 is preserved by the
gluing maps, by interpreting it as a weighted count of discs in the partial compactification
X0

+ of X0 obtained by adding the open stratum Ṽ0 of the divisor Ṽ.

Lemma 5.5. — Let X0
+ = p−1(V0 × C)= X0 ∪ Ṽ0 ⊂ X. Then any point (L,∇) of U∨

α

defines a weakly unobstructed object of F(X0
+), with

(5.2) WX0+(L,∇)=wα,0.

Proof. — Let u : (D2, ∂D2)→ (X0
+,L) be a holomorphic disc in X0

+ with boundary
on L whose Maslov index is 2. The image of u by the projection p is a holomorphic disc
in V0 ×C � (C∗)n ×C with boundary on the product torus p(L)= S1(r1)× · · ·× S1(r0).
Thus, the first n components of p ◦ u are constant by the maximum principle, and we can
write p ◦ u(z)= (x1, . . . , xn, r0γ (z)), where |x1| = r1, . . . , |xn| = rn, and γ : D2 → C maps
the unit circle to itself. Moreover, the Maslov index of u is twice its intersection number
with Ṽ. Therefore γ is a degree 1 map of the unit disc to itself, i.e. a biholomorphism; so
the choice of (x1, . . . , xn) determines u uniquely up to reparametrization.

We conclude that each point of L lies on the boundary of a unique Maslov index 2
holomorphic disc in X0

+, namely the preimage by p of a disc {x}×D2(r0). These discs are
easily seen to be regular, by reduction to the toric case [15]; their symplectic area is λ (by
definition of the moment map μX, see the beginning of Section 4.1), and their boundary
represents the homology class γ0 ∈ H1(L) (the orbit of the S1-action on X). Thus, their
weight is Tω(u)∇(∂u)= Tλ∇(γ0)=wα,0, which completes the proof. �

Lemma 5.5 implies that the local coordinates wα,0 ∈ O(U∨
α ) glue to a globally

defined regular function w0 on the mirror of X0 (hence we drop α from the notation).
Next, we consider monomials in the remaining coordinates vα . First, let σ ∈ Zn be

a primitive generator of a ray of the fan �V, and denote by D0
σ the open stratum of the

corresponding toric divisor in V. We will presently see that the monomial vσα is related
to a weighted count of discs in the partial compactification X′

σ of X0 obtained by adding
p−1(D0

σ × C):

(5.3) X′
σ = p−1

((
V0 ∪ D0

σ

)× C
) \ Ṽ ⊂ X.

Let� ∈ R be the constant such that the corresponding facet of�V has equation 〈σ, u〉+
� = 0, and let αmin ∈ A be such that 〈σ,αmin〉 is minimal.
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Lemma 5.6. — Any point (L,∇) of U∨
α (α ∈ A) defines a weakly unobstructed object of

F(X′
σ ), with

(5.4) WX′
σ
(L,∇)= (

1 + T−εw0

)〈α−αmin,σ 〉T�vσα .

Proof. — After performing dual monomial changes of coordinates on V0 and
on U∨

α (i.e., replacing the coordinates (x1, . . . , xn) by (xτ1, . . . ,xτn) where 〈σ, τi〉 = δi,1,
and (vα,1, . . . , vα,n) by (vσα, . . .)), we can reduce to the case where σ = (1,0, . . . ,0), and
V0 ∪ D0

σ � C × (C∗)n−1.
With this understood, let u : (D2, ∂D2)→ (X′

σ ,L) be a Maslov index 2 holomor-
phic disc with boundary on L. The composition of u with the projection p is a holomor-
phic disc in (V0 ∪ D0

σ ) × C � C × (C∗)n−1 × C with boundary on the product torus
p(L)= S1(r1)× · · ·× S1(r0). Thus, all the components of p ◦ u except for the first and last
ones are constant by the maximum principle. Moreover, since the Maslov index of u is
twice its intersection number with D0

σ , the first component of p ◦ u has a single zero, i.e. it
is a biholomorphism from D2 to the disc of radius r1. Therefore, up to reparametrization
we have p ◦ u(z)= (r1z, x2, . . . , xn, r0γ (z)), where |x2| = r2, . . ., |xn| = rn, and γ : D2 → C
maps the unit circle to itself.

A further constraint is given by the requirement that the image of u be disjoint
from Ṽ (the proper transform of V×0). Thus, the last component γ (z) is allowed to van-
ish only when (r1z, x2, . . . , xn) ∈ H, and its vanishing order at such points is constrained
as well. We claim that the intersection number k of the disc D = D2(r1)× {(x2, . . . , xn)}
with H is equal to 〈α−αmin, σ 〉. Indeed, with respect to the chosen trivialization of O(H)
over V0, near pV(L) the dominating term in the defining section of H is the monomial xα ,
whose values over the circle S1(r1)×{(x2, . . . , xn)} wind α1 = 〈α,σ 〉 times around the ori-
gin; whereas near D0

σ (i.e., in the chambers which are unbounded in the direction of −σ )
the dominating terms have winding number 〈αmin, σ 〉. Comparing these winding num-
bers we obtain that k = 〈α − αmin, σ 〉.

Assume first that (x2, . . . , xn) are generic, in the sense that D intersects H trans-
versely at k distinct points (r1ai, x2, . . . , xn), i = 1, . . . , k (with ai ∈ D2). The condition that
u avoids Ṽ implies that γ is allowed to have at most simple zeroes at a1, . . . , ak . Denote
by I ⊆ {1, . . . , k} the set of those ai at which γ does have a zero, and let

γI(z)=
∏

i∈I

z − ai

1 − āiz
.

Then γI maps the unit circle to itself, and its zeroes in the disc are the same as those of γ ,
so that γ −1

I γ is a holomorphic function on the unit disc, without zeroes, and mapping
the unit circle to itself, i.e. a constant map. Thus γ (z)= eiθγI(z), and

(5.5) p ◦ u(z)= (
r1z, x2, . . . , xn, r0eiθγI(z)

)



228 MOHAMMED ABOUZAID, DENIS AUROUX, AND LUDMIL KATZARKOV

for some I ⊆ {1, . . . , k} and eiθ ∈ S1. We conclude that there are 2k holomorphic discs of
Maslov index 2 in (X′

σ ,L) whose boundary passes through a given generic point of L. It
is not hard to check that these discs are all regular, using e.g. the same argument as in the
proof of Lemma 7 in [8]. Succinctly: observing that u does not intersect H̃, projection
to V decomposes (via a short exact sequence) the Cauchy-Riemann operator for u into
a ∂̄ operator on the trivial holomorphic line bundle with trivial real boundary condition
(along the fibers of the projection), and the ∂̄ operator for the “standard” disc D in C ×
(C∗)n−1 (which itself splits into a direct sum of line bundles and is easily checked to be
surjective); this implies surjectivity.

When the disc D is not transverse to H, we can argue in exactly the same manner,
except that a1, . . . , ak ∈ D2 are no longer distinct; and γ may have a multiple zero at
ai as long as its order of vanishing does not exceed the multiplicity of (r1ai, x2, . . . , xn)

as an intersection of D with H. We still conclude that p ◦ u is of the form (5.5). These
discs are not all distinct (or regular), but we can argue by continuity as follows. There
are diffeomorphisms arbitrarily C∞-close to identity which fix a neighborhood of H and
map S1(r1)×{(x2, . . . , xn)} to a nearby circle S1(r′1)×{(x′2, . . . , x′n)} contained in a generic
fiber. The moduli space of holomorphic discs with respect to the pullback of the standard
complex structure by such a diffeomorphism is canonically identified with the moduli
space of holomorphic discs for the standard complex structure with boundary on the
nearby generic fiber. This provides an explicit regularization of the moduli space, and we
conclude that the enumeration of holomorphic discs is as in the transverse case (i.e., discs
which can be written in the form (5.5) in more than one way should be counted with a
multiplicity equal to the number of such expressions).

All that remains is to calculate the weights (2.2) associated to the holomorphic
discs we have identified. Denote by (ζ1, . . . , ζn, λ) the affine coordinates of π(L) ∈ Uα

introduced above, and consider a disc given by (5.5) with |I| = � ∈ {0, . . . , k}. Then the
relative homology class represented by p ◦ u(D2) in C× (C∗)n−1 ×C ⊂ V×C is equal to
[D2(r1)×{pt}]+�[{pt}×D2(r0)]. By elementary toric geometry, the symplectic area of the
disc D2(r1)× {pt} with respect to the toric Kähler form ωV×C is equal to 〈σ,μV〉 +� =
ζ1 +� , while that of {pt} × D2(r0) is equal to λ. Thus, the symplectic area of the disc
p◦ u(D2) with respect to ωV×C is ζ1 +� + �λ. The disc we are interested in, u(D2)⊂ X′

σ ,
is the proper transform of p ◦ u(D2) under the blowup map; since its intersection number
with the exceptional divisor E is equal to |I| = �, we conclude that

(5.6)
∫

D2
u∗ωε =

(∫

D2
(p ◦ u)∗ωV×C

)
− �ε = ζ1 +� + �(λ− ε).

On the other hand, the degree of γI|S1 : S1 → S1 is equal to |I| = �, so in H1(L,Z) we
have [u(S1)] = γ1 + �γ0. Thus the weight of u is

Tωε(u)∇(∂u)= Tζ1+�+�(λ−ε)∇(γ1)∇(γ0)
� = (

T−εw0

)�
T�vα,1.
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Summing over the
(

k

�

)
families of discs with |I| = � for each �= 0, . . . , k, we find that

WX′
σ
(L,∇)=

k∑

�=0

(
k

�

)(
T−εw0

)�
T�vα,1 =

(
1 + T−εw0

)k
T�vα,1. �

Next we extend Lemma 5.6 to the case of general monomials in the coordinates vα .
Let σ be any primitive element of Zn, and denote again by αmin an element of A such
that 〈αmin, σ 〉 is minimal. Denote by V′

σ = V0 ∪ D0
σ the toric partial compactification

of V0 obtained by adding a single toric divisor D0
σ in the direction of the ray −σ . The

hypersurface H0 admits a natural partial compactification H′
σ inside V′

σ .
We claim that H′

σ is smooth for τ sufficiently small in (3.1). Indeed, rescaling fτ by
a factor of x−αmin if necessary, we can assume without loss of generality that 〈αmin, σ 〉 = 0.
Then fτ extends to a regular function on V′

σ , whose restriction to D0
σ is again a maxi-

mally degenerating family of Laurent polynomials, associated to the regular polyhedral
decomposition P ∩ σ⊥ of the convex hull of A ∩ σ⊥. This implies that for sufficiently
small τ the restriction of fτ to D0

σ vanishes transversely; the smoothness of H′
σ follows.

By blowing up V′
σ ×C along H′

σ ×0 and removing the proper transform of V′
σ ×0,

we obtain a partial compactification X′
σ of X0. While X′

σ does not necessarily embed
into X, we can equip V′

σ (resp. X′
σ ) with a toric (resp. S1-invariant) Kähler form which

agrees with ωV (resp. ωε ) everywhere outside of an arbitrarily small neighborhood of the
compactification divisor.

Denote by L ⊂ X0 a smooth fiber of π which lies in the region where the Kähler
forms agree (so that L is Lagrangian in X′

σ as well).

Lemma 5.7. — The Maslov index 0 holomorphic discs bounded by L inside X′
σ are all con-

tained in X0 and described by Proposition 5.1.

Moreover, if L is tautologically unobstructed in X0 and lies over the chamber Uα , then the points

(L,∇) ∈ U∨
α define weakly unobstructed objects of F(X′

σ ), with

(5.7) WX′
σ
(L,∇)= (

1 + T−εw0

)〈α−αmin,σ 〉T�vσα

for some � ∈ R.

Proof. — The Maslov index of a disc in X′
σ with boundary on L is twice its inter-

section number with the compactification divisor, and Assumption 2.2 is satisfied (in fact
X′
σ is affine). Thus all Maslov index 0 holomorphic discs are contained in the open stra-

tum X0, and Proposition 5.1 holds. (Since L lies away from the compactification divisor,
the symplectic area of these discs remains the same as for ωε .)

Thus, whenever L lies over a chamber Uα it does not bound any holomorphic
discs of Maslov index zero or less in X′

σ , and the Maslov index 2 discs can be classified
exactly as in the proof of Lemma 5.6. The only difference is that, since we evaluate the
symplectic areas of these discs with respect to the Kähler form on X′

σ rather than X, the
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constant term� in the area formula (5.6) now depends on the choice of the toric Kähler
form on V′

σ near the compactification divisor. �

By Remark 2.3 (see also Corollary A.11), the expressions (5.7) determine globally
defined regular functions on the mirror of X0. Thus, we can use Lemma 5.7 to determine
the wall-crossing transformations between the affine charts of the mirror.

Consider two adjacent chambers Uα and Uβ separated by a wall of potentially ob-
structed fibers of π , i.e. assume that α,β ∈ A are connected by an edge in the polyhedral
decomposition P . Then we have:

Proposition 5.8. — The instanton-corrected gluing between the coordinate charts U∨
α and U∨

β

preserves the coordinate w0, and matches the remaining coordinates via

(5.8) vσα =
(
1 + T−εw0

)〈β−α,σ 〉
vσβ for all σ ∈ Zn.

Proof. — Let {Lt}t∈[0,1] be a path among smooth fibers of π , with L0 and L1 tauto-
logically unobstructed and lying over the chambers Uα and Uβ respectively. We consider
the partial compactifications X0

+ and X′
σ of X0 introduced in Lemmas 5.5–5.7; in the

case of X′
σ we choose the Kähler form to agree with ωε over a large open subset which

contains the path Lt , so as to be able to apply Lemma 5.7.
Since these partial compactifications satisfy Assumption 2.2, the moduli spaces

of Maslov index 0 holomorphic discs bounded by the Lagrangians Lt in X0
+, X′

σ , and
X0 are the same, and the corresponding wall-crossing transformations are identical (see
Appendix A). Noting that the expressions (5.2) and (5.7) are manifestly convergent over
the whole completions (K∗)n+1 of U∨

α and U∨
β , we appeal to Lemma A.10, and conclude

that these expressions for the superpotentials WX0+ and WX′
σ

over the chambers U∨
α and

U∨
β match under the wall-crossing transformation. Thusw0 is preserved, and for primitive
σ ∈ Zn the monomials vσα and vσβ are related by (5.8). (The case of non-primitive σ follows
obviously from the primitive case.) �

This completes the proof of Theorem 1.7. Indeed, the instanton-corrected gluing
maps (5.8) coincide with the coordinate change formulas (3.11) between the affine charts
for the toric variety Y introduced in Section 3.3. Therefore, the SYZ mirror of X0 embeds
inside Y, by identifying the completion of the local chart U∨

α with the subset of Yα where
w0 is non-zero. It follows that the SYZ mirror of X0 is the subset of Y where w0 is non-
zero, namely Y0.

6. Proof of Theorem 1.5

We now turn to the proof of Theorem 1.5. We begin with an elementary observa-
tion:
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Lemma 6.1. — If Assumption 1.4 holds, then every rational curve C � P1 in X satisfies

D · C = c1(X) · C> 0; so in particular Assumption 2.2 holds.

Proof. — c1(X)= p∗Vc1(V)−[E], where pV is the projection to V and E = p−1(H×0)
is the exceptional divisor. Consider a rational curve C in X (i.e., the image of a noncon-
stant holomorphic map from P1 to X), and denote by C′ = pV(C) the rational curve in V
obtained by projecting C to V. Applying the maximum principle to the projection to the
last coordinate y ∈ C, we conclude that C is contained either in p−1(V × 0)= Ṽ ∪ E, or
in p−1(V × {y}) for some nonzero value of y.

When C ⊂ p−1(V× {y}) for y = 0, the curve C is disjoint from E and its projection
C′ is nonconstant, so c1(X) · [C] = c1(V) · [C′]> 0 by Assumption 1.4.

When C is contained in Ṽ, the curve C′ is again nonconstant, and since the normal
bundle of Ṽ in X is O(−H), we have c1(X) · [C] = c1(V) · [C′] − [H] · [C′], which is
positive by Assumption 1.4.

Finally, we consider the case where C is contained in E but not in Ṽ. Then

c1(X) · [C] = [D] · [C] = [Ṽ] · [C] + [
p−1(DV)

] · [C]
= [Ṽ] · [C] + c1(V) ·

[
C′].

The first term is non-negative by positivity of intersection; and by Assumption 1.4 the
second one is positive unless C′ is a constant curve, and non-negative in any case. How-
ever C′ is constant only when C is (a cover of) a fiber of the P1-bundle p|E : E → H × 0;
in that case [Ṽ] · [C]> 0, so c1(X) · [C]> 0 in all cases. �

As explained in Section 2.2, this implies that the tautologically unobstructed fibers
of π : X0 → B remain weakly unobstructed in X, and that the SYZ mirror of X is just Y0

(the SYZ mirror of X0) equipped with a superpotential W0 which counts Maslov index 2
holomorphic discs bounded by the fibers of π . Indeed, the conclusion of Lemma 6.1
implies that any component which is a sphere contributes at least 2 to the Maslov index
of a stable genus 0 holomorphic curve bounded by a fiber of π . Thus, Maslov index 0
configurations are just discs contained in X0, and Maslov index 2 configurations are discs
intersecting D transversely in a single point.

Observe that each Maslov index 2 holomorphic disc intersects exactly one of the
components of the divisor D. Thus, the superpotential W0 can be expressed as a sum
over the components of D = Ṽ ∪ p−1(DV × C), in which each term counts those discs
which intersect a particular component. It turns out that the necessary calculations have
been carried out in the preceding section: Lemma 5.5 describes the contribution from
discs which only hit Ṽ, and Lemma 5.6 describes the contributions from discs which
hit the various components of p−1(DV × C). Summing these, and using the notations of
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Section 3.3, we obtain that, for any point (L,∇) of U∨
α (α ∈ A),

W0(L,∇)=wα,0 +
r∑

i=1

(
1 + T−εw0

)〈α−αi,σi〉T�i vσi
α =w0 +

r∑

i=1

wi.

Hence W0 is precisely the leading-order superpotential (3.14). This completes the proof
of Theorem 1.5.

Remark 6.2. — In the proofs of Lemmas 5.5 and 5.6 we have not discussed in any
detail the orientations of moduli spaces of discs, which determine the signs of the various
terms appearing in the superpotential. The fact that those are all positive follows from
two ingredients.

The first is that, for a standard product torus in a toric variety, equipped with
the standard spin structure, the contributions of the various families of Maslov index 2
holomorphic discs to the superpotential are all positive. See [13] for a detailed calculation
in the case of the Clifford torus. The fact that all the signs are the same is not surprising,
since a monomial change of variables can be used to reduce to a single example, namely
the family of discs D2 × {pt} bounded by a product torus in C× (C∗)n equipped with the
standard spin structure. The same argument also applies to the discs in Lemma 5.5 since
those can also be reduced to the toric case.

The second ingredient is a comparison of the orientations of moduli spaces of
discs in V and their lifts to X (as in Lemma 5.6). A short calculation shows that, for the
standard spin structure, the orientation of the moduli space of lifted discs in X agrees
with that induced by the orientation of the moduli space of discs in V and the natural
orientation of the orbits of the S1-action. See the proof of Corollary 8 in [8] for a similar
argument. The positivity of the signs in Lemma 5.6 follows.

Remark 6.3. — When Assumption 1.4 does not hold, the SYZ mirror of X differs
from (Y0,W0), since the enumerative geometry of discs is modified by the presence of
stable genus 0 configurations of total Maslov index 0 or 2. A borderline case that remains
fairly easy is when the strict inequality in Assumption 1.4 is relaxed to

c1(V) · C ≥ max(0,H · C).

