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ABSTRACT

The classical Riemann-Hilbert correspondence establishes an equivalence between the triangulated category of
regular holonomic D-modules and that of constructible sheaves.

In this paper, we prove a Riemann-Hilbert correspondence for holonomic D-modules which are not necessarily
regular. The construction of our target category is based on the theory of ind-sheaves by Kashiwara-Schapira and influ-
enced by Tamarkin’s work. Among the main ingredients of our proofis the description of the structure of flat meromorphic
connections due to Mochizuki and Kedlaya.
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1. Introduction

1.1. On a complex manifold, the classical Riemann-Hilbert correspondence
establishes an equivalence between the triangulated category of regular holonomic
D-modules and that of constructible sheaves (see [9]). Here D denotes the sheaf of differ-
ential operators.

In particular, flat meromorphic connections with regular singularities correspond
to local systems on the complementary of the singular locus (see [5]).

1.2. The problem of extending the Riemann-Hilbert correspondence to cover
the case of holonomic D-modules with irregular singularities has been open for 30 years.
Some results in this direction have appeared in the literature.

In the one-dimensional case, classical results of Levelt-Turittin and Hukuhara-
Turittin describe the formal structure and the asymptotic expansion on sectors of flat
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meromorphic connections which are not necessarily regular. Using these descriptions,
Deligne and Malgrange established a Riemann-Hilbert correspondence on a complex
curve for holonomic D-modules with a fixed set of singular points (see [6]). See also the
work of Babbitt and Varadarajan [1].

Recently, Mochizuki [19, 20] and Kedlaya [16, 17] extended the results of Levelt-
Turittin and Hukuhara-Turittin to higher dimensions. Namely, they proved that any flat
meromorphic connection becomes “good” after blowing-ups. Sabbah [24] obtained an
analogue of the construction by Deligne and Malgrange on a complex manifold for
“good” flat meromorphic connections with a fixed singular locus.

1.3. In this paper, we prove a Riemann-Hilbert correspondence for holonomic
D-modules on a complex manifold. The construction of our target category is based on
the theory of ind-sheaves by Kashiwara and Schapira [13] and influenced by the work
of Tamarkin [25]. The description of the structure of flat meromorphic connections by
Mochizuki and Kedlaya is one of the key ingredients of our proof.

Let us explain our results in greater detail.

1.4. Let X be a complex manifold. As we have already mentioned, the Riemann-
Hilbert correspondence of [9] establishes an equivalence between the triangulated cate-
gory D
of CG-constructible sheaves on X. More precisely, there are functors

(Dx) of regular holonomic Dx-modules and the triangulated category Dy, . (Cx)

DRx

(1.1) DY, (Dx) D¢ (Cx)

wx

quasi-inverse to each other. Here, DRx (L) := Qx ®- L is the holomorphic de Rham
complex with Qx the sheaf of holomorphic differential forms of highest degree, and
Wy (L) :=T hom (DxL,, Ox)[dx] is the complex of holomorphic functions tempered along
the dual DxL of L.

In particular, a regular holonomic Dx-module £ can be reconstructed from
DRx(L).

Let M be an irregular holonomic Dx-module, and consider the regular holonomic
Dx-module M, :=Wx(DRx(M)). Since DRx(M) =~ DRx(M,,), it follows that M
cannot be reconstructed from DRx(M).

1.5. The theory of ind-sheaves, that is, of ind-objects in the category of sheaves
with compact support, was initiated and developed by Kashiwara and Schapira [13]. In
such a framework, one can consider the complex Oy, of tempered holomorphic functions,
which is an object of the derived category of ind-sheaves D”(ICx). This is related to the
functor Wx in (1.1), since one has RHom (F, Ox) >~ T hom (F, Ox) for any R-constructible
sheaf F.
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Set Q% = Qx ®(L9\: Oy For a holonomic Dx-module M, the tempered de Rham

complex DRy (M) := QL ®;¥ M has been introduced and studied in [14] and studied

further in [21, 22]. This complex retains some information on the irregularity of M. For
example, let ¢ € Ox(*Y) be a meromorphic function with poles at a hypersurface Y,
and denote by &%, yx the exponential Dx-module generated by ¢/ (see Definition 6.1.1).
Then one has

(1.2) DRy (E%\vx) = RZhom (Cxy, “lim” Cpiexiy; —rep(o<a) [dim X,

a—>—+00

where Zhom denotes the inner-hom functor of ind-sheaves and Cx\y denotes the exten-
sion by zero to X of the constant sheafon X'\ Y.

Since DR;((Eﬁ\le) ~ DRy (5;2((<Y‘X), one cannot reconstruct M from DR (M).

1.6. Denote by T € G C P the affine variable in the complex projective line P.
In this paper, we will show that M can be reconstructed from the tempered de Rham
complex DRy, p(M KP Egp), an object of D" (ICxxp). In the case where X is a com-
plex curve, we outlined a proof of this fact in [3]. The proof in the general case follows
from the arguments in the present paper. However, in this paper we take as target cat-
egory a modification of D"(ICxp). As we now explain, this is related to a construction
by Tamarkin [25] (see also Guillermou and Schapira [7] for an exposition and some
complementary results).

1.7. On a real analytic manifold M, the microlocal theory of sheaves by Kashi-
wara and Schapira [11] associates to an object of D(Cyy) its microsupport, a closed
conic involutive subset of the cotangent bundle T*M. In his study of symplectic topol-
ogy, Tamarkin [25] uses the techniques of [11] in order to treat involutive subsets of
T*M which are not necessarily conic. To this end, he adds a real variable ¢ € R and,
denoting by (¢; ¢*) € T*R the associated symplectic coordinates, considers the quotient
category DP(Cypxr)/C<o) by the category Cyr<py consisting of objects microsupported
on {f* <0}.

An important observation in [25] is that there are equivalences

(1.3) LC{z*gO} = Db(CMxR)/C{t*SO} = C{Lt*f()}

between the quotient category and the left and right orthogonal categories. Moreover,
such categories can be described without using the notion of microsupport. For exam-
ple, Cyp<qy 1s the full subcategory of D"(Cyixr) Of objects whose convolution with Gy,
vanishes.

1.8. Back to our complex manifold X, recall that we aim to reconstruct a holo-
nomic Dx-module M from the tempered de Rham complex DR, p(M KP Egp). As



72 ANDREA D’AGNOLO, MASAKI KASHIWARA

we explain in Section 1.13 below, a special important case is when M = &\ yx for
¢ € Ox(xY). Then, (1.2) implies that the tempered de Rham complex is described in
terms of the ind-sheaf

(1'4> “li_r)n” C{(x,r)e(X\Y)xC; t—Rep(x)<a}*

a—+00

Here ¢t = Re 7 1s the real part of the affine coordinate 7 of the complex projective line P.
We are thus led to replace the target category D"(ICx,p) with what we call the cate-
gory of enhanced ind-sheaves and denote by E’(ICx). This is a quotient category of
DP(ICxp), where P is the real projective line.

Let us describe the category E’(ICx) in greater detail.

1.9. As a preliminary step, we introduce the notion of bordered space. A bor-
dered space is a pair (M, M) of a topological space M and an open subset M C M, and
we associate the triangulated category D (ICnip) = D"(ICy,)/D"(1 Cyn) to it. There
1s a natural fully faithful embedding

D"(Cy) C Db(IC(hfl,x‘l))-

The main example for us is the bordered space Ry, := (R, P). This notion appears
naturally when we deal with ind-sheaves such as (1.4). For example, for ¢ = 0 such an
ind-sheaf becomes trivial when restricted to D*(ICxxgr), but is a non trivial object of
D*(ICxr.)-

1.10. We define the category E”(ICx) of enhanced ind-sheaves by
E"(ICx) = D"(ICx«r.)/{K; K7 'L for some L € D"1Cx)}.

Here 7 : X X Ry, — X is the projection. This is related with Tamarkin’s construction as
follows. We set

Ei(ICX) = Db(ICXme)/IC{t*SO}’

where IC<q) is the full subcategory of objects whose convolution with Gy vanishes.
Asin (1.3), we have

I <0y > EL(ICx) = 1C5 ).
Replacing Cy;>¢y with G,y one obtains the category E® (I1Cy). It turns out that
E"(ICx) ~ E} (ICx) ® E> (ICx).

This is the target category of our Riemann-Hilbert correspondence. It is a triangulated

+
tensor category whose tensor product is given by the convolution ® in the ¢ variable.
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1.11. Set C>E( = “li_r)n”C{tza}. We say that an object K of EP(ICy) is stable if
a—+00
+
K~C§®K.
There is a natural fully faithful embedding of the category of ind-sheaves into the
category of stable enhanced ind-sheaves

¢: D’(1Cx) — E’(ICy), FrCi®n'F.

Denote by D]ID{_C(CXXP) the full subcategory of D"(Cxxp) whose objects have
R-constructible cohomology groups. We say that an object K of E?(I1Cx) is R-constructi-
ble if, for any relatively compact subanalytic open subset U C X, there exists I €
D%_C(CXXP) such that

+
7 'Cy®K~C ®F.

Note that such a K is a stable object, and that R-constructibility is a local property on X.
We denote by Etl’{_C(I Cx) the full subcategory of E’(1Cx) consisting of R-constructible
objects.

1.12. We can now state our Riemann-Hilbert correspondence.
The objects of E’(ICx) which play a role analogous to the objects O% and Q% of
D(ICy) are

Of i=1'RHomp, (Eqp Ok, p) 2], QF = Qx @ O,

where i: X x Ry, = X x P is the embedding. It turns out that O% and Qf are stable
objects endowed with a natural Dx-module structure.

Denote by D}, (Dx) the full subcategory of D"(Dx) consisting of objects with holo-
nomic cohomologies. We define the enhanced de Rham functor

DR: Dy, (Dx) — E'(ICx), M= QS @y M
and the reconstruction functor
wE: Ep (ICx) — D"(Dy), K > Hom® (DK, OF)[dx],

where HomE is the hom-functor between enhanced ind-sheaves, with values in sheaves
on X, and DY is a natural duality functor of E;"_C (ICx).
Our main result can be stated as follows.

Theorem.

() The functor DR, is fully faithful and takes values in Ey .(1Cx).
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(i) There is an isomorphism
M 5 WG (DRE(M))
Sunctorial in M € D} (Dx). In particular, one can reconstruct M fiom DRY(M).

We prove the compatibility of DRY, with duality. We also prove compatibility with
the classical Riemann-Hilbert correspondence (1.1). More precisely, there is a quasi-
commutative diagram:

DE}, (DX) Dk():_c (CX) DE}, (DX)
T
Dy, (Dx) Ex.(ICx) D"(Dx).

1.13. A key ingredient in our proofs is the following (see Lemma 7.3.7).
Let Px(M) be a statement concerning a complex manifold X and a holonomic
Dx-module M. For example,

Py(M) = “M = UL (DRYLUM))”.

In order to prove Px(M), the results of Mochizuki [19, 20] and Kedlaya [16, 17] allow
one, heuristically speaking, to reduce to the case when M = E;Q\Y‘X for ¢ € Ox(xY).

1.14. Recall that irregular holonomic modules are subjected to the Stokes phe-
nomenon. In Section 9.8 we describe with an example how the Stokes data are encoded
topologically in our construction.

1.15. The contents of this paper are as follows.

Section 2 fixes notations regarding sheaves, ind-sheaves and D-modules. Refer-
ences are made to [10, 11, 13]. We also state some complementary results which are of
use in later sections.

In Section 3, we introduce the notion of bordered space and of ind-sheaves on
it, and develop the formalism of operations in this context. We also discuss a natural
(-structure in the triangulated category of ind-sheaves on a bordered space.

In Section 4, we introduce the category E”(ICy;) of enhanced ind-sheaves, men-
tioned in Section 1.10, and develop the formalism of operations in this framework. We
also introduce the notion of R-constructible objects in EP(ICy).

Section 5 recalls from [12, 13] the construction and main properties of the ind-
sheaves of tempered distributions Dby, on a real analytic manifold M, and of tempered
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holomorphic functions O on a complex manifold X. As explained above, this is a fun-
damental ingredient of our construction.

In Section 6, we prove the isomorphism (1.2). The fundamental example where
X =0C > zand ¢(z) = 1/z has been already treated in [14].

Mochizuki and Kedlaya’s results on the structure of flat meromorphic connections
are recalled in Section 7. There, we give a precise formulation of the heuristic argument
mentioned in Section 1.13.

Section 8 introduces and studies the enhancement O% of O mentioned in Sec-
tion 1.12, along with the enhancement D&, of Db},.

Our main results, mentioned in Section 1.12, are stated and proved in Section 9.

2. Notations and complements

We fix here some notations regarding sheaves, ind-sheaves and D-modules, and
state some complementary results that we will need in later sections. Our notations follow
those in [10, 11, 13], to which we refer for further detail.

Let us say that a topological space is good if it is Hausdorff, locally compact, count-
able at infinity and has finite flabby dimension.

In this paper, we take a field k as base ring. However, after minor modifications,
one can take any regular ring as base ring.

For a category C, we denote by C the opposite category of C. For a ring A, we
denote by A°P the opposite ring of A.

2.1. Sheaves. — Let M be a good topological space. Denote by Mod(ky;) the
abelian category of sheaves of k-vector spaces on M, and by D"(ky) its bounded de-
rived category.

For a locally closed subset S C M, denote by kg the extension by zero to M of the
constant sheaf on S.

For /: M — N a morphism of good topological spaces, denote by ®, RHom, ',
R/, Rfi, [ the six Grothendieck operations for sheaves. Denote by X the exterior prod-
uct.

We define the duality functor Dy of D" (ky;) by

DMF =RHom (F, a)M) for F e Db(kM),

where wy; denotes the dualizing complex. If M is a C°-manifold of dimension dy, one
has wy ~ ory[dyv], where ory; denotes the orientation sheaf.

2.2. Ind-sheaves. — The theory of ind-sheaves has been introduced and developed
in [13].

Let C be a category and denote by C" the category of contravariant functors from C
to the category of sets. Consider the Yoneda embedding /: C — C", X > Hom (%, X).
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The category C* admits small inductive limits. Since /4 does not commute with inductive
limits, one denotes by “li_r)n” instead of h_r)n the inductive limits taken in C".

An ind-object in C is an object of C" isomorphic to “h_r)n”X(i) for some functor
€l
X: I — C with a small filtrant category I. Denote by Ind(C) the full subcategory of C*
consisting of ind-objects in C".

Let M be a good topological space. The category of ind-sheaves on M is the cate-
gory I (ky) := Ind(Mod,(kyr)) of ind-objects in the category Mod, (ky;) of sheaves with
compact support. Denote by D*(Iky;) the bounded derived category of I (kyy).

There is a natural exact embedding ¢y : Mod(ky) — I(ky) given by F i—
“H_r)n”(kU ®F), for U running over the relatively compact open subsets of M. The functor

ty has an exact left adjoint oy @ I (ky) = Mod(kyy) given by aM(“li_r>n” F) = 1£>n F;. The

functor a; has an exact fully faithful left adjoint By : Mod(ky) — I(ky). For example,
if 7, C M is a closed subset, one has

iky >~ “lim” kg
181\[ 7, _U) U>s

where U ranges over the family of open subsets of M containing Z.

For f: M — N a morphism of good topological spaces, denote by ®, RZhom, [,
R/, Rfi, f* the six Grothendieck operations for ind-sheaves. Denote by X the exterior
product.

Since ind-sheaves form a stack, they have a sheaf-valued hom-functor Hom. One
has RHom >~ o,;RZhom .

We will need the following proposition to calculate RZ/om .

For a < b in Z, denote by C"'(Mod(ky)) the category of complexes of sheaves F*
such that F¥ = 0 unless a < k < b.

Proposition 2.2.1. — Let f: M — N be a morphism of good topological spaces. Let G €
D" (Iky;) and let {F}}iez., be an inductive system in Cl“'(Mod(ky;)) Jor some a < b in Z. Assume
that the pro-object

“lim” R,RZhom (F;, G) € Pro(D"(Iky))

n

is represented by an object of D* (k). Then
Rf:RZhom (“lim” ¥}, G) = “lim” RL,RZhom (F}, G).

n’
n n

Proof. — Set 3 = P,_, I} and denote by F; the mapping cone of the morphism
S.

n—1

— S?. Note that the morphism F; — I induced by the projection S} — F? is a
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quasi-isomorphism. Consider the morphism S; — S; & F; | = S; | obtained by ids.
and S} — F; — F;_ . This induces a morphism I — 41 Which has a cosection for

any k£ and n. Hence, replacing I} with F;, we may assume from the beginning that the
morphism Ff — F_| has a cosection for any £ and n.

We may also assume that G* is a complex of quasi-injective sheaves, 1.e. that the
functor Hom (, G") 1s exact in Mod(ky) for any n € Z.

In order to prove that the morphism

Rf.R Zhom (“lim” F}, G*) — “lim” Rf,RZhom (., G*)

n n

is an isomorphism, it is enough to show that RHom (H, #) is a quasi-isomorphism for any
H € Mod(ky).
Set E* = Hom (I} ®/f'H, G*). Then
lim E? ~ RHom (H, R.RZhom (h_r)n F:, G*)),
“lim” H'(E}) ~ H'RHom (H, “lim” RL,RZhom (F;, G*)).

Hence we have to show that

(2.2.1) HE (lim B ) — “lim” B (E7) = lim HE (E)
— — <—

».1 —> Es is an epimorphism and {H*(E?)}, satisfies

the Mittag-Leffler condition, we conclude that (2.2.1) is an isomorphism. U

is an isomorphism for any £. Since E

Let us recall the results of [15, Section 15.4]. These provide useful tools to re-
duce proofs of many results in the framework of ind-sheaves to analogous results in sheaf
theory.

Recall that Mod, (ky;) denotes the category of sheaves with compact support. Then
D" (Mod, (ky)) is equivalent to the full triangulated subcategory of D"(ky;) consisting of
objects with compact support.

Proposition 2.2.2 (Cf. [15, Section 15.4]). — There exists a canonical functor
JM: Db (IkM) — Il’ld(Db (MOdC(kM)))

which satisfies the following properties:
(i) For F € D"(Mod, (ky)), and K € D" (I1kyy), we have

Hom pp gy (F, K) = Hom 1,50 vt gy (Jn1 (). Jna (K) )
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(ii) The functor Jy; is conservative, i.e. a morphism u in D*(Ikyy) is an isomorphism as soon
as Ja(w) s an isomorphism.

(iii) Jp(F) > F for any F € D" (Mod, (kyy)).

(iv) JM(“li_r>n” F;,) ~ li_n)qjl\I(Fl-) Jor any filtrant inductive system {¥;} in Mod(kyy). Here,

li_r)n denotes the inductive limit in the category Ind(D"(Mod, (kyy))).

() Jm commutes with ® and JyfRZhom (F, G) =~ RHom (F, J;(G)) for F € DP(kyy)
and G € D(Iky). Here, RHom(F,%) denotes the endofunctor  of
Ind(D*(Mod, (ky;))) induced by the endofunctor RHom (F, %) of DP(Mod, (ky)).

(vi) H"Jp(F) ~H"F for any n € Z and ¥ € D" (Iky;). Here, H" on the right hand side
is the cohomology functor D" (Iky) — I(ky), and H" on the left hand side 1s the func-
tor Ind(D”(Mod, (ky))) — Ind(Mod,(ky)) = I (ky) induced by the cohomology
functor D*(Mod, (ky)) — Mod, (kyy).

(vii) Let f: M — N be a continuous map. T hen
(a) Jn o Rfy = Rfi o Ju.
®) Juof ' ~fo]n and Jy oft > f' o]x. Here, for u=f"", f", we denote by

the same letter the composition
Ind(D"(Mod. (ky))) — Ind(D"(ky)) — Ind(D"(Mod, (ky))).
The last arrow s given by “li_n)l” Fi— “ﬁ_r)n”(Fi)U, where U ranges over the relatively

i ., U
compact open subsets of M.

Note that Jx o Rfi 2 Rf; o Ju does not hold in general.
As an example of application of Proposition 2.2.2, one has the following result.

Corollary 2.2.3. — Let G € DP(ky), K € D*(Iky) and {F;} a Sfiltrant inductive system in
Mod(ky). If supp G s compact, then

Hom g e, (G, K® “li_r.lg” Fz) ~ 11_1’)1’1 Hompp gy, ) (G, KQ F)).

Proof. — One has Ju(K ® “li_r)n”F,-) ~ @)1_]1\,[(1{ ® F;) by Proposition 2.2.2(iv)
and (v). Then the assertion follows fro;n Propositilon 2.2.2(1). 0J

Here is another application of Proposition 2.2.2.

Proposition 2.2.4. — Let f: M — N be a continuous map of good topological spaces and
K € D" (Iky). Let U be an open subset of M and {V,},ez.., an increasing sequence of open subsets
of N. Assume that

Unf=4Vv,) Cf_l(VnH) Jor any n € Z,.
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Then, setting L. = “lim” ky , there is an isomorphism
— n

ki /' KR/ LS ky /' (K®L).

Proof. — Since the question is local on M, we may assume that U is relatively
compact. By the assumption, U N supp(f' (K ®ky,)) Cf~'(V,41). Thus we have

ky ®f' K®ky,) < ky ®f (K®Qky,) ®f 'ky,,,,
— kU ®f!K®f_lkVn+l'

By applying Jy; and taking the inductive limit with respect to 7 in Ind(D*(Mod, (ky))),

we obtain a morphism

@;JM(kU RS (K ®kvn)) — li_YQJM(kU Rf' K ®f_lkv,l)~

n n

By Proposition 2.2.2(iv), (v) and (viib), this gives a morphism
Ju(ky ® ' (K®L)) — Ju (kv &' K@/ 'L).
We can easily see that this is an inverse to the natural morphism
Julku /' K®f'L) = Ju(kv ®f (KQL)).
Hence, the statement follows from Proposition 2.2.2(i1). O
We will use the following lemma only in Remark 4.7.13.

Lemma 2.2.5. — Let M be a good topological space and {F}},cz., an inductive system in
Cl“’(Mod(ky)) for some a < b in Z.. Then

RZhom (“li_r)n” F, a)M) < RZhom (h_n)l I, a)M).

n n

Here, h_r)nF; is the inductive limit of {F}},ez., cl“’'(Mod(ky)).

n

Proof. — By dévissage, we may assume that the morphism F: — F*_ | has a cosec-

tion for each £ and n, as in the proof of Proposition 2.2.1, and that all the sheaves F* are
soft sheaves.
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Then, for any G € Mod, (ky),

RHOm Dl)(Ik),[) (G, RI}IOm ((‘hgl” F;, a)l\l))
~ RHOm Db(Ikl\i) (G ® “lién” F;, a)l\,[)
~ RHOI’]’I Db(k) (RFC (M; G ® “@7; Fn) , k) )
Since G @ F¥ are soft sheaves (see [11, Lemma 3.1.2]),
RI", (M; G® “l'£>n” F;) ~ “1i_r>n” F[(M; G® F,'Z)
Hence
RHom DP (k) (RF[ (M’ GC® “li_r)n” F;) , k) ~ Rt “l(ir_n” Fﬁ(M; G® F;)*,

where 7 : Pro(Mod(k)) — Mod(k) is the functor of taking the projective limit (see [15,
Corollary 13.3.16]). Since I':/(M; G @ I})* satisfies the Mittag-Leffler condition, one has

Rz “lim” [, (M; G®F;) =0 foranyi#0.

n

Hence

=

Rz “lim” I".(M; G ® F;)" ~ i

n

r,(M;GRF;)"

-1

12
—~

lim I (M; G ®F}) )

~ n(M; G ®1i_r>nF;)
~ RHom <G, RZhom (lim F, a)M)>.
iy

This implies that

RHom (G, RZhom (lim F, a)M>)
—
~ RHom <G, RZhom (“lim” Fe, a)M))
) n

for any G € Mod, (ky;), and hence we obtain the desired result. ]
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2.3. R-constructible sheaves. — The notion of subanalytic subset and of R-constructi-
ble sheaf, usually defined on real analytic manifolds, naturally extend to subanalytic
spaces (cf. [11, Exercise IX.2]).

Definition 2.3.1. — A subanalytic space (M, Syp) s an R-ringed space which is locally
wsomorphic to (2., Sy), where Z. is a closed subanalytic subset of a real analytic manifold, and Sy, is
the sheaf of R-algebras of real valued subanalytic continuous functions. In this paper, we assume that
subanalytic spaces are good topological spaces.

One naturally defines the category of subanalytic spaces. The morphisms are morphisms of
R-ringed spaces.

Let M be a subanalytic space. One says that an object of D" (ky;) is R-constructible
if all of its cohomologies are R-constructible. Denote by Dy (ky) the full subcategory of
R-constructible objects of D"(ky;). The category D (ky) is triangulated and is closed
under ®, RHom and the duality functor Dy;.

The following two propositions are classical results (see e.g. [11, Propositions 3.4.3,
3.4.4,8.4.9]).

Proposition 2.3.2. — Let M be a subanalytic space and ¥ € Dy (kyp). Then the natural
morphism

F— DI\/IDI\IF
is an 1somorphism.
Proposition 2.3.3. — Let M be a subanalytic space and N a good topological space. Let
P M x N—> M and ps: M x N — N be the projections. Then for any F € Dy (ky) and
G e D"(ky) the natural morphism
7 DMF ®,'G — RHom (b7 'F, p5 G)
is an 1somorphism.