(This includes the situation where H is a Calabi-Yau hypersurface in a toric Fano variety
as an important special case.)

In this case, Assumption 2.2 still holds, so the mirror of X remains Y0; the only
modification is that the superpotential should also count the contributions of configu-
rations consisting of a Maslov index 2 disc together with one or more rational curves
satisfying c1(X) · C = 0. Thus, we now have

W = (1 + c0)w0 + (1 + c1)w1 + · · · + (1 + cr)wr,
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where c0, . . . , cr ∈ � are constants (determined by the genus 0 Gromov-Witten theory
of X), with val(ci) > 0.

7. From the blowup X to the hypersurface H

The goal of this section is to prove Theorem 1.6. As a first step, we establish:

Theorem 7.1. — Under Assumption 1.4, the B-side Landau-Ginzburg model (Y,W0) is SYZ

mirror to the A-side Landau-Ginzburg model (X,W∨ = y) (with the Kähler form ωε).

(Recall that y is the coordinate on the second factor of V × C.)

Sketch of proof. — This result follows from Theorem 1.5 by the same considerations
as in Example 2.4. Specifically, equipping X with the superpotential W∨ = y enlarges its
Fukaya category by adding admissible non-compact Lagrangian submanifolds, i.e., prop-
erly embedded Lagrangian submanifolds of X whose image under W∨ is only allowed to
tend to infinity in the direction of the positive real axis; in other terms, the y coordinate
is allowed to be unbounded, but only in the positive real direction.

Let a0 ⊂ C be a properly embedded arc which connects +∞ to itself by passing
around the origin, encloses an infinite amount of area, and stays away from the projection
to C of the support of the cut-off function χ used to construct ωε . Then we can supple-
ment the family of Lagrangian tori in X0 constructed in Section 4 by considering product
Lagrangians of the form L = p−1(L′ × a0), where L′ is an orbit of the Tn-action on V.
Indeed, by Proposition 4.5, away from the exceptional divisor the fibers of π : X0 → B
are lifts to X of product tori L′ × S1(r)⊂ V×C. For large enough r, the circles S1(r) can
be deformed by Hamiltonian isotopies in C to simple closed curves that approximate a0

as r →∞; moreover, the induced isotopies preserve the tautological unobstructedness in
X0 of the fibers of π which do not intersect p−1(H × C). In this sense, p−1(L′ × a0) is
naturally a limit of the tori p−1(L′ × S1(r)) as r → ∞. The analytic structure near this
point is obtained by equation (2.3), which naturally extends as in Example 2.4.

To be more specific, let L′ = μ−1
V (ζ1, . . . , ζn) for (ζ1, . . . , ζn) a point in the com-

ponent of �V \μV(UH) corresponding to the weight α ∈ A, and equip L = p−1(L′ × a0)

with a local system ∇ ∈ hom(π1(L),UK). The maximum principle implies that any holo-
morphic disc bounded by L in X0 must be contained inside a fiber of the projection to V
(see the proof of Proposition 5.1). Thus L is tautologically unobstructed in X0, and (L,∇)
defines an object of the Fukaya category F(X0,W∨), and a point in some partial com-
pactification of the coordinate chart U∨

α considered in Section 5. Denoting by γ1, . . . , γn

the standard basis of H1(L) � H1(L′) given by the various S1 factors, in the coordinate
chart (5.1) the object (L,∇) corresponds to

(vα,1, . . . , vα,n,wα,0)=
(
Tζ1∇(γ1), . . . ,Tζn∇(γn),0

)
.
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Thus, equipping X0 with the superpotential W∨ extends the moduli space of objects
under consideration from Y0 = Y \w−1

0 (0) to Y.
Under Assumption 1.4, (L,∇) remains a weakly unobstructed object of the Fukaya

category F(X,W∨). We now study the families of Maslov index 2 holomorphic discs
bounded by L in X, in order to determine the corresponding value of the superpotential
and show that it agrees with (3.14). Under projection to the y coordinate, any holomor-
phic disc u : (D2, ∂D2)→ (X,L) maps to a holomorphic disc in C with boundary on the
arc a0, which is necessarily constant; hence the image of u is contained inside p−1(V×{y})
for some y ∈ a0. Moreover, inside the toric variety p−1(V×{y})� V the holomorphic disc
u has boundary on the product torus L′.

Thus, the holomorphic discs bounded by L in X can be determined by reduction
to the toric case of (V,L′). For each toric divisor of V there is a family of Maslov index 2
discs which intersect it transversely at a single point and are disjoint from all the other
toric divisors; these discs are all regular, and exactly one of them passes through each
point of L [15]. The discs which intersect the toric divisor corresponding to a facet of�V

with equation 〈σ, ·〉 +� = 0 have area 〈σ, ζ 〉 +� and weight T�vσα . Summing over all
facets of �V, we conclude that

(7.1) W0(L,∇)=
r∑

i=1

T�i vσi
α .

Moreover, because w0 = 0 at the point (L,∇), the coordinate transformations (3.11)
simplify to vσi

αi
= vσi

α . Thus the expression (7.1) agrees with (3.14). �

Remark 7.2. — In order to fill the details of this sketch, we would need a sufficient
development of Fukaya categories of A-side Landau-Ginzburg models in order to verify
the existence of the analytic charts at infinity. The most straightforward way to do this
is to introduce non-compact Lagrangians which are mirror to the powers of an ample
line bundle on Y, and check that (i) these Lagrangians generate the Fukaya category and
(ii) when r is sufficiently large, the product Lagrangian L′ × S1(r) ⊂ V × C defines a
module over the Floer cochains of this generating family which is equivalent to the one
associated to the product of L′ with an admissible arc in C equipped with a bounding
cochain which is a multiple of a degree 1 generator coming from a self-intersection at
infinity.

Our next observation is that W∨ : X → C has a particularly simple structure. The
following statement is a direct consequence of the construction:

Proposition 7.3. — W∨ = y : X → C is a Morse-Bott fibration, with 0 as its only criti-

cal value; in fact the singular fiber W∨−1
(0) = Ṽ ∪ E ⊂ X has normal crossing singularities along

crit(W∨)= Ṽ ∩ E � H.
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Remark 7.4. — However, the Kähler form on crit(W∨) � H is not that induced
by ωV, but rather that induced by the restriction of ωε , which represents the cohomology
class [ωV] − ε[H]. To compensate for this, in the proof of Theorem 1.6 we will actually
replace [ωV] by [ωV] + ε[H].

Proposition 7.3 allows us to relate the Fukaya category of (X,W∨) to that of H,
using the ideas developed by Seidel in [46], adapted to the Morse-Bott case (see [53]).

Remark 7.5. — Strictly speaking, the literature does not include any definition of
the Fukaya category of a superpotential without assuming that it is a Lefschetz fibration.
The difficulty resides not in defining the morphisms and the compositions, but in defining
the higher order products in a coherent way. These technical problems were resolved by
Seidel in [48], by introducing a method of defining Fukaya categories of Lefschetz fibra-
tion that generalizes in a straightforward way to the Morse-Bott case we are considering.
This construction will be revisited in [5]. As the reader will see, in the only example where
we shall study such a Fukaya category, the precise nature of the construction of higher
products will not enter.

Outside of its critical locus, the Morse-Bott fibration W∨ carries a natural hori-
zontal distribution given by the ωε-orthogonal to the fiber. Parallel transport with respect
to this distribution induces symplectomorphisms between the smooth fibers; in fact, par-
allel transport along the real direction is given by (a rescaling of) the Hamiltonian flow
generated by Im W∨, or equivalently, the gradient flow of Re W∨ (for the Kähler metric).

Given a Lagrangian submanifold �⊂ crit(W∨)� H, parallel transport by the posi-
tive gradient flow of Re W∨ yields an admissible Lagrangian thimble L� ⊂ X (topologically
a disc bundle over �). Moreover, any local system ∇ on � induces by pullback a local
system ∇̃ on L�. However, there is a subtlety related to the nontriviality of the normal
bundle to H inside X:

Lemma 7.6. — The thimble L� is naturally diffeomorphic to the restriction of the complex line

bundle L=O(H) to �⊂ H.

Proof. — First note that, for the Lefschetz fibration f (x, y) = xy on C2 equipped
with its standard Kähler form, the thimble associated to the critical point at the origin
is {(x, x̄), x ∈ C} ⊂ C2. Indeed, parallel transport preserves the quantity |x|2 − | y|2, so
that the thimble consists of the points (x, y) where |x| = | y| and xy ∈ R≥0, i.e. y = x̄. In
particular, the thimble projects diffeomorphically onto either of the two C factors (the
two projections induce opposite orientations).

Now we consider the Morse-Bott fibration W∨ : X → C. The normal bundle to
the critical locus crit W∨ = Ṽ ∩ E � H is isomorphic to L⊕L−1 (where L is the normal
bundle to H inside Ṽ, while L−1 is its normal bundle inside E). Moreover, W∨ is locally
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given by the product of the fiber coordinates on the two line subbundles. The local cal-
culation then shows that, by projecting to either subbundle, a neighborhood of � in L�
can be identified diffeomorphically with a neighborhood of the zero section in either L|�
or L−1

|� . �

Lemma 7.6 implies that, even when �⊂ H is spin, L� ⊂ X need not be spin; indeed,
w2(TL�) = w2(T�)+ w2(L|�). Rather, L� is relatively spin, i.e. its second Stiefel-Whitney
class is the restriction of the background class s ∈ H2(X,Z/2) Poincaré dual to [Ṽ] (or
equivalently to [E]). Hence, applying the thimble construction to an object of the Fukaya
category F(H) does not determine an object of F(X,W∨), but rather an object of the
s-twisted Fukaya category Fs(X,W∨) (we shall verify in Proposition 7.10 that thimbles
are indeed weakly unobstructed objects of this category).

Remark 7.7. — While it has not appeared in the literature, the notion of weak
unobstructedness of an admissible Lagrangian L is a straightforward generalization of
the case of closed Lagrangians. There is a Floer-theoretic A∞-structure on the ordinary
cohomology of L, and a natural A∞-homomorphism from the ordinary cohomology of
L equipped with this A∞-structure to the endomorphisms of L as an object of the Fukaya
category of the potential. This homomorphism is not necessarily an isomorphism, but
it is always unital and preserves the curvature m0. We say that L is weakly unobstructed if
the curvature is a multiple of the unit in H0(L). In the case of thimbles, radial parallel
transport allows one to lift Maurer-Cartan elements and bounding cochains from an
arbitrarily small neighborhood of the critical fiber to the total space. This implies that
an admissible thimble which bounds no holomorphic disc of Maslov index less than 2
in a neighborhood of the critical fiber is weakly unobstructed; and the curvature is then
the product of the unit with the count of Maslov index 2 discs passing through a generic
point near the critical fiber.

Corollary 7.8. — Under Assumption 1.4, there is a fully faithful A∞-functor from the Fukaya

category F(H) to Fs(X,W∨), which at the level of objects maps (�,∇) to the thimble (L�, ∇̃).
Sketch of proof. — Let �1, �2 be two Lagrangian submanifolds of crit(W∨)� H, as-

sumed to intersect transversely (otherwise transversality is achieved by Hamiltonian per-
turbations, which may be needed to achieve regularity of holomorphic discs in any case),
and denote by L1,L2 ⊂ X the corresponding thimbles. (For simplicity we drop the local
systems from the notations; we also postpone the discussion of relatively spin structures
until further below.)

Recall that homFs(X,W∨)(L1,L2) is defined by perturbing L1,L2 to Lagrangians
L̃1, L̃2 whose images under W∨ are half-lines which intersect transversely and such that
the first one lies above the second one near infinity; so for example, fixing a small angle
θ > 0, we can take L̃1 (resp. L̃2) to be the Lagrangian obtained from �1 (resp. �2) by the
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gradient flow of Re(e−iθW∨) (resp. Re(eiθW∨)). (A more general approach would be to
perturb the holomorphic curve equation by a Hamiltonian vector field generated by a
suitable rescaling of the real part of W∨, instead of perturbing the Lagrangian boundary
conditions; in our case the two approaches are equivalent.)

We now observe that L̃1 and L̃2 intersect transversely, with all intersections ly-
ing in the singular fiber W∨−1

(0), and in fact L̃1 ∩ L̃2 = �1 ∩ �2. Thus, homF(H)(�1, �2)

and homFs(X,W∨)(L1,L2) are naturally isomorphic. Moreover, the maximum principle ap-
plied to the projection W∨ implies that all holomorphic discs bounded by the (perturbed)
thimbles in X are contained in (W∨)−1(0) = Ṽ ∪ E (and hence their boundary lies on
�1 ∪ �2 ⊂ H ⊂ Ṽ ∪ E).

After quotienting by a suitable reference section, we can view the defining section
of H as a meromorphic function on Ṽ, with f −1(0) = H. Since f = 0 at the boundary,
and since a meromorphic function on the disc which vanishes at the boundary is every-
where zero, any holomorphic disc in Ṽ with boundary in �1 ∪ �2 must lie entirely inside
f −1(0)= H. By the same argument, any holomorphic disc in E with boundary in �1 ∪ �2

must stay inside H as well. Finally, Lemma 6.1 implies that stable curves with both disc
and sphere components cannot contribute to the Floer differential (since each sphere
component contributes at least 2 to the total Maslov index).

This implies that the Floer differentials on homF(H)(�1, �2) and homFs(X,W∨)(L1,L2)

count the same holomorphic discs. The same argument applies to Floer products and
higher structure maps.

To complete the proof it only remains to check that the orientations of the rele-
vant moduli spaces of discs agree. Recall that a relatively spin structure on a Lagrangian
submanifold L with background class s is the same thing as a stable trivialization of the
tangent bundle of L over its 2-skeleton, i.e. a trivialization of TL|L(2) ⊕ E|L(2) , where E is
a vector bundle over the ambient manifold with w2(E)= s; such a stable trivialization in
turn determines orientations of the moduli spaces of holomorphic discs with boundary
on L (see [20, Chapter 8], noting that the definition of spin structures in terms of stable
trivializations goes back to Milnor [42]).

In our case, we are considering discs in H with boundary on Lagrangian subman-
ifolds �i ⊂ H, and the given spin structures on �i determine orientations of the moduli
spaces for the structure maps in F(H). If we consider the same holomorphic discs in the
context of the thimbles Li ⊂ X, the spin structure of �i does not induce a spin structure on
TLi � T�i ⊕ L|�i

(what would be needed instead is a relatively spin structure on �i with
background classw2(L|H)). On the other hand, the normal bundle to H inside X, namely
L⊕L−1, is an SU (2)-bundle and hence has a canonical isotopy class of trivialization over
the 2-skeleton. Thus, the spin structure on �i induces a trivialization of TLi ⊕L−1 over the
2-skeleton of Li , i.e. a relative spin structure on Li with background class w2(L−1

|Li
)= s|Li

.
Furthermore, because w2(L⊕L−1)= 0, stabilizing by this rank 2 bundle does not affect
the orientation of the moduli space of discs [20, Proposition 8.1.16]. Hence the structure
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maps of F(H) and Fs(X,W∨) involve the same moduli spaces of holomorphic discs,
oriented in the same manner, which completes the proof. �

Remark 7.9. — The reason the above is only a sketch of proof is that the con-
struction of the two Fukaya categories requires choices of perturbations, and we have not
discussed how to arrange for these choices to yield the same answer. A model for such
arguments in a related situation is provided by Seidel in [46, Section (14c)].

Implicit in the statement of Corollary 7.8 is the fact that, if (�,∇) is weakly unob-
structed in F(H), then (L�, ∇̃) is weakly unobstructed in Fs(X,W∨). In our setting, the
values of the superpotentials for objects of F(H) and their images in Fs(X,W∨) differ by
an additive constant δ. This constant is easiest to determine if we assume that V is affine:

Proposition 7.10. — Under the assumption that V is affine, the functor of Corollary 7.8 in-

creases the value of the superpotential by δ = Tε .

Sketch of proof. — Consider a weakly unobstructed object (�,∇) of F(H) and the
corresponding thimble L� ⊂ X. Holomorphic discs bounded by L� in X are contained
in the level sets of W∨ = y (by the maximum principle). By Remark 7.7, we only need to
study the moduli spaces of such discs for small values of y.

For y> 0, the intersection Ly

� of L� with (W∨)−1(y)� V is a circle bundle over �,
lying in the boundary of a standard symplectic tubular neighborhood of size ε of H in
(W∨)−1(y) equipped with the restriction of ωε . Indeed, as y → 0, the fibers of W∨ degen-
erate to the normal crossing divisor Ṽ ∪ E. Symplectic parallel transport identifies the
standard disc bundle E \ (Ṽ ∩ E) � H × D2(ε) inside (W∨)−1(0) with a standard sym-
plectic neighborhood Uy of H inside (W∨)−1(y) for y> 0. The boundary of Uy (a trivial
S1-bundle over H) consists of all points in (W∨)−1(y) whose parallel transport converges
to Ṽ ∩ E � H as y → 0, and in particular it contains Ly

�.
However, while the restriction of ωε to (W∨)−1(y)� V is cohomologous to ωV for

all y> 0 and agrees with it pointwise for y sufficiently large, the actual forms differ near
H for small y. Under the identification (W∨)−1(y)� V, the neighborhoods Uy are small
tubular neighborhoods of H, increasing in size along a suitably normalized gradient flow
of | f | as y increases, and agreeing with a standard ωV-neighborhood of H of size ε for
y � ε1/2.

Using that V is affine, H is the vanishing locus of the globally defined holomorphic
function f , and the maximum principle applied to f implies that, for small enough y

(or for all y if ε is small enough), all holomorphic discs bounded by Ly

� in V lie in a
neighborhood U′y of H (possibly larger than Uy).

The complex structure on the neighborhood U′y of H in V is not biholomorphic to
the standard product complex structure on a domain in H × C, but agrees with it along
H. Thus, for small enough y, an arbitrarily C∞-small perturbation of the almost-complex
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structure on V (preserving the holomorphicity of f ) ensures the existence of a holomor-
phic projection map πH : U′y → H, without affecting counts of holomorphic discs; with-
out loss of generality, we can further assume that πH maps Ly

� to � as an S1-bundle, with
| f | constant in the S1 fiber over each point of �.

Holomorphic discs with boundary on Ly

� can then be classified by using the pro-
jection to H. The Maslov index of a disc u : D2 → (V,Ly

�) (with image contained in U′y)
is the sum of the Maslov index of πH ◦ u and twice the intersection number of u with H.
Thus, the weak unobstructedness of � in H implies that of Ly

�, and there are two types of
Maslov index 2 discs to consider:

• πH ◦ u is a Maslov index 2 disc in H, and u avoids H;
• πH ◦ u is constant, and u intersects H transversely once.

In the first case, we observe that, given a point p̂ ∈ Ly

�, each holomorphic disc
v : D2 → (H, �) through p = πH(p̂) has a unique lift u through p̂ that avoids H. Indeed, v
determines the value of log | f | along the boundary of the disc u; the (unique) harmonic
extension of this function to the entire disc can be expressed as the real part of some holo-
morphic function g, unique up to a pure imaginary additive constant. We then find that
necessarily f ◦ u = exp(g) up to some constant factor which is determined by requiring
that the marked point map to p̂. This, together with πH ◦ u = v, determines u. Recalling
that Ly

� lives on the boundary of a standard symplectic neighborhood of H, and using
that u is disjoint from H, we further observe that the symplectic area of u in (W∨)−1(y) is
equal to that of v in H, and the holonomy of ∇̃ along the boundary of u equals that of ∇
along the boundary of v. Moreover, the same argument as in the proof of Corollary 7.8
shows that the orientations of the moduli spaces match. Thus, the total contribution of
all these discs corresponds exactly to the superpotential in F(H).

In the second case, denoting πH ◦ u = p ∈ �, by construction Ly

� intersects π−1
H (p) in

a circle which bounds a disc of symplectic area ε, and u necessarily maps D2 biholomor-
phically onto this disc. These small discs of size ε in the normal slices to H are regular,
and contribute positively to the superpotential: indeed, their deformation theory splits
into that of constant discs in H and that of the standard disc in the complex plane with
boundary on a circle with the trivial spin structure (the triviality of the spin structure
is due to the twist by the background class s). Thus, these discs are responsible for the
additional term Tε in the superpotential for L�.

For the sake of completeness, we also consider the case y = 0, where the intersec-
tion of L� with (W∨)−1(0)= Ṽ∪E is simply �. The argument in the proof of Corollary 7.8
then shows that holomorphic discs bounded by � in Ṽ∪E lie entirely within H; however,
there is a nontrivial contribution of Maslov index 2 configurations consisting of a constant
disc together with a rational curve contained in E, namely the P1 fiber of the exceptional
divisor over a point of � ⊂ H. (These exceptional spheres are actually the limits of the
area ε discs discussed above as y → 0.) �
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Remark 7.11. — The assumption that V is affine can be weakened somewhat: for
Proposition 7.10 to hold it is sufficient to assume that the minimal Chern number of
a rational curve contained in Ṽ is at least 2. When this assumption does not hold, the
discrepancy δ between the two superpotentials includes additional contributions from
the enumerative geometry of rational curves of Chern number 1 in Ṽ.

Remark 7.12. — The A∞-functor from F(H) to Fs(X,W∨) is induced by a La-
grangian correspondence in the product H × X, namely the set of all (p, q) ∈ H × X
such that parallel transport of q by the gradient flow of −Re W∨ converges to p ∈
crit W∨. This Lagrangian correspondence is admissible with respect to pr∗2W∨, and
weakly unobstructed with m0 = δ. While the Ma’u-Wehrheim-Woodward construction
of A∞-functors from Lagrangian correspondences [39] has not yet been developed in the
setting considered here, it is certainly the right conceptual framework in which Corol-
lary 7.8 should be understood.

By analogy with the case of Lefschetz fibrations [46], it is expected that the Fukaya
category of a Morse-Bott fibration is generated by thimbles, at least under the assumption
that the Fukaya category of the critical locus admits a resolution of the diagonal. The
argument is expected to be similar to that in [46], except in the Morse-Bott case the
key ingredient becomes the long exact sequence for fibered Dehn twists [53]. Thus, it is
reasonable to expect that the A∞-functor of Corollary 7.8 is in fact a quasi-equivalence.

Similar statements are also expected to hold for the wrapped Fukaya category of H
and the partially wrapped Fukaya category of (X,W∨) (twisted by s); however, this remains
speculative, as the latter category has not been suitably constructed yet.

In any case, Corollary 7.8 and Proposition 7.10 motivate the terminology intro-
duced in Definition 1.2.

Proof of Theorem 1.6. — While Theorem 7.1 provides an SYZ mirror to the Landau-
Ginzburg model (X,W∨), in light of the above discussion several adjustments are neces-
sary in order to arrive at a generalized SYZ mirror to H.

(1) As noted in Remark 7.4, the restriction of ωε to crit(W∨) does not agree with
the restriction of ωV to H. To remedy this, in our main construction V should
be equipped with a Kähler form in the class [ωV] + ε[H] rather than [ωV].
This ensures that the critical locus of W∨ is indeed isomorphic to H equipped
with the restriction of the Kähler form ωV.

(2) In light of Corollary 7.8, the A-side Landau-Ginzburg model (X,W∨) should
be twisted by the background class s = PD([Ṽ]) ∈ H2(X,Z/2). Namely,
the tori we consider in our main argument should be viewed as objects of
Fs(X,W∨) rather than F(X,W∨). This modifies the sign conventions for
counting discs and hence the mirror superpotential.
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(3) By Proposition 7.10, the additive constant δ = Tε should be subtracted from
the superpotential, since the natural A∞-functor from F(H) to Fs(X,W∨) in-
creases m0 by that amount.

Thus, the mirror space remains the toric variety Y, but the superpotential is no longer

(7.2) W0 =w0 +
r∑

i=1

T�i vσi
αi
;

we now make explicit how each of the above changes affects the potential.
Replacing [ωV] by [ωV] + ε[H] amounts to changing the equations of the facets

of the moment polytope �V from 〈σi, ·〉 +�i = 0 to 〈σi, ·〉 +�i + ελ(σi) = 0 (where
λ : �V → R is the piecewise linear function defining L=O(H)). Accordingly, each ex-
ponent �i in (7.2) should be changed to �i + ελ(σi).

Next, we twist by the background class s = PD([Ṽ]), and view the tori studied in
Section 5 as objects of Fs(X,W∨) rather than F(X,W∨). Specifically, s lifts to a class in
H2(X,L;Z/2) (dual to [Ṽ] ∈ H2n(X\L)), and twisting the standard spin structure by this
lift of s yields a relatively spin structure on L. By [20, Proposition 8.1.16], this twist affects
the signed count of holomorphic discs in a given class β ∈ π2(X,L) by a factor of (−1)k

where k = β · [Ṽ]. Recall from Section 6 that, of the various families of holomorphic discs
that contribute to the superpotential, the only ones that intersect Ṽ are those described
by Lemma 5.5; thus the only effect of the twisting by the background class s is to change
the first term of W0 from w0 to −w0.

Finally, we subtract δ = Tε from the superpotential, and find that the appropriate
superpotential to consider on Y is given by

W′
0 =−Tε −w0 +

r∑

i=1

T�i+ελ(σi)vσi
αi
=−Tεv0 +

r∑

i=1

T�i Tελ(σi)vσi
αi
.

Finally, recall from Section 3.3 that the weights of the toric monomials v0 and vσi
αi

are
respectively (0,1) and (−σi, λ(σi)) ∈ Zn ⊕ Z. Therefore, a rescaling of the last coordi-
nate by a factor of Tε changes v0 to Tεv0 and vσi

αi
to Tελ(σi)vσi

αi
. This change of variables

eliminates the dependence on ε (as one would expect for the mirror to H) and replaces
W′

0 by the simpler expression

−v0 +
r∑

i=1

T�i vσi
αi
,

which is exactly WH
0 (see Definition 3.10). �

Remark 7.13. — Another way to produce an A∞-functor from the Fukaya category
of H to that of X (more specifically, the idempotent closure of Fs(X)) is the following
construction considered by Ivan Smith in [50, Section 4.5].



242 MOHAMMED ABOUZAID, DENIS AUROUX, AND LUDMIL KATZARKOV

Given a Lagrangian submanifold �⊂ H, first lift it to the boundary of the ε-tubular
neighborhood of H inside V, to obtain a Lagrangian submanifold C� ⊂ V which is a
circle bundle over �; then, identifying V with the reduced space Xred,ε = μ−1

X (ε)/S
1, lift

C� to μ−1
X (ε) and “spin” it by the S1-action, to obtain a Lagrangian submanifold T� ⊂ X

which is a T2-bundle over �. Then T� formally splits into a direct sum T+
� ⊕ T−

� ; the
A∞-functor is constructed by mapping � to either summand.

The two constructions are equivalent: in Fs(X,W∨) the summands T±
� are iso-

morphic to the thimble L� (up to a shift). One benefit of Smith’s construction is that,
unlike L�, the Lagrangian submanifold T� is entirely contained inside X0, which makes
its further study amenable to T-duality arguments involving X0 and Y0.

8. The converse construction

As a consequence of Theorem 1.7, the mirror Y0 of X0 can be defined as a variety
not only over the Novikov field, but also over the complex numbers. In this section, we
impose the maximal degeneration condition (cf. Definition 3.1) which implies that Y0

is smooth. We then reverse our viewpoint from the preceding discussion: treating T as
a numerical parameter and equipping Y0 with a Kähler form, we shall reconstruct X0

(as an analytic space that also happens to be defined over complex numbers) as an SYZ
mirror. Along the way, we also obtain another perspective on how compactifying Y0 to the
toric variety Y amounts to equipping X0 with a superpotential. We omit any discussion of
Y or Y0 equipped with A-side Landau-Ginzburg models, which would require a deeper
understanding of the corresponding Fukaya categories.

(Note: many of the results in this section were also independently obtained by
Chan, Lau and Leung [12].)

To begin our construction, observe that Y0 = Y \ w−1
0 (0) carries a natural

Tn-action, given in the coordinates introduced in Section 3.3 by
(
eiθ1, . . . , eiθn

) · (vα,1, . . . , vα,n, vα,0)=
(
eiθ1vα,1, . . . , e

iθnvα,n, vα,0
)
.

This torus is a subgroup of the (n+1)-dimensional torus which acts on the toric variety Y,
namely the stabilizer of the regular function w0 =−Tε + Tεv0.

We equip Y0 with a Tn-invariant Kähler form ωY. To make things concrete, take
ωY to be the restriction of a complete toric Kähler form on Y, with moment polytope

�Y =
{
(ξ, η) ∈ Rn ⊕ R

∣∣η ≥ ϕ(ξ)= max
α∈A

(〈α, ξ〉 − ρ(α))
}

(cf. (3.8)). We denote by μ̃Y : Y → Rn+1 the moment map for the Tn+1-action on Y, and by
μY : Y0 → Rn the moment map for the Tn-action on Y0. Observing that μY is obtained
from μ̃Y by restricting to Y0 and projecting to the first n components, the critical locus
of μY is the union of all codimension 2 toric strata, and the set of critical values of μY is
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precisely the tropical hypersurface �0 ⊂ Rn defined by ϕ. Finally, we also equip Y0 with
the Tn-invariant holomorphic (n + 1)-form given in each chart by

	Y = d logvα,1 ∧ · · · ∧ d logvα,n ∧ d logw0.

Note that this holomorphic volume form scales with ε.

Lemma 8.1. — The map πY = (μY, |w0|) : Y0 → BY = Rn × R+ defines a Tn-invariant

special Lagrangian torus fibration on Y0. Moreover, π−1
Y (ξ, r) is singular if and only if (ξ, r) ∈�0 ×

{Tε}, and obstructed if and only if r = Tε .

This fibration is analogous to some of the examples considered in [10, 11, 23, 24];
see also Example 3.3.1 in [7].

The statement that π−1
Y (ξ, r) is special Lagrangian follows immediately from the

observation that 	Y descends to the holomorphic 1-form d logw0 on the reduced space
μ−1

Y (ξ)/T
n � C∗; thus the circle |w0| = r is special Lagrangian in the reduced space, and

its lift to μ−1
Y (ξ) is special Lagrangian in Y0.

A useful way to think of these tori is to consider the projection of Y0 to the coordi-
nate w0, whose fibers are all isomorphic to (C∗)n except for w−1

0 (−Tε)= v−1
0 (0) which

is the union of all toric strata in Y. In this projection, π−1
Y (ξ, r) fibers over the circle of

radius r centered at the origin, and intersects each of the fibers w−1
0 (re

iθ ) in a standard
product torus (corresponding to the level ξ of the moment map). In particular, π−1

Y (ξ, r)

is singular precisely when r = Tε and ξ ∈�0.
By the maximum principle, any holomorphic disc in Y0 bounded by π−1

Y (ξ, r)must
lie entirely within a fiber of the projection to w0. Since the regular fibers of w0 are iso-
morphic to (C∗)n, inside which product tori do not bound any nonconstant holomorphic
discs, π−1

Y (ξ, r) is tautologically unobstructed for r = Tε . When r = Tε , π−1
Y (ξ, r) inter-

sects one of the components of w−1
0 (−Tε) (i.e. one of the toric divisors of Y) in a product

torus, which bounds various families of holomorphic discs as well as configurations con-
sisting of holomorphic discs and rational curves in the toric strata. This completes the
proof of Lemma 8.1.

The maximum principle applied to w0 also implies that every rational curve in Y
is contained in w−1

0 (−Tε) (i.e. the union of all toric strata), hence disjoint from the anti-
canonical divisor w−1

0 (0), and thus satisfies c1(Y) · C = 0; in fact Y is a toric Calabi-Yau
variety. So Assumption 2.2 holds, and partially compactifying Y0 to Y does not modify
the enumerative geometry of Maslov index 0 discs bounded by the fibers of πY. Hence
the SYZ mirror of Y is just the mirror of Y0 equipped with an appropriate superpotential,
and we determine both at the same time.

The wall r = Tε divides the fibration πY : Y0 → BY into two chambers; accord-
ingly, the SYZ mirror of Y0 (and Y) is constructed by gluing together two coordinate
charts U′ and U′′ via a transformation which accounts for the enumerative geometry of
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discs bounded by the potentially obstructed fibers of πY. We now define coordinate sys-
tems for both charts and determine the superpotential (for the mirror of Y) in terms of
those coordinates. For notational consistency and to avoid confusion, we now denote by τ
(rather than T) the Novikov parameter recording areas with respect to ωY.

We start with the chamber r > Tε , over which the fibers of πY can be deformed
into product tori in Y (i.e., orbits of the Tn+1-action) by a Hamiltonian isotopy that does
not intersectw−1

0 (−Tε) (from the perspective of the projection tow0, the isotopy amounts
simply to deforming the circle of radius r centered at 0 to a circle of the appropriate radius
centered at −Tε ).

Fix a reference fiber L0 = π−1
Y (ξ

0, r0), where ξ 0 ∈ Rn and r0 > Tε , and choose a
basis (γ1, . . . , γn, γ

′
0) of H1(L0,Z), where −γ1, . . . ,−γn correspond to the factors of the

Tn-action on L0, and −γ ′
0 corresponds to an orbit of the last S1 factor of Tn+1 acting

on a product torus μ̃−1
Y (ξ

0, η0) which is Hamiltonian isotopic to L0 in Y. (The signs are
motivated by consistency with the notations used for X0.)

A point of the chart U′ mirror to the chamber {r > Tε} corresponds to a pair
(L,∇), where L = π−1

Y (ξ, r) is a fiber of πY (with r > Tε ), Hamiltonian isotopic to a
product torus μ̃−1

Y (ξ, η) in Y, and ∇ ∈ hom(π1(L),UK). We rescale the coordinates given
by (2.3) to eliminate the dependence on the base point (ξ 0, r0), i.e. we identify U′ with a
domain in (K∗)n+1 via

(8.1) (L,∇) �→ (
x′1, . . . , x

′
n, z

′) = (
τ−ξ1∇(γ1), . . . , τ

−ξn∇(γn), τ
−η∇(

γ ′
0

))
.

(Compare with (2.3), noting that −ξi =−ξ 0
i + ∫

�i
ωY and −η=−η0 + ∫

�′
0
ωY.)

Lemma 8.2. — In the chart U′, the superpotential for the mirror to Y is given by

(8.2) W∨(
x′1, . . . , x

′
n, z

′) =
∑

α∈A

(1 + κα)τ ρ(α)x′1α1 · · · x′nαnz′−1
,

where κα ∈ K are constants with val(κα) > 0.

Proof. — Consider a point (L,∇) ∈ U′, where L = π−1
Y (ξ, r) is Hamiltonian iso-

topic to the product torus L′ = μ̃−1
Y (ξ, η) in Y. As explained above, the isotopy can be

performed without intersecting the toric divisors of Y, i.e. without wall-crossing; there-
fore, the isotopy provides a cobordism between the moduli spaces of Maslov index 2
holomorphic discs bounded by L and L′ in Y.

It is well-known that the families of Maslov index 2 holomorphic discs bounded by
the standard product torus L′ in the toric manifold Y are in one-to-one correspondence
with the codimension 1 toric strata of Y. Namely, for each codimension 1 stratum, there
is a unique family of holomorphic discs which intersect this stratum transversely at a sin-
gle point and do not intersect any of the other strata. Moreover, every point of L′ lies on
the boundary of exactly one disc of each family, and these discs are all regular [15] (see
also [6, §4]).
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The toric divisors of Y, or equivalently the facets of �Y, are in one-to-one cor-
respondence with the elements of A. The symplectic area of a Maslov index 2 holo-
morphic disc in (Y,L′) which intersects the divisor corresponding to α ∈ A (and whose
class we denote by βα ) is equal to the distance from the point (ξ, η) to that facet
of �Y, namely η − 〈α, ξ〉 + ρ(α), whilst the boundary of the disc represents the class
∂βα = ∑

αiγi − γ ′
0 ∈ H1(L′,Z). The weight associated to such a disc is therefore

zβα
(
L′,∇) = τ η−〈α,ξ〉+ρ(α)∇(γ1)

α1 · · ·∇(γn)
αn∇(

γ ′
0

)−1

= τ ρ(α)x′1α1 · · · x′nαnz′−1.

Using the isotopy between L and L′, we conclude that the contributions of Maslov index 2
holomorphic discs in (Y,L) to the superpotential W∨ add up to

∑

α∈A

zβα (L,∇)=
∑

α∈A

τ ρ(α)x′1
α1 · · · x′nαnz′−1.

However, the superpotential W∨ also includes contributions from (virtual) counts of
stable genus 0 configurations of discs and rational curves of total Maslov index 2. These
configurations consist of a single Maslov index 2 disc (in one of the above families) to-
gether with one or more rational curves contained in the toric divisors of Y (representing
a total class C ∈ H2(Y,Z)). The enumerative invariant n(L, βα + C) giving the (virtual)
count of such configurations whose boundary passes through a generic point of L can be
understood in terms of genus 0 Gromov-Witten invariants of suitable partial compact-
ifications of Y (see e.g. [12]). However, all that matters to us is the general form of the
corresponding terms of the superpotential. Since the rational components contribute a
multiplicative factor τ [ωY]·C to the weight, we obtain that

W∨ =
∑

α∈A

(
1 +

∑

C∈H2(Y,Z)[ωY]·C>0

n(L, βα + C)τ [ωY]·C
)
τ ρ(α)x′1

α1 · · · x′nαnz′−1,

which is of the expected form (8.2). �

Next we look at the other chart U′′, which corresponds to the chamber r < Tε of
the fibration πY. Fix again a reference fiber L0 = π−1

Y (ξ
0, r0), where ξ 0 ∈ Rn and r0 <Tε ,

and choose a basis (γ1, . . . , γn, γ
′′
0 ) of H1(L0,Z), where −γ1, . . . ,−γn correspond to the

factors of the Tn-action on L0, and γ ′′
0 can be represented by a loop in L0 over which

w0 runs counterclockwise around the circle of radius r0 while vα,1, . . . , vα,n ∈ R+ (for
some arbitrary choice of α). Note that the fibration w0 : Y → C is trivial over the disc
of radius r0; in fact the coordinates (w0, vα,1, . . . , vα,n) (for any α) give a biholomorphism
from the subset {|w0| ≤ r0} of Y to D2(r0)× (C∗)n. Then γ ′′

0 can be characterized as the
unique element of H1(L0,Z) which arises as the boundary of a section of w0 : Y → C
over the disc of radius r0; we denote by β0 the relative homotopy class of this section.



246 MOHAMMED ABOUZAID, DENIS AUROUX, AND LUDMIL KATZARKOV

A point of U′′ corresponds to a pair (L,∇) where L = π−1
Y (ξ, r) is a fiber of πY (with

r <Tε ), and ∇ ∈ hom(π1(L),UK). As before, we rescale the coordinates given by (2.3) to
eliminate the dependence on the base point (ξ 0, r0), i.e. we identify U′′ with a domain in
(K∗)n+1 via

(8.3) (L,∇) �→ (
x′′1, . . . , x

′′
n , y

′′) = (
τ−ξ1∇(γ1), . . . , τ

−ξn∇(γn), τ
[ωY]·β0∇(

γ ′′
0

))
.