Hence, by applying Corollary 2.2.3, we obtain the following proposition.

Proposition 2.3.4. — Let M, N, p, and py be as in Proposition 2.3.3. Let ¥ € DE{_C (ky)
and G € D*(I1ky). Then there are wsomorphisms

bl ®p;'G = G,
7' DMEF ® p3' G = RZhom (p7'F, p G).
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Corollary 2.3.5. — Let M be a subanalytic space and N a good topological space. Let ¥, ¥y €
le{,c(kM) and G, Gy € D"(Iky). Then the canonical morphism

R%om (F] , FQ) X RIhom (G] , GQ) — RI/lom (F] X G] , FQ X GQ)
is an 1somorphism.

Proof. — Let p: M x N — M and po: M x N — N be the projections. We have
17" Fo ® py ' Go = RZhom (py ' DuFo, p; Go).
Hence

RZhom (p;'F1 @ p; ' G1, py ' Fa @95 ' Go)
>~ RZhom (p;'F1 ® p; ' G| @ p; ' DyiFo, p} Go)
~ RZhom (p; " (F1 ® DxiFo), RZhom (p; ' Gi, py Gs))
= RZhom (7 'DuRHom (F1, Fo), py RZhom (G, Gy))

~ 7 'RHom (Fy, Fy) ® p; 'RZhom (G, Gy).
Here, in () we have used
F, ® DuFy >~ DyRHom (F, Fy),
which follows from

Dyi(Fy ® DyiFy) = RHom (F) ® DyFy, wn)
>~ RHom (Fl y RHom (DMFQ, (,()M))
~RHom (F], FQ) O

2.4. Subanalytic ind-sheaves. — Let M be a subanalytic space. An ind-sheaf on M is
called subanalytic if it is isomorphic to a small filtrant ind-limit of R-constructible sheaves.
Let us denote by I, (ky) the category of subanalytic ind-sheaves. Note that it is stable
by kernels, cokernels and extensions in I (ky). An object of D" (Iky) is called subanalytic
(Iky) the full subcategory of
subanalytic objects in D"(Iky). It is a triangulated category.*

Let Opy,_ be the category of relatively compact subanalytic open subsets of M,
whose morphisms are inclusions.

if all of its cohomologies are subanalytic. Denote by D"

suban

b

suban

* In [13], subanalytic ind-sheaves are called ind-R-constructible sheaves, and I, (ky) and D (Iky;) are de-

noted by Ig..(ky) and leR,c (Iky), respectively.
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Defination 2.4.1 (Cf. [12, 13]). — A subanalytic sheaf I s a_functor Opﬁia — Mod(k)
which satisfies

(i) F(@)=0.
(i) For U,V € Opy,_, the sequence

0— F(UUV) -5 F(U) @ F(V) = F(UNV)

us exact. Here 1\ s given by the restriction maps and ry 1s gien by the restriction F(U) —

F(UNV) and the opposite of the restriction F(V) — F(UN'V).
Denote by Mod(kyy,, ) the category of subanalytic sheaves.
The following result is proved in [13].
Proposition 2.4.2. — The category 1span(&n) of subanalytic ind-sheaves and the category
Mod (k) of subanalytic sheaves are equivalent by the functor associating with ¥ € 1. (k) the
subanalytic sheaf
Op,, 2 U+— Hom,, , (ky, ).

In particular, we have

Proposition 2.4.3. — Let K € D"

suban

(Iky). Then K >~ 0 if and only if
Hom gy, ) (kU [n], K) ~0
Jor any n € Z and any relatively compact subanalytic open subset U C M.
We will need the following result.

Lemma 2.4.4. — Let M be a subanalytic space and K € Db (Ikyixpo.17)- Then K >0

suban

i and only f Hompy gy (&ulnl, K) 0 for any n € Z and any relatwely compact subanalytic
open subset U C M x [0, 1] such that each fiber of U — M s either empty or connected.

This follows from Proposition 2.4.3 and the following lemma.

Lemma 2.4.5. — Any relatively compact subanalytic open subset of M x [0, 1] is a finite
union of subanalytic open sets U such that each fiber of U — M 1s either empty or connected.

For a similar statement, see [12, Lemma 3.6].
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2.5. D-modules. — Let X be a complex manifold. We denote by dx its (complex)
dimension. Denote by Ox and Dx the sheaves of algebras of holomorphic functions and
of differential operators, respectively. Denote by 2x the invertible sheaf of differential
forms of top degree.

Denote by Mod(Dx) the category of left Dx-modules, and by D*(Dx) its bounded
derived category. For f: X — Y a morphism of complex manifolds, denote by ®°, Df*,
Df, the operations for D-modules. Denote by XIP the exterior product.

Let us denote by

(2.5.1) r: D*(Dyx) = D"(DY)

the equivalence of categories given by the functor M" = Qx ®£‘9X M. Consider the dual
of M € D"(Dx) given by

DxM =RHomp, (M, Dx ®py Qg_l)[dx],

where the shift is chosen so that DxOx >~ Ox.

Denote by Dgoh (Dx), DZ—good(DX) and Dgood(DX) the full subcategories of D"(Dx)
whose objects have coherent, quasi-good and good cohomologies, respectively. Here,
a Dx-module M is called quasi-good if, for any relatively compact open subset U C X,
My is the sum of a filtrant family of coherent (Ox|y)-submodules. A Dx-module M is
called good if it 1s quasi-good and coherent.

Recall that to a coherent Dx-module M one associates its characteristic variety
char(M), a closed conic involutive subset of the cotangent bundle T*X. If char(M) is
Lagrangian, M is called holonomic. For the notion of regular holonomic Dx-module,
refer e.g. to [10, Section 5.2].

Denote by D, (Dx) and th(DX) the full subcategories of D"(Dx) whose objects
have holonomic and regular holonomic cohomologies, respectively.

Note that D?Oh(DX), DZ_gOOd(DX), Dgood(DX)> D]ﬁol(DX) and D’ (Dx) are triangu-
lated categories.

If'Y € X is a closed hypersurface, denote by Ox (xY) the sheaf of meromorphic

functions with poles at Y. It is a regular holonomic Dx-module. For M € D"(Dx), set
M(*Y) = M QP Ok (xY).

If'Y is a closed submanifold of X, denoting by z: Y — X the inclusion morphism, one
sets

(2.5.2) BY = DZ*OY

Then By is concentrated in degree zero, and is a regular holonomic Dx-module.

For M € D" (Dx), denote by sing. supp(M) C X its singular support, that is the
set of points where char(M) :=,, char(H'.M) is not contained in the zero-section of
T*X.
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Proposition 2.5.1 ([10, Theorem 4.33]). — Let f: X — Y be a morphism of com-
plex manifolds. Let M € D* (Dx) and N € D*(Dy). If supp(M) is proper over Y, then

good

Df, M €D’ (Dy) and there is an isomorphism

RARHomp, (M, Df*"N)ldx] = RHomp, (Df M, N)[dy].
In particular,

Homp, p, (M, Df*Ndx]) ~ Homp p,, (Df . M, Ndy]).

Proposition 2.5.2 ([10, Theorem 4.40]). — If f : X — Y s a smooth morphism of complex
manifolds, then for M € D*(Dx) and N € DEOh (Dy) we have

Rf,RHomp (Df* N, M)[dx] ~ RHomp (N, Df , M) [dy].
In particular,

Hom y p, (Df*N, M[dx]) = Hom ., (N, Df, M[dy]).

A transversal Carlesian diagram is a commutative diagram

f/
X/ %
(2.5.3) l - l .
;
X Y

with X’ >~ X xy Y’ and such that the map of tangent spaces
TyX @ TrwY = TrgwY

is surjective for any x € X'.

Proposition 2.5.3. — Consider the transversal Cartesian diagram (2.5.3). Then, for any M €
D" . (Dx) such that supp(M) is proper over Y,

200
Dg"Df, M = Df',D¢" M.

3. Bordered spaces

Let M be a good topological space, and M C M an open subset. For usual sheaves,
the restriction functor F +— F|y; induces an equivalence

D" (ky,)/D" (kypan) = D (k).

This is no longer true for ind-sheaves, as seen by the following example.
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Example. — Let M=Rand M = 10, 1[. Consider the ind-sheaf on M

Priksioy = “lim” kg,
Us0

where U ranges over the family of open neighborhoods of 0 € M. Then Bk = 0,
but Bykioy ¢ D" (I kM\M)-

Therefore, in the framework of ind-sheaves one should consider the quotient cate-
gory D"(Iky;)/D"(1 k1) attached to the pair (M, M). We will call such a pair a bordered
space.

In this section, we define the category of bordered spaces, develop the formalism
of external operations, and define the natural ¢-structure on the derived category of ind-
sheaves on a bordered space.

3.1. Quotient categories. — Let D be a triangulated category and N C D a full tri-
angulated subcategory. The quotient category D/N is defined as the localization Dy, of
D with respect to the multiplicative system X of morphisms « fitting into a distinguished
triangle

X5y 7z

with Z € V.
The right orthogonal A/* and the left orthogonal N are the full subcategories
of D

N+ ={XeD; Homp(Y,X) 0 forany Y e N},
N ={XeD; Homp(X,Y) =0 forany Y € N'}.
The following result is elementary (cf. [15, Exercise 10.15]).

Proposition 3.1.1. — Assume that
X YeD, ZeN and 7. =X DY, then one has X € N'.

Then the following conditions are equivalent:

(i) the composition N+ — D — DN is an equivalence of categories,

(i) the embedding N — D has a right adjoint,

(iii) the quotient functor D — D /N has a right adjoint,

(iv) for any X € D there is a distinguished triangle X' — X — X" 2 with X e N and
X" e Nt

Stmalar results hold for the left orthogonal.
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3.2. Bordered spaces. — Let M C M and N C N be open embeddings of good topo-
logical spaces. For a continuous map f/: M — N, denote by I'; its graph in M x N, and
by T’ the closure of I’y in M x N.

_ Defimation 3.2.1. — The category of bordered spaces s the category whose objects are paurs

M, M) with M C M an open embedding of good topological spaces. Morphisms f: (M, M) —
(N, N) are continuous maps f+ M — N such that

(3.2.1) Ff —-M is proper.

The composition of (L, L) 5 (M, M) ER (N, N) is gwen by fog: LL— N (see Lemma 3.2.3
below), and the identity 1d y xyy 15 given by 1dyr.

Remark 3.2.2. — The properness assumption (3.2.1) is used in Lemma 3.3.10 be-
low to prove the functoriality of external operations. It is satisfied in particular if either
M =M or N is compact.

Lemma 3.2.3. — Let [+ (M, M) = (N,N) and g: (L, L) — (M, M) be morphisms of
bordered spaces. Then the composition f o g is a morphism of bordered spaces.

Progf: — Note that T, xy, Ty — T, XMM — Lis proper. Hence T' ¢ X Ff — LxN
is proper. In particular, Im(T, xy 'y — L x N) is a closed subset of L. x N. Since it
contains I'f,,, it also contains Ffog. Since l"jog XX (Fg XN Fj) — Lis proper, l"fog -1
1s proper. UJ

Note that the category of bordered spaces has

(1) a final object ({pt}, {pt}),

(i) fiber products.
In fact, the fiber product of f: (M, M) — (L, i) and g: (N, N) — (L, f,) 1s represented
by M x1, N, T, x; T,).

Regarding a space M as the bordered space (M, M), one gets a fully faithful em-
bedding of the category of good topological spaces into that of bordered spaces.

Remark 3.2.4. — For any bordered space (M, M), using the identifications M =
(M, M) and M = (M, M), there are natural morphisms

M — (M, M) — M.

Note however that idy; does not necessarily induce a morphism (M, M) — M of bor-
dered spaces.
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If a continuous map f/: M — N extends to a continuous map f M — N, then S
induces a morphlsm of bordered spaces (M, M) — (N, N) However the converse is not
true. If /1 (M, M) — (N, N) is a morphism of bordered spaces, the map /: M — N does

not extend to a continuous map f/: M — N, in general. However, the next lemma shows
how one can always reduce to this case.

Lemma 3.2.5. — Any morphism of bordered spaces f: (M, M) — (N, N) decomposes as
(M, M) < (I, T)) — (N, N),
0 0

w/zere the ﬁmﬁ arrow 1s an zsomorphzsm and the maps q,: U'y — M and go: T'y — N extend to maps
Ff—>Mandq2 Ff—>N

Defination 3.2.6. — The derived category of ind-sheaves on a bordered space (M, M) is the
quotient category

D" (Ik ;5 := D" (Ihyy) /D" Ty ),

where Db(IkM\M) is identified with its essential image in D*(Iky,) by the fully faithful functor
Riy >~ Ru,, for i: M \M — M the closed embedding.

Remark 3.2.7. — In the framework of subanalytic sheaves, an analogue of
Db(Ik(l\,LM)) is the derived category of sheaves on some site considered in Defini-
tions 6.1.1(iv) and 7.1.1 of [13].

Since the functor Riy 2~ Ri, has both a right and a left adjoint, it follows from
Proposition 3.1.1 that there are equivalences

D" (Ikyy ) = D" (Tk gy ) 2 D (Thkyy )™
Let us describe these equivalences more explicitly.
Lemma 3.2.8. — For F e D"(1 k), one has
ky ® RZhom (kyr, F) <— ky ®F,
RZhom (kyi, ky @ F) = RZhom (kyy, F).
Proposition 3.2.9. — Let (M, M) be a bordered space.
(1) One has
D" (Ikyy, ) = {F € D’ (Iky); F = kyy QF}
= {F S Db(IkM); ky QF ~ O}
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= {F e D*(Iky); RZhom (kyy,y;, F) = F}
= {F € D"(Iky); RZhom (ky;, F) >~ 0}.
(i1) One has
D" (Ikyy ) = {F € D"(Ikyy) ; kyy ®F — F}
={F e D"(Iky); ky,\ @ F ~ 0},
and there s an equivalence
D" (Ikg51) — "D (Ikgp ), Fr>kyQ®F,

with quasi-inverse induced by the quotient functor.
(i11) One has

D" (Iky )" = {F € D"(ky,); F = RZhom (ky, F)}
= {F € D"(Iky); RZhom (ky . F) ~ 0},
and there is an equivalence
D" (Ikgy51) — D" (kg )™ F > RZhom (ky, F),
with quasi-inverse induced by the quotient functor.
Corollary 3.2.10. — For F, G € D"(Iky;) one has
Hom D (T 1) (F, G) @~ Hom D (k) (ky ®F, G)
~ Hompy gy, ) (F, RZhom (ky, G))
~ Hom D (k) (ky QF, ky ®G)
~ Hom D (Iky) (RIhom (kyi, ), RZhom (kyy, G)).

There is a quasi-commutative diagram of natural functors

oYl
Db(kM) > pb (Iky)

| |

IVBY))

D" (kyp) ——— D" (I k(M,M)) ’

where the left vertical arrow is the functor of restriction to M, the right vertical arrow is
the quotient functor, and the bottom arrow is the composition

D (k) =~ D" (ky;) /D" (kyy ) — D (kg xp))-
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Notation 3.2.11. — We sometimes write Db(k(M’M)) for D (ky;), when considered
as a full subcategory of D" (Ikyy x1,) by Loy -

3.3. Operations. — Let us discuss internal and external operations in the category
of bordered spaces.

Definition 3.3.1. — The functors ® and RZhom in DP(I1ky,) induce well defined functors
® : D"(Iky 1) x D’k 5p) = D" Ik ),
RZhom : D"(Ikyy 51,)™ % D* (k1) = D Uk 5p)-
Lemma 3.3.2. — ForF, Fy € Db(Ik(M’M)) one has

Hompu gy (Bt RZhom (Fy, Fp)) > Homppy, | (F1L Fo).

Lemma 3.3.3. — For ¥, Iy, F5 € Db(Ik(M)M)) one has
RZhom (F, ® Fy, F3) > RZhom (F\, RZhom (Fs, Fs)),
Hompy gy o (Fi ®Fp, F5) > Hompugy (F1, RZhom (Fy, Fs)).

Let f: (M, M) — (N, N) be a morphism of bordered spaces, and recall that I',
denotes the graph of the associated map /: M — N. Since I, is closed in M x N, it is

locally closed in M x N. One can then consider the sheaf kr, on M x N.

Defination 3.3.4. — Let f: (M, I\V/I) — (N, N) be a morphism of bordered spaces. For F €
D’(Iky;) and G € D" (Tky), we set

RfiF = Rgon (kr, ® g7 'F), RALF = Rga.RZhom (kr,, ¢} F),
S'G=Rqu(kr, ®¢,'G),  f'G=Rq.RZhom (kr,,q,G),
where q; : M x N — M and ga: M x N — N are the projections.

Remark 3.3.5. — Considering a continuous map f: M — N as a morphism of
bordered spaces with M =M and N = N, the above functors are isomorphic to the usual
external operations for ind-sheaves.

Lemma 3.3.6. — The above definition induces well-defined functors
Rfi: D"(Ik gy 1) — TD"(Ikg ) ~ DIk x)),
Rf: D"k, ) — D (kg )" =~ D Ik x)),
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~1. b Lnb ~ DP .
J 7 DUk x) = "D (kg ) =Dk xp),

S D (T x) = DTk )"~ D (T )

Progf: — Since the arguments are similar for all functors, let us only discuss Rf.
Let F € D"(Iky).

(i) Assume that F >~ RZhom (kypyp, F). Since I'y N g7 (M \ M) = &, we have

Rf.F >~ Rgo.RZhom (krf, ¢ )
>~ Rg¢oRZhom (kr[, q; RZhom (k\I\M, ))
>~ Rgo«RZhom (krj ® ql \1\M, 4 F)

>~ Rg¢yRZhom krmffl(M\M) ¢ F) ~ 0.
This shows that the functor Rf;: D"(Iky) — DP(Ikg) factors through
D°(1 k(M,NI)2 :
(ii) Since ¢;'(N\N) NT; = &, we have

RZhom (k. REF) ~ RZhom (k. Rgo.RZhom (kr,, ¢, F))
=~ RgoRZhom (qglkg]\N Qkr,, 7 F)
~ RqQ*RI}ZOWL (qu_l(ﬂf\N)ﬂFf’ qi F) >~ 0.

This shows that Rf.F € Db(IkN\N)L. O
The following lemma is easy to prove.

Lemma 3.3.7. — Let j\p: (M, M) — M be the morphism given by the open embedding
M C M. Then

(1) The functors
]ﬁl :J'I!VI : Db(IkM) - Db(Ik(M,M))

are 1somorphic to the quotient functor.
(ii) For F € D*(Iky,) one has the isomorphisms in D°(Iky;)

Rivig F =~ ky ®F, Ririfag F 2 RZhom (ky, F).

(iti) The functors @ and RZhom commute with j;' > j; .



92 ANDREA D’AGNOLO, MASAKI KASHIWARA

(iv) The functor @ commutes with Rjypy and the functor RZhom commutes with Ry .. More
precisely, for ¥y, Fy € D"(1 k1)) one has

R (Fr ® Fo) >~ RivinFy @ RivnFy

~ Ry @ RyvFo,
Rivi«R Zhom (Fy, Fy) ~ RZhom (Rjvy F1, Rjyii Fo)
>~ RZhom (R F1, RjvsFo)
>~ RZhom (R F1, RinFo).

Convention 3.3.8. — In the sequel, to avoid confusion, we distinguish between the objects of
D*(Iky,) and the objects of D" (1 k\ixpy)- In other words, if ¥ € D (Iky,), we avoid to denote by F
ils image in the quotient category D" (1 ki x1))s and write instead i Forji F.

Let us now show that the external operations for bordered spaces satisfy similar
properties to the external operations for usual spaces.

Lemma 3.3.9. — Let f: (M, M) — (N, N) bea morphism of bordered spaces.

(i) The functor Rfy is lefi adjoint to f* .
(ii) The functor f =" is left adjoint to RY,.

Lemma 3.3.10. — Let g: (L, L) — (M, M) and f: (M, M) — (N, N) be morphisms
of bordered spaces. One has

R(f o g)n = Rfi o Rau, R(f o0 g)« ~ R/, o Rg,
and
(fog) ' =g 'of",  (fog >g of.

Proof: — Since the proofs are similar, we treat only the first isomorphism.
For F e Db(ka‘), one has

R(f o 9w, 'F ~j5'Raan (kr,,, ® g7 'F),

where ¢, and ¢, are the projections from L x N to the corresponding factors. Using the
projection formula, one easily checks the isomorphism

Rfi Ry 'F 2 jx'Reon ((krg okr,) ® ql_lF),
where

kr, okr, := Rgisu (7, kr, ® ga; kr ),
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and ¢j9, ¢23 and ¢;3 denote the projections from L x M x N to the corresponding factors.

For example, q15(x,, 2) = (¥, 2).
Hence, writing explicitly the embedding functor ¢ of sheaves into ind-sheaves, it is
enough to show

LiXN’[ krg © LN’[XA{I kl"/ = LLXN kr/‘og'

Recalling that ¢ commutes with tensor product, ordinary inverse image, and ordinary
direct image, we have

— -1, . 1,
et Koy © b Ky o= Rausn (47 b Ker, © g5 b Kery )

~ .. . —1 —1

— RQIB!!LLxMxN(%Q kl“g ® ¢y3 krf)

~ VRN Pt -1

= wa*‘LxMxN(QlQ kr, ® ¢y ka)

=i qu%*(‘]ﬁlkf ® qg3lkff)

= >~ (i .x Rgis (912 kF ® o3 kl"f)

= LIv,XN kr[og'

Here, in (x), we used the fact that supp(gﬁlkrg ® c]iglkrf) C T, xy Iy is proper over

L. x N, which follows from the same arguments as in the proof of Lemma 3.2.3. U

Corollary 3.3.11. — If f: (M, M) — (N, N) is an wsomorphism of bordered spaces, then
Rf, >~ Rfy and f~' >~ f*. Moreover, Rf, and f =" are quasi-inverse to each other.

Lemma 3.3.12. — Let f (M, M) — (N, N) be the morphism of bordered spaces associated
with a continuous map f M — N such that f (M) CN. Then

(i) ForFeD k\1xp)) there are isomorphisms in D"(I k)

Rj;!F Zjilﬂjv\| RlevF, RﬂF zjglRﬁRjkq*F
(ii) For G € D Ik x)) there are isomorphisms in DP Ik xp)
J71G 2= T RiweG 2T RiG
S'G 2= RiNGG = ' Ria G,

Proof. — We have a commutative diagram
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Hence Lemma 3.3.10 implies

R RfnF =~ an R F.
Then, by Lemma 3.3.7 we have

RAiF ~ j< ' Rixn RAF ~ s 'R R F.
We can similarly obtain the other statements, except

S TR G = T RG,

ARG 2 i T Rixa G

Since the proofs are similar, let us check only the last isomorphism.
For K € D"(Iky), we have

RZhom (i, /' RZhom (kn, K)) 2 RZhom (i, RZhom (f~ 'k, /' K))
~ RZhom (ky ® f ~'ky, /' K)
~ RZhom (kas, /' K).
Hence, applying this for K = RjxinG, Rin.G, we obtain
JiS R G =iy RThom (k. /' Rjx.G)
~ jui RZhom (K, /' RZhom (k, Rin.G))
~ jui RZhom (K, f* RZhom (kx, Rixn G))
~ ji'RZhom (k. /' Rjxu G)
~ i R G. O
Proposition 3.3.13. — Let f = (M, M) — (N, N) be a morphism of bordered spaces. For
F e D" (Iky, yp) and G, G1, Gy € D"(Iky x), one has isomorphisms
Rt (f'G ®F) ~ G ®RAF,
STHGI®G) ~f'G®f Gy,
RZhom (G, Rf,F) ~ Rf,RZhom (f 'G, F),
RZhom (RfyF, G) ~ RL,RZhom (F, f' G),
F'RZhom (G, Go) =~ RZhom (f ' G, [ Gy),
and a morphism

ST'RZhom (G, Go) = RZhom (f 7' G, 7' Gy).
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Progf. — By Lemma 3.2.5, replacing (M, M) with Iy, Ff), we may assume that

there is a commutative diagram

(M, M) M

b

v J v
NNy N
Then, by Lemmas 3.3.12 and 3.3.7 one has

R/ (fﬁl G® F) 2]§1 Rf!! R (/}qujvf*l RiniG ® F)
2]§1 RJV[!! (Rj'l\/l!'\]ﬁljvﬁl RiniG® R].M!!F)
~ i RJVF!! (/v[_1 R G @ky @ le\,mF)
2J§1ij[u (}?_IRanG ® R]M!zF)
~iK (RxuG® R/ Ry F)
~ G ®jy'RiRjnF
~ G ®R/yF.

This proves the first isomorphism in the statement. The other isomorphisms can be
proved along the same lines. 0J

Lemma 3.3.14. — Consider a Cartesian diagram in the category of bordered spaces

(M, M) (N, N)
e |
(M, M) — (N, N).