Lemma 8.3. — In the chart U′′, the superpotential for the mirror to Y is given by

(8.4) W∨(
x′′1, . . . , x

′′
n , y

′′) = y′′.

Proof. — By the maximum principle applied to the projection to w0, any holomor-
phic disc bounded by L = π−1

Y (ξ, r) in Y must be contained in the subset {|w0| ≤ r} ⊂ Y,
which is diffeomorphic to D2 × (C∗)n. Thus, for topological reasons, any holomorphic
disc bounded by L must represent a multiple of the class β0. Since the Maslov index is
equal to twice the intersection number with w−1

0 (0), Maslov index 2 discs are holomor-
phic sections of w0 : Y → C over the disc of radius r, representing β0.

The formula (8.4) now follows from the claim that the number of such sections
passing through a given point of L is n(L, β0) = 1. This can be viewed as an enumera-
tive problem for holomorphic sections of a trivial Lefschetz fibration with a Lagrangian
boundary condition, easily answered by applying the powerful methods of [45, §2]. An
alternative, more elementary approach is to deform ωY among toric Kähler forms in its
cohomology class to ensure that, for some ξ 0 ∈ Rn, μ−1

Y (ξ
0) is given in one of the coordi-

nate charts Yα of Section 3.3 by equations of the form |vα,1| = ρ1, . . . , |vα,n| = ρn. (In fact,
many natural choices for ωY cause this property to hold immediately.) When this prop-
erty holds, the maximum principle applied to vα,1, . . . , vα,n implies that the holomorphic
Maslov index 2 discs bounded by L0 = π−1

Y (ξ
0, r0) are given by letting w0 vary in the disc

of radius r0 while the other coordinates vα,1, . . . , vα,n are held constant. All these discs are
regular, and there is precisely one disc passing through each point of L0. It follows that
n(L0, β0) = 1. This completes the proof, since the invariant n(L0, β0) is not affected by
the deformation of ωY to the special case we have considered, and the value of n(L, β0)

is the same for all the fibers of πY over the chamber r <Tε . �

We can now formulate and prove the main result of this section:

Theorem 8.4. — The rigid analytic manifold

(8.5) X 0 = {
(x1, . . . , xn, y, z) ∈

(
K∗)n × K2

∣∣ yz = f̃ (x1, . . . , xn)
}
,

where f̃ (x1, . . . , xn)= ∑
α∈A(1 + κα)τ ρ(α)xα1

1 · · · xαn
n , is SYZ mirror to (Y0,ωY).

Moreover, the B-side Landau-Ginzburg model (X 0,W∨ = y) is SYZ mirror to (Y,ωY).
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Proof. — The two charts U′ and U′′ are glued to each other by a coordinate
transformation which accounts for the Maslov index 0 holomorphic discs bounded by
the potentially obstructed fibers of πY. There are many families of such discs, all con-
tained in w−1

0 (−Tε)= v−1
0 (0). However we claim that the first n coordinates of the charts

(8.1) and (8.3) are not affected by these instanton corrections, so that the gluing satisfies
x′′1 = x′1, . . . , x

′′
n = x′n.

One way to argue is based on the observation that all Maslov index 0 configu-
rations are contained in w−1

0 (−Tε). Consider as in Section 2.1 a Lagrangian isotopy
{Lt}t∈[0,1] between fibers of πY in the two chambers (with Lt0 the only potentially ob-
structed fiber), and the cycles Cα = ev∗[M1({Lt0}, α)] ∈ Hn−1(Lt0) corresponding to
the various classes α ∈ π2(Y,Lt) that may contain Maslov index 0 configurations. The
fact that each Cα is supported on Lt0 ∩ w−1

0 (−Tε) implies readily that Cα · γ1 = · · · =
Cα · γn = 0. Since the overall gluing transformation is given by a composition of elemen-
tary transformations of the type (2.4), the first n coordinates are not affected.

By Corollary A.11, a more down-to-earth way to see that the gluing preserves
x′′i = x′i (i = 1, . . . , n) is to consider the partial compactification Y′

i of Y0 given by the
moment polytope �Y ∩ {ξi ≤ K} for some constant K � 0 (still removing w−1

0 (0) from
the resulting toric variety). From the perspective of the projection w0 : Y0 → C∗, this
simply amounts to a toric partial compactification of each fiber, where the generic fiber
(C∗)n is partially compactified along the i-th factor to (C∗)n−1 × C. The Maslov index 2
holomorphic discs bounded by L = π−1

Y (ξ, r) inside Y′
i are contained in the fibers of w0

by the maximum principle; requiring that the boundary of the disc pass through a given
point p ∈ L (where we assume w0 = −Tε ), we are reduced to the fiber of w0 containing p,
which L intersects in a standard product torus (S1)n ⊂ (C∗)n−1 ×C (where the radii of the
various S1 factors depend on ξ ). Thus, there is exactly one Maslov index 2 holomorphic
disc in (Y′

i,L) through a generic point p ∈ L (namely a disc over which all coordinates
except the i-th one are constant). The superpotential is equal to the weight of this disc,
i.e. τK−ξi∇(γi), which can be rewritten as τKx′i if r > Tε , and τKx′′i if r < Tε . Comparing
these two expressions, we see that the gluing between U′ and U′′ identifies x′i = x′′i .

The gluing transformation between the coordinates y′′ and z′ is more complicated,
but is now determined entirely by a comparison between (8.2) and (8.4): since the two
formulas for W∨ must glue to a regular function on the mirror, y′′ must equal the right-
hand side of (8.2), hence

y′′z′ =
∑

α∈A

(1 + κα)τ ρ(α)x′1α1 · · · x′nαn = f̃
(
x′1, . . . , x

′
n

)
.

This completes the proof of the theorem. �

The first part of Theorem 8.4 is a statement of SYZ mirror symmetry in the op-
posite direction from Theorem 1.7; the two results taken together relate the symplectic
topology and algebraic geometry of the spaces X0 and Y0 to each other. More precisely,
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we would like to treat τ as a fixed complex number and view the mirror of (Y0,ωY) as a
complex manifold. The convergence of the function f̃ depends only on that of the con-
stants κα , which is unknown in general but holds in practice for a number of examples
(see [12] and other work by the same authors). Even when convergence is not an issue,
the result reveals the need for care in constructing the mirror map: while our main con-
struction is essentially independent of the coefficients cα appearing in (3.1) (which do not
affect the symplectic geometry of X0), the direction considered here requires the complex
structure of X0 to be chosen carefully to match with the Kähler class [ωY], specifically we
have to take cα = 1 + κα .

The second part of Theorem 8.4 gives a mirror symmetric interpretation of the
partial compactification of Y0 to Y, in terms of equipping X0 with the superpotential
W∨ = y. From the perspective of our main construction (viewing X0 as a symplectic
manifold and Y0 as its SYZ mirror), we saw the same phenomenon in Section 7.

9. Examples

9.1. Hyperplanes and pairs of pants. — We consider as our first example the (higher
dimensional) pair of pants H defined by the equation

(9.1) x1 + · · · + xn + 1 = 0

in V = (C∗)n. (The case n = 2 corresponds to the ordinary pair of pants; in general H is
the complement of n + 1 hyperplanes in general position in CPn−1.)

The tropical polynomial corresponding to (9.1) is ϕ(ξ) = max(ξ1, . . . , ξn,0); the
polytope �Y defined by (3.8) is equivalent via (ξ1, . . . , ξn, η) �→ (η− ξ1, . . . , η− ξn, η) to
the orthant (R≥0)

n+1 ⊂ Rn+1. Thus Y � Cn+1. In terms of the coordinates (z1, . . . , zn+1)

of Cn+1, the monomial v0 is given by v0 = z1 · · · zn+1. Thus, in this example our main
results are:

(1) the open Calabi-Yau manifold Y0 = Cn+1 \ {z1 · · · zn+1 = 1} is SYZ mirror to
the conic bundle X0 = {(x1, . . . , xn, y, z) ∈ (C∗)n × C2 | yz = x1 + · · · + xn + 1};

(2) the B-side Landau-Ginzburg model (Y0,W0 = −Tε + Tεz1 · · · zn+1) is SYZ
mirror to the blowup X of (C∗)n × C along H × 0, where

H = {
(x1, . . . , xn) ∈

(
C∗)n ∣∣ x1 + · · · + xn + 1 = 0

};
(3) the B-side Landau-Ginzburg model (Cn+1,WH

0 =−z1 · · · zn+1) is a generalized
SYZ mirror of H.

The last statement in particular has been verified in the sense of homological mirror
symmetry by Sheridan [49]; see also [3] for a more detailed result in the case n = 2 (the
usual pair of pants).
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If instead we consider the same Equation (9.1) to define (in an affine chart) a
hyperplane H � CPn−1 inside V = CPn, with a Kähler form such that

∫
CP1 ωV = A,

then our main result becomes that the B-side Landau-Ginzburg model consisting of
Y0 = Cn+1 \ {z1 · · · zn+1 = 1} equipped with the superpotential

W0 =−Tε + Tεz1 · · · zn+1 + z1 + · · · + zn + TAzn+1

is SYZ mirror to the blowup X of CPn × C along H × 0 � CPn−1 × 0.
Even though CPn−1 is not affine, Theorem 1.6 still holds for this example if we

assume that n ≥ 2, by Remark 7.11. In this case, the mirror we obtain for CPn−1 (viewed
as a hyperplane in CPn) is the B-side Landau-Ginzburg model

(
Cn+1,WH

0 =−z1 · · · zn+1 + z1 + · · · + zn + TAzn+1

)
.

Rewriting the superpotential as

WH
0 = z1 + · · · + zn + zn+1

(
TA − z1 · · · zn

)

= W̃(z1, . . . , zn)+ zn+1g(z1, . . . , zn)

makes it apparent that this B-side Landau-Ginzburg model is equivalent (e.g. in the sense
of Orlov’s generalized Knörrer periodicity [43]) to the B-side Landau-Ginzburg model
consisting of g−1(0)= {(z1, . . . , zn) ∈ Cn | z1 · · · zn = TA} equipped with the superpoten-
tial W̃ = z1 + · · · + zn, which is the classical toric mirror of CPn−1.

9.2. ALE spaces. — Let V = C, and let H = {x1, . . . , xk+1} ⊂ C∗ consist of k + 1
points, k ≥ 0, with |x1| � · · · � |xk+1| (so that the defining polynomial of H, fk+1(x) =
(x − x1) · · · (x − xk+1) ∈ C[x], is near the tropical limit).

The conic bundle X0 = {(x, y, z) ∈ C∗ × C2 | yz = fk+1(x)} is the complement of
the regular conic x = 0 in the Ak-Milnor fiber

X′ = {
(x, y, z) ∈ C3

∣∣ yz = fk+1(x)
}
.

In fact, X′ is the main space of interest here, rather than its open subset X0 or its partial
compactification X (note that X′ = X \ Ṽ). However the mirror of X′ differs from that
of X simply by excluding the term w0 (which accounts for those holomorphic discs that
intersect Ṽ) from the mirror superpotential.

The tropical polynomial ϕ : R → R corresponding to fk+1 is a piecewise linear
function whose slope takes the successive integer values 0,1, . . . , k + 1. Thus the toric
variety Y determined by the polytope �Y = {(ξ, η) ∈ R2 | η ≥ ϕ(ξ)} is the resolution
of the Ak singularity {st = uk+1} ⊂ C3. The k + 2 edges of �Y correspond to the toric
strata of Y, namely the proper transforms of the coordinate axes s = 0 and t = 0 and
the k rational (−2)-curves created by the resolution. Specifically, Y is covered by k + 1
affine coordinate charts Uα with coordinates (sα = vα,1, tα = v−1

α+1,1), 0 ≤ α ≤ k; denoting
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the toric coordinate vα,0 by u, Equation (3.9) becomes sαtα = u, and the regular functions
s = s0, t = tk, u ∈O(Y) satisfy the relation st = uk+1.

Sincew0 =−Tε+Tεv0 =−Tε+Tεu, the space Y0 is the complement of the curve
u = 1 inside Y. With this understood, our main results become:

(1) the complement Y0 of the curve u = 1 in the resolution Y of the Ak singularity
{st = uk+1} ⊂ C3 is SYZ mirror to the complement X0 of the curve x = 0 in the
Milnor fiber X′ = {(x, y, z) ∈ C3 | yz = fk+1(x)} of the Ak singularity;

(2) the B-side Landau-Ginzburg model (Y0,W0 = s) is SYZ mirror to X′;
(3) the Landau-Ginzburg models (Y,W0 = s) and (X′,W∨ = y) are SYZ mirror

to each other.

These results show that the oft-stated mirror symmetry relation between the smoothing
and the resolution of the Ak singularity (or, specializing to the case k = 1, between the
affine quadric T∗S2 and the total space of the line bundle O(−2)→ P1) needs to be
corrected either by removing smooth curves from each side, or by equipping both sides
with superpotentials.

One final comment that may be of interest to symplectic geometers is that W0 = s

vanishes to order k + 1 along the t coordinate axis, and to orders 1,2, . . . , k along the
exceptional curves of the resolution. The higher derivatives of the superpotential encode
information about the A∞-products on the Floer cohomology of the Lagrangian torus
fiber of the SYZ fibration, and the high-order vanishing of W0 along the toric divisors
of Y0 indicates that the Ak Milnor fiber contains Lagrangian tori whose Floer cohomol-
ogy is isomorphic to the usual cohomology of T2 as an algebra, but carries non-trivial
A∞-operations. (See also [38] for related considerations.)

Corollary 9.1. — For α ∈ {2, . . . , k + 1}, let r ∈ R+ be such that exactly α of the

points x1, . . . , xk+1 satisfy |xi| < r. Then the Floer cohomology of the Lagrangian torus Tr =
{(x, y, z) ∈ X′ | |x| = r, | y| = |z|} in the Ak Milnor fiber X′, equipped with a suitable spin

structure, is HF∗(Tr,Tr) � H∗(T2;�), equipped with an A∞-structure for which the generators

a, b of HF1(Tr,Tr) satisfy the relations m2(a, b) + m2(b, a) = 0; mi(a, . . . , a) = 0 for all i;

mi(b, . . . , b)= 0 for i ≤ α− 1; and mα(b, . . . , b) = 0.

Proof. — The condition |x| = r implies that the torus Tr yields a point in the cham-
ber Uα , while the condition that | y| = |z| implies that it lies on the critical locus of W0:
this shows that Tr is a critical point of W0 of order α+ 1.

By a construction which is standard in the toric case (see [14]), the restriction of W0

to a chart of Y modeled after a domain in H1(Tr,�
∗) (identified with (�∗)2 by choosing

the basis (a, b)) agrees with the map

(9.2)
(
exp(λa), exp(λb)

) �→
∑

k

mk(λaa + λbb, . . . , λaa + λbb).
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Choosing a to correspond to the generator which vanishes on loops whose projection to
C is constant, the result follows immediately. �

9.3. Plane curves. — For p, q ≥ 2, consider a smooth Riemann surface H of genus
g = (p− 1)(q − 1) embedded in V = P1 ×P1, defined as the zero set of a suitably chosen
polynomial of bidegree (p, q). (The case of a genus 2 curve of bidegree (3,2) was used in
Section 3 to illustrate the general construction, see Examples 3.2 and 3.12.)

Namely, in affine coordinates f is given by

f (x1, x2)=
p∑

a=0

q∑

b=0

ca,bτ
ρ(a,b)xa

1xb
2,

where ca,b ∈ C∗ are arbitrary, ρ(a, b) ∈ R satisfy a suitable convexity condition, and
τ � 1. The corresponding tropical polynomial

(9.3) ϕ(ξ1, ξ2)= max
{
aξ1 + bξ2 − ρ(a, b)

∣∣0 ≤ a ≤ p, 0 ≤ b ≤ q
}

defines a tropical curve�0 ⊂ R2; see Figure 1. We also denote by H′, resp. H0, the genus
g curves with p + q (resp. 2(p + q)) punctures obtained by intersecting H with the affine
subset V′ = C2 ⊂ V, resp. V0 = (C∗)2.

The polytope �Y = {(ξ1, ξ2, η) | η ≥ ϕ(ξ1, ξ2)} has (p + 1)(q + 1) facets, corre-
sponding to the regions where a particular term in (9.3) realizes the maximum. Thus the
3-fold Y has (p + 1)(q + 1) irreducible toric divisors Da,b (0 ≤ a ≤ p, 0 ≤ b ≤ q) (we label
each divisor by the weight of the dominant monomial). The moment polytopes for these
divisors are exactly the components of R2 \�0, and the tropical curve �0 depicts the
moment map images of the codimension 2 strata where they intersect (a configuration of
P1’s and A1’s); see Figure 3 (left) (and compare with Figure 1 (right)).

The leading-order superpotential W0 of Definition 3.10 consists of five terms:
w0 = −Tε + Tεv0, where v0 is the toric monomial of weight (0,0,1), which vanishes
with multiplicity 1 on each of the toric divisors Da,b; and four terms w1, . . . ,w4 cor-
responding to the facets of �V. Up to constant factors, w1 is the toric monomial with
weight (−1,0,0), which vanishes with multiplicity a on Da,b; w2 is the toric monomial
with weight (0,−1,0), vanishing with multiplicity b on Da,b; w3 is the monomial with
weight (1,0, p), with multiplicity (p − a) on Da,b; and w4 is the monomial with weight
(0,1, q), with multiplicity (q − b) on Da,b (compare Example 3.12).

Our main results for the open curve H0 ⊂ V0 = (C∗)2 are the following:

(1) the complement Y0 of w−1
0 (0) � (C∗)2 in the toric 3-fold Y is SYZ mirror to

the conic bundle X0 = {(x1, x2, y, z) ∈ (C∗)2 × C2 | yz = f (x1, x2)};
(2) the B-side Landau-Ginzburg model (Y0,w0) is SYZ mirror to the blowup of
(C∗)2 × C along H0 × 0;

(3) the B-side Landau-Ginzburg model (Y,−v0) is a generalized SYZ mirror to
the open genus g curve H0.
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FIG. 3. — The singular fibers of the mirrors to H0 = H ∩ (C∗)2 (left) and H′ = H ∩ C2 (middle), and of the leading-order
terms of the mirror to H (right). Here H is a genus 2 curve of bidegree (3,2) in P1 × P1

The B-side Landau-Ginzburg models (Y0,w0) and (Y,−v0) have regular fibers isomor-
phic to (C∗)2, while the singular fiber w−1

0 (−Tε) = v−1
0 (0) is the union of all the toric

divisors Da,b. In particular, the singular fiber consists of (p + 1)(q + 1) toric surfaces in-
tersecting pairwise along a configuration of P1’s and A1’s (the 1-dimensional strata of Y),
themselves intersecting at triple points (the 0-dimensional strata of Y); the combinatorial
structure of the trivalent configuration of P1’s and A1’s is exactly given by the tropical
curve �0. (See Figure 3 (left).)

If we partially compactify to V′ = C2, then we get:

(2′) the B-side Landau-Ginzburg model (Y0,w0 +w1 +w2) is SYZ mirror to the
blowup of C3 along H′ × 0;

(3′) the B-side Landau-Ginzburg model (Y,−v0 +w1 +w2) is mirror to H′.

Adding w1 +w2 to the superpotential results in a partial smoothing of the singular
fiber; namely, the singular fiber is now the union of the toric surfaces Da,b where a > 0
and b > 0 (over which w1 + w2 vanishes identically) and a single noncompact surface
S′ ⊂ Y, which can be thought of as a smoothing (or partial smoothing) of S′

0 = (
⋃

a Da,0)∪
(
⋃

b D0,b).
By an easy calculation in the toric affine charts of Y, the critical locus of WH′ =

−v0 +w1 +w2 (i.e. the pairwise intersections of components of W−1
H′ (0) and the possible

self-intersections of S′) is again a union of P1’s and A1’s meeting at triple points; the com-
binatorics of this configuration is obtained from the planar graph �0 (which describes
the critical locus of WH0 =−v0) by deleting all the unbounded edges in the directions of
(−1,0) and (0,−1), then inductively collapsing the bounded edges that connect to uni-
valent vertices and merging the edges that meet at bivalent vertices (see Figure 3 middle);
this construction can be understood as a sequence of “tropical modifications” applied to
the tropical curve �0.

The closed genus g curve H does not satisfy Assumption 1.4, so our main results do
not apply to it. However, it is instructive to consider the leading-order mirrors (Y0,W0)

to the blowup X of P1 × P1 × C along H × 0 and (Y,WH
0 ) to the curve H itself. Indeed,

in this case the additional instanton corrections (i.e., virtual counts of configurations that
include exceptional rational curves in Ṽ) are expected to only have a mild effect on the
mirror: specifically, they should not affect the topology of the critical locus, but merely
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deform it in a way that can be accounted for by corrections to the mirror map. We will
return to this question in a forthcoming paper.

The zero set of the leading-order superpotential WH
0 =−v0 +w1 +w2 +w3 +w4

is the union of the compact toric surfaces Da,b, 0 < a < p, 0 < b< q, with a single non-
compact surface S ⊂ Y, which can be thought of as a smoothing (or partial smoothing)
of the union S0 of the noncompact toric divisors of Y. (There may also be new critical
points which do not lie over 0; we shall not discuss them.)

Here again, an easy calculation in the toric affine charts shows that the singu-
lar locus of (WH

0 )
−1(0) (i.e., the pairwise intersections of components and the possible

self-intersections of S) forms a configuration of 3g − 3 P1’s meeting at triple points. Com-
binatorially, this configuration is obtained from the planar graph �0 by deleting all the
unbounded edges, then inductively collapsing the bounded edges that connect to univa-
lent vertices and merging the edges that meet at bivalent vertices (see Figure 3 (right));
this can be understood as a sequence of tropical modifications turning �0 into a closed
genus g tropical curve (i.e., a trivalent graph without unbounded edges).

(The situation is slightly different when p = q = 2 and g = 1: in this case
(WH

0 )
−1(0) = D1,1 ∪ S, and the critical locus D1,1 ∩ S is a smooth elliptic curve. In this

case, the higher instanton corrections are easy to analyze, and simply amount to rescaling
the first term −v0 of the superpotential by a multiplicative factor which encodes certain
genus 0 Gromov-Witten invariants of P1 × P1.)

10. Generalizations

In this section we mention (without details) a couple of straightforward generaliza-
tions of our construction.

10.1. Non-maximal degenerations. — In our main construction we have assumed that
the hypersurface H ⊂ V is part of a maximally degenerating family (Hτ )τ→0 (see Defini-
tion 3.1). This was used for two purposes: (1) to ensure that, for each weight α ∈ A, there
exists a connected component of Rn \ Log(H) over which the corresponding monomial
in the defining equation (3.1) dominates all other terms, and (2) to ensure that the toric
variety Y associated to the polytope (3.8) is smooth.

(Note that the regularity of P also ensures the smoothness of H throughout, and of
H′
σ in the discussion before Lemma 5.7; without the regularity assumption, smoothness

can still be achieved by making generic choices of the coefficients cα in (3.1).)
In general, removing the assumption of maximal degeneration, some of the terms

in the tropical polynomial

ϕ(ξ)= max
{〈α, ξ〉 − ρ(α) ∣∣α ∈ A

}

may not achieve the maximum under any circumstances; denote by Ared the set of those
weights which do achieve the maximum for some value of ξ . Equivalently, those are ex-
actly the vertices of the polyhedral decomposition P of Conv(A) induced by the function
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ρ : A → R. Then the elements of A \ Ared do not give rise to connected components of
the complement of the tropical curve, nor to facets of �Y, and should be discarded alto-
gether. Thus, the main difference with the maximal degeneration case is that the rays of
the fan �Y are the vectors (−α,1) for α ∈ Ared , and the toric variety Y is usually singular.

Indeed, the construction of the Lagrangian torus fibration π : X0 → B proceeds as
in Section 4, and the arguments in Sections 4 to 6 remain valid, the only difference being
that only the weights α ∈ Ared give rise to chambers Uα of tautologically unobstructed
fibers of π , and hence to affine coordinate charts U∨

α for the SYZ mirror Y0 of X0.
Replacing A by Ared throughout the arguments addresses this issue.

The smooth mirrors obtained from maximal degenerations are crepant resolutions
of the singular mirrors obtained from non-maximal ones. Starting from a non-maximal
polyhedral decomposition P , the various ways in which it can be refined to a regular
decomposition correspond to different choices of resolution. We give a few examples.

Example 10.1. — Revisiting the example of the Ak-Milnor fiber considered in
Section 9.2, we now consider the case where the roots of the polynomial fk+1 satisfy
|x1| = · · · = |xk+1|, for example fk+1(x)= xk+1 − 1, which gives

X′ = {
(x, y, z) ∈ C3

∣∣ yz = xk+1 − 1
}
.

Then the tropical polynomial ϕ : R → R is ϕ(ξ)= max(0, (k + 1)ξ), and the polytope
�Y = {(ξ, η) ∈ R2 | η ≥ ϕ(ξ)} determines the singular toric variety {st = uk+1} ⊂ K3, i.e.
the Ak singularity, rather than its resolution as previously.

Geometrically, the Lagrangian torus fibration π normally consists of k + 2 cham-
bers, depending on how many of the roots of fk+1 lie inside the projection of the fiber to
the x coordinate plane. In the case considered here, all the walls lie at |x| = 1, and the
fibration π only consists of two chambers (|x|< 1 and |x|> 1).

In fact, Z/(k + 1) acts freely on X0
k = {(x, y, z) ∈ C∗ × C2 | yz = xk+1 − 1}, making

it an unramified cover of X0
0 = {(x̂, y, z) ∈ C∗ × C2 | yz = x̂ − 1} � C2 \ {yz = −1} via

the map (x, y, z) �→ (xk+1, y, z). The Lagrangian tori we consider on X0
k are simply the

preimages of the SYZ fibration on X0
0, which results in the mirror being the quotient of

the mirror of X0
0 (namely, {(ŝ, t̂, u) ∈ K3 | ŝt̂ = u, u = 1}) by a Z/(k + 1)-action (namely

ζ ·(ŝ, t̂, u)= (ζ ŝ, ζ−1 t̂, u)). As expected, the quotient is nothing other than Y0
k = {(s, t, u) ∈

K3 | st = uk+1, u = 1} (via the map (ŝ, t̂, u) �→ (ŝk+1, t̂k+1, u)).

Example 10.2. — The higher-dimensional analogue of the previous example is that
of Fermat hypersurfaces in (C∗)n or in CPn. Let H be the Fermat hypersurface in CPn

given by the equation
∑

Xd
i = 0 in homogeneous coordinates, i.e. xd

1 + · · · + xd
n + 1 = 0

in affine coordinates, and let X be the blowup of CPn ×C at H×0. In this case, the open
Calabi-Yau manifold X0 is

X0 = {
(x1, . . . , xn, y, z) ∈

(
C∗)n × C2

∣∣ yz = xd
1 + · · · + xd

n + 1
}
.
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The tropical polynomial corresponding to H is ϕ(ξ1, . . . , ξn) = max(dξ1, . . . , dξn,0),
which is highly degenerate. Thus the toric variety Y associated to the polytope �Y given
by (3.8) is singular, in fact it can be described as

Y = {
(z1, . . . , zn+1, v) ∈ Kn+2

∣∣ z1 · · · zn+1 = vd
}
,

which can be viewed as the quotient of Kn+1 by the diagonal action of (Z/d)n (mul-
tiplying all coordinates by roots of unity but preserving their product), via the map
(z̃1, . . . , z̃n+1) �→ (z̃d

1, . . . , z̃
d
n+1, z̃1 · · · z̃n+1). As in the previous example, this is consistent

with the observation that X0 is a (Z/d)n-fold cover of the conic bundle considered in
Section 9.1, where (Z/d)n acts diagonally by multiplication on the coordinates x1, . . . , xn.

(As usual, considering a maximally degenerating family of hypersurfaces of degree
d instead of a Fermat hypersurface would yield a crepant resolution of Y.)

By Theorem 1.6, the affine Fermat hypersurface H0 = H ∩ (C∗)n is mirror to the
singular B-side Landau-Ginzburg model (Y,WH

0 =−v) or, in other terms, the quotient
of (Kn+1,W̃H

0 =−z̃1 · · · z̃n+1) by the action of (Z/d)n, which is consistent with [49].
Furthermore, by Remark 7.11 the theorem also applies to projective Fermat hy-

persurfaces of degree d < n in CPn. Setting a = 1
n+1

∫
CP1 ωCPn , and placing the barycenter

of the moment polytope of CPn at the origin, we find that
(
Y,WH

0 =−v + Ta(z1 + · · · + zn+1)
)

is mirror to H (for d < n; otherwise this is only the leading-order approximation to the
mirror). Equivalently, this can be viewed as the quotient of

(
Kn+1,W̃H

0 =−z̃1 · · · z̃n+1 + Ta
(
z̃d

1 + · · · + z̃d
n+1

))

by the action of (Z/d)n, which is again consistent with Sheridan’s work.

Example 10.3. — We now revisit the example considered in Section 9.3, where
we found the mirrors of nearly tropical plane curves of bidegree (p, q) to be smooth
toric 3-folds (equipped with suitable superpotentials) whose topology is determined by
the combinatorics of the corresponding tropical plane curve �0 (or dually, of the regular
triangulation P of the rectangle [0, p] × [0, q]).

A particularly simple way to modify the combinatorics is to “flip” a pair of adjacent
triangles of P whose union is a unit parallelogram; this affects the toric 3-fold Y by a flip.
This operation can be implemented by a continuous deformation of the tropical curve
�0 in which the length of a bounded edge shrinks to zero, creating a four-valent vertex,
which is then resolved by creating a bounded edge in the other direction and increasing its
length. The intermediate situation where �0 has a 4-valent vertex corresponds to a non-
maximal degeneration where P is no longer a maximal triangulation of [0, p] × [0, q],
instead containing a single parallelogram of unit area; the mirror toric variety Y then
acquires an ordinary double point singularity. The two manners in which the four-valent
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vertex of the tropical curve can be deformed to a pair of trivalent vertices connected by
a bounded edge then amount to the two small resolutions of the ordinary double point,
and differ by a flip.

10.2. Hypersurfaces in abelian varieties. — As suggested to us by Paul Seidel, the meth-
ods we use to study hypersurfaces in toric varieties can also be applied to the case of hy-
persurfaces in abelian varieties. For simplicity, we only discuss the case of abelian varieties
V which can be viewed as quotients of (C∗)n (with its standard Kähler form) by the action
of a real lattice �B ⊂ Rn, where γ ∈ �B acts by (x1, . . . , xn) �→ (eγ1x1, . . . , e

γnxn). In other
terms, the logarithm map identifies V with the product TB × TF of two real Lagrangian
tori, the “base” TB = Rn/�B and the “fiber” TF = iRn/(2πZ)n (which corresponds to the
orbit of a Tn-action).

Since the Tn-action on V is not Hamiltonian, there is no globally defined Rn-valued
moment map. However, there is an analogous map which takes values in a real torus,
namely the quotient of Rn by the lattice spanned by the periods of ωV on H1(TB) ×
H1(TF); due to our choice of the standard Kähler form on (C∗)n, this period lattice is
simply �B, and the “moment map” is the logarithm map projecting from V to the real
torus TB = Rn/�B.

A tropical hypersurface �0 ⊂ TB can be thought of as the image of a �B-periodic
tropical hypersurface �̃0 ⊂ Rn under the natural projection Rn → Rn/�B = TB. Such a
tropical hypersurface occurs naturally as the limit of the amoebas (moment map images)
of a degenerating family of hypersurfaces Hτ inside the degenerating family of abelian
varieties Vτ (τ → 0) corresponding to rescaling the lattice �B by a factor of | log τ |. (We
keep the Kähler class [ωV] and its period lattice �B constant by rescaling the Kähler
form of (C∗)n by an appropriate factor, so that the moment map is given by the base τ
logarithm map, μV = Logτ : Vτ → TB.) As in Section 3 we call Hτ ⊂ Vτ “nearly tropical”
if its amoeba�τ = Logτ (Hτ )⊂ TB is contained in a tubular neighborhood of the tropical
hypersurface �0; we place ourselves in the nearly tropical setting, and elide τ from the
notation.

Concretely, the hypersurface H is defined by a section of a line bundle L → V
whose pullback to (C∗)n is trivial; L can be viewed as the quotient of (C∗)n × C by �B,
where γ ∈ �B acts by

(10.1) γ# : (x1, . . . , xn, v) �→
(
τ−γ1x1, . . . , τ

−γnxn, τ
κ(γ )xλ(γ )v

)
,

where λ ∈ hom(�B,Zn) is a homomorphism determined by the Chern class c1(L) (ob-
serve that hom(�B,Zn)� H1(TB,Z)⊗H1(TF,Z)⊂ H2(V,Z)), and κ : �B → R satisfies
a cocycle-type condition in order to make (10.1) a group action. A basis of sections of L
is given by the theta functions

(10.2) ϑα(x1, . . . , xn)=
∑

γ∈�B

γ ∗
#

(
xα

)
, α ∈ Zn/λ(�B).
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(Note: for γ ∈ �B, ϑα and ϑα+λ(γ ) actually differ by a constant factor.) The defining sec-
tion f of H is a finite linear combination of these theta functions; equivalently, its lift
to (C∗)n can be viewed as an infinite Laurent series of the form (3.1), invariant under
the action (10.1) (which forces the set of weights A to be λ(�B)-periodic). We note that
the corresponding tropical function ϕ : Rn → R is also �B-equivariant, in the sense that
ϕ(ξ + γ )= ϕ(ξ)+ 〈λ(γ ), ξ〉 − κ(γ ) for all γ ∈ �B.

Let X be the blowup of V×C along H× 0, equipped with an S1-invariant Kähler
form ωε such that the fibers of the exceptional divisor have area ε > 0 (chosen sufficiently
small). Denote by Ṽ the proper transform of V× 0, and let X0 = X \ Ṽ. Then X0 carries
an S1-invariant Lagrangian torus fibration π : X0 → B = TB × R+, constructed as in
Section 4 by assembling fibrations on the reduced spaces of the S1-action. This allows us
to determine SYZ mirrors to X0 and X as in Sections 5 and 6.

The construction can be understood either directly at the level of X and X0, or
by viewing the whole process as a �B-equivariant construction on the cover X̃, namely
the blowup of (C∗)n × C along H̃ × 0, where H̃ is the preimage of H under the covering
map q : (C∗)n → (C∗)n/�B = V. The latter viewpoint makes it easier to see that the
enumerative geometry arguments from the toric case extend to this setting.

As in the toric case, each weight ᾱ ∈ Ā := A/λ(�B) determines a connected com-
ponent of the complement TB \�0 of the tropical hypersurface�0, and hence a chamber
Uᾱ ⊂ Breg ⊂ B over which the fibers of π are tautologically unobstructed. Each of these
determines an affine coordinate chart U∨

ᾱ for the SYZ mirror of X0, and these charts are
glued to each other via coordinate transformations of the form (3.11).

Alternatively, we can think of the mirror as a quotient by �B of a space built
from an infinite collection of charts U∨

α , α ∈ A, where each chart U∨
α has coordi-

nates (vα,1, . . . , vα,n,w0), glued together by (3.11). Specifically, for each element γ =
(γ1, . . . , γn) ∈ �B, we identify U∨

α with U∨
α+λ(γ ) via the map

(10.3) γ ∨
# : (vα,1, . . . , vα,n,w0) ∈ U∨

α �→ (
Tγ1vα,1, . . . ,Tγnvα,n,w0

) ∈ U∨
α+λ(γ ),

where the multiplicative factors Tγi account for the amount of symplectic area separating
the different lifts to X̃ of a given fiber of π .

Setting v0 = 1+T−εw0, we can again view the SYZ mirror Y0 of X0 as the comple-
ment of the hypersurface w−1

0 (0)= v−1
0 (1) in a “locally toric” variety Y covered (outside

of codimension 2 strata) by local coordinate charts Yα = (K∗)n×K (α ∈ A) glued together
by (3.9) and identified under the action of �B. Namely, for all α,β ∈ A and γ ∈ �B we
make the identifications

(v1, . . . , vn, v0) ∈ Yα ∼
(
v
α1−β1
0 v1, . . . , v

αn−βn

0 vn, v0

) ∈ Yβ,(10.4)

(v1, . . . , vn, v0) ∈ Yα ∼
(
Tγ1v1, . . . ,Tγnvn, v0

) ∈ Yα+λ(γ ).(10.5)

Finally, the abelian variety V is aspherical, and any holomorphic disc bounded by π−1(b),
b ∈ Breg must be entirely contained in a fiber of the projection to V, so that the only
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contribution to the superpotential is w0 (as in the case of hypersurfaces in (C∗)n). With
this understood, our main results become:

Theorem 10.4. — Let H be a nearly tropical hypersurface in an abelian variety V, let X be the

blowup of V × C along H × 0, and let Y be as above. Then:

(1) Y0 = Y \w−1
0 (0) is SYZ mirror to X0 = X \ Ṽ;

(2) the B-side Landau-Ginzburg model (Y0,w0) is SYZ mirror to X;

(3) the B-side Landau-Ginzburg model (Y,−v0) is generalized SYZ mirror to H.

Note that, unlike Theorems 1.5 and 1.6, this result holds without any restrictions:
when V is an abelian variety, Assumption 1.4 always holds and there are never any
higher-order instanton corrections. On the other hand, the statement of part (3) implic-
itly uses the properties of Fukaya categories of Landau-Ginzburg models whose proofs
are sketched in Section 7 (whereas parts (1) and (2) rely only on familiar versions of the
Fukaya category).

The smooth fibers of −v0 : Y → K (or equivalently up to a reparametrization,
w0 : Y0 → K∗) are all abelian varieties, in fact quotients of (K∗)n (with coordinates v =
(v1, . . . , vn)) by the identification

vm ∼ v〈λ(γ ),m〉
0 T〈γ,m〉vm for all m ∈ Zn and γ ∈ �B,

while the singular fiber is a union of toric varieties

v−1
0 (0)=

⋃

ᾱ∈Ā

Dᾱ

glued (to each other or to themselves) along toric strata. The moment polytopes for the
toric varieties Dᾱ are exactly the components of TB \�0, and the tropical hypersurface
�0 depicts the moment map images of the codimension 2 strata of Y along which they
intersect.

Example 10.5. — When H is a set of n points on an elliptic curve V, we find that
the fibers of −v0 : Y → K are a family of elliptic curves, all smooth except v−1

0 (0) which
is a union of n P1’s forming a cycle (in the terminology of elliptic fibrations, this is known
as an In fiber). In this case the superpotential −v0 has n isolated critical points, all lying
in the fiber over zero, as expected.