Then there are isomorphisms of functors D (Tkyp x1y) — DP Ik x)

'R ~RALe,  ¢RA>RAL
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Proof. — By a similar argument as in the proof of the Proposition 3.3.13, the state-
ment can be reduced to the corresponding statement for a Cartesian diagram

v S v
M —— N
lg’ 0 s
j O

Defination 3.3.15. — We say that a morphism of bordered spaces f: (M, M) — (N, N) is
proper if the following two conditions hold:

(1) /+ M — N s proper,
(11) the projection Iy — N 15 proper:
Lemma 3.3.16. — A morphism f: (M, M) — (N, N) is proper if and only if the following
two conditions hold:
(@) T, XNNCEf- 5
(b) the projection Iy — N 15 proper:

Progf: — Assume (a) and (b). Then M >~ Ff xx N — N is proper. Hence f is proper.

Conversely, assume that f: (M, M) - (N,N) is proper. Since the composite
S: M — T, x5 N — N is proper, it follows that M — T'; xg N is proper. Hence T,
is a closed subset of T’y x N. It follows that

TN (T xgN)=Ty. m
Proposition 3.3.17. — Assume that f: (M, M) — (N, N) is proper. Then Rfy >~ Rf, as
functors D*(1 ko) = D" Ik x))-

Proof. — Consider the projections M <L T, L, N For Fe D (Iky xp))> we have
the isomorphisms (cf. Lemma 3.2.5)

RfuF >~ )< ' Rpanp ' Rivn F,
RAF :]EIRPQ *p‘l R F
~ jx 'Rpanp; Riai<F,

where the last isomorphism follows from Definition 3.3.15(i1). Hence, it is enough to prove
that

ky ® Rpon L.~ 0,
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where L enters the distinguished triangle

L — p7'RinF = p R F —— .
Since p;'M — M is an isomorphism, one has

kpl_'M ®l7i Rt >~ kp;‘M ®P1_1RJB/I*F 21171_1F"J'1\I!!F-
Hence k-1, ® L.~ 0. Then one has

ky @ Rpou L= Rpyy (k- 1y ® L)

=~ RPQH(kp;lN ®kpl—1M ®L) ~ 0,

where the second isomorphism follows from the inclusion p;'N C p;'M due to
Lemma 3.3.16(a). 0

Defination 3.3.18. — Let f - M — N be a continuous map of good spaces. We say that | is
topologically submersive if, for any point x € M, there exist an open neighborhood U of x and a
commutative diagram

Slu
U N
e
S x N,

where S 1s a subanalytic space, qo 1s the projection, and 1 s an open embedding.
The following proposition follows from Proposition 2.3.4 and Corollary 2.3.5.

Proposition 3.3.19. — Let f: (M, M) — (N, N) be a morphism of bordered spaces. Assume
that f - M — N is topologically submersive. Then, for any L, G € D (Ikx x)) there are isomorphisms
in D°(1 ko)

f_IRI}zom (L, G) l) RZ hom Qr_lL,f_lG)a
[k ®f7'G S fG.

Lemma 3.3.20. — For k= 1,2, let fi: (M, Mk) — (N, Nk) be a morphism of bordered
spaces and L, € Db(Ik(Nk,Nk>)~ Set | =fi1 X fo. Then there is a canonical morphism

(3.3.1) S KA Ly — £ (L K Ly).
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Proof. — There are morphisms
Rf!!(ffh gfg! Ly) ~ Rﬁ![][l!Ll X wafg! Ly — L; MLy,

and the desired morphism follows by adjunction. 0J
Note that the morphism (3.3.1) is not an isomorphism in general.
Remark 3.3.21. — For a bordered space (M, M), consider the natural functor
torsn : D (k) < DP(Tk gy yp)-
Then, for /: (M, M) — (N, N) a morphism of bordered spaces, one has
Lovi, v of 'x=flo LN Xy Lovi, 3 Of! ~f'o LN,y
R/ o Loarsn = LNy © Rf..
Moreover, if the projection Ff — N is proper, then
Rfu o tivan = L) © BA

3.4. -Structure. — Let (M, M) be a bordered space and let j: (M, M) — M be
the natural morphism.

Notation 3.4.1.

(1) Let Ii(ky,) be the full subcategory of I (ky;) consisting of ind-sheaves I on M
such that kyy @ F ~ F.
(1) Let Ik xp)) be the quotient category I (kyy) /T (leyyy ) -

Note that Iy;(ky,) is an abelian category.

Lemma 3.4.2.

(1) The composition Ty (kyp) — T(kyy) — Tk np)) @5 an equivalence of categories.
(ii) There is an equivalence D (I vy (ky,)) = D Ik xp)-

Let us denote by (D="(Iky yp,), D=’ Ik, xy)) the t-structure of D*(Iky y;)) in-
duced by the canonical ¢-structure of D"(I;(ky;)). By the definition, we have

D="(Ik ;) = {F € D"(Iky 51 ; H'(RjyuF) = 0 for n > 0},
D="(Iky 1) = {F € D"(Iky 51, s H'(RjyuF) =0 for n < 0}.

The following two propositions are easily obtained.
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Proposition 3.4.3.
(1) The functor @ s exact, t.e. it induces functors
® : D=(Iky ) x D=k 1) = D=k 51,
® : D="(Tky 5)) X D= (k1)) = D= (T )
(1) The functor RZhom s left exact, i.e. it induces a_functor
RZhom : D="(Iky 51)® x D="(Iky 1) = D=k 5p)-

Proposition 3.4.4. — Let f: (M, M) — (N,N) bea morphism of bordered spaces.
(1) Rfy and Rf, are left exact, 1.e. they induce functors
R/, Rfi: D" (Ik gy x) = D= Ik x)-
(i) £~ is exact, i.e. it induces functors
S D= Ik xy) = D= (k1)
fh DZO(Ik(N,N)) — DZO(Ik(MM)).

(ili) Let d € Z=q and assume that [~ (y) C M has sofl-dimension < d for any y € N. Then
(a) Rfy(x)[d] s right exact, i.e. Rfy induces a functor

Rfi: D="(Iky 1) = D= Tk x))-
(b) [ (%)[—d] is left exact, i.e. f* induces a functor
S Dk x) = D (kg )

We denote by
(3.4.1) H": D"(Iky 5p) = D (kg 5p)
the cohomology functor, where we set

D"(1 ko) = D="(I k) N D="(1 k) = Tk a)-

4. Enhanced ind-sheaves

In this section we start by adapting Tamarkin’s construction to the ind-sheaf frame-
work, introducing the category of enhanced ind-sheaves E”(Iky;). This is a quotient cate-
gory of DP(I ky\ixr,, ), where we consider the bordered space Ry, = (R, RU {400, —00})
instead of the real line R. We show that E”(Iky) has a structure of tensor category by
convolution. We then go on to discuss internal and external operations for enhanced ind-
sheaves. In E”(Iky;) we also introduce the notions of stable object and of R-constructible
object.
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4.1. Convolution. — Consider the 2-point compactification of the real line R:=
R U {+00, —00}. Denote by P = Ru {00} the real projective line. Then R has a structure
of subanalytic space such that the natural map R — P is a subanalytic map.

Notation 4.1.1. — Instead of the real line, we will consider the bordered space
R.. := (R, R).

Note that R, 1s isomorphic to (R, P) as a bordered space.
Consider the morphisms of bordered spaces

a: Ry & Ry,
4.1.1)
", o, q1, 92: Rio - ROOv

where a(t) = —t, u(t, ) =t + b, o (4, ) =ty — ¢ and ¢y, ¢o are the natural projec-
tions. For a good topological space M, we will use the same notations for the associated
morphisms

a: M xRy —> M xRy,
w, 0, q1,q5: MxR2 — M x Ry,

Consider also the natural morphisms

M x Ry M x R

\/

When we want to emphasize M, we write 7y, T, v, M, etc., instead of 7w, 7T, 7,
W, etc.

Definition 4.1.2. — The functors
®: D'(Iyr,) X D' (eyrr,) = D' (Tkyisr.,).
Thom™: Db(IkerRoo)Op X Db(IkMme) - Db(IkMme)
are defined by

Kl ® KQ R,Ll,n(ql Kl ®q2 KQ)
Thom* (K, Ky) = Rg,,RZhom (qQ_ K, ,LL'KQ).
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Remark 4.1.3. — As in Remark 3.3.21, let
IMxRy Db(kMxR) - Db(IkMxRoc)
be the natural functor. Then, for F;, F, € D*(kyxr) we have
IMxRo, (F1) é DMxRo (F2) 2 xRy, (RM! (ql_lFl ® QQ_IFQ)),
Thom™ (LM><ROO (F1), tmxr,, (FQ)) = IMxRx (Rq1 «RHom (QQ_IFQ, ,U«! Fl))
The following lemma is obvious.

Lemma4.1.4. — Lat K|, K, € Db(IkMme). Then one has
K, ®K,~K, ® K,
~Rgou (g, 'K ® 07 'Ky)
>~ Rqn (q;ld_lK1 ®M_1K2),
Thom™ (K, Ky) >~ RuRZhom (qgla_lKl, qi KQ)
~ Rq1.RZhom (071K1’ qé KQ).

Proposition 4.1.5. — For K, Ky, K5 € Db(IkMxROO) one has
+ + + +
QQ®KQ®K¢ﬂg®QQ®KJ
+
HOM g1 (K1 ® Ko, K ) 2 Homggy, o (K1, Zhon* (Ko, K)),

Thom™ (K1 é} Ko, Kg) ~ Thom" (Kl,I/lom+(KQ, Kg))

+
In particular, for K € D"(I Kkyixr,, ), the functor K @ * s lefl adjoint to Thom™ (K, %).
Proof-
(1) Consider the morphisms of bordered spaces
@y Gy Gy Vs M X R?, — M x Ry

where ¢}, ¢y, ¢; are induced by the projections R® — R and p’ is induced
by R® > (), &, #3) — t, + t, + t3 € R. Then one can easily prove that both

+ + + +
(K ®Kjy) ® K; and K| ® (Ky ® K3) are isomorphic to

Ruy (97K ® ¢ Ko @5 'Ky).
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(i) Writing Hom instead of Hom pppy,, one has

Roo)’
Hom (K1 é) Ko, Kg) = Hom (R,u” (ql_lKl Q qQ_IKQ), Kg)
~ Hom (¢; 'K, ® ¢, 'Ky, ' Ky)
~ Hom (¢, 'Ky, RZhom (g5 'Ko, ' Ks))
~ Hom (K, Rg;.RZhom (¢; ' Ko, n'K3))
= Hom (K, Zhom™* (K, K3)).

(1) Writing again Hom instead of Hompyqy, . ), one has for any K €
D’ (Tkyixr..)

Hom (K Thom™ (K, ® Ko, K5>)
+ +
~ Hom (K ® (K1 & K2>, K%)
+ +
~ Hom ((K® Kl) ® Ko, Kg)

~ Hom (K ® K., Zhom™ (Ko, Kg))
~ Hom (K, Zhom™ (K1, Zhom™ (Ky, K3))).
Hence, by Yoneda, one obtains

Thom™ (KI é Ko, Kg) ~ Thom™" (KI , Thom™ (K, Kg)). 0

4.2. Idempotent objects. — We set
k{lEO} = k{(x,t)eMxﬁ; (€R, >0}>
k{;:()} = k{(x,t)e.\lxﬁ; 1=0}>

and we use similar notation for k.o, k<o and ky.gy. These are sheaves on M x R
whose stalk vanishes at points of M x (R '\ R). We also regard them as objects of

D" (Ikyixr.,)-
Lemma 4.2.1. — For K e D"(1 Kky\ixr,, ) there are isomorphisms
+
k{,gzo} XK~K~ IhOer (k{[=0}, K)
More generally, for a € R, we have

Jr
k{t:a} Q K~Ru,.K=~ I}wm+ (k{[:_ﬂ}, K),
where (1,: M X Ry = M X Ry is the morphism induced by the translation t — t + a.
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Corollary 4.2.2. — The category D* (Ikyiyr.,) has a structure of commutative tensor category

+
with @ as tensor product bifunctor and ky_qy as unit object.

There are distinguished triangles in D”(Ikyir,.)

+1
k>0 — k=) — k=gy[1] —,

(4.2.1) k=0 — ko) [1] = kyrl1] =,

k>0 © ky<o) = ky=0) = kuxr[1] =
The following lemma is easily verified.
Lemma 4.2.3. — There are isomorphisms in D"(1 kyixr.,)
k(=) é’ K20 — K=o, k>0 é ki-o[1] =0,
ko[ @ ko[ < kiegll], Koy ® Kyl 1120,
o1 byl 1] < Ioprll] ki1 @ kel 1] < Kyl
k(>0 é k(<o >0, k(>0 é ky-o)[1] < k=0,
ko) [11® ke [1] 2 el 1
Hence, the objects K=oy, k=01 [ 11, Ky=0; @ Ky<oy and knixr[1] are idempotents in Db(IkMxRoo).

Recall that an idempotent in a tensor category is a pair (P, &) of an object P and
an isomorphism §: PQP — P such that§ ® P=P ®£& as morphisms PQP®P — PP

(cf. [15, Lemma 4.1.2]). Note that in each distinguished triangle P — P — P” 5 in
+ + +
(4.2.1), P, P, P” are idempotents and P @ P’ ~0, P P~ P, P® P" >~ P".

Corollary 4.2.4. — Let K € Db(IkMxROO). Then

+ o~ +

k{tz()} K —K <— k{[>0}[1] ®K~0
+ +
— k{[fo} ®RK~0 andkMxR[l] ® K ~0.
Moreover,

+ + ~

ki~ ® K>~ 0 < ki.¢[l]® K < K.

Stmular results hold when replacing the functor é) K with the functor Thom™ (x, K).
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4.3. Properties of convolution.

Lemma 4.3.1. — For K|, K, € Db(IkMxRM) and L. € D" (Ikyy) one has

+ +
7L (K ®K,) ~ (rT LK) 8 K,,
RZhom (n_lL, Thom™ (K, KQ)) ~ Thom™ (JT_IL K|, KQ)
~ Thom™ (K, RZhom (7 'L, K,)).

Progf: — Since the proofs are similar, let us only discuss the second isomorphism.
Since 7 o ¢y =7 o ¢y, one has

RZhom (7 'L, Zhom™ (K, Ky))
= RZhom (7 'L, Rg1.RZhom (g5 'K, ' Ky))
~ Rq.RZhom (g7 '7 'L, RZhom (g, 'Ky, ' Ky))
~ Rg.RZhom (g5 '7 "L, RZhom (g5 'Ky, 1 Ky))
~R¢1.RZhom (g5 ' (7 'L®K,), ' Ky)
=Thom" (7 'LRK, K,). O

Lemma 4.3.2. — ForK € Db(IkMwa) and L. € D (Ikyy) one has

7 LO®K~ (17 Lok ) ® K,
RZhom (7 'L, K) 2= Thom™ (7 'L ® ko), K),
a 'RZhom (K, 7' L) = Zhom™ (K, 7 'L @ k).

Proof. — The first two isomorphisms follow from Lemma 4.3.1 for K, = k¢ and
Ky = K. Let us prove the third isomorphism.

Let 8°: M x Ry, = M x R% be the morphism induced by the anti-diagonal map
R — R’ ¢+ (—¢,t), and 4: M - M x R, the morphism induced by the inclusion
x> (x,0). Note that 7 o 4y = idyr, ky—0} = Rip.Jkyr, and there is a Cartesian diagram

sa
M xRy —— M x R%

l” ER

0

M~ MxR,.
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Then we have
Thom™ (K, 7 'L @ kyoy) = Zhom™* (K, Rio,L)
= Rg1.RZhom (g, 'K, ju' Rig,L).
On the other hand, u' Rép, L.~ R38‘7 'L, and hence
R¢1.RZhom (g, 'K, p' Rip, L)
~ R¢,.RZhom (g, 'K, R8{7' L)
>~ R¢,R8!RZhom (8°'¢; 'K, 7' L).
Then the result follows from ¢, 0 §“ = a and ¢y 0 §* = 1d. U

Lemma 4.3.3. — For K, Ky, K3 € Db(IkMme) one has

+
R, R Zhom (K1 ® Ko, Kg) ~ R, R Thom (K1, Thom"* (Ky, Ky)).

Progf: — The proof is similar to part (i) in the proof of Proposition 4.1.5, using
Lemma 4.3.1. O

Lemma 4.3.4. — For K|, Ky € Db(IkMme) there are isomorphisms
+
Ry, (Kl ® KQ) ~ Ry K, @ Ry Ko,
RJT*I/zoer(Kl, KQ) >~ RZhom (RTL’[[Kl, RT[*KQ)

Progf: — Note that 7 o 4 = 7 o ¢; and that there i1s a Cartesian diagram

71
MxR:, —= M xR,

EL R E

M x Ry M.

Then one has
Ry <K1 é Kg) = Ry Ry (qflKl ®92_1K2)
~ Ry Ry (g7 K ® ¢, 'Ko)
>~ Ry, (K1 ®Rging; 'Ky)
~ Rry (K; ® 77 'Ry Ko)
~ Rmr K| ® R K.

The proof of the second isomorphism is similar. UJ
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Since R k>0 2 0, we have the following result.
Corollary 4.3.5. — For any K € Db(IkMxROO), one has
+
R (k{tz()} X K) ~0,
Lemma 4.3.6. — For K € Db(IkMwa) and L. € D*(Ikyy) one has
B |
(77'L) @ K~ 7' (L®Rm,K),

Zhom™* (7 ~'L,K) >~ 7' RZhom (L, Rm,K),
Thom* (K, 7' L) >~ 7' RZhom (Rmy K, L).

In particular, we have

+
(k=0 @ kp<op) ® 7 'L~0,
Thom'™ (k=) @ k<o), 7~ 'L) > 0.

Progf: — Since the proofs are similar, let us only consider the second isomorphism.
Note that 7 0 ¢ = 7 o i, and that there is a Cartesian diagram

"
M xR% —= M xRy

[ o ]

M x Ry M.

Then one has

Thom* (w 'L, K) = Rg1.RZhom (¢, '7 'L, 1’ K)
>~ Rq1.RZhom (M_ln_lL, /L!K)
~ Rqy.t' RZhom (7w ~'L, K)
~ 7' Rm,RZhom (7 'L, K)
~ ' RZhom (L, Rm,K). O

By the above lemma, noticing that 7 ~'ky; > ky.r, we deduce
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Corollary 4.3.7. — ForK € D"(I kyicr,,) one has

+
ky.r ® K>~ 7"'Rm, K,
Ihoer(kMxR, K) >~ ! RT[*K

+
Let us give an alternative description of the functors ® and Zhom™ .

Notation 4.3.8. — Denote by S the closure of {(#, &, t3) € R*; t; + t, + t3 = 0}

in R'. Consider the maps 71, o, fi: S — R given by 7,(t1, b, 1) = 11, §o(t1, b, 13) = by,
it b, t3) = —l3 = t; + &, and denote by the same letters the corresponding maps
M x S — M x R. This is visualized in the following picture, which shows how the three
variables behave at infinity:

+00
—00
400
—00
*
—00 400
There are commutative diagrams
2
M x RZ M xS
ul lu for u=q, q2, 10,
M —
M x Ry M xR

where £ is the morphism associated with the embedding R* — S given by (4, &) >
(tlv tQ’ —4 — tQ)
One has

A ({t# —o0}) NG ({t=—o00}) C 3, ' ({t = +o0}).
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One also has

(4.3.1) T MxBNG' MxR) =" MxRNi'(MxR)
= k(M X RQ).

We identify M x R? with an open subset of M x S by £&. Then M x RZ_ is isomorphic to
M x (R?,S) as a bordered space. For F € D"(Ikyxs), one has

Rink™'F ~ kyxr: @F, Rk.t' F >~ RZhom (kyyre, F).
The following lemma is immediate.

Lemma 4.3.9. — Let K, K, € D"(1 kyixr,, ). With the above notations, one has isomor-
phisms

K, é K, ijﬁl Ritn (%IR]M!!K1 ®551ij/1!!K2)
~ jvi R7in (75 ' Rivina™ Ky @ 27 ' Rjvin Ko,
Thom™ (K, Ky) 3, Rg1.RZhom (7, 'Rjvn K1, 2" Riang. Ko)
~ ji' RitRZhom (35 ' Rivna™ K, 7 Riv.Ko).

Let us now state a result which will be fundamental in the next section.
Set for short

b
k{t;éioo} = k{(x,t)eMxﬁ; 1#+00) € D (Iky«w)-
Recall that 7: M x R — M denotes the projection.

Proposition 4.3.10. — For K € D"(I kyixr,,) there is a distinguished triangle

(4.3.2) T[_IL — k{[zo} é K— I/zom+(k{t20}, K) +—1>,

where the object 1. € D" (Ikyy) is given by

L = R, (k{12—o0) ® RinK)
~ RJT!!I}l0m+ (k{[z()}, K)

+
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Proof. — Consider the Cartesian diagram,

71

Mx R, xR M x R,
\LQQ O T
M x R M.

Remark that g, F ~ g, 'F[1] for any F € D" (Iky;,g)-

Let (4, ) e R? C EQ be the coordinates. In the sequel we will denote by {t, <4},
{t; < t,}, etc., the subsets of M x R? described by these inequalities. Set

K= RaK e D" (Iky;,g)-

One has the isomorphisms
+ B i
ki ®K 5 R7,, (k<) ®7; 'K)

~ Ry, *(kMxR2 ® RZhom (<}, Knixr?) ®6_]é IZ[— 1])

= R7,. (kvixre ® RZhom (<, [11, 75 K)),

where (1) follows from Lemma 4.1.4 and (2) from Proposition 2.3.4. Similarly, one has
the isomorphism

Thom (ky=0y, K) 2= Rg, ,RZhom (ky, <y, 3 K).
Now, we claim that there are the isomorphisms in D’ (Iky,g__ &)
4.3.3) Kkyir ® RZhom (k< [11, 7, K)
> Ky mx®y oo @ RZhom (k< [11, 7, IZ)
and
(4.3.4) RZhom (ki <y), 35 K)
S KRy ool © RZhom (K <1, 3 K).

We shall give a proof later. Admitting the above isomorphisms for the moment, let us
complete the proof.
We have

+ B e
ki @K~ qu*(kMxRx(ﬁ\{foo}) ®RZhom (k{t2<l1}[1]’ 79 K))’
Thom" (kyo), K) = Ry, *(kMxRx(ﬁ\{—oo}) ® RZhom (k{mStz}» ?; K))
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From the distinguished triangle

+1
k{[]ft‘Q} — k[t2<t1}[1] — kX’IXRQ[l] —,

we deduce a distinguished triangle

L — kg é K — Zhom" (=0}, K) —
where

L=R7,, (Kyxrx® (—oop ® RZhom (knixre[11, 3 K))
One has the isomorphisms

RZhom (kyixre 35 K) = RZhom (3; 'kuixr. 7, K)
~ G, RZhom (kyr, K)
~ 7, K.
Hence,
Ky r xR\ (—oopy @ RZAom (l“MxR2 (11, ‘_ié IZ)
~ 7, ko) ©F RI-1]
~ 7, 'kiz0 ®7,' K
=7, (ko) @K
~ Gy (o) @ K)[—11.
It follows that
L2~ R7,,7) (ko) @ K)[—1]
~ 77" R, (Kytoe) @ K)[—1]
~ 71 R, (K o) R K).
We have thus proved (4.3.2) with
L = R7, (k{00 ® R K).

Applying Ry, to (4.3.2), we get a distinguished triangle

+
R7T1!7T71L —> R?ng (k{tZO} (02) K) —> R]T”_’Z}lom+(k{t20}, K) i) .
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+
Corollary 4.3.5 gives Ry (ky>0) ® K) 2~ 0. Noticing that L 2~ Ry ~'L[1], we get
Similarly, applying R, to (4.3.2), we get
+
L~Rw, (k{zo} ® K)

It remains to prove (4.3.3) and (4.3.4). It is enough to show that for any F €
P g Y
D(Ik,, =) one has

MxR
(4.3.5) kMxRx{+oo} (02 RZhom (k{,2<“}, F) ~ 0,
(4.3.6) kMxRx{—oo} X RZhom (k{l‘lftg}’ F) ~ 0.

As in Notation 4.3.8, let S be the closure of {(4, &, %) € R*; t; + &, + t3 = 0}
n ig. Consider the map p: S — EQ given by p(t1, ty, t3) = (41, ). Then p~ ' (R?) = R
We shall denote by the same letter the induced map p: M x S — M x R’

Since Rpy (1 (1, <0p) 2 <) and Rpy (-1 4 i) 2 ki <1,), we have

RZhom (k{lz<ll}’ F) ~ Rﬁ*RI/zom (kﬁfl({[2<zl}),ﬁ! F),
RZhom (K, <), F) = Rp.RZhom (K1 <ir))s ' F).
Then (4.3.5) follows from
Ky (xR (+o0) @ RZhom (kg <4y, F)
2 Rp (ki1 (v oo @ RZhom (K1 i, <i5 ' F))
and
H—1 71 —
({t<u})Np' (M xR x {+o0}) = 2.
Similarly, (4.3.6) follows from
F{a<6)Np ' (MxRx {—o0}) = 2. O
Corollary 4.3.11. — For K € DP(1 Kkyixr,, ), there are isomorphisms

+ ~
Ih0m+ (k{,gzo}, k{tZO} ® K) —> Ik0m+ (k{tZO}a K),

+ . ~ +
k{,zo} ® Ihom (k{lz(J}, K) —> k{,zo} ® K,

N +
TLhom (k{[fo}, k{zz()} X K) ~ 0,

5 +
k{[fo} & Lhom (k{tz()h K) ~ 0.
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Proof. — By Lemma 4.3.6, for any L. € D"(Iky;) one has
+
I/zom+ (k{tzo}, T : L) ~0, k{tZO} X 7T71L ~0.