Example 10.6. — Now consider the case where H is a genus 2 curve embedded
in an abelian surface V (for example its Jacobian torus). The tropical genus 2 curve
�0 is a trivalent graph on the 2-torus TB with two vertices and three edges, see Fig-
ure 4 (left). Since TB \�0 is connected, the singular fiber v−1

0 (0) of the mirror B-side
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FIG. 4. — A tropical genus 2 curve on the 2-torus (left); the singular fiber of the mirror Landau-Ginzburg model is the
quotient of the toric Del Pezzo surface shown (right) by identifying Ei ∼ E′

i

Landau-Ginzburg model is irreducible. Specifically, it is obtained from the toric Del Pezzo
surface shown in Figure 4 (right), i.e. P2 blown up in 3 points, by identifying each excep-
tional curve Ei with the “opposite” exceptional curve E′

i (the proper transform of the line
through the two other points). Thus the critical locus of the superpotential is a configura-
tion of three rational curves E1 = E′

1, E2 = E′
2, E3 = E′

3 intersecting at two triple points.
(Compare with Section 9.3: the mirrors are very different, but the critical loci are the
same.)

11. Complete intersections

In this section we explain (without details) how to extend our main results to the
case of complete intersections in toric varieties (under a suitable positivity assumption for
rational curves, which always holds in the affine case).

11.1. Notations and statement of the results. — Let H1, . . . ,Hd be smooth nearly trop-
ical hypersurfaces in a toric variety V of dimension n, in general position. We denote by
fi the defining equation of Hi , a section of a line bundle Li which can be written as a
Laurent polynomial (3.1) in affine coordinates x = (x1, . . . , xn); by ϕi : Rn → R the cor-
responding tropical polynomial; and by �i ⊂ Rn the tropical hypersurface defined by ϕi .
(To ensure smoothness of the mirror, it is useful to assume that the tropical hypersurfaces
�1, . . . ,�d intersect transversely, though this assumption is actually not necessary.)

We denote by X the blowup of V × Cd along the d codimension 2 subvarieties
Hi × Cd−1

i , where Cd−1
i = {yi = 0} is the i-th coordinate hyperplane in Cd . (The blowup

is smooth since the subvarieties Hi × Cd−1
i intersect transversely.) Explicitly, X can be a

described as a smooth submanifold of the total space of the (P1)d -bundle
∏d

i=1 P(Li ⊕O)
over V × Cd ,

(11.1) X = {(
x, y1, . . . , yd, (u1 : v1), . . . , (ud : vd)

) ∣∣ fi(x)vi = yiui ∀i = 1, . . . , d
}
.

Outside of the union of the hypersurfaces Hi , the fibers of the projection pV : X → V
obtained by composing the blowup map p : X → V × Cd with projection to the first
factor are isomorphic to Cd ; above a point which belongs to k of the Hi , the fiber consists
of 2k components, each of which is a product of C’s and P1’s.
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The action of Td = (S1)d on V × Cd by rotation on the last d coordinates lifts
to X; we equip X with a Td -invariant Kähler form for which the exceptional P1 fibers
of the i-th exceptional divisor have area εi (where εi > 0 is chosen small enough). As in
Section 3.2, we arrange for the Kähler form on X to coincide with that on V × Cd away
from the exceptional divisors. We denote by μX : X → Rd the moment map.

The dense open subset X0 ⊂ X over which we can construct an SYZ fibration is
the complement of the proper transforms of the toric strata of V × Cd ; it can be viewed
as an iterated conic bundle over the open stratum V0 � (C∗)n ⊂ V, namely

(11.2) X0 � {
(x, y1, . . . , yd, z1, . . . , zd) ∈ V0 × C2d

∣∣ yizi = fi(x) ∀i = 1, . . . , d
}
.

Consider the polytope �Y ⊆ Rn+d defined by

(11.3) �Y = {
(ξ, η1, . . . , ηd) ∈ Rn ⊕ Rd

∣∣ηi ≥ ϕ(ξi) ∀i = 1, . . . , d
}
,

and let Y be the corresponding toric variety. For i = 1, . . . , d , denote by v0,i the monomial
with weight (0, . . . ,0,1, . . . ,0) (the (n + i)-th entry is 1), and set

(11.4) w0,i =−Tεi + Tεiv0,i.

Denote by A the set of connected components of Rn \ (�1 ∪ · · · ∪�d), and index
each component by the tuple of weights  α = (α1, . . . , αd) ∈ Zn×d corresponding to the
dominant monomials of ϕ1, . . . , ϕd in that component. Then for each  α ∈ A we have
a coordinate chart Y α � (K∗)n × Kd with coordinates v α = (v α,1, . . . , v α,n) ∈ (K∗)n and
(v0,1, . . . , v0,d) ∈ Kd , where the monomial vm

 α = vm1
 α,1 · · ·vmn

 α,n is the toric monomial with
weight (−m1, . . . ,−mn, 〈α1,m〉, . . . , 〈αd,m〉) ∈ Zn+d . These charts glue via

(11.5) vm
 α =

( d∏

i=1

(
1 + T−εiw0,i

)〈β i−αi,m〉
)

vm
 β.

Denoting by σ1, . . . , σr ∈ Zn the primitive generators of the rays of the fan �V, and
writing the moment polytope of V in the form (3.12), for j = 1, . . . , r we define

(11.6) wj = T�j v
σj

 αmin(σj )
,

where  αmin(σj) ∈ A is chosen so that all 〈σj, α
i〉 are minimal. In other terms, v

σj

 αmin(σj )
is the

toric monomial with weight (−σj, λ1(σj), . . . , λd(σj)) ∈ Zn+d , where λ1, . . . , λd :�V → R
are the piecewise linear functions defining Li =O(Hi).
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Finally, define Y0 to be the subset of Y where w0,1, . . . ,w0,d are all non-zero, and
define the leading-order superpotentials

W0 =w0,1 + · · · +w0,d +w1 + · · · +wr(11.7)

=
d∑

i=1

(−Tεi + Tεiv0,i

)+
r∑

i=1

T�j v
σj

 αmin(σj )
,

WH
0 =−v0,1 − · · · − v0,d +w1 + · · · +wr(11.8)

=−
d∑

i=1

v0,i +
r∑

i=1

T�j v
σj

 αmin(σj )
.

With this understood, the analogue of Theorems 1.5–1.7 is the following

Theorem 11.1. — With the above notations:

(1) Y0 is SYZ mirror to the iterated conic bundle X0;

(2) assuming that all rational curves in X have positive Chern number (e.g. when V is affine),

the B-side Landau-Ginzburg model (Y0,W0) is SYZ mirror to X;

(3) assuming that V is affine, the B-side Landau-Ginzburg model (Y,WH
0 ) is a generalized

SYZ mirror to the complete intersection H1 ∩ · · · ∩ Hd ⊂ V.

As in Theorem 10.4, part (3) of this theorem relies on the expected properties of
Fukaya categories of Landau-Ginzburg models.

Remark 11.2. — Denoting by Xi the blowup of V×C at Hi ×0 and by X0
i the cor-

responding conic bundle over V0, the space X (resp. X0) is the fiber product of X1, . . . ,Xd

(resp. X0
1, . . . ,X

0
d ) with respect to the natural projections to V. This perspective explains

many of the geometric features of the construction.

11.2. Sketch of proof. — The argument proceeds along the same lines as for the
case of hypersurfaces, of which it is really a straightforward adaptation. We outline the
key steps for the reader’s convenience.

As in Section 4, a key observation to be made about the Td -action on X is that
the reduced spaces Xred,λ = μ−1

X (λ)/T
d (λ ∈ Rd

≥0) are all isomorphic to V via the projec-
tion pV (though the Kähler forms may differ near H1 ∪ · · · ∪ Hd ). This allows us to build
a (singular) Lagrangian torus fibration

π : X0 → B = Rn × (R+)d

(where the second component is the moment map) by assembling standard Lagrangian
torus fibrations on the reduced spaces. The singular fibers of π correspond to the points
of X0 where the Td -action is not free; therefore
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Bsing =
d⋃

i=1

�′
i ×

{
(λ1, . . . , λd)

∣∣λi = εi

}
,

where �′
i ⊂ Rn is essentially the amoeba of Hi . The potentially obstructed fibers of π :

X0 → B are precisely those that intersect p−1
V (H1 ∪ · · · ∪ Hd), and for each  α ∈ A we

have an open subset U α ⊂ B of tautologically unobstructed fibers which project under p

to standard product tori in V0 × Cd .
Each of the components U α ⊂ B determines an affine coordinate chart U∨

 α
in the SYZ mirror to X0. Namely, for b ∈ U α ⊂ B, the Lagrangian torus L =
π−1(b) ⊂ X0 is the preimage by p of a standard product torus in V × Cd . Denoting
by (ζ1, . . . , ζn, λ1, . . . , λd) ∈ �V × Rd

+ the corresponding value of the moment map of
V × Cd , and by (γ1, . . . , γn, γ0,1, . . . , γ0,d) the natural basis of H1(L,Z), we equip U∨

 α
with the coordinate system

(L,∇) �→ (v α,1, . . . , v α,n,w0,1, . . . ,w0,d)(11.9)

:= (
Tζ1∇(γ1), . . . ,Tζn∇(γn),Tλ1∇(γ0,1), . . . ,Tλd∇(γ0,d)

)
.

For b ∈ U α , the Maslov index 2 holomorphic discs bounded by L = π−1(b) in X can be
determined explicitly as in Section 5, by projecting to V × Cd . Specifically, these discs
intersect the proper transform of exactly one of the toric divisors transversely in a single
point, and there are two cases:

Lemma 11.3. — For any i = 1, . . . , d, L bounds a unique family of Maslov index 2 holomor-

phic discs in X which intersect the proper transform of V × Cd−1
i = {yi = 0} transversely in a single

point; the images of these discs under p are contained in lines parallel to the yi coordinate axis, and their

contribution to the superpotential is w0,i .

Lemma 11.4. — For any j = 1, . . . , r, denote by Dσj
the toric divisor in V associated to the

ray σj of the fan �V, and let ki = 〈αi − αi
min(σj), σj〉 (i = 1, . . . , d). Then L bounds 2k1+···+kd

families of Maslov index 2 holomorphic discs in X which intersect the proper transform of Dσj
× Cd

transversely in a single point (all of which have the same projections to V), and their total contribution to

the superpotential is

( d∏

i=1

(
1 + T−εiw0,i

)ki

)
T�i v

σj

 α .

The proofs are essentially identical to those of Lemmas 5.5 and 5.6, and left to
the reader. As in Section 5, the first lemma implies that the coordinates w0,i agree on all
charts U∨

 α , and the second one implies that the coordinates v α,i transform according to
(11.5). The first two statements in Theorem 11.1 follow.

The last statement in the theorem follows from equipping X with the superpo-
tential W∨ = y1 + · · · + yd : X → C, which has Morse-Bott singularities along the inter-
section of the proper transform of V × 0 with the d exceptional divisors, i.e. crit(W∨)�
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H1 ∩· · ·∩Hd . As in Section 7, the nontriviality of the normal bundle forces us to twist the
Fukaya category of (X,W∨) by a background class s ∈ H2(X,Z/2), in this case Poincaré
dual to the sum of the exceptional divisors (or equivalently to the sum of the proper
transforms of the toric divisors V × Cd−1

i ). The thimble construction then provides a
fully faithful A∞-functor from F(H1 ∩ · · · ∩ Hd) to Fs(X,W∨). The twisting affects the
superpotential by changing the signs of the terms w0,1, . . . ,w0,d . Moreover, the thimble
functor modifies the value of the superpotential by an additive constant, which equals
Tε1 + · · · + Tεd when V is affine (the i-th term corresponds to a family of small discs of
area εi in the normal direction to Hi ). Putting everything together, the result follows by a
straightforward adaptation of the arguments in Section 7.
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Appendix A: Moduli of objects in the Fukaya category

A.1 General theory. — Let L be an embedded spin Lagrangian of vanishing Maslov
class in the Kähler manifold X0 = X \ D, where D is an anticanonical divisor which
satisfies Assumption 2.2. We begin with a brief overview of the results of [19], which in
part implement the constructions of [20] in the setting of de Rham cohomology.

For each positive real number E, Fukaya defines a curved A∞ structure on the de
Rham cochains with coefficients in �0/TE, which we denote by

	∗(L;�0/TE�0

) ≡	∗(L;R)⊗R�0/TE�0.

The operations are obtained from the moduli space of holomorphic discs in X0 = X \ D
with boundary on L, whose energy is bounded by E. By induction, one obtains an
unbounded sequence of real numbers Ei , together with formal diffeomorphisms on
	∗(L;�0/TEi�0) which pull back the A∞ structure constructed from discs of energy
bounded by Ei to the projection of the A∞ structure on 	∗(L;�0/TEi+1�0) modulo TEi .
After applying such a formal diffeomorphism, we may therefore assume that the A∞ map

	∗(L;�0/TEi+1�0

) →	∗(L;�0/TEi�0

)

is defined by projection of coefficient rings. Taking the inverse limit over Ei , we obtain
an A∞ structure on 	∗(L;�0). By passing to the canonical model (i.e. applying a filtered
version of the homological perturbation lemma [31]), we can reduce this A∞ structure to
H∗(L;�0).
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Fukaya checks that any class b ∈ H1(L;U�) defines a deformed A∞ structure on
the cohomology. In particular, there is a subset

ŶL ⊂ H1(L;U�)

consisting of elements for which this A∞ structure has vanishing curvature (i.e. solutions to
the Maurer-Cartan equation). Gauge transformations [20, Section 4.3] define an equiva-
lence relation on this set; we call the quotient the moduli space of simple objects supported on L,

which we denote YL.

Remark A.1. — The original formalism of Fukaya, Oh, Ohta, and Ono [20] con-
sidered deformation classes corresponding to b ∈ H1(L;�+), called bounding cochains,
which via exponentiation �+ → 1 +�+ can also be reinterpreted as local systems. As
noted in the discussion following Theorem 1.2 of [19], there are inclusions 1 + �+ ⊂
U� ⊂ �∗, and the original construction of Floer cohomology can be generalized to all
unitary local systems using an idea of Cho.

The invariance statement of Floer cohomology [20, Theorem 14.1-14.3] asserts
that YL does not depend on the choice of auxiliary data (e.g. almost-complex structure)
in the following sense: let Y1

L and Y2
L denote the moduli spaces for different choices of

auxiliary structures. A homotopy between the auxiliary data induces an isomorphism

(A.1) Y1
L
∼= Y2

L

which is invariant under homotopies of homotopies.

Assumption A.2. — The A∞ structure on H∗(L;�0) is isomorphic to the undeformed struc-

ture.

Remark A.3. — For most Lagrangians that we consider, this condition holds auto-
matically because there is a choice of almost complex structure for which the Lagrangian
bounds no holomorphic discs which are not constant.

In this setting, the Maurer-Cartan equation vanishes identically, and the gauge
equivalence relation is trivial. A choice of isomorphism of the Floer-theoretic A∞-struc-
ture with the undeformed structure (e.g. a choice of almost complex structure for which
there are no non-constant holomorphic discs) therefore yields an identification of the
moduli space YL of simple objects of the Fukaya category supported on L with its first
cohomology with coefficients in U�:

YL ≡ H1(L;U�).

Let Lt be a Hamiltonian path of Lagrangians in X0 with vanishing Maslov class,
and Jt a family of almost complex structures on X which we assume are fixed at infinity.
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We describe the isomorphism (A.1) in the special situation which we consider in this
paper. We first identify H1(L0;Z)∼= H1(Lt;Z) via the given path. A basis for this group
yields an identification

(z1, . . . , zn) : H1(L0;U�)→ Un
�.

Assumption A.4. — For the family (Lt, Jt), all stable holomorphic discs represent multiples of

a given relative homology class β ∈ H2(X,L0;Z).

The wall-crossing map is then of the form

(A.2) zi �→ hi(zβ)zi,

where hi is a power series with Q coefficients and leading order term equal to 1, and zβ
denotes the monomial Tω(β)z[∂β]. Equation (A.2) can be extracted from the construction
in Section 11 of [19]. For an explicit derivation, see [52, Lemma 4.4]: for bounding
cochains, the transformation corresponds to adding a power series in zβ with vanishing
constant term, and Equation (A.2) follows by exponentiation.

By Proposition 5.8, the following assumption holds in the geometric setting of the
main theorem:

Assumption A.5. — The power series hi is the expansion of a rational function in zβ .

In this case, the transformation in Equation (A.2) converges away from the zeroes
and poles of hi . This is stronger than the general result proved by Fukaya namely that
the transformation converges in an analytic neighborhood of the unitary elements in
H1(L;�∗).

In order to extend this construction to the non-Hamiltonian setting, we use the
main construction of [19] which identifies the moduli space of simple objects supported
on Lagrangians near L (but not necessarily Hamiltonian isotopic to it) with an affinoid
domain in H1(L;�∗) in the sense of Tate.

Given a path {Lt}t∈[0,1] between Lagrangians L0 and L1 in which there is no wall
crossing (e.g. so that no Lagrangian in the family bounds a holomorphic disc), the natural
gluing map between these domains is obtained from the flux homomorphism

 
({Lt}

) ∈ H1(L0;R)

and the product on cohomology groups

H1(L0;R)× H1
(
L0;�∗) → H1

(
L0;�∗)

induced by the map on coefficients (λ, f ) �→ Tλf . In the absence of wall crossing we
identify H1(L1;�∗) with H1(L0;�∗) via this rescaling map.
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Given a general path between Lagrangians L0 and L1 (subject to Assumptions A.4
and A.5), this identification is modified by the wall crossing formula given in Equation
(A.2), yielding a birational map

H1
(
L0;�∗) ��� H1

(
L1;�∗),

defined away from a hypersurface. We glue the moduli spaces of objects supported near
L0 and L1 using this identification.

Remark A.6. — The construction of a map for a Lagrangian path can be reduced
to the case of Hamiltonian paths as follows: any path (Lt, J) can be deformed, with fixed
endpoints, to a path (L′

t, Jt) which is a concatenation of paths for which the Lagrangian is
constant and paths in which there is no wall-crossing. The desired map is then obtained as
a composition of the wall-crossing maps for Hamiltonian paths and the rescalings given
by the flux homomorphism.

The idea for constructing the deformed path follows the main strategy for proving
convergence in [19]. Whenever ε is sufficiently small, there is a (compactly supported)
diffeomorphism ψε taking Lt to Lt+ε which preserves the tameness of J. For tautologi-
cal reasons, there is a path without wall-crossing from (Lt, J) to (Lt+ε, Jt+ε) if Jt+ε is the
pullback of J by ψε . Interpolating between this pullback and (Lt+ε, J), via pullbacks of
(Lt+s, J), we then reach (Lt+ε, J) via a path for which the Lagrangian is constant and
Assumption A.4 remains satisfied.

Remark A.7. — (1) More generally, given a path from L0 to L1 that can be decom-
posed into finitely many sub-paths {Lt}t∈[tj ,tj+1], each satisfying Assumption A.4 for some
relative class βj , and for which the wall-crossing transformations are rational functions as
in Assumption A.5, we again obtain a wall-crossing map

(A.3) H1
(
L0;�∗) ��� H1

(
L1;�∗)

by composing the maps associated to the various sub-paths.
(2) When all the classes βj have the same boundary in H1(Lt,Z) and the same

symplectic areas, the monomials zβj
are all equal and the birational transformation (A.3)

again takes the form of Equation (A.2) up to rescaling of the coefficients.