Recalling also Lemma 4.2.3, the isomorphisms in the statement follow by applying the

functors Zhom™ (k(x>0p, *¥) and k1> é * to the distinguished triangle (4.3.2). O
Notation 4.3.12. — For K € D"(I kyixr, ), consider the functors
UM, 400 (K) = iﬁ}iw RavK,
where iy 1001 M — M X R denotes the embedding x > (x, £00).
Lemma 4.3.13. — For K e D°(1 kyixr,, ), one has the isomorphisms
VM, —o0 (k{zzo} ® K) ~0,
V. 400 Lhom™ (k>0 K) =0,

+
UM, +00 (k{zz()} ® K) ~L,

Y1, —o0 Zhom (k;=0), K) ~ L[1],
where L is the object defined in Proposition 4.3.10.

Proof.

(1) Since the proofs of the first and second isomorphisms in the statement are
similar, let us only check that

(4.3.7) Uat o <k{t20} ® K) ~ 0.
Set K’ = kyzo) ® K. Since ky=o; ® K ~ K/, Proposition 4.3.10 implics
RT . (kqz—o0) ® Riv:K') >~ R, K.
Since R, K" >~ R, R K', we get
RT . (k(=—o0) ® Rin.K') 0.

+
One concludes since the above complex is isomorphic to Yy, —oo (ki=0 ® K).
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(i1) Since the proofs of the third and fourth isomorphisms in the statement are
similar, let us only check that

(4.3.8) WUnt.— oo Zhom™ (ky=0y, K) 2~ L[1].
Applying Y\« to the distinguished triangle (4.3.2), we obtain
Y, -0 Zhom™ (Ky=0y, K) = Yy oo (7 7' L[ 1]).
Here we used (4.3.7). Then (4.3.8) follows from ¥y oo (7t ~'L) > L. U

Let us state an easy lemma which will be of use later.
Consider the projections
™M

MM xRy, 25 Ry,

Lemma 4.3.14. — Let f : M xRy = N xRy be the morphism of bordered spaces induced
by a continuous map f : M — N of good topological spaces.

(i) For K € D"(Ikyyr.,) and G € D*(Ikg_ ), there are isomorphisms
~ (it IR
R/ (sM G® K) ~J'G® RjK,
RLZhom" (53 G, K) 2= Zhom* (55" G, RLK).
(i) Ffor L e D"(1 kyor,) and G € D"(I kgr_ ), there are isomorphisms
1 —1n & 1 71
7 (sN G®L) ~5IG®J L,
S Thom* (55" G, L) = Thom™ (s;{ G, ' L).
(i11) One has
Rfvomy ~ng' oRf,  [lomg'~my of™",
Rﬁon&l:nﬁ]oRﬁ, f’on)!]:rrl{lof!.
4.4. Enhanced ind-sheaves.
Definition 4.4.1. — Consider the full subcategories of D" (1kyiyr.,)
+
1Cp o = {K; ko ® K ~ o}

= {K; Thom™ (kys0), K) = O}’
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4
ICip=0) = {KQ ki< ® K~ O}

= {K, Ih0m+(k{tso}, K) ~ 0}’
IC{[*=O} = IC{;*sO} N IC{t*zo}

+
= {K; (k=) ® k<) ® K= 0}
= {K, I/lOer(k{tzo} D k{[fo}, K) ~ 0},

where the equalities hold by Corollary 4.3.11. Consider also the corresponding quotient categories

Ei (Iky) =1Cwp>0y/1C 1=y,
E’(Iky) = D" (Ikyixr..)/IC =)

We call E®(Ikyp) the triangulated category of enhanced ind-sheaves.

Proposition 4.4.2. — There are equivalences of triangulated categories

Ei(IkM) = Db(IkMxROO)/IC{it*SO}»
E"(Ikyy) Ei (Iky) @ E” (Tky).

This follows from Proposition 4.4.4 below.
The next lemma easily follows from Corollary 4.3.7 and the last distinguished tri-
angle in (4.2.1).

Lemma 4.4.3. — One has

IC—g = {K; 77'RT.K = K} ={K; K= n'Rm,K}
={K; K~ 7L for some L € D"(Ikyp) }

={K; K7L for some L € D" (Ikyy) }

=1

Ki K S ol 1@ K}

K; K <= Zhom" (knixr[11, K) }.

Let us describe the categories E'i (Iky) and E*(I1ky,) using Proposition 3.1.1.
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Proposition 4.4.4.
(i-a) The left orthogonal to 1C . p<qy ts given by

+ ~
HCpiey = {K; Ko @K S K}
+
= {K; kii.0®Kx 0},
and there is an equivalence
b 1 iy
EL(Iky) = “1C4p <o), K ks ®K,
with quasi-inverse given by the quotient_functor. Note that
Crer<0) CICs <)
(i-b)  The right orthogonal to 1Cx <oy is given by

ICétt*gO} = {K/§ K' = Thom" (k{i’zo}’ K/)}
= {K/; Thom™ (k{j:t>0}’ KI) = 0}’

and there is an equivalence
EL (Iky) — ICL <) K = Zhom™ (kps=0), K),
with quasi-inverse given by the quotient functor. Note that
ICY oy CIC (e <o)
(i--a) The lefi orthogonal to 1Cyp—, is given by
MGy = K (ko @ ko) @ K S K}
= {K; kyixr é K>~ 0}
={K; RmyK >0},
and there is an equivalence
E'(Iky) = “1Crny. K> (kg @ kypco) ® K,

with quast-inverse given by the quotient functor.
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(ii-b) The right orthogonal to 1Cyp—oy is given by
IC{J;*ZO} = {K, I/zom+(k{t20} (&) k{tSO}» K) :> K}
= {K; Thom" (kyixr, K) = 0}
={K; Rmr, K>~ 0},

and there is an equivalence
Eb (IkM) — IC{J;*:O}, K Ih0m+ (k{tz()} &) k{tSO}a K),

with quasi-inverse given by the quotient functor.
(i11) One has

H1Crz0) @ T1Cir<0) = 1Cpr—ny,s
1 1 ~ 1
Ic{t*EO} ® Ic{t*so} - Ic{z*=0}-

Progf: — The proof'is easy. Let us only note that the equality
+
{K; Ky p ® K~ o} — {K: Rr,K ~ 0}
follows from Corollary 4.3.7. 0J

The functors

+
(k=0 © ky<o) ® *: D" (Ikyier,) — D" (Ikyixr,),
I/zom+(k{t20} @ k<o), *): Db(IkMxRoo) — Db(IkMwa)

(4.4.1)

factor through E’(1ky) by Lemma 4.3.6.

Notation 4.4.5. — Denote by
LE: EP(Iky) — LIC{;*:O} - Db(IkMme),
RF: E’(Iky) — IC{Lt*:o} C D" (Ikyxr.,)
the functors induced by (4.4.1).

Note that the functors LE and RF are the left and right adjoint of the quotient
functor Db(IkMxROQ) — EP (I kM).
We have a morphism of functors L. — RE.

Lemma 4.4.6. — Let ¥, Fy € D" (Ikyxr,, ). Let Ky, Ky be the objects ofEb (Ikyp) corre-
sponding to ¥y, ¥y by the quotient functor.
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(1) There are isomorphisms in D"(I kyixr,,)
Thom* (LF Ky, LFKy) > Zhom* (LFK,, F,)
~ Thom" (Fi, RFK,).
(i) There are isomorphisms
Hom g gy, (K1, Ko) = Hom g, o (LE K, Fy)

~ E
~ Hom g g1,y (F1, REKy).

4.5. Operations. — By Lemma 4.3.6 the compositions of functors

.

(4.5.1) D’ (Ikywr.,) X D’ (Ikyiwr,) —> D’(Ikyyr,,) — E’(Ikyy),
Thom™

(4.5.2) Db(H‘KMme)Op X Db(IkMme) — Db(IkMme) — E'(Iky),

factor through E”(Tky) x E°(Iky) and EP(Iky)™ x E’(Ikyy), respectively.
Defination 4.5.1. — We denote by
S . b b b
®: B’ (Iky) x E’(Iky) — E’(Ikyp),
Thom': EP(Iky)™ x EP(Iky) — E"(Iky),
the functors induced by (4.5.1) and (4.5.2), respectively.
Note that, for any K € E”(Iky;), the composition
+
k{tz()} X K—K— I/l()m—i_(k{zzo}, K)
is an isomorphism in E”(Iky;) by Proposition 4.3.10.

Defination 4.5.2. — By Lemma 4.5.2 one gets functors

7% @%: D"(Iky) x E’(Iky) — E°(Iky)),
RZhom (7 "%, %) : D’ (Iky)® x E*(Iky) — E*(Iky),
RZhom (%, 7' %) : E"(Iky)™ x D" (Iky) — E"(Iky).

Remark 4.5.3. — The composition

®
D" (Ikyxr,,) X D’ (Ikyivr,,) —> D’(Ikyir,) — E"(Ikyy)
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does not factor through E’(Iky) x EP(Iky), and the composition

RZhom
D" d kMxRoo)Op x D" (Ikyxr,) —— D (Ikyxr,) = E (Ilkyp)

does not factor through EP(I1ky)™ x EP(Iky).

Lemma 4.5.4. — For K, Ky, K3 € EP(Iky) there is an somorphism

+
Hom gy (K1 @ Ko, Ky ) = Hom gy (K1, Zhon* (Ky, K)),

+
ve., for K € E'(Iky), K® *isa left adjoint OfI}zoer(K, *).
Lemma 4.5.5. — For Ko, K|, Ky € EP(Iky) there are natural morphisms in E’(1ky,)
+
Ko ® Zhom* (Ko, K;) = K|,
+
Thom* (Ko, Ky) ® Zhom™ (K, Ky) = Zhom* (Ko, Ky),
+ +
Ko ® Thom™* (K, Ky) — Thom" (Kl Ky ® K2>,
+ +
Thom™ (K, Ky) — Thom™ (KO QK. K, ® K2>,

Thom* (K, Ko) = Thom™ (Zhom™* (Ko, K,), Zhom™ (Ko, Ky)),
Ko — Zhom™ (I/zom+(Ko, Ky, Kl).

Proof: — The first morphism is the image of the identity by the isomorphism
Hom gy ) (Zhom™ (Ko, K1), Zhom™ (Ko, K))
~ +
= Homgh g (KO ® Thom™ (Ko, K,), Kl).
The second morphism follows from
+ N + N
Ko ® I}LO?’IZ (Ko, K]) ® I/wm (K] , KQ)
+
— K, ® Zhom* (K, Ky) — K.
The third morphism is the image by the isomorphism

+ + N +

~ + +
= Homen ey, (KO ® Thom™ (K, Ks), Thom* (Kl, Ko ® KQ))
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of the morphism

+ + +
(4.5.3) Ko ® K, ® Thom™ (K, K,) = K, ® K,

induced by the first morphism in the statement.
The fourth morphism is obtained from (4.5.3).
The fifth morphism is obtained from the second one.
The last morphism follows from the first one. U

Letf: M — N be a continuous map of good topological spaces. Denote by f : M x
R, — N x R, the associated morphism. Then, by Lemma 4.3.14(111), the compositions
of functors

(4.5.4) D" (Tkyirr. ) —s DY (Ikyyr.) — E"(Iky),
]‘71).7‘!
(4.5.5) D"(Ikyygr, ) —> D" (Ikyyr, ) — E’(Iky)

factor through E’(Iky) and E’(I1ky), respectively.

Defination 4.5.6. — We denote by
Efy, Ef,: E’(Iky) — E’(Iky),
Ef ', Ef': E’(Iky) — E°(Iky),
the functors induced by (4.5.4) and (4.5.5), respectively.
Defination 4.5.7. — For K € E’(Iky) and L € EP(1ky), set

a e el b
KXL=Ep KQEp, LeE (Ikyn),
where py and py denote the projections from M x N to M and N, respectively.

Using Notation 4.4.5, for K € E’(Iky;) and L € E’(Iky) one has isomorphisms in
Eb(Ikm) or Eb(IkN)Z

Ef,K ~Rfy LEK ~ Rf, REK,
Ef, K ~Rf,LEK ~Rf,REK,

Ef'L~/"'LEL~/'REL,
Ef'L~f' LEL~/'REL.

Let us now show that the above operations satisfy similar properties to the external
operations for ind-sheaves.

The following two propositions immediately follow from their counterpart in Lem-
mas 3.3.9 and 3.3.10.
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Proposition 4.5.8. — Let [ : M — N be a continuous map of good topological spaces.
(i) The functor Ef,, is lefl adjoint to Ef".
(i) The functor Ef~" is lefl adjoint to Ef .

Proposition 4.5.9. — Given two continuous maps of good topological spaces L. mL N,
one has

E(f o)y ~Ef,0Eg, E(fog), ~Ef, o Eg,
and
E(fog) ' ~Eg'oEf, E(fog)' ~Eg' o Ef".

Proposition 4.5.10. — Let f: M — N be a continuous map of good topological spaces. For
K e E’(Iky) and L, L, Ly, € E’(Iky), one has somorphisms

Ef, (Ef‘lL ® K) ~L®Ef,K,

Ef-! (L1 ® LQ) ~Ef L @Ef L,
Thom™ (L, Ef ,K) >~ Ef , Thom™ (Ef 'L, K),
Thom™* (Ef K, L) ~ Ef, Zhom™* (K, Ef'L),
Ef Thom" (Ly, Ly) >~ Zhom"™ (Ef 'L, Ef 'Ly),
and a morphism

Ef ™' Thom" (L, Lo) — Zhom" (Ef 'Ly, Ef ~'Ly).

Proof-

(1) Since the proofs of the five isomorphisms in the statement are similar, let us
only deal with the fourth one. Consider the morphisms

gt oy it M x RS, — M x Ry,
qua qNQs /'LN: N X Rio — N X I{oo
induced by (4.1.1). Consider the Cartesian diagrams

U

S
M x R, ——= N xR%
l u O J/ v for (u, v) = (gn15 gn1)5 (gm2s gna)s (s UN)-
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Then one has
Thom™ (Ef K, L) ~ Rgx1.RThom (g5,Rf LEK, p; REL)
=~ Rgn1+RZhom (Rﬂ 91;112 LEK, ;Lf\v RE L)
~ Ryn1+Rf,RZhom (g3 L° K, £ iy RFL)
~ Rf.Rgwi R Zhom (qngy LEK, pi /' REL)
~ Ef Thom™ (K, Ef'L).
(i1) The last morphism in the statement is obtained by adjunction from
B/ 'Ly @ Ef ' Thon* (L, L) = Ef~' (L @ Thon™ (L, L)
— Ef 7 'L,.
Here, the last morphism follows from Lemma 4.5.5. O
The next proposition follows from Lemma 3.3.14.

Proposition 4.5.11. — Consider a Cartesian diagram of good topological spaces

S
M N’
It
v
M N.

Then there are isomorphisms of functors E>(Iky) — E”(Iky)
B¢ 'Efy~Ef\E¢".  EgEf,~Ef.E.

Lemma 4.5.12, — Let F1, F, € Db(IkMxROO). Let Ky, Ky be the objects ofEb(IkM)
corresponding to ¥\, Fy by the quotient functor. Then one has

Rm.RZhom (LFK,;, R* K,) >~ Rw,RZhom (LF K, F,)
~ R, RZhom (F1, RFK,).
Progf: — The first isomorphism follows from
Rr.RZhom (LE K, 7' L) > RZhom (Rmry LF K, L) >0,
and the second isomorphism follows from

Rr.RZhom (7' L, R® Ky) > RZhom (L, R, R K,) ~ 0. O
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Definition 4.5.13. — We define the hom-functor
Hom": EP(Iky) ™ x E*(Iky) — D" (ky)
as follows
HomE (K, Ky) = oy R, RZhom (LE K, LE KQ)

(
=~ o R RZhom (LF K, R K))
(
(

=~ o R RZhom (REK, REK))

%’) OIMRE* RZhom RjM!I LE Kl s Rj]\I* RE KQ)
~ Rﬁ* RHom (R‘].M” LE K] s le\j* RE KQ)

Here, (x) follows from Lemma 3.3.7(1v) and wn the last isomorphism we used the fact that o« commutes
with R .

Lemma 4.5.14. — For K|, Ky, € EP(Iky), one has

Hom g gy, (K1, Ko) 2 H'RT (M; Hom® (K, K»))
~ Hom g, , (kn, Hom™ (K1, Ko)).

Lemma 4.5.15. — For K, Ky, K5 € E’(I1ky), one has
Hom" (Kl é Ko, K3) ~ Hom" (K1 , Thom™ (K, Kg)).
In particular,
Hom® (K, Ko) = Hom" (kjzoy, Zhom™ (K, Ky)).
Letip: M — M x Ry, be the embedding x — (x, 0).
Lemma 4.5.16. — For K € E’(Iky;) and L € D*(I1kyy), one has
Hom" (k=g ® 7 'L, K) >~ ayRZhom (L, 1 R¥K).
Note that & does not commute with 7; .

Proof: — There is the chain of isomorphisms

Hom" (ky—oy ® 7 'L, K) = oy R, RZhom (ko) ® 7 'L, REK)
=~ ot R RZhom (7' L, RZhom (ky=o), RFK))
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~ apiRZhom (L, R, Rip.iy REK)
~ aniRZhom (L, iy REK).
Here the first isomorphism follows from Lemma 4.5.12. U

The following lemma follows from the fact that & commutes with Rf;.

Lemma 4.5.17. — For f: M — N a morphism of good topological spaces, K € E"(Ikyy)
and L € EP(I1ky), one has

RfHom® (K, Ef'L) =~ Hom" (Ef,K, L),
Rﬂ’HamE(Ef_lL, K) ~ Hom" (L, Ef.K).
Remark 4.5.18.
(1) For K|, K, € E’(Iky) and F € DP(ky), the isomorphism
RHom (F, Hom" (K, Ky)) =~ Hom® (7' FQK,, Ky)

does not hold in general.

(i) Let /: M — N be a morphism of good topological spaces and L, Ly €
E'(Iky). Since o and f' do not commute in general, the isomorphism
S Hom®(Ly, Ly) ~ Hom®(Ef 'L, Ef'Ly) does not hold in general.

4.6. t-Structure of E’(Iky). — In this subsection, we will give a [-structure on
E’(Iky). Recall the t-structure on Db(IkMxROO) defined in Section 3.4.

Defination 4.6.1. — We set
E='(Iky) = {K € E"(Iky); L K € D="(Ikyixr.)}.
EZO(IkM) = {K S Eb(IkM), LEK S DEO(IkMXROC)}.

Proposition 4.6.2. — The pair (E="(I1ky), E="(Ikyy)) is a t-structure on E® (Ikyy).
Progf- — It 1s enough to show that for K € EP (Ikyp) there are isomorphisms
(kg=0y @ ky<op) é T EK ~ 71 EK,
(ko) @ ko) @ TOLEK 2 T LEK.

In other words, we have to prove

(4.6.1) T="LFK, T LEK € *Cjpeyy.



124 ANDREA D’AGNOLO, MASAKI KASHIWARA
Hence it is enough to show
(4.6.2) Rryt="LEK ~ Rm, 77" LFK ~ 0.

We have a distinguished triangle

Ry t='LEK — Ry 1K — Ryt TEK —

Since the middle term vanishes we have

Rm, " LEK ~ R, t="LEK][1].
By Proposition 3.4.4(iii)(a), we have

Rryt " LFK € D’(Ikyr,) and Rmyt='LFK[1] € D="(Ikyr,, ).
Hence we obtain (4.6.2). 0

Let =", =" and H" be the truncation functors and the cohomology functor for
this {-structure. Then we have the quasi-commutative diagrams

id

E’(Iky) — > EP(Tky) E°(Tky)

Q

D*(Ikyixr.,) — D(Ikyixr,.)

where Q) is the quotient functor.
Lemma 4.6.3. — For a € R, the functors

+ + +
ki, ® *, ki ® %, k< ® *

are exact endofunctors of E® (Ikyy).

+
Proof. — The functor ki, ® * >~ Ru,.(*) 1s an exact functor, where p,: M X
R, — M x R is the morphism induced by the translation ¢ — ¢ + a.
For K € EP(Iky), there are isomorphisms

+ + +
(ky=q) © ky<y) @ K> kj—y ® (ki=0) © k<) K
+
~ k{t:a} ® K.

+ +
It follows that (ky>, @ ky<,) ® * i3 an exact functor. Hence so are ky-, ® * and

+
k{tSa} ® *. |:|
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4.7. Stable objects.

Notation 4.7.1. — Consider the objects of D"(I kyixr,,)

k{t>>0} = “li_n)l”k{tZa}’ k{t<*} = “h_n)ln k{t<a}‘
a—+00 a— 400

We have a distinguished triangle in D"(1 Kkyixr,,)
1
(4.7.1) kg — ks — Kpag[1] — .

Proposition 4.7.2. — For K € Db(IkMka) and n € Z one has

+ +
R H' (k{z>>0} ® K) =~ “lin” Ry H” (k{tZa} ® K>,

a—>—+00
i + + +
H (k{z>>o} ® K) >~k ® H (k{tzo} ® K)

Proof-

(1) The first isomorphism follows from Proposition 5.2.6(1) of [13].
(i) Let us prove the second isomorphism. Lemma 4.6.3 implies

+ +
H%hmﬁuq:k@d®Hm9.
Taking the ind-limit with respect to a — 400, we obtain the desired result. [J

We have the isomorphisms in D"(1 kyixr,,)

+
(4.7.2) k{z>>()} b2 l‘K{/>>0} = k{l>>0}’

+ ~ ~ +
(4.7.3) k{tz—a} ® k{z>>0} - k{t>>0} — k{tza} ® k{t>>0}
for any a € Ry,.

Notation 4.7.3. — Denote by kE, the object of E(Iky) associated with ks €
D"(I kyixr,, ). More generally, for I € DP(ky), set

FE =k @7 'F e E’(Iky).
Note that one has

Liky ~kiso and REkY >k [1].
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E o/ b
Lemma 4.7.4. — The functor ky; @ * is an exact endofunctor of E” (Ikyy).

Proof: — By Proposition 4.7.2, for K € E"(Iky) one has
+ +
H (kgI ® K) ~kE @ H'(K).
+
Hence ky; ® * is an exact functor. O

Proposition 4.7.5. — Let K € E>(Ikyy). Then the following conditions are equivalent.

() K< kg @ K > kyoy ® K forany a> 0,

(i1) Thom* (kizq, K) — Thom* (ky>0y, K) <— K forany a > 0,
(iif) K <= k=) ® K= ky 9K, N

(iv) Zhom* (KE,, K) —> Thom™ (kysq), K) < K,

+
v) K~kE ® L for some L € E*(1kyy),
(vi) K= Thom™ (K5, L) for some L € E*(Iky).

Progf: — The less obvious implications (1) == (ii1) and (i) == (iv) follows from
Corollary 2.2.3 and Proposition 2.2.1.

+
Note also that Zhom™ (k(>q, K) >~ k(>_, ® K for any a € R. Hence, for example,
(i11) == (11) 1s given by

+
Ihoer(k{tZa}, K) ~ k{tz—a} ® K
o+
~ki> g @ky QK
~kE @K~ K 0
~ ki, ~ K.

Defination 4.7.6. — A stable object is an object of Elj_ (Ikyp) that satisfies the equivalent condi-
tions of Proposition 4.7.5.

Remark 4.7.7. — The notion of stable object is related to the notion of torsion
object from [25] (compare [7, Section 5] and Proposition 4.7.9 below).

Note that, for K € E’(Iky), one has isomorphisms in EP(1ky)
+
kE,[ ® Lhom™ (kllf/[, K) ~ Thom* (kgl, K),

+ +
Thon* (kl‘fl, K ® K) ~kE @ K.
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Corollary 4.7.8. — For K|, K, € EY(Iky) there is an wsomorphism in E’(Iky)
+ + +
Thom* (kgI ® K, k5 ® K2> ~ Thom" (Kl, K, ® KQ).