If we restrict attention to the smooth fibers of a Lagrangian torus fibration, we
obtain an embedding of the moduli space Y0

π of all simple objects supported on such
Lagrangians into the rigid analytic space

(A.4)
∐

H1
(
L;�∗)/∼

where the equivalence relation identifies points which correspond to each other under the
birational wall-crossing transformations of Equation (A.3) induced by all paths among
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smooth fibers. It does not automatically follow from the above considerations that this
quotient is a well-behaved (e.g. separated) analytic space, but in our case this will not
be an issue. By the invariance of Floer cohomology [20, Theorem 14.1-14.3], the trans-
formations induced by homotopic paths are equal. The fact that these transformations
should in general depend only on the homotopy class of the path in the space of all fibers
(i.e. allowing fibers which are not necessarily embedded), is expected to follow as a con-
sequence of forthcoming developments in the study of family Floer cohomology in the
presence of singular fibers. In our main example, this independence will be manifest from
Proposition 5.8, and the quotient (A.4) can easily be seen to be a smooth analytic space.

Remark A.8. — We can think of (A.4) as the natural (analytic) completion of Y0
π .

While the points of this completion do not necessarily correspond to unitary local sys-
tems on Lagrangians in X0 with the given Kähler form, in good situations, they can
be interpreted as Lagrangians in X0 equipped with a completed Kähler form. Slightly
strengthening Assumption 2.2 by requiring that X0 be the complement of a nef divisor,
we can obtain such a completion by inflation along the divisor at infinity.

It shall be convenient for our purposes to consider a completion which is obtained
by gluing only finitely many charts. To this end, assume that {Lt}t∈[0,1] is a path of La-
grangians so that the wall-crossing map defines an embedding

(A.5) H1(L0;U�) ↪→ H1
(
L1;�∗).

In this case, the above construction yields that all elements of YL0 can be represented in
Equation (A.4) by elements of H1(L1;�∗).

More generally, assume that {Lα}α∈A is a collection of fibers with the property that
for some fixed almost complex structure J, any smooth fiber L can be connected to some
fiber Lα in our collection by a path such that the wall-crossing map defines an embedding
H1(L;U�)→ H1(Lα;�∗). We define

(A.6) Ŷ0
π ≡

∐

α∈A

H1
(
Lα;�∗)/∼ .

Lemma A.9. — There is a natural analytic embedding of Y0
π into Ŷ0

π .

Next, we study the moduli spaces of holomorphic discs in X with boundary on a
Lagrangian L ⊂ X0 of vanishing Maslov class. Since D is an anticanonical divisor, stable
holomorphic discs whose intersection number with D is 1 have Maslov index equal to 2.
Assumption 2.2 implies that there are no discs of negative Maslov index, and that those
of vanishing Maslov index are disjoint from D. For each unitary local system ∇ on L,
choice of almost complex structure J, and action cutoff E we obtain a �0/TE�0-valued
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de Rham cochain

(A.7)
∑

β∈π2(X,L)
β·D=1

zβ(L,∇)ev∗
[
M1(L, β, J)

] ∈	0
(
L;�0/TE�0

)

which is closed with respect to the Floer differential. Passing to the canonical model and
to the inverse limit over E we obtain a multiple of the unit in the self-Floer cohomology
of (L,∇):
(A.8) m0(L,∇, J)= W(L,∇, J)eL ∈ H0(L;�).

Since the moduli spaces of discs of vanishing Maslov index in X and in X \ D
agree, the invariance of Floer theory and in particular of the potential function [20,
Theorem B], as extended to non-unitary local systems in [19], implies that W(L,∇, J)
gives rise to a well-defined convergent function on Y0

π . Because of this, we shall henceforth
drop J from the notation. For non-unitary local systems, W(L,∇) may not in general
converge, so we have to impose this as an additional assumption. With this in mind, the
proof of the following result follows from the unitary case by Remark A.6.

Lemma A.10. — If for each α ∈ A, the map ∇ �→ W(Lα,∇) converges on H1(Lα;�∗),
then W defines a regular function on Ŷ0

π .

We record the following consequence:

Corollary A.11. — If (Li,∇i) and (Lj,∇j) are identified by a wall-crossing gluing map, then

W(Li,∇i)= W(Lj,∇j).

Remark A.12. — Fukaya has announced that rank 1 unitary local systems on im-
mersed Lagrangians which are fibers of π define a rigid analytic space which includes
Ŷ0
π as an analytic subset. The general idea is to describe the nearby smooth fibers as the

result of Lagrangian surgery, and understand the behavior of holomorphic discs under
such surgeries sufficiently explicitly to produce an analytic structure on this neighborhood
which can be seen to be compatible with the analytic structure on Ŷ0

π .
We expect that, in the presence of a potential function, similar ideas can be ap-

plied to associate analytic charts to certain admissible non-compact Lagrangians arising
as limits of smooth fibers. While we do not develop the general theory in this paper, Ex-
ample 2.4 explains how one can use equivalences in the Fukaya category (rather than
surgery formulae) to produce the desired charts in the class of examples we encounter.

A.2 Convergence of the wall-crossing. — In this section, we verify that the assumptions
of Lemma A.9 hold for the smooth fibers of the map π : X0 → B introduced in Defi-
nition 4.4. Recall that the moment map μX of the S1-action descends to a natural map
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from B to R+; we write X0
λ = μ−1

X (λ)∩X0. If ε is the blowup parameter in the definition
of X, then all fibers of π contained in X0

λ are smooth whenever λ = ε; and the smooth
fibers in X0

ε are exactly those whose image under the blowdown map p : X0 → V0 ×C is
disjoint from H × C.

Assumption A.2 follows immediately from Proposition 5.1 for all fibers of π whose
images under p are disjoint from H × C, since these bound no holomorphic discs. In
general, invariance of Floer cohomology shows that Assumption A.2 is independent of
the choice of almost complex structure. Moreover, the identification of the A∞ structure
obtained by deforming by an element in H1(L;�+) with the deformed Floer theory for
the associated local system in H1(L;1 +�+) implies that Assumption A.2 holds for the
Floer theory of L equipped with unitary local systems as well, since an analytic function
vanishing on 1 +�+ must vanish on all of U�. The same argument shows that the A∞
structure on L equipped with a non-unitary local system is also undeformed, as long as
the valuation is sufficiently small. By Fukaya’s work on Family Floer cohomology [19],
we conclude that the A∞ structure on a Lagrangian fibre L′ sufficiently close to L is
undeformed. Here, sufficiently close means that there is a diffeomorphism preserving
the tameness of J and moving L to L′; in compact subsets of the space of smooth fibers,
there are uniform bounds on the size of such neighborhoods, so we conclude that the
condition of having undeformed A∞ structure is open and closed among smooth fibers
of π . Therefore, all smooth fibers of π satisfy Assumption A.2.

We next choose Lagrangians {Lα}α∈A, labelled by the monomials in the equation
defining the hypersurface H. We require that Lα be contained in X0

ε , and that its projec-
tion to B lie in the chamber Uα ⊂ B (see Definition 5.3).

Lemma A.13. — Any smooth fiber L of π can be connected to some fiber Lα so that the wall-

crossing map defines an embedding

(A.9) H1(L;U�)→ H1
(
Lα;�∗).

Proof. — There are two cases to consider:
Case 1: Assume that the smooth fiber L lies in X0

ε . Then πε(L) lies outside of the
amoeba of H (cf. Equation (4.4)) and L is tautologically unobstructed (cf. Proposition 5.1).
By Remark 5.4, the component of the complement of the amoeba over which L lies
determines a chamber Uα , and L can be connected to Lα by a path of tautologically
unobstructed fibers. The absence of holomorphic discs in this region implies that there
are no non-trivial walls, and hence that the map

(A.10) H1
(
L;�∗) → H1

(
Lα;�∗)

is given simply by a rescaling of the coefficients (see the discussion following Equation
(A.2)). This completes the argument in this case.

Case 2: Assume that L lies in X0
λ, with λ = ε. Choose a smooth fiber Lλα which

is also contained in X0
λ and whose projection lies in some chamber Uα , and consider the
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concatenation of a path from L to Lλα via Lagrangians contained in X0
λ with a path from

Lλα to Lα over the chamber Uα . Since the map associated to the latter path is a simple
rescaling as in the previous case, it suffices to show convergence of the wall-crossing map
for the path from L to Lλα .

To this end, recall from Proposition 5.1 that the simple holomorphic discs bounded
by the Lagrangian torus fibers along the path all have the same area |λ − ε| and their
boundaries all represent the same homology class in H1(Lt,Z). Thus, the monomials
zβ = Tω(β)z[∂β] associated to their homology classes are all equal, and by Remark A.7 (2)
the wall crossing map is of the form

(A.11) zi �→ hi(zβ)zi,

where hi is a power series with coefficients in Q and leading order term equal to 1.
Whenever we evaluate at a point of H1(L;U�), the valuation of zβ is |λ− ε|> 0, and so
hi(zβ) and its inverse both converge and take values in U�. Thus the leading order term
of (A.11) is identity, and the wall-crossing map defines an embedding

H1(L;U�) ↪→ H1
(
Lλα;�∗).

Composing this map with the rescaling isomorphism induced by the flux homomorphism
of a path over Uα , we arrive at the desired result. �

Appendix B: The geometry of the reduced spaces

In this section we study in more detail the symplectic geometry of the reduced spaces
Xred,λ = μ−1

X (λ)/S
1 and prove Lemma 4.1.

Recall from Section 4.1 that the moment map for the S1-action on X is given by
(4.1), and that the only fixed points apart from Ṽ = μ−1

X (0) occur along H̃, which lies in
the level set μ−1

X (ε). Also recall that, for all λ > 0, the natural projection to V (obtained by
composing p : X → V×C with projection to the first factor) yields a natural identification
of Xred,λ with V.

We will exploit the toric structure of V to construct families of Lagrangian tori in
Xred,λ equipped with the reduced Kähler form ωred,λ. The two obstacles are (1) the lack of
smoothness along H at λ= ε, and (2) the lack of Tn-invariance near H.

We start with the first issue, giving a formula for ωred,λ near H̃ and introducing an
explicit family of smoothings. Consider a small neighborhood of H̃ where, without loss of
generality, we may assume that χ ≡ 1.

Lemma B.1. — Identifying Xred,λ with V as above, where χ ≡ 1 we have

(B.1) ωred,λ = ωV − max(0, ε − λ)c1(L)+ dα0,λ,
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where c1(L)= iFL/2π is the Chern form of the chosen Hermitian metric on L, and

(B.2) α0,λ = min(λ, ε)dc(| f (x)|2)
2(

√
4πε| f (x)|2 + (λ− ε + π | f (x)|2)2 + π | f (x)|2 + |λ− ε|).

Proof. — Recall that away from Ṽ we can write X as a conic bundle f (x) = yz.
Where f = 0 and χ ≡ 1, the restriction of ωε to μ−1

X (λ) is equal to

p∗VωV + d

(
1
4
| y|2dc

(
log | y|2)+ ε

4π
|z|2

1 + |z|2 dc
(
log |z|2)

)
.

Since dc log | y|2 + dc log |z|2 = dc log | f |2, using (4.2) we can rewrite the 1-form in this
expression as either

1
4
| y|2dc

(
log | f |2)+ ε − λ

4π
dc

(
log |z|2) or

ε

4π
|z|2

1 + |z|2 dc
(
log | f |2)+ λ− ε

4π
dc

(
log | y|2).

Now ddc log | y|2 = 0, whereas ddc log |z|2 =−4πp∗Vc1(L), so we find that (still where f = 0
and χ ≡ 1)

(ωε)|μ−1
X (λ) = p∗V

(
ωV + (λ− ε)c1(L)

)+ d

(
dc(| f (x)|2)

4|z|2
)

(B.3)

= p∗VωV + d

(
ε

4π
dc(| f (x)|2)

| y|2 + | f (x)|2
)
.

The first expression makes sense wherever z = 0, in particular for λ < ε; the second one
makes sense wherever y = 0, in particular for λ > ε. Solving (4.2) for | y|, we obtain

2π| y|2 =
√

4πε| f (x)|2 + (
λ− ε+π | f (x)|2)2 −π | f (x)|2 + (λ− ε), and

2λ|z|2 =
√

4πε| f (x)|2 + (
λ− ε+π | f (x)|2)2 +π | f (x)|2 − (λ− ε).

Substituting into (B.3) gives the desired expression. �

We can smooth the singularity of ωred,λ by considering the modified Kähler forms
given near H by

ωsm,λ = ωV − max(0, ε − λ)c1(L)+ dακ,λ

where κ > 0 is an arbitrarily small constant, and

(B.4) αt,λ = min(λ, ε)dc(| f (x)|2)
2(

√
4πε| f (x)|2 + (λ− ε + π | f (x)|2)2 + t2χ̃ + π | f (x)|2 + |λ− ε|),
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where χ̃ = χ̃(| f (x)|, λ) is a suitable cut-off function which equals 1 near H̃ and vanishes
outside of the region where χ ≡ 1. (We can also assume that χ̃ vanishes whenever λ is not
close to ε.) We set ωsm,λ = ωred,λ wherever χ = 1. Choosing κ small enough ensures that
ωV − max(0, ε − λ)c1(L)+ dαt,λ is non-degenerate for all t ∈ [0, κ]; it is then a Kähler
form, because αt,λ can be written as dc of some function of | f (x)|.

The Kähler forms ωsm,λ are all smooth, coincide with ωred,λ away from H for all λ,
and everywhere when λ is not very close to ε. Moreover, [ωsm,λ] = [ωred,λ] by construction,
and the dependence of ωsm,λ on λ is piecewise smooth.

Like ωred,λ, the Kähler form ωsm,λ is not invariant under the given torus action, but
there exist toric Kähler forms in the same cohomology class. Such a Kähler form ω′

V,λ
can be constructed by averaging ωsm,λ with respect to the standard Tn-action on V:

(B.5) ω′
V,λ =

1
(2π)n

∫

g∈Tn

g∗ωsm,λdg.

To see that the Tn-orbits are Lagrangian with respect to ω′
V,λ, we note that the pullback of

ωsm,λ to an orbit represents the trivial cohomology class, since the classes [ωV] and [H] are
both trivial on a torus fibre. The pullback of ω′

V,λ is therefore also trivial in cohomology,
but since it is invariant, it must vanish pointwise. This in turn implies that the Tn-action
not only preserves ω′

V,λ but in fact it is Hamiltonian.
We now state again Lemma 4.1 and give its proof:

Lemma B.2. — There exists a family of homeomorphisms (φλ)λ∈R+ of V such that:

(1) φλ preserves the toric divisor DV ⊂ V;

(2) the restriction of φλ to V0 is a diffeomorphism for λ = ε, and a diffeomorphism outside of

H for λ= ε;
(3) φλ intertwines the reduced Kähler form ωred,λ and the toric Kähler form ω′

V,λ;

(4) φλ = id at every point whose Tn-orbit is disjoint from the support of χ ;

(5) φλ depends on λ in a continuous manner, and smoothly except at λ= ε.
Proof. — We proceed in two stages, obtaining φλ as the composition of two maps

φsm,λ, taking ωred,λ to ωsm,λ, and φavg,λ taking ωsm,λ to ω′
V,λ, each satisfying all the other

conditions in the statement. The arguments are quite similar in both cases; we start with
the construction of φavg,λ (Steps 1–2), then proceed with φsm,λ (Steps 3–4).

Step 1. Let βλ = ωsm,λ −ω′
V,λ. Since ω′

V,λ is Tn-invariant, for θ ∈ tn � Rn we have

exp(θ)∗ωsm,λ −ωsm,λ = exp(θ)∗βλ − βλ =
∫ 1

0

d

dt

(
exp(tθ)∗βλ

)
dt

= d

[∫ 1

0
exp(tθ)∗(ιθ#βλ)dt

]
.
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Hence, averaging over all elements of Tn, we see that the 1-form

a′λ =
1

(2π)n

∫

[−π,π]n

∫ 1

0
exp(tθ)∗(ιθ#βλ)dtdθ

satisfies ω′
V,λ −ωsm,λ = da′λ (i.e., da′λ =−βλ).

Let U ⊂ V be the orbit of the support of χ under the standard Tn-action on
Xred,λ

∼= V. Outside of U, the Kähler forms ωsm,λ = ωred,λ are Tn-invariant, and ωsm,λ

and ω′
V,λ coincide (in fact they both coincide with ωV). Therefore, βλ is supported in U,

and consequently so is a′λ.
Let ω′

t,λ = tω′
V,λ+ (1− t)ωsm,λ (for t ∈ [0,1] these are Kähler forms since ω′

V,λ and
ωsm,λ are Kähler). Denote by vt the vector field such that ιvt

ω′
t,λ =−a′λ and by ψt the flow

generated by vt . Then by Moser’s trick,

d

dt

(
ψ∗

t ω
′
t,λ

) =ψ∗
t

(
Lvt
ω′

t,λ +
dω′

t,λ

dt

)
=ψ∗

t

(
dιvt
ω′

t,λ + da′λ
) = 0,

so ψ∗
t ω

′
t,λ = ωsm,λ, and the time 1 flow ψ1 intertwines ωsm,λ and ω′

V,λ as desired. Moreover,
because a′λ is supported in U, outside of U we have ψt = id. However, it is not clear that
the flow preserves the toric divisors of V.

Step 2. To remedy the issue with the flow not preserving the toric divisors, we
modify a′λ in a neighborhood of DV. Let f ′

λ,t be a family of C1 real-valued functions (with
locally Lipschitz first derivatives), smooth on V0, with the following properties:

• the support of f ′
λ,t is contained in the intersection of U with a small tubular

neighborhood of DV;
• at every point x ∈ DV, belonging to a toric stratum S ⊂ V,

(B.6) the 1-form a′λ + df ′
λ,t vanishes on (TxS)⊥,

where the orthogonal is with respect to ω′
t,λ;

• f ′
λ,t depends smoothly on t, and piecewise smoothly on λ.

We construct f ′
λ,t by induction over toric strata of increasing dimension, successively con-

structing functions f ′
λ,t,≤k : V → R which satisfy (B.6) for all strata of dimension at most k

and are smooth outside of strata of dimension < k. We start by setting f ′
λ,t,≤0 = 0, which

satisfies (B.6) at the fixed points of the torus action since they lie away from the support
of a′λ.

Assume f ′
λ,t,≤k constructed, and consider a stratum S of dimension k + 1. At each

point x ∈ S, the restriction of a′λ + df ′
λ,t,≤k to (TxS)⊥ is a real-valued linear form, vanish-

ing whenever x belongs to a lower-dimensional stratum, and smooth outside of strata of
dimension < k. Let f ′0

λ,t,S be a C1 function on a neighborhood of S, smooth outside of
the strata of dimension ≤ k, which vanishes on S and whose derivative in the normal
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directions at each point of S satisfies (df ′0
λ,t,S)|(TxS)⊥ = −(a′λ + df ′

λ,t,≤k)|(TxS)⊥ . (For instance,
identify a neighborhood of S with a subset of its normal bundle in a manner compatible
with the toric structure, and take f ′0

λ,t,S to be linear in the fibers.)
Let χS be a cut-off function with values in [0,1], defined and smooth outside of

the strata of dimension ≤ k, equal to 1 at all points of a neighborhood of S which are
much closer to S than to any other (k + 1)-dimensional stratum, and with support dis-
joint from those of the corresponding cut-off functions for all other (k + 1)-dimensional
strata. Specifically, picking an auxiliary metric, we take χS to be the product of a standard
smooth cut-off function supported in a tubular neighborhood of S with functions χS/�

for all strata � with dim� ≥ k + 1 and dim(� ∩ S) ≤ k, chosen so that χS/� equals 1
except near �, where it depends on the ratio between distance to S and distance to �,
equals 1 at all points that lie much closer to S than to �, and vanishes at all points that
lie closer to � than to S.