Proposition 4.7.9. — Let F € Db(kMxRoo) and K € E’(Iky). Assume that
7 (supp(Rai F)) s compact. Then there are isomorphisms

E iy E +
Hom EP(Ikyp) <k1\/[ ® Fa kl\’I ® K)

. +
~ 1&1}1 Hom Eb(IkM) (Fv k{lZa} ® K)

a—>—+00

. +
~ hgl Hom Eh(Ikly[) (k{tz_a} ® F, K) .

a—>—+400

Proof.
(1 We have

E S E &
Homen ) (kM QF ky ® K)
pa +(1LE LE S
+ £
~ Hompg gy, (k{t30} QF ky® K)
: s : +
~ Hom D" (Iky,, 1) (R]M!! <k{¢zo} 03y F), Ry« (k{¢>>0} R L K))

. . + . +
g) h_r)n Hom D0 (Iky ;g (R]M!! (k{tZO} ® F) s Rivis (k{z‘Za} ® LF K))

a—>~+00

. T
= h_r)n Homegb gy, (F, | N ®K).

a—>—+00

Here () follows from Corollary 2.2.3.
(i1) The other isomorphism follows from

+ +
Hom Eb(IkAI) (k{tz—d} ® F, K) ~ HOl’n EI)(Ikl\i) (F, k{zza} ® K) . |:|

Lemma 4.7.10. — For F € D (kyxr,,) and K € E(Ikyy), there is an isomorphism in
E*(Iky)

k&, ® Thom™ (F, K) = Thom" (r. K5, ® K).
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Proof: — Let us first show that, for L. € Db kyixr,, ), the morphism in D (I kyvixr,,)
+ . + N +
(4.7.4) k0 ® Zhom™ (F, L) — Kooy @ Lhom (F Kso & L)
is an isomorphism. For any « € R, there are isomorphisms in E”(Iky;)

+
k(> ® Zhom" (F, L) = Thom"* (k= Zhom™ (F, L))
=~ Thom™ (F, Zhom" (ky=_,, L))

+
~ Thom* (F k(o ® L) .
Hence we have an isomorphism in D" (Ikyi,gr..)
+ N ~ + N +

k(=0 @ Zhom" (F, L) = k20, @ Zhom (F kg ® L).

In order to see that (4.7.4) is an isomorphism, we shall use Proposition 2.2.2. We have
, +
Jy® Rym (k{z>>0} ® Zhom" (F, L))

+
~ h_r)n Juxr R (k{lZa} ® Zhom" (F, L))

a—>—+00

+ +
~ lim Jyiw Rjvn (k{tzO} ® Zhom™ (F kizy® L))

a——+00
' + N +
> Juxr Rimu (k{zzO} ® Lhom (F k(50 ® L))

By Proposition 2.2.2; it follows that (4.7.4) is an isomorphism.
It remains to notice that for K € E’(Iky) we have isomorphisms in EP(1ky)

E S + N + P
ky; ® Zhom™ (F, K) ~ k=) ® Zhom (F ky ® K)
: I}ZO?’}'l+ (k{tzo} 9 Ih0m+ (F, kE’I é K))
~ Ih0m+ (F, Ih0m+ (k{tZO}’ k§,1 é K))
+
~ Thom™ (F KE ® K) . 0
Corollary 4.7.11. — ForK € E’(Iky) and F € DP(ky), we have

E & -1 -1y LE &
k&, ® RZhom (' F, K) =~ RZhom (71 F, kM®K).
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Proof. — This easily follows from Lemma 4.7.10 and the isomorphism
RZhom (m~'F, K) =~ Zhom™ (7 ~'F @ kyq), K),
due to Lemma 4.3.2. U

Proposition 4.7.12. — Let F € D" (kyixr,,) and G € D°(Iky). Then there is an isomor-
phism in EP(Ikyy)

(4.7.5) kS, ® o~ 'RZhom (F, 7' G) ~ Thom* (F. kE, @ 7' G).
Progf: — Recall that, by Lemma 4.3.2, one has
a "RZhom (F, A G) ~ Thom™ (F, ki ® n_lG).
Hence, Lemma 4.7.10 implies
kS, ® o' RZhom (F, 7' G) ~ k& & Thom™ (F. ko ® 7' G)
~ Thon* (F k5, ® (ko ® n’lG))
>~ Thom" (F, ky @ 7' G). O
Remark 4.7.13. — By Lemma 2.2.5, one has
RZhom (kyy, 70° wyi) 2 g RZhom (Kis0p, 0ypyew) 2 0.
Moreover, one has
Thom™* (k5 by @7~ wn) 2 ki @ 1wy
Hence (4.7.5) does not hold for F =k§; and G = wy;.

Proposition 4.7.14. — Let [ : M — N be a continuous map of good topological spaces.
(i) For K € EP(Ikyy) one has

+ +
Ef!!(kgl ® K) ~ky @ Ef K.
(i) For L € E°(Iky) one has
~1(1E & E o pr-l
Ef (kN ® L) ~kE QE/'L,

vE S 1Y LE S ept
Ef'(kE ®L) ~kE ® E/'L.
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Proof. — The isomorphisms
E & E o
Ef!!(kM ® K) ~ky ®Ef K,
“1(1LE & E & Ep-l
Ef (kN®L) ~kE QE/'L
follow from Proposition 4.5.10 and Ef ~'k§ ~ kE . Let us prove
'LE & E & pEr!
(4.7.6) Ef (kS ® L) ~ k& QEf'L.

If L € E” (Iky), then both sides of (4.7.6) vanish. We may then assume L € E:’L (Iky), i.e.
L= Thom" (ko). L).
Set L = Rjy, RE L, so that

i ~ RjN*I/zom+ (k{tz()} ,]l\_Ili)
Let /: M x R — N x R be the map induced by /. By Lemma 4.3.14, we have

1~ : + —17'T
J L~Rj.ZLhom (k{tz()}a]Mf L)-

Then, Lemma 4.3.13 implies

~ —l~
K{=t00) @ L0, ki i00) ® L>0.
Set

Cn = “li_r)n” kMx{foofl<a}[1]1

a—>—+00

Cn = " knx—oosi<a 1],

a—>—+00

so that
Cyn >~ R RE(ky,),  Cx Ry, RE(ky).
Using Notation 4.3.8, consider the maps

qiM> @oms i MxS—MxR,
7ixy Gons fin: N x S — N x R,
S MxS—>NxS,

where /" is the map induced by /.
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+
Then, by Lemma 4.3.9, k&, ® Ef'L is represented by the object of D*(Iky, &)

R« (kMxR2 ® FimCun ® ?2_\11]7 ' i)

Since
kiifﬁi(MXHoo}) ® &?)}ICM ~0,
=l
k@]\ll(MXHOO}) ® q?\llf L>~0,
. ) e o
fiy (M x R) MM x (S\R?) C g ({t = +00}) U gy ({ = +00}),
we obtain

k,zgll Mxr) O Kvixr? ® 5171\1/101\’1 ® 55131/7 L
= k;z;f MxR) @ él_l\}ICM ® ?121&7 L.
Moreover, one has
~_ 17l ~1 Rl
kﬁgl‘ (MxR) ® 5121\117[ L~ k,zgl‘ (MxR) ® %Mf L[-1],

since oy is topologically submersive and gy, kyxg =~ ki axryui Ll oaxey [+

+
Hence we conclude that k§; ® Ef 'L is represented by
R"l‘\l*(él—mlicM ® &;M\]_F L[- 1])-

+
On the other hand, by the same reasoning, kS ® L is represented by the object of
D" (Iky, &)

Riin- (7 Cx ® 7oy LI-11).
Hence Ef'(k§ é) L) is represented by the object of D"(Iky;, )
T Ritna (71 Cx ® i LI 11) = Ritaref” (710 Cx ® Gy LI—11).
Finally, Proposition 2.2.4 implies that
S INCx @ inTU=11) 2/ G Cx &/ G L1
~ mCu ® Z}éMf! L-11. O
Proposition 4.7.15. — The functor e(F) = k5, @ 7w ~'F gives a fully faithful embedding
e: D" (Iky) — E"(Iky).
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Progf: — Tor F, G € DP(Iky) one has
Homgs gy, (kl%,I 7 'F ky, @n! G)
~ Homgn e, (kgI & (key @ 7'F), K ® n—1G>
~ Hompqu (ko) ® 7 'F, Thom™ (k. K&, @ 7' G))
~ Homeo gy, (kjmoy ® 7 'F. ky @ 7' G).
Since
L® (ky—o) @ 7 'F) 2 (kyz0) @ k<o) ® 7 'F,
LE(kEI ® JT_IG) ~ ks @7 ' G,
one further has
Homgs gy, (k{tzo} Qn 'F, ki, @n! G)
~ Hompy 1) ((k{lz()} ® k<o) @7 'F, kis0) ® ”_IG)
~ Hom Db (Tkntrey ) (JTle, Kiso ® nflG)
~ Hom go gy, (F, Rty (ko) @ 7' G))

(’:\/) Home(Ik)[) (F, G).
Here, in (x), we used the fact that

R]T* (k{t>>0} [ JT_IG) ~ Rf* R]M* (k{t>>0} X JT_l G)

~ Rm, (“li_r)n” Kii<i<to0) ®TT : G) )

a—>—+00

and Rﬁ* “li_n)l” k{a§t§+oo} ~ kl\l- O

a—>—+00

4.8. Duality.
Definition 4.8.1. — We define the duality functor
DE: E’(Tky) — E(Tky)™, K> Zhom™ (K, o),
where we recall that wy; :=k§; @ ' wy.

Proposition 4.8.2. — Let f: M — N be a continuous map of good topological spaces and
K € EP(Iky,). Then one has an wsomorphism in EP(I1ky)

DXEf K =~ Ef, Dy K.
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Progf: — This follows from Proposition 4.5.10 and Ef @& =~ ,, which is a conse-
quence of Proposition 4.7.14(ii). O

Proposition 4.8.3. — For F € D" (Knixr,, ), one has
D5, (i, ® F) ~ K ® ¢ ' DyixF.
Here a is the involution of M x R defined by a(x, t) = (x, —1).
Progf: — We have
E(LE o +(LE & E
Dy, (kM ® F) = Thom (kM R F, a)M)
~ Thom™ (F Thom* (kEl, a)M))
~ Thom™ (F, a)M)
= I}ZOT)’Z ( M X nfla)M)
~ kgl ® a 'RHom (F, ' a)M).
Here, the last isomorphism follows from Proposition 4.7.12. 0J
Corollary 4.8.4. — For I € D" (ky), one has
DIEI(kIEI Qm” 1F) ~ky, @ 7' DyF.
Progf: — We have
+
D§, (kil ® ”_IF) ~ Dy (klliI ® (k=g ® ”_IF))
+
o~ ki ® a_lDMxR(k{t:O} ® JT_IF)

+
= ksl ® (k{t:O} ® nilDl\,IF)
= k§1 ® 7' DyF. 0

4.9. R-constructible objects. — In this subsection, we assume that M is a subanalytic
space. Recall the natural morphism

]M MXR —)MXR

and the category D" (kyxr,,) from Notation 3.2.11.
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Definition 4.9.1. — We denote by D;fC (knixr,,) the full subcategory of D" (kyixr,,) whose
objects ¥ are such that Rj, F is an R-constructible object of D" (ky;, g)-
We regard Dl}"_C (knixr,,) as a full subcategory of D"(1 kyixr,)-

+
Note that D%_C (kyixr,,) 1s stable by the functors ®, Thom™ and ®, RZhom .

Definition 4.9.2. — We say that an object K € E*(I1ky;) is R-constructible if for any
relatiely compact subanalytic open subset U C M there exists an isomorphism

+
7 'ky @K >~ky, ®F for some F € Dy (kyixr.,)-
Denote by Ey_(Ikyy) the full subcategory of E®(Ikyy) whose objects are R-constructible.

Note in particular that R-constructible objects of E”(Iky) are stable objects.

Proposition 4.9.3. — Let K’ YK —K' 5 bea distinguished triangle in E” (Ikyy).
If K" and K are R-constructible, so is K”.

+ +
Progf. — We may assume that K' = ki, ® F' and K=k;; ® F for F,F €

+ +
D%_C (knixr,,)- By replacing I with k-0 ® I/, we may also assume that ' >~ k¢ ® I
We may assume further that 7 (supp (R I')) 1s compact. Then, by Proposition 4.7.9,

!/ . / +
Homgi gy, (K. K) = lim Home(IkM%)(F,k{,y}®F).

a—+00

Hence there exist ¢ € R and a morphism in D" (kyixr.,)
¢ F > kpy ®F
such that ¢ : K" — K is equal to
K=k oF 5k ® (ke ® F) ~ K, ®F=K.
Completing ¢ in a distinguished triangle I AN K> é F— ¥ i), we have I €
D% (kyirr.) and K ~ kE, @ F. O
Corollary 4.9.4. — The category Ex (k) is a triangulated categor.

Lemma 4.9.5. — Let K € E’(Iky). Then K is R-constructible if and only if H'K is
R-constructible for any n € Z.
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Progf: — For F € Db(kMxRoo), we have
n E iy E iy n iy
H (kM ® F) ~kE @ H (k{eo} ® F)
by Proposition 4.7.2. O
Proposition 4.9.6. — Let K|, Ky € EP(Iky). If K, & Ky s R-constructible, then K, and

Ky are R-constructible.

0
idK2

Proof: — Let f: K| ® Ky — K| ® Ky be the morphism given by (8
have a distinguished triangle

). Then we

K, @Ky 5 K, @Ky — Ky @ K [1] -

Hence, Proposition 4.9.3 implies that K; @ K,[1] is R-constructible.
It is therefore enough to show that

(4.9.1) K € E’(Iky) is R-constructible if K @ K[1] is R-constructible.

We may assume H"(K) = 0 unless a < n < b. Let us show (4.9.1) by induction on b — a.
By Lemma 4.9.5, HY(K) >~ H* (K @ K[1]) is R-constructible. Hence H*(K)[—a] &
H*(K)[—a+ 1] is R-constructible. There is a distinguished triangle

H(K)[—a]l ® H'K)[—a+ 1] > K@ K[1] = 7K & (t7K)[1] BN

where 77 is the truncation functor with respect to the t-structure of E”(Iky;). Hence,

7K @ (r7°K)[1] is R-constructible by Proposition 4.9.3. By the induction hypothesis,
77°K is R-constructible. Then, by the distinguished triangle

HY(K)[—d] — K — 77K =1
we conclude that K is R-constructible. O

Lemma 4.9.7. — Let K € E>(Ikyy). Then the following conditions are equivalent.

(i) K € Ex (Tky),
(1) there exist a locally finite family {Z;}ic1 of locally closed subanalytic subsets of M and
F, e D;ic(kMwa) such that M = Uiel Z; and

+
7'k, K>k, ®F; foralliel,

(i11) there exist a filtration & = M_; C My C --- C M, = M and objects ¥, €
Di..(Iknixr.,) for 0 < k < r such that My is a closed subanalytic subset of M and

+
- E
T lk)/IA\l\lk_l ® K il kl\l ® Fk.
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Proof-

(i) = (i1) is obvious.
(i) == (i11) There exists a filtration {M;} such that each connected component of
M, \ M;_; is contained in some Z;.
(i11) == (i) Follows from Proposition 4.9.3. 0

Corollary 4.9.8. — R-constructibility of K € E”(Ikyy) is a local property on M.

The following lemma is not used in this paper, but it might help the reader to
understand the category E;_c (Ikyp).

Lemma 4.9.9. — The complex K € E*(Ikyy) is R-constructible if and only if there exist

(1) a locally finite family {Z.;}:c1 of locally closed subanalytic subsets of M,
(i1) finate sets A;, for i € 1,
(i11) continuous subanalytic functions ¢; ,: Z; = R and ; ,: Z; = R U {400} for 1 € 1
and a € A;, such that @; ,(x) < Y, ,(x) for all x € Z; (here a function is called subanalytic
if its graph is subanalytic in M x R),
(iv) antegers m; , € Z for i € L and a € A,
such that M = |_] Z; and there are isomorphisms for any i € 1

1€l

+
ﬂ_lkzi QK >~ @ ki{ ® kw, ,[m;.],

aEAl-

where we set

W= {(X, DeEZi xR; ¢ (x) <t< Wz',a(x)}-

+ +
Progf: — We may assume K = kl'f,I ®FforF e Dlﬁ_c (kynixr,,) such that F >~ k- ® F.
Since F is R-constructible, there exist a partition M = |_|Z;, integers 7, € Z-
el
(i € I), and continuous subanalytic functions & ,: Z; — R (i € I, 0 < a < r,), such that
—00 =& (%) <--- <&,(x) =400 for any x € Z;, and such that F| «r is locally con-

ri—1
stant on {(x,7); x €Z;, t=§&;,(x)} (for 0 <a<r)andon Z; x R\ J{t =& .(x)}.

a=1
We may further assume that Z; is contractible. Then n_lkzi ® F is a finite direct
sum of shifts of sheaves of the form

0 kg, <<t 0) for 0 <a<b<n,
(1) kg, o<r<g ) for 0 <a<b<m,
(i) ke, o<ty for 0 <a < b <,
(V) kg, <<t o for 0 <a<b <.
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+
Since we assumed F >~ k-; ® F, any direct summand of 7 'k, ® F satisfies the same
condition. Hence only the case (i1) survives. U

Notation 4.9.10. — For K € E>(Iky;), we set
supp®(K) = 7 (supp (Rjyrx LEK)) € M.

Proposition 4.9.11. — Let f: M — N be a continuous subanalytic morphism of subanalytic
spaces.

(1) The functors Ef ! and E -/ ' send Ekl){_C (Iky) to E%_C(IkM).
(i) Let K € Ep (Ikyy) be such that supp®(K) is proper over N. Then Ef K ~ Ef K €
En . (Iky).
Proof-

(1) Note that Ef “land E -/ 'send D]f){-c (kxxr,,) to D'f{_c (kyixr,, ). Then the statement
follows from Proposition 4.7.14.

+ —_—
(i) We may assume that K = kE,I QFforFe D}’{_C (knixr,,) such that 7 supp(F) is
compact. Then Ef,F € Dp_ (kxxr,, ), and the statement follows from Proposi-
tion 4.7.14. 0

Theorem 4.9.12. — IfK € Etﬁ,c (Ikyy), then DEIK € Etf{,c (Ikyp) and the natural morphism
K — D§D{ K

is an 1somorphism.

Progf: — The natural morphism is constructed using Lemma 4.5.5.

+
We may assume K = kl%l QFfor F e D'i-’{_c (kyxr,,)- Then
+
DEIK = DIEI (kl%l ® F)

U1E & -1
_kM®d DMXRF

by Proposition 4.8.3. Since Dy«r} belongs to Dlﬁ_c (kyixr,, ), it follows that DEIK is R-
constructible. Moreover, we have

+
Dy Dy K = Dy, <k§1 ® a_lDMxRF)
£+
>~ ky; ® DyvixeDyixrF

E +
~k; F~K.

Hence K — DE DK is an isomorphism. O
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+
Proposition 4.9.13. — Let K, K’ € Elﬁ_c (Ikyy). Then both K @ K’ and Thom™ (K, K')
are R-constructible, and one has isomorphisms
+

() DE (K ® K') ~ Thom™ (K, DE,K),

(ii) DEZhom™ (K, K') ~ K & DEK,
(iii) Zhom™ (K, K') =~ Zhom™ (DE,K’, DE K),
(iv) Hom®(K, K') >~ Hom® (DK, D§K).

+
Proof. — Let us first show that K ® K’ is R-constructible if both K and K’ are so. It
+ +
is not restrictive to assume K ~ ki, @ Fand K' ~k§, @ F' for F, F' € Dl}"_c (kyixr,,)- Then

+ + o+ +
K®K ~kf ® (F®F), and hence K ® K’ is R-constructible.
The first isomorphism in the statement is immediate.

Hence Zhom™ (K, K') ~ D} (K é) D K’) is R-constructible.

The second isomorphism follows from this isomorphism by applying the func-
tor DE,.

The third isomorphism follows from (i).

The fourth isomorphism follows from

Hom" (K, K') ~ Hom" (k§;, Zhom™ (K, K'))
~ Hom" (ky;, Zhom™ (D5 K’, D;K))
~ Hom" (D5 K, Dy K). O

Proposition 4.9.14. — Let f: M — N be a continuous subanalytic morphism. For L. €
E'I”{iC (Ikx) there are isomorphisms

Ef'(DSL) ~ D5, (Ef 'L), Ef~'(DRL) ~ D§,(Ef'L).
Proof.
(1) There are isomorphisms
Ef'(DXL) = Ef Zhom™ (L, )
~ Thom* (Ef 'L, Ef X))

(:) Thom* (Ef_lL, a)ls,[)

=D§(E/"'L).

Here (x) follows from Proposition 4.7.14(1).
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(i1) By (1), there are isomorphisms
D, (Ef'DYL) ~ Ef'D{DRL~Ef L.
Further applying DE;, we get Ef ~'(D§L) ~ DE (Ef'L). O

Proposition 4.9.15. — Let M be a subanalytic space, N a good topological space, and K €
Elf{fC (Iky), L € EP(Iky). Then one has an isomorphism in E® (Ikypyn)

(g~ E S, E 1o
Thom (Ep1 K kE . ® EpQL) ~DEKXL,
where py and py denote the projections from M x N to M and N, respectively.

In order to prove the above proposition, we need some preliminary results.

Proposition 4.9.16. — Let M be a subanalytic space, N a good topological space, and consider
the morphism

pw:MxNxR,—MxNxR,

induced by (11, ty) = t) + to. Then, for any ¥ € D;C(kMwa) and G € Db(IkyxRoo), there exists
a distinguished triangle in D" (IkyxNxR.,)

Rty (FRG) — R, (FRG) — 7yl (Ly @ L) =,
where
Lt = ¥, 400 (F) M YN 200 (G)
(see Notation 4.3.12). Here, we identify M X Rog X N X Ry with M x N x RZ_.
Proof. — Set X =M x N. With Notation 4.3.8, consider the diagram
XXROOJY;)XXE&XXSL)XXEQ,
where p is induced by (71, 75). Set
F=Rj.FeDp k) G =Rix.G € D' (Tky,m).
Then we have

Ruy (FRG) 2 j 'Rl (kxxr: ® ' (FRG)),
Rt (F X G) =5 Rit. (RZhom (kxre, p (FRG))).
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In Sublemma 4.9.17 below, we will prove the isomorphism
(4.9.2) i kxr @ RZhom (kxre, o (FRG))
~ 1 kr ®) (FRG).
Admitting (4.9.2), we have
Ru,(FRG) ~ 'Ry (FRG).

Hence, we obtain a distinguished triangle

Ry (FRG) — R, (FRG) — jig' R (ks ®F7 FRIG)) = .

We have
(4.9.3) A" X xR)N (X x (S\R?))

=i ' (X xR)Np (X x {(+00, —00), (—00, +00)}).
Moreover, we have

K (400,000, (oo 400 @ (FRG) >~ Riy Ly @ Ri_, L,

where 7;.: X — X X ﬁQ is the inclusion x — (x, 2200, F00). Hence we obtain
(4.9.4) kxxr ® Rl (kxxsiry @) FRG))

>~ Rj, (k,&—'(XxR) ®p " (Rip. Ly @ Ri—*L—))-

By the commutative diagram

A7 (X x R) N (X x {(£00, Fo0)}) —— X x (200, F00)]

| aF

X

X xR X,

the right hand side of (4.9.4) is isomorphic to my Ly @ L_). Hence we obtain the
desired result. O

Sublemma 4.9.17. — With the same notations as in the proof of Proposition 4.9.16, we have
,ﬁflkXXR X RZhom (kXX(S\RZ),])il (F X é)) ~ 0,

where F = R I and G= Rix«G.
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Progf. — By Proposition 2.2.2, we may assume G € D"(kyygr,) without loss of
generality. Set

Wy x(F, G) = RHom (ks s\, - (FEG)) € D ().
By (4.9.3), it is enough to show
<4.9.5) k/l_l(XxR)ﬁﬁ_l(Xx(ﬁ\R)z) ® \Ijl\,LN(F, G) ~ O

(1) We shall first show (4.9.5) when M = {pt}, so that I' € D]i’{_C (kr., ). Note that D}I’{_C (kr.,)
is the smallest triangulated category which is stable by taking direct summands and con-
tains kg and k, ;; for —00 < a < b < 400. Hence we may assume I =kg or F =k, .

(i-1) If F = Kk, 4, then
supp(FRG) N (X x (R\R)?) = 2,
so that (4.9.5) is obvious.
(1-2) If F = kg, then
Wy (F, G) = RHom (kxx sy b By G
where p,: X x R’ — N x Ris the projection. Since
AT X xR N(Xx(S\R?))=a"'(XxR) ﬂ])‘lﬁgl(N X (ﬁ\R)),
we have
ki1 xxrnj xx®@py2) @ Yarn(F, G)
~ K ey xx @) © RHom (K gmyy BB G)
(’f) k1 xR (xx ®\R)Y) ®/-7_1152_1 RHom (k. ®\R)> Rin:G)
~0,
where (%) is due to Proposition 3.3.19, since p, p is topologically submersive.
(i) Let us now prove (4.9.5) in the general case. We shall show that
UAN(E, G) g .20 =0

for any (xy, %, 20) € M x N x S such that

(%0,00, 20) € ' (X x R) Ny~ (X x R\R)?).
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For any £ € Z, one has

Hk\IJM,N(F, G)(xUJo,ZU) = h_r)nHk(U X V; lIJM,N(F, G)),
U, v

where U C M ranges over the family of relatively compact subanalytic open neighbor-
hoods of xy € M, and V ranges over the family of open neighborhoods of (yy, z9) € N x S.
Let r: M x Ry, — Ry, be the projection, and set

@y (F) :=Rr,(F @ kp,r) € Dy (kr,,)-
Then

H*(U x V; Wy n(F, G)) ~H(U x (VN (N x R?)); FXG)
H (VN (N x R?); &y(F) KG)
~ HY(V; Wiy n(Pu(F), G)).

12

Hence, taking the limit on U and V, we obtain

HquM,N(F, G) (xo00.20) = li_n;lHkle{pL},N(CDU(F)v G)
U

00,20)”
which vanishes by (i). 0J
As a consequence of Proposition 4.9.16 we get

Corollary 4.9.18. — Let M be a subanalytic space and N a good topological space. For
F € Dp (Ikyxr,,) and L € D*(Ikywr., ), the morphism

Ruy(FXL) — Ru, (FXL)
us an 1somorphism in EP(Ikyixn).

Remark 4.9.19. — The above result is not true in general if we drop the assumption
that F € D%_C(khlme)~ For example, f M=N={pt} and F=L=K =, ,k, €
Mod(kg, ), one has

Run(FXL) ~k*” @K,
Ru.(FXL) ~kZ QK.

Proposition 4.9.20. — Let M be a subanalytic space, N a good topological space. Let p, : M X
N — M and ps: M x N — N be the natural projections. Then, for F € D;fC (kyixr,,) and L €
EP(Iky) there is an wsomorphism in E’(IkyixN)

| _ +
Thom™* (Ep;'F, Ep;L) =~ @~ 'DyerF K L.
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Proof. — Set G=REFL e D"(1 kyyr,, ). Consider the morphisms

n:MxNxR, - MxR,,
r: Mx N xR, — N xRy,
pw:MxNxRL,—MxNxR,

induced by (¢, &) = 4, (41, &) = & and (4, &) = 4 + &, respectively. Then
I/zom+(Epl_1F, EpéL) ~ Ru.RZhom (rl_la_lF, rQ! G),
a”'DyxrF % L>~Ruy (Tl_la_lDMxRF ® TQ_IG).
By Proposition 2.3.4,
RZhom (rl_la_lF, 72! G) ~ 71_1a_1DMXRF ® rQ_IG,
and Corollary 4.9.18 implies that
RM;[(?’;lailDMxRF®T;IG) — R,u*(rflcf]DMxRF@r;lG)
is an isomorphism in EP(Ikyien).- O

Proof of Proposition 4.9.15. — Let py: M x N — M and po: M x N — N be the
natural projections. We have

ER o “INE K a ]
Dy KX L=Ep; Dy K® Ep, L.
Hence we have a sequence of morphisms
-l o (PEK & I o EAIE K o Ej—]
Ep 'K ® (DMKx L) ~Ej'K ® Epy ' DEK ® Efy 'L
1 E bl
— Ep oy ®Ep, L
+
=Ep, " (ky, ® 7y o) ® Ep, 'L
+ — — —
5 Koy @ (Tytt ' ov @ Ep; 'L)
E e
~ky,x ® EpL,

where () follows from Lemma 4.3.1. Hence we obtain a morphism

E + + —1 E s !
DK X L — Thom™ (Ep; 'K, k5, ® EpiL).
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+
We shall show that it is an isomorphism for K € E;’{_C (Iky ). We may assume K ~ ki @ F
for F e D%_C (kyixr,,)- Then

Thon* (Ep;lK, K ® Ep;L)
(e~ 1LE o=l LE eyl
~ Thom (Epl IS ® Epy ' I © EpIL)
~ Thom™ (Epl‘lF, Thom™ (kl%IxN’ kflxN é Ep;L))
+ 1
~ Thom" (Ep;lF, K ® EpéL>
~ Thon* (Ep; ¥, Ep} (6§ ® L)).

Here, the last isomorphism follows from Proposition 4.7.14(i1). By Proposition 4.9.20, one
has

+(E -1 '(1LE & ~1 -1 e -1 (1LE &
Thon* (Ep; 'F, Ep2<kN®L>):Epl ' Dy ® Ef; (kN®L)
—1 —1 iy E Y -1
~Ep; a DuxrF @ky @ Ep; L
1 LE & 1 g
~ Ep; (kM®a DMxRF)(X)EpQ L.
By Proposition 4.8.3, one finally has
“1f1E & -1 =17 o —IE (1.E S 1) S =1
Epy (ky ® @ Dyl ) ® BEpy L=Ep Dy (ky ®F) ®Ep, L
+
~ Ep; 'Dy K ® Ep; 'L. O

) Proposition 4.9.21. — Let M and N be subanalytic spaces. For K € Elﬁ_c (Iky) and L €
Exr . (Ikx) we have

DE (KéL)wDEK%DEL
MxN - M I\

Progf: — Let p; and py be the projections from M x N to M and N, respectively.
Then we have

DS (KRL) = Thon* (Ep7 K @ B 'L, 05 )
=~ Thom™ (Epy 'K, Zhom™ (Ep; 'L, wyy,.v))
~ Thom" (Ep; 'K, DE,, (Ep; 'L)).
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Since D, ((Ep, 'L) > EpyDSL by Proposition 4.9.14, one has
+ !
DE,_ . <K x L) ~ Thom* (Ep;'K, EpLDEL)
+
~ DK X DXL
by Proposition 4.9.15. O

Proposition 4.9.22. — For k=1,2 let f,: My — Ny be a morphism of subanalytic spaces
and L, € E;ic(Ika). Set f =11 X for M x My — Ny x Ny. Then we have

—1 z S S s
£ (L R L) ~Ef;'L ) Ef; 'L,
! + ! + 1
Ef-(L1 g LQ) ~EfL KEfLLy.

Progf: — The first isomorphism is immediate from Proposition 4.5.10.
Let us show the second isomorphism. By the first isomorphism, we have

S1(\E T & NE o Er—INE T o Er—IE
Ef (Dy, 1 XDNQLQ ~Ef, Dy LI KEf, DN2L2

~DE Ef'L, XD Ef.L
— MM fl 1 X Mo f2 25

where the last isomorphism follows from Proposition 4.9.14. Applying Df; «M,» and using
Proposition 4.9.21, we obtain

+ , +
DE, v, (87 (DS, L 81DE, 1) ) ~ E7'DE ., (DE L 59D, L)

, +
and
E E T T E ! T e
Dyy, s, (DMI Ef L1 X Dy, EfQLQ) ~Ef LI KESf,Ls. 0
Proposition 4.9.23. — For K € E%_C(IkM) and K' € E*(I1kyy), one has
+ E N 1 ! E s /
Thom (K,kM®K) ~ES (D KxK),
+ , +
Hom" (K K ® K) ~ Hont® (kﬁl, Es' (DE,IK X K))
+
~ 5~ Hom* (ki, DEK K)

where §: A — M x M denotes the diagonal embedding.
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Proof-
(1) Let p1, po: M x M — M be the projections. By Proposition 4.7.14(i1), one has

E & 1 E & eele !y
kS ® K ~ k&, ® ES'Ep,K
! E 3 Iy’
= E‘S'(kl\flxM ® EpéK>.
Then one has
+ E & 1 + . 1(4.E R
Thom* (K, kM®K) ~ Thom <E8 Epr'K, ES (ka@;EpQK))

! Ty E ol
~ E8'Thom (Epl K, kMxM®Ep2K)

1 E + ’
~ E&(DMKxK),

(%)

where () follows from Proposition 4.5.10 and (%) from Proposition 4.9.15.
(i1) The second isomorphism follows from (i) and Lemma 4.5.15.
(iti) The third isomorphism follows by applying § ! to

! / x i
Rs. Hon® (1, E8' (DE K X K )) = Hon (E0,kE. DSKRK). 0

4.10. Ring action. — Let S be a good topological space, and A a sheaf of k-algebras
on S. Recall from [13] that the category of .A-modules in the category of ind-sheaves is
defined by’

I(A):{(F,<p); Fellks), }

¢: A— End(F) is a k-algebras homomorphism
Here, End(F) is the sheaf of k-algebras given by U Endy g, (Flu).

Definition 4.10.1. — Let f: (M, M) — S be amorphism of bordered spaces, and A a sheaf
of k-algebras on S. Recall that f is decomposed as (M, M) < (I'y, T'y) = S. We set

b b — b —
D" (LA x1) =D (I(p;"A)) /D" (1((p2 " A)g 1))
where py : Ff — S s the projection.
Remark 4.10.2. — If f is induced by a map f : M — S, then one has an equivalence

D" (1 Anp) = D"(1/ 7 A) /D (1 (G_lA)NI\NI))'

¥ The category I (A) is denoted by I(8.4) in [13].
gory y
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Let us set

—1
A(M,M) =Py A,

where py: Ty — S. It is a sheaf of k-algebras on I';. One can define the functors®

RZhom : D" (Iky; x1)® x D°(I A D" (I Aaisn)s
® 1 D" (AN, i) X DL A w) — D" Uk ),

RHom 4: D"(Appsn)™ x DT Ay 51) — D Uk 5p)-

Lemma 4.10.3. — Let F € D°(ky ) =~ D°(ky), M € D"(Ay5p), N €
Db(A(()]SLM)) and K € DP(1 Anisny)- Then there are isomorphisms
RZhom (F, N @', K) ~ N & RZhom (F, K),
RZhom (F, RHom 4(M, /C)) ~ R'HomA(./\/l, RZhom (F, /C))
~ RHom ,(F @M, K).
Recall that 7 : M x Ry, = M denotes the projection.

Definition 4.10.4. — For A a sheaf of k-algebras on M, we set
E"(IA) =D (I Ayixr.)/{K; 77 'Rm.K = K].
We have a forgetful functor
E(1.A) — E (Iky).
Remark 4.10.5. — The results on E’(Iky;) can be extended to this context with

EP(1A).

5. Review of tempered functions

We recall here some constructions of [12, 13]. In particular, we recall the ind-sheaf
O% of tempered holomorphic functions on a complex analytic manifold X, which plays
a fundamental role in this paper. We end this section by adapting the notion of bordered
space to the framework of analytic spaces.

fForM=M = S, the functors ®JL4 and RHom 4 are denoted by B () ®;A * and RZhom g 4 (B (), *), respectively,
in [13].
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5.1. Real setting. — Let M be a real analytic manifold and let U C M be an open
subset.

One says that a function ¢ : U — G has polynomial growth at x, € M \ U if there
exist a sufficiently small compact neighborhood K of x, and constants C > 0, r € Z.
such that

(5.1.1) lp()| < Cdist(K\ U,x)”" foranyxe KNU.

(Here “dist” denotes the Euclidean distance with respect to a local coordinate system.)
One says that a smooth function ¢ € Cgf (U) is tempered at x, € M \ U if all of its
derivatives have polynomial growth at xj.
Denote by Dby the sheaf of Schwartz’s distributions on M.

Defination 5.1.1 ([13, Definition 7.2.5]).

() For a subanalytic open subset U C M, we define Cyy'(U) as the set of C®~functions
defined on U which are tempered at every point of M\ U. Then Cyy" is a subanalytic
sheaf.

(i1) for a subanalytic open subset U C M, we define the sheaf of G-algebras C{.ﬁl’\?p =

Hom (Cu, Coh).
(111) The subanalytic sheaf of tempered distributions on M s defined by

'Db;\/I(V) :=Dby(M) / Tainv (M Dbyy)
~ Im(Dby (M) = Dbyi(V))

Jor any subanalytic open subset N C M. We still denote by Dby, the corresponding suban-
alytic ind-sheaf.

There is a morphism Dby, — Dby of ind-sheaves.
For any open subset V.C M we have

Ciﬁl’\t{emp (V) ={p e Cy;(VNU); ¢ is tempered at any point of V'\ U}.
One has the following lemma.
Lemma 5.1.2. — For any R-constructible sheaf ¥,

H'RZhom (F, Dby) =0 for any k # 0.
Progf- — For any R-constructible sheaf G and any £ # 0, one has

H‘RHom (G, RZhom (F, Dby,;)) ~ H'RHom (G ® ¥, Db};) ~ 0,

where the last isomorphism follows from [13, Proposition 7.2.6(1)]. O
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Proposition 5.1.3. — Let U C M be a subanalytic open subset. The product CyY @ Dby —
Dby induces a Cyp-algebra homomorphism

CIH — End(Thom (C, DBY,)).
In other words, Thom (G, Db),) € I(Cﬁlﬁmp).

Proof. — Let V. .C M be a relatively compact subanalytic open subset. By [9,
Lemma 3.3], the product induces a natural morphism

U NV) @ DB, (UNV) = Dbt (UNV). 0

For a closed subset Z C M, denote by ZY7, C Cy} the subsheaf of functions which
vanish on Z up to infinite order. Recall the Whitney functor of [12]

*® Cyy 1 D (C) = D"(Cyy).

It is characterized by setting Cyy ® C° :=1Z{ sy for any subanalytic open subset U C M.

One says that a function ¢ € Cyy(U) is rapidly decreasing at x, € M \ U if there
exists a sufficiently small compact neighborhood K of x, such that for any » € Z_, and
a € Z2, there is a constant G > 0 with

0% (x)| < Cdist(K\ U,x)" foranyxe KNU.

(Here “dist” and 0% are taken with respect to a local coordinate system.)
One says that ¢ € C{Y(U) is rapidly decreasing at the boundary of U if it is rapidly
decreasing at each point of the boundary of U.

Lemma 5.1.4. — A section of C3Y (U) extends to a global section of Gy ® Cyy if and only if
it is rapidly decreasing at the boundary of U.

3.2. Complex setting. — Let X be a complex analytic manifold. Denote by Xg the
real analytic manifold underlying X. It is identified with the diagonal of X x X, where X
is the conjugate complex manifold of X. Recall that (X)g = Xg and that sections of O
are the complex conjugates of sections of Ox.

Recall that, by Dolbeault resolution, one has

Ox =~ RHomp_(Ox, Dbxy).

Definition 5.2.1 (13, Section 7.3]). — One sels
O% =RHomp_(Ox, Dby, ) € D"(IDy),
Q! = Qy ®y, O% € D*(IDY).
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The canonical morphism Dby — Dbx, induces a canonical morphism Oy — Ox
in D"(IDx). Note that O € D

suban

(ICx). It is not concentrated in degree zero, in gen-
eral.

Notation 5.2.2. — The classical de Rham and solution functors are

DRX . Db(Dx) — Db(CX), M = QX ®'ZL?X M,
SOZX . Db(Dx)Op — Db(Cx), M (ad RHOWL'DX(M, OX),

and the tempered de Rham and solution functors are

DRY : D*(Dx) — D"(1Cx), M Q@p M,
Sol : D"(Dx)® - D’(ICx), M > RHomp (M, Of).
One has
SOZX ~ lesolt , DRX ~ O(X,Z)Rtx.

Recall that, by [13, Lemma 7.4.11], for £ € D", (Dx) one has
Sols (L) = Solx (L), DRY(L) =~ DRx(L).
For M € D", (Dx), one has
Sol, (M) = DR (DxM)[—dx].
Note that
DR (Ox) ~ DRx(Ox) =~ Cxldx].

Let us recall some functorial properties of the tempered de Rham and solution
functors.

Theorem 3.2.3 ([13, Theorems 7.4.1, 7.4.6 and 7.4.12]). — Let f : X — Y be a complex
analytic map.

(i) There is an isomorphism in DP(Lf~'Dy)
f! Oxt([dY] ~Dy.x ®;X O%[dx]-
(ii) For any N" € D*(Dy) there is an isomorphism in D*(I1Cx)

DR\ (DF*N)dx] = f DRy (N [dy].
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(iti) Let M € Dbood(DX), and assume that supp M is proper over Y. Then there is an
somorphism in D"(ICy)

DRY(Df, M) =Ry DR (M).
(iv) Let L € DY (Dx). Then there is an isomorphism in D*(1Dx)
Ox ®%, L= RThom (Solx(L), Ox).
In particular, for a closed hypersurface Y C X, one has
Ok ®(L9X Ox(xY) 2 RZhom (Cxy, Ox).
5.3. Back to the real setting.

Proposition 3.3.1 ([12, Theorem 5.10]). — Let X be a complexification of a real analytic
manifold M, and denote by 1: M — X the embedding. Then

i Ol [dx] ~ Db, @ory; .

Lemma 5.3.2. — Let f: M — N be a morphism of real analytic manyfolds. Then
f Dbt — lDl\(—M ® DbM,

where Dy .\t = Dy x|m ® ory ®F ! ory for a complexification X — Y of f .

Proof. — Consider the diagram

S
M — N
l M J/ iN
J

X

Then one has the isomorphisms
Dxeu ®, o Dl = iy "Dy x ®ip, iy Ox @' orxldy]
~ 0y ('DY<_X ®Dx (9;) ®f " orx[dui]
= iy SOy ®f " orx[dx]
~ il OL @/~ orxldx]
= Db,

where (x)’s follow from Proposition 5.3.1, and () follows from Theorem 5.2.3(1). U
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5.4. Real analytic bordered spaces.

Definition 5.4.1. — The category of real analytic bordered spaces s the category whose
objects are pairs (M, M) where M is a real analytic manifold and M C M s an open subanalytic
subset. Morphisms f: (M, M) — (N, N) are real analytic maps [ : M — N such that

1) I'yisa subanalyl,‘zc subset of M x N, and
(i) Ty — M is proper.

Hence a morphism of real analytic bordered spaces is a morphism of bordered
spaces.

Lemma 5.4.2. — Let f: (M, M) — (N, N) be a morphism of real analytic bordered spaces.
Then f ts an isomorphism if the_following conditions are satisfied

(1) / '+ M — N s an wsomorphism of real analytic mangfolds,
(i) Ty — N is proper.

Recall that sy : (M, M) — M and n: (N, N ) —> N denote the natural morphisms.

Proposition 5.4.3. — Let f: (M, M) — (N, N) be an wsomorphism of real analytic bordered
spaces. Then there is an isomorphism in D" (ICnixp)

]\IIDbt Nf_IJEIDbth-

Progf: — We shall regard R]M,Ejgllpbh and R/ _ljl\?lDblt<I as subanalytic sheaves

on M. Hence it is enough to show that
Dbt (f "(V)) ~ Db;l(V)

for any relatively compact subanalytic open subset V of N contained in N.
By [12, Theorem 6.1], the topological dual of the above isomorphism is given by

F(M§ Cr1v) ® C;?) x~ F(N; Cv ® C;O)
Hence, by Lemma 5.1.4, the proposition follows from Lemma 5.4.4 below. 0J

Lemma 5.4.4. — With the same notations as in the above proposition, let V be a relatively
compact subanalytic open subset of N contained in N, and let u € C (V). Then u is rapidly decreasing

at the boundary of V if and only of [*(u) € C°°(f (V) s mpzdly decreasing at the boundary of
STV,
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Progf. — Denote by ¢ : Ff — M and go: Ff — N the projections. Note that, since
J/ 1s an isomorphism of real analytic bordered spaces, one has

Iy =Ty xyM=T; xgN.

Assume that « is rapidly decreasing at the boundary of V. For x, € 3(f ' (V)) let us
choose a sufficiently small open neighborhood W of x; and local coordinates (xy, ..., x,).
Since ¢;'(x,) is compact, shrinking W if necessary, there exist finitely many relatively
compact subanalytic open subsets {V;} and {V'} of N such that

@ VicV,

) g (W) € UW x V),

(c) there exist local coordinates (3, ...,y") on V;.

Then f(f~' (V) N"W) c UV

It follows that the derivatives 0%/*(«) are linear combinations of derivatives 8}’? u

with coefficients given by products of terms of the form 97y.. Since 8)’?1{ are rapidly de-
creasing and 97y. have polynomial growth, it follows that f*(x) l/=1vavyy 1s rapidly de-
creasing at x, for any 2. Hence /*(u) € Cl‘éf ~!V) is rapidly decreasing at x,. UJ

6. Exponential D-modules

Let X be a complex analytic manifold. According to the results of Mochizuki
[19, 20] and Kedlaya [16, 17] (see Section 7.3 below), a fundamental model for irregular
holonomic Dx-modules is the exponential Dx-module associated with a meromorphic
connection d + dg for a meromorphic function ¢ € Ox(xY) with poles on a hypersur-
face Y. In this section we describe the tempered de Rham complex of such exponential
Dx-modules.

6.1. Exponential D-modules. — Let X be a complex analytic manifold.

Definition 6.1.1. — Let Y C X be a complex analytic hypersurface. Set U = X \ Y. For
¢ € Ox(xY), set

Dxe? = DX/{P; Pe? =0 on U},
55|X = Dxéa(*Y).

Hence Dxe? C & Note that £y is a holonomic Dx-module which satisfies
Elix = ELx(xY), sing. supp(S{/}lX) =Y.

Note that the map Ox (xY) - Elx induces an isomorphism as Ox-modules.
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Lemma 6.1.2. — For ¢ € Ox(xY) one has
(Dx&L ) (YY) = Egk
Proof. — The morphism Dxe ?(xY) Q° Dxe?(xY) — Ox(xY) induces a mor-

phism Dx & = Ey/k. Since it is an isomorphism outside of Y, the statement follows. [J

Remark 6.1.3. — The isomorphism DxE{x >~ £ does not hold in general. For
example, let X =G> (1,v), Y = {v =0} and @(u, v) = «’/v*. Then £fx ~ Dxv ¢
and there is an epimorphism

Elix = Byo.oy = Dx/(Dxu+ Dxv).

Hence Dx &Y contains By(,gy as a submodule.

6.2. Tempered de Rham. — Our aim in this subsection is to describe the tempered

de Rham complex of an exponential D-module.
Let X, Y, U and ¢ be as in Definition 6.1.1. For ¢ € R, set for short

{Rep < ¢} = {xe U; Regp(x) < c} c X.
Notation 6.2.1. — We set

C{RC(/J<*} = “h_l’)l’l” C{Rc<p<(:} € I(CX),

—>+00

E{\x := RZhom (Cy, Greg<s)) € D’ I Cx).

For example, denoting by z € C C P the affine coordinate of the complex projec-
tive line, one has

- G{Rez<>k} fOl"j'Z 0,
(6.2.1) HEgp > { G forj=1,

0 otherwise.

Proposition 6.2.2. — Let Y C X be a closed complex analytic hypersurface, and set U =
X\ Y. For ¢ € Ox(xY), there is an isomorphism in D(ICx)

DRY(E5%) ~ EY x[dx].

The fundamental case where X = C and ¢(2) = 1/z was considered in [14, Propo-
sition 7.3].
In order to prove the above proposition, we need some preliminary results.
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Lemma 6.2.3. — With the above notations, one has
DRy (Exx) = RZhom (Cu, DR (E))-
Proof. — One has
Qx ®p, Euik = Qx @ (Epk ®° Ox(xY)
~ (Ox(xY) ®, Qt %) ®L < Euix
~ RZhom (Cu, Qt ® EU‘X)

The last isomorphism follows from Theorem 5.2.3(iv). UJ

Let M be a real analytic manifold, and :: M — X a complexification of M. For
M e DP(Dx), let us set

DR\(M) = Dby’ @5, M
~ ' DR (M)[dx] € D*(ICyy),

where Db\l = Dby, ® ory ®,- 10y ! “1Qx > ' Q! [dx] is the subanalytic ind-sheaf of tem-
pered distribution densities. o
Note that, considering the complexification Xg C X x X, one has

(6.2.2) DR\ (M) ~ DRy, (M KP Ox)[—dx].

Let P be the real projective line and denote by x the coordinate on R =P\ {oo}.
Note that the object of D"(I1Cp)

RZ hom (CR, C{X<*}) ~ Thom (CR’ C{x<*})

= “h_r)n” Ci<quioo)

—>+00

1s concentrated in degree zero.

Lemma 6.2.4. — Let P be the real projective line. Denote by x the coordinate on R = P\ {00}
and by z the coordinate on C. =P\ {00}. Then there is an isomorphism in D’ (1Cp)

DRu(Egip) = Thom (Cr, Cpeiy)[1].

Proof. — One has
Db @, Egip = Thom (Cr. DI") ®% Eqie
~ (Ecip) ®p, Zhom (Cx, Db})

~ (I/zom (CR, Dbtp) 278 Thom (CR, Dbtp)) =S,
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where the complex S is in degree —1 and 0. Here, the first isomorphism follows from the
real analogue of Lemma 6.2.3, r is the functor in (2.5.1) and the last isomorphism follows
from Egp = Dp/Dp(9. + 1) and (Egp)” = Dp/ (3. — 1) De.

Hence, we have to prove the isomorphisms of subanalytic sheaves
H_IS >~ Thom (CR, C{X<*}), HOS ~ 0.

Let U C P be an open subanalytic subset, so that U N R is a finite union of open
intervals.

The first isomorphism follows from the fact that ¢* € Db, (U N R) if and only if
UNR C {x < ¢} for some c.

To show that H’S =~ 0 it is enough to consider the commutative diagram

Oy

DL (R) DL (R)

L

DL (UNR) — DbL(UNR)

and notice that the vertical arrow, as well as the top horizontal arrow, is surjective. 0J

Lemma 6.2.5 (Cf. [14, Proposition 7.3]). — Let P be the complex projective line and denote
by z the coordinate on C.= P\ {o0}. There is an isomorphism in DP(1Cp)

DRp(Egip) = Egplll.

Progf. — Consider the real analytic bordered spaces (Cgr, Pr) and (R?, P?). Then
the morphism f: (R% P?) — (Cg, Pr) given by (x,9) — x + +/—1y is an isomorphism
of real analytic bordered spaces. Consider the morphisms

k S J
P? —— (RQ, PQ) — (Cgr,Pr) —— Px.