We note that near a lower-dimensional stratum S′, the norm of dχS is bounded by
a constant over distance to S′. We then set f ′

λ,t,S = χSf ′0
λ,t,S. By construction, this function

is smooth away from strata of dimension ≤ k. Moreover, near a lower-dimensional stra-
tum S′, f ′0

λ,t,S is bounded by a constant multiple of distance to S times distance to S′, so
the regularity of f ′

λ,t,S is indeed as desired.
By construction, f ′

λ,t,≤k+1 = f ′
λ,t,≤k +

∑
dim S=k+1 f ′

λ,t,S has the desired properties on all
strata of dimension ≤ k + 1. (Note that, since a′λ vanishes outside of U, so do the various
functions we construct.) Finally, we let f ′

λ,t = f ′
λ,t,≤n−1.

We now use Moser’s trick again, replacing a′λ by ã′t,λ = a′λ + df ′
λ,t . Namely, denote

by ṽt,λ the vector field such that ιṽt,λ
ω′

t,λ =−ãt,λ. This vector field is locally Lipschitz con-
tinuous along DV, and smooth on V0; moreover, by construction it is supported in U and,
by (B.6), tangent to each stratum of DV. We thus obtain φavg,λ with all the desired prop-
erties by considering the time 1 flow generated by ṽt,λ. (Note: because we have assumed
that ωV defines a complete Kähler metric on V, it is easy to check that even when V is
noncompact the time 1 flow is well-defined.)

Step 3. We now turn to the construction of φsm,λ. We interpolate between ωred,λ

and ωsm,λ via the family of Kähler forms ωt,λ, t ∈ [0, κ], defined by

ωt,λ = ωV − max(0, ε − λ)c1(L)+ dαt,λ

where χ ≡ 1 (where αt,λ is given by (B.4)) and ωt,λ = ωred,λ wherever χ = 1.
These Kähler forms are smooth whenever t > 0 or λ = ε. Let at,λ be the 1-form

with support contained in the region where χ ≡ 1, and defined by at,λ = dαt,λ/dt inside
that region. By construction, dωt,λ/dt = dat,λ. We use Moser’s trick again, and denote
by vt,λ the vector field such that ιvt,λ

ωt,λ =−at,λ. This vector field vanishes outside of U,
and is smooth except for t = 0 and λ = ε, in which case it is singular along H. We will
momentarily check that the flow of vt,λ is well-defined even for λ = ε; the time κ flow
then intertwines ωred,λ and ωsm,λ as desired, except it need not preserve the toric divisors
of V, an issue which we will address in Step 4 below.
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Differentiating (B.4) with respect to t, we have

(B.7) at,λ = tχ̃ min(λ, ε)dc(| f (x)|2)
2
√
 (

√
 + π | f (x)|2 + |λ− ε|)2 ,

where

(B.8)  = 4πε| f (x)|2 + (
λ− ε + π | f (x)|2)2 + t2χ̃ .

Taking the dual vector field, we find that

(B.9) vt,λ = tχ̃min(λ, ε)∇ t,λ(| f (x)|2)
2
√
 (

√
 + π | f (x)|2 + |λ− ε|)2 ,

where ∇ t,λ is the gradient with respect to the Kähler metric determined by ωt,λ.
We restrict our attention to the neighborhood of H̃ where χ̃ ≡ 1, since it is

clear that vt,λ is well-defined and smooth everywhere else. To estimate the norm of
∇ t,λ(| f (x)|2), we differentiate (B.4) to find that, in this region,

dαt,λ = 2min(λ, ε)(π(ε+λ)| f |2 + (λ− ε)2 + t2 +|λ− ε|√ )d| f |∧ dc| f |√
 (

√
 +π | f |2 +|λ− ε|)2(B.10)

− 2πmin(λ, ε)| f |2c1(L)
(
√
 + π | f |2 + |λ− ε|) .

(Here we have used the fact that ddc| f |2 =−4π | f |2c1(L)+ 4d| f | ∧ dc| f |.)
When λ− ε and | f (x)|2 are much smaller than ε, we have  ∼ 4πε| f |2 + (λ−

ε)2 + t2. Estimating the various terms in (B.10), we find that the second term tends to
zero near H, while the leading-order part of the coefficient of d| f | ∧ dc| f | is bounded
from below by ε/

√
 (and from above by 4ε/

√
 ). Hence:

(B.11) dαt,λ �
ε√
 

d| f | ∧ dc| f |

(where � means that the inequality holds up to lower-order terms). In more geometric
terms, the Kähler metrics induced by ωt,λ blow up in the normal direction to H, by an
amount of the order of ε/

√
 , while remaining well-behaved in the other directions.

This implies in turn that the norms of d(| f (x)|2) and ∇ t,λ(| f (x)|2) with respect
to the Kähler metric ωt,λ are bounded by 2(

√
 /ε)1/2| f (x)|; and, more importantly, the

norm of ∇ t,λ(| f (x)|2) with respect to a suitable fixed auxiliary metric is locally bounded
by a constant multiple of (

√
 /ε)| f (x)|. Plugging into (B.9), we conclude that the norm

of vt,λ (again with respect to a smooth auxiliary metric) is bounded by a constant multiple
of t| f (x)|/ ≤ t| f (x)|/(t2 + 4πε| f (x)|2), and hence uniformly bounded. Thus, even
though vt,λ itself is not continuous at (t, λ, | f (x)|)= (0, ε,0), its flow is well-defined and
continuous even for λ= ε, and depends continuously on λ.
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Geometrically, for λ− ε sufficiently small, near H the leading-order term in vt,λ

points radially away from H, in the same direction as the gradient of | f (x)| with respect
to ωV, and the time t flow rescales the radial coordinate r = | f (x)| in a suitable man-
ner. A complicated explicit formula for the leading-order term of the rescaling can be
obtained by comparing the Kähler areas of small discs in the direction normal to H; for
example, for λ= ε one finds that the time t flow maps points where | f (x)| = r0 to points
where | f (x)|2 ≈ 1

2 r0(r0 + (r2
0 + 1

πε
t2)1/2).

Step 4. We now modify the flow constructed in Step 3 in order to arrange for the
toric divisors of V to be preserved. We proceed as in Step 2, i.e. we replace the 1-forms at,λ

used in Step 3 with at,λ + dft,λ for carefully constructed real-valued functions ft,λ, smooth
on V0 except for (t, λ)= (0, ε), such that:

• the support of ft,λ is contained in the intersection of U with a small tubular
neighborhood of DV;

• at every point x ∈ DV, belonging to a toric stratum S ⊂ V,

(B.12) the 1-form at,λ + dft,λ vanishes on (TxS)⊥,

where the orthogonal is with respect to ωt,λ;
• where it is smooth, ft,λ depends smoothly on t, and piecewise smoothly on λ.

We construct ft,λ inductively to satisfy (B.12) on toric strata of increasing dimension, by
exactly the same method as in Step 2. The main new difficulty is that we need to control
the behavior of ft,λ near H for (t, λ) close to (0, ε).

We begin with a geometric digression. Fix a collection of smooth foliations FS of
neighborhoods of H ∩ S in V for all toric strata S ⊂ V, with the following properties:

• each leaf of FS intersects S transversely at a single point;
• | f | is constant on the leaves; in particular the leaves through H∩S are contained

in H;
• given two strata S′ ⊂ S, the leaves of FS′ are unions of leaves of FS.
• given two strata S and� which intersect transversely along a stratum S′ = S∩�,

the leaves of FS through S′ foliate �.

The existence of FS with these properties follows from the transversality of H to all toric
strata. Indeed, near a k-dimensional stratum S′ and away from all lower-dimensional
strata, consider a toric chart of the form (C∗)k × Cn−k , and modify the first k coordi-
nates (in a C∞ manner) so that, near H, | f | only depends on these coordinates, without
changing the remaining n − k coordinates. Each stratum S ⊃ S′ is then defined by the
vanishing of a certain subset of the last n − k coordinates; we choose the leaves of FS to
be given by letting these coordinates vary and fixing all others. (More globally, start from
a collection of toric charts identifying neighborhoods of strata with toric vector bundles
over them, and modify the bundle structures compatibly along H so that | f | is constant
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in the fibers and the strata containing a given one remain given by distinguished sub-
bundles.)

Henceforth, unless stated otherwise, all estimates (on distances, derivatives, etc.) are
with respect to a fixed reference metric (independent of t and λ), rather than the metric
gt,λ determined by ωt,λ; and the notation O(· · · ) means that an inequality holds up to a
constant factor which is uniformly bounded independently of t and λ over any compact
subset of V.

Recall that ωt,λ blows up (by a factor of the order of ε/
√
 , cf. (B.11)) in the direc-

tions transverse to the complex hyperplane field

$= Ker(d| f |)∩ Ker
(
dc| f |).

In what follows, we will often have better estimates on derivatives along $ than on ar-
bitrary derivatives. We will call derivatives of order (�,m), denoted by D(�,m)(· · · ), the
derivatives of order �+m along � vector fields tangent to $ and m arbitrary vector fields.
Since the hyperplane distribution $ is not integrable, estimates on higher derivatives
in the direction of $ only make sense up to lower-order derivatives along the level sets
of | f |; however, the curvature of $ is O(| f |2), and the estimates we will obtain below on
derivatives of order (�+ 2,m) will generally be no better than O(| f |2) times the bounds
on derivatives of order (�,m + 1).

Along a stratum S, denote by πS
t,λ : TV|S → TS⊥ the orthogonal projection (with

respect to ωt,λ). Because S is transverse to H, and hence to $ near H, the behavior of
ωt,λ in the directions transverse to $ implies that, near H ∩ S, the ωt,λ-orthogonal to
S becomes nearly tangent to $ for (t, λ) close to (0, ε). Specifically, near H ∩ S, the
maximum angle (with respect to a fixed reference metric) between a unit vector in TS⊥

and $ is O(ε−1
√
 ). Thus, denoting by (πS

t,λ)
‖ and (πS

t,λ)
⊥ the components of πS

t,λ along
$ and its orthogonal for the reference metric, pointwise we have (πS

t,λ)
⊥ = O(ε−1

√
 ).

This in turns implies that

∣∣dc
(| f |2) ◦ πS

t,λ

∣∣ = O
(
ε−1| f |√ )

.

Along the level sets of | f |, the coefficient of d| f |∧ dc| f | in (B.10) remains constant,
and so the geometric behavior of the ωt,λ-orthogonals TS⊥ can be controlled uniformly.
In particular, the derivatives along $ of (πS

t,λ)
⊥ are bounded by O(

√
 ) to all orders.

On the other hand, the variation of (B.10) in the directions transverse to the level sets
of | f | implies that each derivative in those directions worsens the bounds by a factor of
1/

√
 . We conclude that D(�,m)((πS

t,λ)
⊥)= O( (1−m)/2). Meanwhile, by a similar reason-

ing, D(�,m)((πS
t,λ)

‖)= O( −m/2).
These estimates on πS

t,λ (and the inequality | f | ≤ ( /4πε)1/2) in turn imply that

D(�,m)
(
dc

(| f |2) ◦ πS
t,λ

) = O
(
 (2−m)/2

)
.
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Thus, the 1-form at,λ from Step 3 satisfies

∣∣at,λ ◦ πS
t,λ

∣∣ = tχ̃min(λ, ε)|dc(| f |2) ◦ πS
t,λ|

2
√
 (

√
 + π | f |2 + |λ− ε|)2

= O
(

t| f |
 

)
= O

(
t√
 

)
and

D(�,m)
(
at,λ ◦ πS

t,λ

) = O
(

t

 (m+1)/2

)
.

We now return to our main construction. Starting with fλ,t,≤0 = 0 as before, assume
that we have already constructed fλ,t,≤k , supported in a neighborhood of the intersection
of H with the toric strata of dimension ≤ k, in such a way that (B.12) holds for all strata of
dimension ≤ k. We further require that, away from all strata of dimension ≤ k − 1, resp.
near a stratum S′ of dimension ≤ k − 1 (and assuming S′ is the closest such stratum),

(B.13) D(�,m)(ft,λ,≤k)= O
(

t

 (m+1)/2

)
, resp. O

(
t

 (m+1)/2
distmin(0,2−�−m)

S′

)
,

where distS′ is the distance to S′ with respect to the fixed reference metric.
Let S be a stratum of dimension k + 1. The above estimates on the derivatives

of πS
t,λ, together with (B.13), imply that at any point of S which lies away from the strata

of dimension ≤ k − 1, resp. near (and closest to) such a stratum S′,

D(�,m)
(
(at,λ + dft,λ,≤k) ◦ πS

t,λ

) = O
(

t

 (m+1)/2

)
,(B.14)

resp. O
(

t

 (m+1)/2
distmin(0,1−�−m)

S′

)
.

(Note that, while the quantity in (B.14) involves an additional derivative of ft,λ,≤k , the extra
factor of  −1/2 when this derivative is taken in a direction transverse to $ is offset by the
factor of  1/2 in the estimates for the transverse component of πS

t,λ.)
Near a stratum S′ ⊂ S with dim S′ ≤ k, condition (B.12) for ft,λ,≤k along S′ implies

that (at,λ+ dft,λ,≤k) ◦πS
t,λ vanishes along S′. Since $ is transverse to S′, (B.14) for (�,m)=

(1,0) in turn implies that, at all points of S which lie near S′,

(B.15) |(at,λ + dft,λ,≤k) ◦ πS
t,λ| = O

(
t distS′√
 

)
.

Meanwhile, since the distance to the nearest k-dimensional stratum is no greater than
the distance to the nearest lower-dimensional stratum, the bounds in the second part of
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(B.14) also hold when dim S′ = k. Hence, at any point of S which lies near (and closest) to
a stratum S′ ⊂ S of dimension ≤ k,

(B.16) D(�,m)
(
(at,λ + dft,λ,≤k) ◦ πS

t,λ

) = O
(

t

 (m+1)/2
dist1−�−m

S′

)
.

Define a function f 0
λ,t,S on a neighborhood of the given (k+1)-dimensional stratum

S, smooth outside of the leaves of FS through strata of dimension ≤ k − 1 (and H if
(λ, t)= (ε,0)), which vanishes on S and whose derivative at each point of S satisfies

(B.17) df 0
λ,t,S =−(at,λ + dfλ,t,≤k) ◦ πS

t,λ.

Specifically, we identify the leaves of FS with open subsets in the fibers of the normal
bundle to S, and take f 0

λ,t,S to be linear in the fibers. We then define fλ,t,S = χSf 0
λ,t,S, where

χS is the same cut-off function as in Step 2.
By construction, f 0

t,λ,S = O(t distS /
√
 ). Moreover, using (B.15), along the leaf of

FS through a point x ∈ S which lies near a lower-dimensional stratum S′ we have f 0
t,λ,S =

O(t distS′(x)distS /
√
 ).

The derivative of f 0
λ,t,S along the leaves of FS is the constant extension of (B.17)

along FS; whereas its derivative in the directions transverse to FS is a cross-term which
grows linearly with distance to S and involves the dependence of (B.17) on the point of S.
Moreover, the leaves of FS are tangent to the level sets of | f | near H, and hence nearly
tangent to $: the maximum angle between vectors in TFS and $ is O(| f |). It then
follows from (B.14) that, away from (k − 1)-dimensional strata,

(B.18) D(�,m)
(
f 0
λ,t,S

) = O
(

t

 (m+1)/2

)
.

Meanwhile, along the leaf of FS through a point x ∈ S which lies near (and closest to) a
stratum S′ ⊂ S with dim S′ ≤ k, (B.16) implies that

D(�,m)
(
f 0
λ,t,S

) = O
(

t

 (m+1)/2

(
distS′(x)2−�−m + distS′(x)1−�−m distS(·)

))
.

The leaf of FS through x locally stays close to a leaf through S′, which by construction
is contained in some other stratum of DV. In particular, as soon as the distance to S is
sufficiently large compared to distS′(x), points on the leaf through x lie closer to some
other stratum� of dimension ≥ k +1 (and not containing S) than to S, and so the cut-off
function χS vanishes identically. Thus, over the support of χS, distS′(·) and distS′(x) are
within bounded factors of each other. Since distS ≤ distS′ , we conclude that, at all points
of the support of χS which lie near (and closest to) S′,

(B.19) D(�,m)
(
f 0
λ,t,S

) = O
(

t

 (m+1)/2
dist2−�−m

S′

)
.
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Now we observe that the derivatives of the cut-off function χS are O(1) away from
strata of dimension ≤ k, and near a stratum S′ ⊂ S of dimension ≤ k the derivatives of
order r are O(1/distr

S′). Thus, (B.18) and (B.19) imply that away from k-dimensional
strata, resp. near (and closest to) S′ ⊂ S with dim S′ ≤ k,

(B.20) D(�,m)(fλ,t,S)= O
(

t

 (m+1)/2

)
, resp. O

(
t

 (m+1)/2
dist2−�−m

S′

)
.

We now set

ft,λ,≤k+1 = ft,λ,≤k +
∑

dim S=k+1

ft,λ,S.

By construction, ft,λ,≤k+1 is supported in a neighborhood of the intersection of H with
the strata of dimension at most k + 1, and satisfies (B.12) for all strata of dimension ≤
k + 1. Indeed, by (B.20), dft,λ,S vanishes along strata of dimension ≤ k, so (B.12) continues
to hold for those; whereas, over the interior of the stratum S, dft,λ,S = df 0

t,λ,S, and the
contributions from other (k + 1)-dimensional strata vanish.

Moreover, ft,λ,≤k+1 satisfies the estimate (B.13) (with k + 1 instead of k), as needed
for the induction to proceed. Indeed, this follows immediately from the estimates (B.13)
for ft,λ,≤k (note that the second estimate also holds near k-dimensional strata, since the
distance to the nearest k-dimensional stratum is no greater than that to the nearest lower-
dimensional stratum), and (B.20) for ft,λ,S.

Thus, we can indeed carry out the construction of ft,λ,≤k with the desired properties
by induction on k. Finally, we let ft,λ = ft,λ,≤n−1.

As a consequence of the estimates (B.20) on individual terms, ft,λ is C1 with locally
Lipschitz first derivatives, and smooth on V0, except along H for (t, λ)= (0, ε). By con-
struction, it is supported in the intersection of U with a neighborhood of DV, and satisfies
(B.12) for all toric strata.

By (B.13), |dft,λ| = O(t/ ), while |dft,λ|$| = O(t/
√
 ).

Because the Kähler form ωt,λ blows up like ε/
√
 in the directions transverse

to$, we conclude that the Hamiltonian vector field of ft,λ with respect to ωt,λ is bounded
by O(t/

√
 ) (again with respect to the fixed reference metric), hence locally uniformly

bounded. (Recall that
√
 ≥ t wherever χ̃ ≡ 1, while the other terms are bounded below

wherever χ̃ < 1.) Moreover, the regularity of ft,λ implies that this vector field is locally
Lipschitz continuous, and smooth on V0, except along H for (t, λ)= (0, ε).

Combining this with the outcome of Step 3, we find that the vector field ṽt,λ defined
by ιṽt,λ

ω′
t,λ = −at,λ − dft,λ is smooth on V0 (and locally Lipschitz continuous along DV),

except along H for (t, λ)= (0, ε), and its norm (again with respect to a smooth reference
metric) is bounded by O(t/

√
 ), hence locally uniformly bounded. Thus, even though

ṽt,λ is not continuous along H for (t, λ)= (0, ε), its flow is well-defined and continuous
even for λ = ε. We then obtain φsm,λ with all the desired properties by considering the
time κ flow generated by ṽt,λ. �
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