By Proposition 5.4.3,

f_lj_lDb},R >~ k' Db,.
By (6.2.2) and Lemma 6.2.3,

DRy(Ecip) = Riv ' ((Egip X° Op)' ®7L>m Dby, )[—11.
Note that ;! ((Eqp XP Op)" ®1L) - Db{,R) is represented by the complex

PxP

(0,—1, 9%)

7' Db, (7D, ) s D
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Applying £, we get the complex

(@—1,9=+/=1) (=3, ++/=T, 8= 1)

KD, (k' Dp.,)* KD,

This last complex represents &' ((Egp X° EC“I{_”)r ®" Dbtz), where (u,v) € C? is a

complexification of (x, ») € R
We have thus proved

DR (Eaip) = RiRLA ((Ege R Egp )’ ®},, Dipa)[—11.

By Proposition 5.1.3, the function ¢ V=" € Cy (R?) induces an automorphlsm of

k‘l'DbtP?. This automorphism mterchanges the actions of 9, and of 9, — +/—1. Hence, for
a Dp-module M, it induces an isomorphism

(6.2.3) FH((MBPEy ™) @) D) =k (MEP Op) @}, Di).
We then have, denoting by p; the first projection P* — P,
DRp(Ecip) = RiRAL ((Egp B° Op) @, 2 D) [—1]
= RJ'*Rﬂ/f_l(( ClP) ®Dp D P ® Dbt )[_1]
- Rj*Rﬂk—l(( Eqie) ®p, 11 Db, )[ ]
~ R.RLET T DR (Egip)
5 RiRLA 1G]
~ stﬁ]‘_lc{ReK*}[l],
where (1) follows from Lemma 5.3.2 and (2) follows from Lemma 6.2.4. ]

Lemma 6.2.6. — Denote by (u,v) the coordinates of C*. There is an isomorphism in
D’ (IC¢2)
t —u/v ~ u/v
DRCQ((S'{U#OHCQ)_ {u¢0}|02[2]
Progf: — Recall that z denotes the coordinate on G =P\ {oo}. Denote by C? the

blow-up of the origin in G?. Recall that C? C G2 x P is the surface of equation uzy = vz,
where (2 : z1) € P are homogeneous coordinates with z = z; /2. Consider the maps

- .op
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induced by the projections from G? x P. Since ¢~ (00) C p~' ({v = 0}), one has

p (v #£0}) Cq (0,

8{;:5(;’}'(32 ~ Oz (+{v = 0}) ®° Dp, Dg*Egp.

(6.2.4)

It follows

DR (€, 2pyc2) = PR (Ocz (+{v = 0}) ®° Dp,Dg"Ep)
>~ RZhom (C{v;é()}, Dthz (D[?* Dq*gali’)) y
where the last isomorphism follows from Theorem 5.2.3(iv). Note that
DR (Dp,Dg*Egip) = Rpsq' (DRp(Egp) ) [—11
~ R[)*q' RZhom (Cc, C{Rez<*})
~ Rp.RZhom (gflcc, q! C{RCK*})
~ R[?*RI;ZOWL (qil Cc, qil C{Rcz<*}) [2]

Here, the first isomorphism follows from Theorem 5.2.3(i1) and (ii1), the second isomor-
phism follows from Lemma 6.2.5, and the last isomorphism follows from the fact that ¢
is smooth with fiber C. Hence

RZhom (C 0y, DR (Dp,Dg"EG))
~ RZhom (Ciur0y, RexRZhom (g7 ' G, ¢~ Cire <) ) [21]
>~ Rp.RZhom (p~' Cozz0y ® ¢ ' Cs ¢ Cirezny)[2]
~ Rp.RThom (1™ Cusops ¢ Cre sy ) [21]

~ Rp*RIhom (ﬁ710{v¢0},pilc{v¢o} 02y qilC{Rez<*})[2]
(% Rp.RZhom (p*‘C{#o},p” C{Rc(u/v)<>k})[2]

= Rp.RZhom (p~' Cugops ' Cireuy <) [2]
~ RZhom (Ciuoys Cirequyny <1 ) [2]-
Here, (1) follows from (6.2.4), (2) follows from the equality
g '({Rez< ) Np ' ({v#0}) =p ' ({Re(w/v) <c}) forceR,

and (3) follows from the fact that p is an isomorphism over {v # 0}. UJ
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Proof of Proposition 6.2.2. — As in the previous lemma, denote by («, v) the coordi-
nates in C*. Write ¢ = a/b for a, b € Ox such that Y = 6~'(0), and consider the map

f=(ab): X— C>.
Since f~'({v =0}) = b='(0) =Y, one has

(6.2.5) S ({fv#0}) =1,

~ * oufv
(6.2.6) Ex D" ENL o

Note that

DRY(Df*E 0 o) =f (DR (E.40 )2 — dx]

{v#£0}|C2 {v£0}|C?

> " RZhom (Ciy0)s Cireguywy <xp)[4 — dx],

where the first isomorphism follows from Theorem 5.2.3(ii), and the second isomorphism
follows from Lemma 6.2.6. Hence

DRtX (SL_I|(§<) Zf! RZhom (C{v;é0}9 C{Re(u/v)<*})[4 - dX]
>~ RZhom (f_IC{v;ﬁo},f! C{Re(u/v)<>k})[4 — dx]
(% RZhom (CU,f! C{Re(u/v)<*}) [4 — dx]

(r%; RI}lOm (CU’f_IC{RC(u/v)<*})[dX]
>~ RZhom (Cy, Cregp<sp)[dx],

where (1) follows from (6.2.5), and (2) follows from Proposition 2.2.4. O

7. Normal form of holonomic D-modules

On a complex curve, the classical results of Levelt-Turittin and of Hukuhara-
Turittin describe the formal structure of a flat meromorphic connection and its asymp-
totic expansion on sectors. Analogous statements in higher dimension have recently been
obtained by Mochizuki [19, 20] and Kedlaya [16, 17], after preliminary results and con-
jectures by Sabbah [23].

In this section we recall these statements in the language of D-modules, and estab-
lish some lemmas that will be used later. In particular, Lemma 7.3.7 below will be a key
ingredient in our proof of the irregular Riemann-Hilbert correspondence.
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7.1. Real blow-up. — Let X be a complex manifold and D C X a smooth closed
hypersurface. The total real blow-up

Dot Xy = X

of X along D is the real analytic map of real analytic manifolds locally defined as follows.
We take coordinates (z, w) € C x C"~! on X such that D = {z = 0}. Then one has

Xe={t e, w)eRxCxC'; |¢] =1}
and
(O }2‘3‘ — X, (t, ¢, w) — (1, w).
Note that @ 1s an unramified 2-sheeted covering over X \ D, so that we may write
@ X\ D) =(X\D) x {+, -}.
Consider the subsets locally defined by
X' ={t ¢, w) e Xy 1> 0} = (X\D) x {+},
Xp={t¢.w) eXss 120} =X;",
X0 = {(t.tow)e Xt ¢

Il
=
|
!
&
—
A
v
[e=)

We call the subanalytic space Xp the real blow-up of X along D, and we denote by
w: )ZD — X
the map induced by @,,. Note that @ induces an isomorphism
w: igo = X\ D,
and one has
X\ =@ '(D) = SpX,

where SpX = (TpX \ D)/R. denotes the normal sphere bundle to D in X.
Let now D C X be a normal crossing divisor, and write (locally)

(7.1.1) D=D,U---UD,,
where D; C X are smooth hypersurfaces of X. The total real blow-up

w—tot: XB[ d X
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of X along D is defined by
R =X xx -+ xx Xi,
Note that @, 1s an unramified 2"-sheeted covering over X \ D, so that we may write
@, (X\D)=(X\D) x {+, -}
Set

X' =X xx - xx X' = (XA D) x {(+, ..., D)},

Xp =X;",
K\ K0,
We call the subanalytic space Xp the real blow-up of X along D, and we denote by
w . XD — X
the proper map induced by @ . Note that & induces an isomorphism
o X530 = X\ D.

Remark 7.1.1. — The spaces Xb, XEO and X0 are determined Canonlcally On the
contrary, the space X"’t is not canonical. For example, writing D =Dy U ---UD, near a
point x € D\ Dy, @, becomes a 2"~ !-sheeted covering over X \ D.

7.2. Sheaves of functions on the real blow-up. — Let X be a complex manifold and
D C X a normal crossing divisor. Set for short X =Xp.

Notation 7.2.1.
(i) Set Coo emp — g IC;(O;;T;&, where i: X — X®!is the closed embedding. In other
words, ;{o M is the sheaf of G-algebras on X defined by

X o Vr—>{u€C

Xtot
open

(Vn }~(>O) . is tempered at any point of VN X’ }

(i) Let . Ag be the sheaf of rings on X defined by

X > Ve {u e CI"™ (V) ; uis holomorphic on V N §>0}.

open

() Set DA = AX ® o —10x w_le.
(iv) Denote by DCOC " the ring of differential operators with C%O P coefficients.
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Lemma 7.2.2. — One has
Ai ~ w_lOX(*D) ®w‘10x A)N(

Remark 7.2.3. — By Lemma 7.2.2, there is an action of @ "Dy on Ag. Hence D;é
has a natural algebra structure. Note also that there are natural G-algebra morphisms

o "Dy > D4,

DL ®qw 'Dx— D

Coo,temp
X .

Notation 7.2.4. — Consider the ind-sheaf on X
Dbk :=i"'Thom (Cg-0, Db,
where i: X — X is the closed embedding.

Note that one has

i_lI/wm (C)’Z>0 s DbL

Xtot

) = RZhom (Cg-0, 7' Db

Xtot ) ’

where Gg-0 on the left hand side denotes a sheaf on X and on the right hand side a
sheaf on X.

Lemma 7.2.5. — The ind-sheaf Db has a structure of D%Oo’/mlp -module. In particular, it has
a structure of (D;gt Q¢ @ ' Dx)-module.

This immediately follows from Proposition 5.1.3.
Notation 7.2.6. — We set
Ok =RHom,,-1p (™' Og, Dby) € D*(1DF),
the Dolbeault complex with coefficients in DA% .
Theorem 7.2.7. — There is an isomorphism in D*(1zo ~'Dx)
for((’)}() ~ w'RZhom (CX\D, O;),
where for: D°(1 D;?) — DI ~'Dx) is the forgetful functor.
Proof. — It is enough to prove the isomorphism

Db;z ~ ZD'! RZhom (CX\Da Db;)
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Consider a complexification of morphisms of real analytic manifolds

Xtot > Xg ié’t — X¢
=1
0 0.

Then 'Db;( 1s a module over

Kot
Hence
@' RZhom (Cx\p, DY) =~ RZhom (Cg-0, o ' DbY,)

>~ RZhom (Cg>o, Dy s ®r Db;?)

Jtot
Xc

~ Dygegy ®;§g RZhom (C-0, Db%)

~ L t
~ DXC (_Xtélt ®D§‘{mt Dbi
“*C

~D ot ®L Dzt *)20 ®L DbL
XeX¢ Dgcémt X¢ ( C) Di‘(‘;‘ (*X%) X’

where the second isomorphism follows from Lemma 5.3.2. To conclude, note that

- L - SO0 ~ P~ Ve
DXC%XE“ ®D>~{E" Dxlcor (*XC) ~ DX‘(‘:" (*XC) ]

Remark 7.2.8. — The importance of Theorem 7.2.7 is in showing that
@ ' RZhom (Cx\p> Oy) has a structure of D;é -module.

Corollary 7.2.9. — There is an isomorphism in D*(1Dx)
R, 0% =~ RZhom (Cx\p, Ox)-
Progf: — By the above theorem, we have
(’)}% ~ w'RZhom (CX\D, O;i)
>~ RZhom (w_ICX\D, w!(’%t().
Hence
Rw . O ~ Rw,RZhom (w_l(]x\D, o' (’);i)
~ RZhom (Rewy o~ Gx\p, O)
>~ RZhom (CX\D, O)ti) O
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Proposition 7.2.10. — One has
Az > axO%.
Progf. — By the definition of Ag, using [12, Theorem 10.5] one has
s~ Hlaz0%.

Let U be a relatively compact subanalytic open subset of X and set V = @ (U N X>0).
Then we have

RIC (U; ag(’))tz) ~ RHom (Cmg>o, (’))L()

~ RHom (Cv, O;(),

where the last isomorphism follows from Corollary 7.2.9. Hence the vanishing of the
higher cohomology groups of the complex agO% follows from the fact that, if V is a
relatively compact subanalytic convex open subset of C”, then,

H'RHom (Cy, Og,) =0 for k0.
This last fact follows e.g. from [4, Theorem 5.10]. U

7.3. Normal forms. — Let X be a complex manifold and D C X a normal crossing
divisor. Let (21, .. ., 2,) be a system of local coordinates of X such that D = {z; - - - z, = 0}.

Notation 7.3.1. — For M e D*(Dx), set
MA=DEZ® o' M.

,],DX

Lemma 1.3.2. — If M is a holonomic Dx-module such that sing. supp(M) C D and
M S M(xD), then one has

(7.3.1) MA>DEL®,1p, &' M.
Progf: — This follows from
D)i? ®;*1Dx o "M~ (Ag ®;,1 _1DX) ® Cipy o 'M
~ Ag ®;,IOX o' M
by noticing that M is flat over Ox. O

It is well known that if M is a regular holonomic Dx-module such that M =~
M (*D) and sing. suEp(./\/l) c D, then MA is isomorphic to a finite direct sum of copies
of((’)X) , locally on X", (Note that 2 *(log z;)™ is a section of Ag, locally on XO for A € C,
k=1,....,randme Z,.)
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Definition 7.3.3. — We say that a holonomic Dx-module M has a normal form along D
y
i) M=~ M(xD),
(ii) sing.supp(M) C D,
(i11) for any x € X0, there exist an open neighborhood U C X of @ (x) and finitely many
@; € T'(U; Ox(xD)) such that

; A
(M)ly =~ (EBZ-(%\MU) )‘V
for some neighborhood V C @~ (U) of x.

A ramification of X along D on a neighborhood U of x € D is a finite map
p: X' —->U
my

of the form p(2) = (2",..., 2", 2415 ..., %) for some (my,...,m,) € (Z.,)". Here
(21, ..., 2y 1s a local coordinate system such that D = {z, - - -z, = 0}.

Definition 7.3.4. — We say that a holonomic Dx-module M has a quasi-normal form
along D if it satisfies (1) and () in Definition 7.3.3, and if for any x € D there exists a ramification
p: X' — U on a neighborhood U of x such that Dp* (M |v) has a normal form along p~" (D N U).

Remark 7.3.5. — With the above notations, Dp*(M|y) and Dp, Dp*(M|y) are
concentrated in degree zero, and M|y is a direct summand of Dp,Dp* (M |v).

Theorem 7.3.6 (See [16-20, 23]). — Let X be a complex manifold, M a holonomic Dx-
module and x € X. Then there exist an open neighborhood U of x, a closed analytic hypersurfaceY C U,
a complex mangfold X' and a projective morphism f: X' — U such that

(i) sing.supp(M)NU CY,

(i) D:=/""(Y) is a normal crossing divisor of X',
(i11) f induces an isomorphism X'\ D — U\ 'Y,
(iv) (Df* M) (*D) has a quasi-normal_form along D.

Remark that, under assumption (iii), (Df M) (*D) is concentrated in degree zero.
The above fundamental result provides the following tool to prove statements con-
cerning holonomic objects.

Lemma 7.3.77. — Let Px (M) be a statement concerning a complex manifold X and a holo-
nomic object M € D? (Dx). Consider the following conditions.

hol
(@) Let X =J,;; U; be an open covering. Then Px (M) is true if and only if Py,(M|y,) is
true for any 1 € 1.
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(b) If Px (M) is true, then Px(Mn)) is true for any n € Z.

(c) Let M' > M — M" 5 bea distinguished triangle in D} ,(Dx). If Px(M') and
Px (M) are true, then Px (M) is true.

(d) Let M and M’ be holonomic Dx-modules. If Px (M @ M) s true, then Px (M) is
lrue.

(e) Letf: X — Y be a projective morphism and M a good holonomic Dx -module. If Px (M)
is true, then Py(Df , M) s true.

(O If M is a holonomic Dx-module with a normal_form along a normal crossing divisor of X,
then Px (M) is true.

If conditions (a)—(f) are satisfied, then Px (M) is true for any complex manmfold X and any M €
DEOI (DX)

Proof. — Let X be a complex manifold and M € DEOI(DX). Let us show that
Px (M) is true.

(i) Let @ < b be integers such that M € D{*/'(Dx). Then one says that M has
amplitude < b — a. By applying (b) and (c) to the distinguished triangle

+1
MM 1M —

and arguing by induction on the amplitude of M, we may assume that M
is concentrated in degree zero. In other words, we may assume that M is
a holonomic Dx-module. Since the question is local on X by (a), we may
further assume that M is good.

(i) Assume that M is a good holonomic Dx-module with a quasi-normal form
along a normal crossing divisor D C X.

Locally, there exists a ramification p: X' — X as in Definition 7.3.4, such
that Dp* M has a normal form. Then, Px/(Dp* M) is true by (f). Hence
Px(Dp,Dp* M) is true by (). Since M is a direct summand of Dp,Dp* M, it
follows from (d) that Px (M) is true.

(i) Let M be a good holonomic Dx-module. We will argue by induction on
dim X and by induction on the dimension of Y := supp M.

(111-1) Assume first Y = X. Then, locally on X, there exist a closed hypersurface
7. C X and a projective morphism f: X' — X such that D :=f~'Z is a nor-
mal crossing divisor of X', /" induces an isomorphism X'\ D = X\ Z,and
(Df* M) (xD) has a quasi-normal form. Hence Px/(Df* M (xD)) is true by
(ii). Since Df* M (xD) is good and M (xZ) >~ Df Df* M (xD), Px (M (xZ))

is true by (e). Let us consider a distinguished triangle

M= MxZ) — N =L

Then dimsupp N < dimY, and hence Px(N) is true by the induction hy-
pothesis. Therefore Py (M) is true by (b) and (c).
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(iii-2) Assume now that Y # X. Let Y, be its singular locus, and let /1 Y’ — X be
a projective morphism such that Y’ is a complex manifold, f(Y') =Y, Z':=
S _leing is a closed hypersurface of Y’, and f induces an isomorphism Y’ \
7 =Y \ Ying. Then N :=Df* M(xZ)[dy — dx] is a good holonomic Dy~
module. Since dimY’ < dim X, Py, (V) is true by the induction hypothesis
on dimX. Hence Px(Df,N) is also true by (e). Consider a distinguished

triangle

M—Df N —L LN
Since supp £ C Y, the induction hypothesis on dim'Y implies that Px (L)
is true. Hence Px (M) is also true by (b) and (c). U

8. Enhanced tempered functions

We define in this section the enhanced ind-sheaves of tempered distributions and
of tempered holomorphic functions.

8.1. Enhanced tempered distributions. — Denote by P and P the real and complex
projective line, respectively. Let ¢ € R C P and 7 € G C P be the affine coordinates,
with £ = 7|r. Let M be a real analytic manifold, and consider the natural morphism of
bordered spaces

J: M xRy — M xP.
Defination 8.1.1. — Set
Dby, =) RHomp, (Eqps Dbyryp)[1] € D" Crir. ),
and denote by DIE; the associated object of E° (1 Cx).

Here the shift has been chosen so that Propositions 8.2.4 and 9.1.3 below hold.
Note that, by an argument similar to that in the proof of Lemma 6.2.4, one has

HY (Do) =0 fork#—1.
Remark 8.1.2. — There are monomorphisms
C{t<>k} ®7T71,Dbf\,1 — Hil (’Db-ll\—l) — nfl'DbM.

The first one is induced by v(x) > ¢'v(x), and the second is induced by u(x, ) —
¢ 'u(x, t). They are not isomorphisms (if dimM > 1). In fact, for M =R and U =
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{(x,t) e M x R; x>0, ¢t < —1/x}, one has ¢¢'* € Hom (Cy, H '(D#,,)) but ¢"/* €
Hom (Cy, 7~ 'Dby) ~ Hom (Cx=0)» Dbyp) does not belong to

Hom (Cu, Gy ® 7' Dby;) =~ Hom (Cy, ' Dby,)
~ Hom (C{X>()}, Dblt\l)

Proposition 8.1.3. — There are isomorphisms in D"(I Chrixr,)

Db‘l\rl :—) IhOmJ’_ (C{[ZQ}, Db;l)

& Thom* (Cyzq. Dby;)  for any a = 0.

Proof-
(1) Let us prove the isomorphism

Dby, —> Lhom™ (Cyzoy, DbY,).

Denote by p: M x P — M the projection. Let U C M x P be an open suban-
alytic subset such that UN (M x R) N p~!(x) is connected for all x € M. Note
that Rj, Db}, belongs to D?,  (I1Cyixp). By Lemma 2.4.4, it is then enough to
show

RHom (CU, Ih0m+ (C{[>()}, Db—ll\-l)) ~ 0.
One has
RHom (CU, Ih0m+ (C{t>o}, Db;l)) ~ RHom (CU é C{[>0}, Db;l> .

Set V=p(U) CMand UNM x R) ={(x,1) € VX R; ¢(x) <t <y},
where ¢, ¥ : V — R are subanalytic functions with ¢(x) < ¥ (x) for all x € V.
Then

+
Cu ® Cmg) = CGw[—1],

where W = {(x, 1) € V x R; ¢(x) < t}. Note that ¢ takes value in R\ {4+00}.
Hence we have to prove that the bottom arrow in the commutative diagram
below is an isomorphism.

-1
Hom (Cyixr, Dby, p) — Hom (Cyixr, Dby, p)

C

Hom (CW', Dblt\/IxP) ; Hom (C\V’ Dbltv[x P)'
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Since the top arrow is surjective and the vertical arrows are surjective, also
the bottom arrow is surjective. By Lemma 8.1.4 below, the bottom arrow is
injective.
(i) In order to prove the isomorphism

Ih0m+ (C{tza}’ Db;[) —> I/zom+ (C{[zo}, Db;l),
it is enough to show that

Ih0m+ (C{K,l}, Db-ll\-/l) —> I/zom+ (C{[<0}, Db-ll\-l)
Hence, as in (i), it is enough to show that

RHom (G, Zhom* (Ci=a), DbY;)) —> RHom (Cvs, Zhom™ (Gy<oy, Diy,))

for any subanalytic open subset U C M x P such that

UNMxR)={(x0eVxR; ok <t<y®},

where V = p(U). One has Gy é Ci<y = Gy, [—1], where
W, ={(x,) eVxXR; t—a<y®}

Hence we have to show that the following morphism is a quasi-isomorphism

(Hom (Cw,, Dbyy,p) “= Hom (Cw, Dbsp))
- (Hom (CWU’ Db}\IxP) E) Hom (CWU’ Dbilxp))'

Since the arrows 9, — 1 are surjective, we have to show that the natural mor-
phism

ker(Hom (Cy,, Dby;,p) 2=, Hom (Cw,. Dhyyp))
— ker(Hom (Cuy,, Dby;yp) 2=, Hom (Cwy. Db}y,p))
is an isomorphism. Indeed, its inverse is given by u(x, ¢) = ¢" u(x, t — a). ]

Lemma 8.1.4. — Letu € T'(M; Dbyy) and assume that u(x)e' € T (M x {¢t > 0}; Dbyixp)
is tempered at t = 00. Then u=0.

Progf. — For any v € C*(M), set ¢ = f v(x)u(x)dx. Then the function ¢ =
f v(x)u(x)e'dx is tempered at ¢ = 00, and hence ¢ = 0. [
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8.2. Enhanced tempered holomorphic functions. — Let X be a complex manifold. Con-
sider the natural morphism of bordered spaces

1. X xRy —>XxP.
Let T € C C P be the affine coordinate such that t|g = ¢, the affine coordinate of R.
Definition 8.2.1. — Set
O% =7 ((Ecp) ®p, Okl
~ i'RHomp, (Egpr Oxp)[2] € E"(I D),
Q5 = Qx ®, Ox
~ i (. O, Eap)[11 € E"ADY).
Recall that v D*(Dp) — DP (Dy’) is the functor given by M" = Qp ®(L9P M.

Theorem 8.2.2. — There ts an isomorphism in D"(I Cxxr.,)
REOS =4 ((Egp) @5, Okp)l1],
and there are isomorphisms in E” (1 Dx)
O; :) Ihom+ (C{,zo}, O;)
& Thom™ (Cizq» OF)  for any a> 0.
Progf: — This follows from Proposition 8.1.3, noticing that
O%, =~ R’Homﬂ_lpi(n_l(')y, Dig,),
where Xg denotes the real analytic manifold underlying X. U

As a consequence of Theorem 8.2.2 and Proposition 4.7.5, we get the following
result.

Corollary 8.2.3. — There are isomorphisms in E>(1Dx)
O >~ Zhom™* (G5, OF)
:Cié@;
Proposition 8.2.4. — There is a canonical morphism

OF K OF - OF__.



RIEMANN-HILBERT CORRESPONDENCE 171

In order to prove this proposition, we need a complex analytic analogue of the
construction in Notation 4.3.8.

Notation 8.2.5. — Denote by S’ the closure of {(x}, x9, x3) € C*; x; + xy + x5 = 0}
in P x P x P. Then § has a quadratic singularity at (0o, 00, 00). Denote by S the blow-
up of 8" with center (00, 00, 00). Then S is a smooth projective surface. Consider the
maps

pLslpxp

induced by (xy, x9, x3) = —x3, and (xy, x9, x3) > (x1, x9), respectively. We denote by the
same letters the induced maps

XxYXxPLEXXYXxSHXxY xPxP.

Remark 8.2.6. — The algebraic surface S is also obtained as the blow-up of the
complex projective plane P?(C) with center at three points on a line.

Proof of Proposition 8.2.4. — Consider the diagrams of bordered spaces

j} j}f
XxRy < XxY xRy xRy — > Y xRy,

N

V4
XxP<— XxYxXxPxP Y x P
and
m
XxY xS XxYxP
Js XxY
XXYXPXxP < XxYxRy xRy —— XxY xR
J
Recall that

O% =i ((Eap) ®p, Oxsp)l1],
O =iy ((€cp) ®p, Ovp)l1].

where 7; and 7y are coordinates on G C P.
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There are morphisms
pOx®p 0%
=7y ((Eap) 5, Okep) ©F; ((Eap) ©p, Ovp))[2]
=7 (€ MEcp) Oy (01 Ok ®F, Op))12]
7 (Ecipe) Bpy,p Okvxrne) (2]

where the first morphism follows from Lemma 3.3.20.
Since j = p o js, we have

J ((Ectipup) ®ppp Okxvurp)2]
~jsh (Eciipre) ®ppp Oxvsrne) 2]
~Js (07 (Ecrprn) ® 1 pp.p P Oxxvxexe) [2]
=07 Eaiee) & ing, D, g O Oxcres)[2]
~js (DF (Ecipre) ®py Oxuevs)[2]:
where () follows from Theorem 5.2.3(1). We have a morphism
D) (Eciiprs) = D (Egiipp) (07" (P x P\ C))
~ D" (Egp) (xp7 (P x P\ C7)).
Hence we obtain
prO%®py ' OF — g (DR (Egp) (5 (P x P\ €F))" @ Ok ys) 2]
= jsRZhom (Cxxyxc2> DL (Egp) ®p, Oxeyxs)[2].
Since Jg ' (Cxxyxc2) = Cxxyxr?, one has
JsRZhom (Cxeyxcz, D (Egp) @, Ok iy s)[2]
~Js (D" (Ecip)” ®p, Oxvxs)[2]
~Js (7 (Eap) @5-ip, P, i @ Okevs) 2]
(%Jg (27" (Eap) ®: ipy ' Oxeyxp)[11
~ st ((Eap) ®p, Oxvxp)l1]
~ i,y (Eap) ®p, Oxxvxe) 1.
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where () follows from Theorem 5.2.3(i). We thus get a morphism
b OL®p; OF > 1 O% -
The desired morphism follows by adjunction. U

9. Riemann-Hilbert correspondence

We have now all the ingredients to state and prove a Riemann-Hilbert correspon-
dence for holonomic D-modules which are not necessarily regular. It is an analogue of
the classical Riemann-Hilbert correspondence for regular holonomic D-modules, in the
framework of enhanced ind-sheaves.

9.1. Enhanced de Rham and solution functors. — Recall that
1 XXRe—>XxP

is the natural morphism of bordered spaces, T € G C P is the affine coordinate and
=1 |R-

Definition 9.1.1. — For M € DP(Dx), set
DRy(M) = Q5 ®;, M
~ i DR (MEP ER)I1]
Solg (M) = RHomp (M, OF)
~ ' Soly, p(M K Egp) [2].
They induce the functors
DR : D"(Dx) — E*(ICx),
SolE: D*(Dx)® — E"(ICy).
Note that one has
SolE (M) =~ DR (DxM)[—dx].
From Theorem 5.2.3, one deduces
Theorem 9.1.2. — Let f: X =Y be a complex analytic map.
(@) There is an isomorphism in E°(1f ' Dy)
Ef*Ofldy] = Dy«x ®p,_ OXldxl.
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(ii) For any N' € DP(Dy) there is an isomorphism in E>(1Cx)
DRE(Df*N)ldx] ~ Ef DRE(N)[dv].

(iti) Let M € Dgood(DX), and assume that supp M is proper over Y. Then there is an
wsomorphism in EP(ICy)

DR(Df , M) ~Ef , DRIM).
(iv) Let £ € D' (Dx) and M € D*(Dx). Then
DRY(L ®° M) =~ RZhom (1~ Solx (L), DRL(M)),

where Solx (L) = RHomp, (L, Ox). In particular, for a closed hypersurface Y C X,
one has

DRY(M(*Y)) = RZhom (7' Cx\y, DR (M)).

Proposition 9.1.3. — For L € th (Dx) one has an isomorphism in EP(ICy)
DRY(L) ~ ¢(DRx(L)) := C5 @7~ 'DRx(L).
In particular, one has

DRL(Ox) ~ CE[dx].

Proof.
(1) When X = {pt}, by Lemma 6.2.4 we have
DR, (C) =~ Cpoy[11= CE .
Hence, Theorem 9.1.2(ii) and Proposition 4.7.14(i1) imply
DRX(Ox) ~ Eay CF | [—dx] ~ CSldx],

where ax: X — {pt} is the canonical map.
(ii) By (i), setting M = Ox in Theorem 9.1.2(iv) one has

DRE(L) = RZhom (7' Solx (L), CK[dx]).
Moreover,

+
RZhom (77,'_180[)((5), Ci[dx]) ~ C>E( X RZhom (JT_ISOZ)((;C), C{,:()}[dx])

+
~ C§ ® (7' Dx(Sok (L)ldx]) ® Cy=o))
~ C§ ®@ 7' Dx(Sokx (£)[dx])
~C§ ® 7' DRx(L),

where the first isomorphism follows from Corollary 4.7.11. 0J
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9.2. Real blow-up. — Let D C X be a normal crossing divisor, and denote by X the
real blow-up of X along D. Similarly, denote by X x P the real blow- -up of X x P along

D x P. There is a natural identification X x P = X x P. Hence, following the notations
in Section 7.2, we have the sheaves of rings on X xP

A}?xp C @ 'RHom (Cx\pyxps Oxxp),
X><P = Az.p @ -10xxp willDXxPa
and the complex
O)tZXP € Db (I D}éxP)'
Consider the natural morphisms
X E X x R, N X x P.
Defination 9.2.1. — Set
o5 =1 ((50\1’) ® O;(XP)[I]
~ 7' RHomp, (Eqp. Ok, p)[2] € (IDZ),
QE’Z = 77)%1@'719X ®7|;:11U710X O)Ei
A O]
=T (p O, Eai) (1] € (1(DX)™)

and

DRE(L) = QE @, LeE (ICx) for L € D"(DZ).
X
Theorem 7.2.7 and Corollary 7.2.9 imply

Theorem 9.2.2. — There are an isomorphism in E>(IDY’)
Ew Q% >~ RZhom (7' Cxip, QF),
and an isomorphism in E> (1~ DxP)
for(Q2%) ~ Ew 'RZhom (7~ Cx\p, 2%).
where for: EP(1(DZ)?) — E> (1w~ DxP) is the forgetful functor
Corollary 9.2.3. — For M € D} (Dx) such that M —> M (D), we have
DRE(M) ~ Ew ,DRE(MA),
DRE (M) ~Ew ' DRE(M).
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Proof. — By the first isomorphism in Theorem 9.2.2, one has
Ew . DRE(MH) = Ew, (925 Bpa M)
o~ Ew*(Q';( ®;_1'Dx w_l./\/l)
~ (Ew.Qf) @, M
~RZhom (1~ Cxyp, ) ® M
~ Q% ®2")X (Ox(xD) ® M)
~ DRY(M).

The proof of the second isomorphism in the statement is similar, using the second iso-
morphism in Theorem 9.2.2. U

9.3. Constructibility. — Let Y C X be a complex analytic hypersurface and ¢ €
Ox(xY). Set U=X\Y. Let T € C C P be the affine coordinate such that t|g = ¢. We
set

{t=Rep}={(x,) eUxR; t=Rep(x)}] CXxP
and define the object EE‘X((/)) of E’(ICx) by

+
EQ x(9) = C§ ® RZhom (Cuxr, Cii=req))-
Recall the notation £y from Definition 6.1.1.

Lemma 9.3.1. — Let Y C X be a closed hypersurface. Let ¢ € Ox(xY) be a meromorphic
function with poles at Y. Then we have an isomorphism in E> (1 Cx)

DRy (Ex) = Ef x (@)[dx].
In particular, D'Ri(ﬁ&x) s R-constructible.
Proof: — We have
&X DX 86&) = S;Ep(xp-
By Proposition 6.2.2,
DRy p(Excxxp) = RZhom (Cuxe, “Hm” Ciree—g)<a) [dx + 11,

a—+00

and by the definition,
DRy (Elx) = i DRy (Elxcxxp)[1]-
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Hence

DR)E(((S’&X) >~ RZhom (CUxRa i! “h_I)Tl” C{Re(f,(p)q,} [dx + 2])

a—>~+00

>~ RZhom (CUxR, “li_r)n” ClRrep<aldx + 1]),

a—>—+00

where the last isomorphism follows from
Cuxr ® 7' Cire(r—p)<a) = Cpregea[—1].

In EP(I1Cx) we have

+
ccys ~ €1 ~ E
lgn” Ci—reg<qg[l] = h_r)n” Ci—Repzq) = Cx ® Cipreyy-

a—400 a—~+00

Thus we obtain
+
DR (€f)x) = RThom (Cum, €F @ Cmrey ) [ds]
+
>~ G ® RZhom (Guxr, Cp—rey))[dx].

Here, the last isomorphism follows from Corollary 4.7.11.
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O

Theorem 9.3.2. — For M € D} (Dx), the object DRY(M) of EPACx) is

R-constructible.

Proof-

(i) Assume first that M is a holonomic Dx-module with a normal form along a

normal crossing divisor D. Then

MA = D;{‘ ®Z';’ o 'M

,IDX

is locally a direct sum of D}é-modules of the form (5>(€\D|X)A for ¢ € Ox(xD)

as in Lemma 9.3.1. By Corollary 9.2.3, one has

DRE((E4pn)”) = Emr DRE (E4 oy )-

Since DR>E<(8§\D|X) is R-constructible, Proposition 4.9.11 implies that

'DR)Ez((E)‘ﬁ\D‘X)A) is R-constructible. Hence also 'DR>E~( (M) is R-constructible.
By Corollary 9.2.3, DR (M) ~ Ew,DRE (M) is R-constructible.
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(i1) We shall apply Lemma 7.3.7 to the statement
Px(M) = “D'R;(M) is R-constructible”.

Hypotheses (a) and (b) are obvious, (c) follows from Proposition 4.9.3, (d) from
Proposition 4.9.6, (e) from Theorem 9.1.2(ii1) and Proposition 4.9.11, and (f)
from step (1). 0J

Theorem 9.3.3. — For M € Dﬁol(DX) and N € Dﬁol(DY), there is a canonical isomor-
phism

DRE(M) M DREW) <> DRE, (M KPN).

Progf: — The morphism is defined by using Proposition 8.2.4.

By dévissage, using Lemma 7.3.7, we may assume that both M and N are holo-
nomic D-modules having a normal form along a normal crossing divisor. Denote by
Dx C X and Dy C Y the normal crossing divisors of the singularities of M and N,
respectively. Note that M XP N has singularities at Dx,y := (Dx X Y) U (X x Dy).

__Consider the real blow-ups @x: X — X and wy: Y — Y. Note that X XY =~
X xY.
There is a natural morphism
QF W QE — QF
M8 = Qg
Hence there are morphisms
E ol b (OF ol E L
(2% ®p M) K (2f ©p N) = Q5 ® o (MRN)

~QE gk (MEPN).

XxY ~Dxxy

The composite of the above morphisms is isomorphic to

(95 @b M) B (925 B M) > () @b (MEPN)Y,

xY XxY
1.e. to
DRE(M*) R DRE(N) — DR (M E° X)),

By Corollary 9.2.3, it is enough to show that this morphism is an isomorphism. Then, by
Theorem 7.3.6, we may assume M =~ ¥, and N~ S;//\DY‘Y for ¢ € Ox(x¥Dx) and
Y € Oy (x¥Dy). Hence, by Corollary 9.2.3, one has

DRE (M) ~ Ew iy DRY(M),
and similarly for M replaced by A" and M XP N/
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On the other hand, Proposition 4.9.22 implies
! + ! ! +
Ewr L DRE(M) X Ew,DREN) ~ waxY(DRi(M) X DR@(N)).

We have thus reduced the theorem to the case M = E{\p x and N = 5;”\DY|Y, and we
conclude by using the lemma below.

Lemma 9.3.4. — Let X, Y be complex manifolds, Dx C X, Dy CY closed hypersurfaces,
and ¢ € Ox(x*Dx), ¥ € Oy(xDy). Then we have an isomorphism in E’(I1Cxyy)

+
EX oy x (@) B ES v (W) = B pxnpyixoy (@ + ).

Progf: — We have

+
D)E( (E)E(\DX\X((/))[dX]) ~ C)E( ® C{1=7 Re(p}[dX]-

One checks easily that
E & + o et
(CX ® C{tZ—Rew}[dX]) X (CY ® C{tZ—ReW}[dY]>
e+
>~ Cx oy ® Cy—_Rre(py[dx + dy].

+
Applying D%, and noticing that DF commutes with X by Proposition 4.9.21, we obtain
the desired result. U

9.4. Duality. — Let T be a tensor category with unit object 1. Recall that an ad-
junction in T is a datum (X, Xy, 1, &) where X, X, € T and

15X, ®X,, Xo®X;—1

are morphisms such that the compositions
Xy Xy ®1 —> Xy X, @Xy —> 1 @ Xy >~ Xy,
X 210X, > X, 98X, X, — X, ®1~X,

are the identities. In this case, Hom (Z, Xy) ~ Hom +(Z ® X, 1) functoriallyin Z € T,
and one calls Xy a right dual of X.

Let X be a complex manifold. We shall adapt the construction above to the cate-
gories D} (Dx) and EII’{_C(I Cx).

hol

Define the maps
P X=X by (g, x) 2 (K e ).
In particular, p}, is the diagonal embedding §: X — X x X.
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Recall that By, is the holonomic Dxyx-module associated with the diagonal set
Ax (see (2.5.2)).

Lemma 9.4.1. — For M, M’ € Dgood('DX) one has

(9.4.1) Hom p, p, (M, M)
~ Hompyp, ,, (Bax[—dx] 8° M, M’ B° By [dx]),
9.4.2) Hom ) (M, M)

~ Hompyp, ,, (M B Bay[—dx], Bay[dx] K° M').
Progf. — Let us prove only (9.4.1). We have
Ba[—dx] XP M ~ Dpfm*Dpﬁ*M[—dx],
M ®P Ba[dx] > Dplyy,Dpy* M'[dx].
By Proposition 2.5.1,
Hompp, ,) (Dp115.Dp5" M —dx]. Dptyy, Dp" M [dx])
>~ Hompyp,,) (Dp* M, Dp1,Dp10y, Dp* M[dx]).

Since
X X xX
9.4.3) l ; o l s
pZ
X xX X xXxX

1s a transversal Cartesian diagram, Proposition 2.5.3 gives
Dpi1,0p1,Dp "M’ = D8,D8"Dp" M’
~D§ M.
Hence
Hompyp ) (Bax[—dx] K° M, M’ KP° B, [dx])
~ Hompp,,,(Dp; "M, DS, M'[dx])
= Hompp,, (M, Dp;,D8, M)
~ Hompp, , (M, M),

where () follows from Proposition 2.5.1. O
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Definition 9.4.2. — An adjunction in D} (Dx) is a datum (M, My, 1, €), where
M, M, e DEOI(DX) and

Bay[—dx] = M, KP° M,,
M, R° M — By [dx]

are morphisms such that:

(@) the composition
Bay[—dx] ®° M, = M, B° M, P M, = M, K° B, [dk]

corresponds to id g, by (9.4.1),
(b) the composition

My RP By [—dx] —> My RP M, KBP M,y —> By [dx] B° M,
corresponds to idaq, by (9.4.2).

Proposition 9.4.3.

(i) For M € D} (Dx) there is a natural adjunction (M, Dx M, 1, ), that we denote by
(M, Dx M) for short.
@) If (M, My, n, €) is an adjunction in DEOI(DX), then Moy >~ Dx M.

Progf: — Since (i) 1s obvious, we will prove only (i1).

(ii-a) First, let us show that there is a functorial isomorphism in £ € D}, (Dx)
(9.4.4) Hom gy p,, (£, My) 2 Hompyp, (£ B° M, Bag[dx]).

Consider the map sending ¢ € Hompp,, (£, My) to the morphism ¢ given by the
composition

LR M, L5 My KP M| =5 Ba[dx].

Consider the map sending ¥ € Home(DXQ)(E XP M, Bacldx]) to the morphism ¢
which corresponds by (9.4.2) to the composition

LKP By [—dx] —> £LK° M, K My L5 Ba[d] B° M.

Then it is easy to check that these maps are inverse to each other.
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(ii-b) By applying (9.4.4) first to the natural adjunction (M, Dx.M,), and then to the
adjunction (M, My, n, €), we have

Hom gy p,, (£, Dx M) = Hompyp, ,, (£ K° M, Bagldx])
~ Hom pypy) (£, Mby).
Hence, by Yoneda, My >~ Dy M,. O
Now, we have a similar formulation for E%_C (ICx). Recall from Notation 4.7.3 that
Cix = C>E<xx ®7T)Z>1<XCAX’
E

_ (E —1
Wpy = Ciox O T, xDay-

Lemma 9.4.4. — For K, K’ € E;C (ICx) one has
. + ,+
<9.4-5) HOH] Eb(ICX) (K, K) ~ Hom Eb(ICXS) (CiX & Ka K IX a)ix)’
/ + x /
(9.4.6) Hom gy ey (K. K') = Home g, (K 0 €5, 0 KK).

Proof: — The proof is parallel to that of Lemma 9.4.1.
Let us prove only (9.4.5). We have

+
C}, MK~ EpippEp 'K,
+ ‘ 1oy
K'Kwf, =~ Eply,,Ep K
Hence
E s ’ s E
HOmEb(ICX3) <CAX @ K, K @ Cl)AX>
~ Homgn g,y (Ep120Ep; 'K, Epfyy, Ep K)
~ Homguq,,) (Epg_lK, Eﬁ?izEf’?QQ*EP%!K/)
= Home e, (Ep; 'K, ES.ES'Ep}'K)
~ HOI’H EI)(ICXQ) (Epg_lK, EE*K/)
~ Homg ¢y, (K, K),

where () follows from the fact that there is a Cartesian diagram (9.4.3). O
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Defination 9.4.5. — An adjunction mn E';’{{(ICX) s a datum (Ky, Ko, n,€), where
Kl, KQ S E%,C(ICX) d?’ld

E s

CAX —> Kl X’ KQ,
+ e E
Ko XK — o,
are morphisms such that:
(@) the composition

. " + + P +

CAXIEKI —>K1 &KQ&KI _)Kl &a)AX

corresponds to 1dg, by (9.4.5),
(b) the composition

+ e + o+ e g+
KQIZCAX —)KQ&Kl |ZK2 —>a)AX&K2
corresponds to idg, by (9.4.6).
Similarly to the case of D} ;(Dx), we obtain:

Proposition 9.4.6.

i) For K € EY (I1Cx) there is a natural adjunction (K, DEK, n, €), that we denote b
R-c U X 4
(K, DEK) for short.
1) If (K, Ko, n, €) s an adjunction in E'f{_c (ICx), then Ky >~ DEK,.

Note that
DRS, x(Bax[—dx]) ~ C5_, DRE, x(Baxldx]) ~ o .

Proposition 9.4.7. — Let (M, My, n,€) be an adjunction in D} (Dx). Then
(DRY(M)), DRYL(M,y), DRE  «(0), DRY,, «(€)) is an adjunction in E% (1Cx).

Progf: — This easily follows from the functorial properties of DR O

In particular, the natural adjunction (M, DxM) in DEOI(DX) induces an adjunc-

tion (DR;(M), DR;(DXM)) in Ep .(ICx). We thus get the following result.
Theorem 9.4.8. — For M € D} (Dx) there is an isomorphism

DEDRE (M) =~ DRE(DxM).
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Recalling that
DR (DxM) = Solg (M)[dx],
we deduce
Corollary 9.4.9. — For M € D} (Dx) there is an isomorphism
Sol§ (M)[dx] ~ D (DRL(M)).

Hence we obtain the following corollary of Theorems 9.1.2, 9.3.3 and Proposi-
tion 4.9.21.

Corollary 9.4.10. — Let f: X = Y be a complex analytic map.
() For any N € DY (Dy) there is an isomorphism in E>(1Cx)

hol

Solg (DF*N) >~ Ef ' Solg (V).

(ii) Let M € Dy (Dx) N D’ (Dx), and assume that supp M is proper over Y. Then

g00

there is an 1somorphism in E’(I1Cy)

Soly (Df , M)ldy] = Ef ,Solg (M)[dx].

(iii) Let M € D, (Dx) and N € D}, (Dy). Then there is an isomorphism in E*(1Cxy)
SolE(M) K SEN) > Solf (M KO N).

We obtain the following corollary of Theorem 9.1.2(iv).

Corollary 9.4.11. — If M € D?_(Dx) and Y C X is a closed hypersurface, then
Solg(/\/l(*Y)) ~ n_lcx\y & SOZ)E(M).

We also obtain the following corollary of Lemma 9.3.1.

Corollary 9.4.12. — If'Y C X is a closed hypersurface and ¢ € Ox (xY), then

+
Solg (E4\yix) = CF ® Clm_reg)-
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9.5. Riemann-Hilbert correspondence. — Let X be a complex manifold. Recall the
hom-functor from Definition 4.5.13

Hom®: EP(1Cx)™ x EP(1Cx) — DP(Cx).
Proposition 9.5.1. — There is a_functorial morphism in M € D" (Dx)
(9.5.1) M — HomF (Solg (M), OF).
Proof. — Recall the natural morphisms
X x Ry 255 X x R X,
By the definition of So/E, one has
Rix« RE SolL (M) =~ Rt omz1p, (Tx' M, Rix. RF OF).
Hence, there is a morphism in D" (ﬁ;(lDX)
ﬁ;(l/\/l — RHom (ij* RESo/E(M), Rix« RE Oi),
which induces by adjunction the desired morphism. UJ

Consider the diagonal embedding

5: X = X xX.

Lemma 9.5.2. — For M € D} (Dx), one has
Honf (SolE(M), OF) = Hon (G, E8' (DRE (M) 5 OF ) ) 4.
In particular, there is a_functorial morphism in M € Dy (Dx)
9.5.2) M = Hon (Cymsy, E8'(DREM) 1 OF ) ) 4]
Proof: — By Proposition 4.9.23 and Corollary 8.2.3, for K € E%(ICy) one has
Hom® (DSK, OF) =~ Hom" <C{,=O}, Es' (K 5 O;))
Moreover, by Theorem 9.4.8, one has
D% (DR (M) = Solg (M)[dx]. O

We can now state our Riemann-Hilbert correspondence.



186 ANDREA D’AGNOLO, MASAKI KASHIWARA

Consider the quasi-commutative diagram of functors

b Solg . op HumE(*,OE) .
9.5.3) D’ (Dx) —— = E5.(ICx) D"(Dx)

2 J/ DE (x[dx])

D}, (Dx) - En.(ICx) D"(Dx).
DRX HonF (o) E8 (+3O8))[dx]
T heorem 9.5.3.

(i) For M € D} ,(Dx), the morphisms (9.5.1) and (9.5.2) are isomorphisms. This means in
particular that we can reconstruct M_from DR (M).
(1) The functor

DRY: DY (Dx) — Ex (ICx)
is_fully faithful.

We will prove (i) in Section 9.6 and (ii) in Section 9.7.
Let us check that the correspondence (9.5.3) is compatible with the classical
Riemann-Hilbert correspondence.

Proposition 9.5.4. — There is a quasi-commutative diagram

RHom (Dx (x),0%)[dx ]

D}, (Dx) D¢ (Cx) D;,.(Dx)
. l DRE . J’ Hon (€ 1), E8 (+RIOE))[dx ] . l
Dhol(DX) ER,C(ICX) D (DX)7

where e(F) = C% ® 7w ~'F is the fully faithful functor of Proposition 4.7.15.

Proof.

(1) The quasi-commutativity of the left hand side square follows from Proposi-
tion 9.1.3.

(i1) Denote by 7y: X — X x Ry, the morphism given by x = (x, 0). The quasi-
commutativity of the right hand side square follows from

Hom" (D (CS @77 'F), OF)

= Hon(C5 @7 DyF, OF)
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~ HomE (CE & (G oy ® 7' DyF), OF
>~ Hom < {t=0} Q@ TT xI'), Ux

~ HOWLE (C{tzo} ® n_leF, O;)

5 RHom (DxF, iy R OF)

(%’) RHom (DXF, O;()

Here, (1) follows from Corollary 4.8.4, (2) follows from Lemma 4.5.16, and
(3) follows from Lemma 9.5.5 below. [

Lemma 9.5.5. — One has
iLREQE ~ O,
where 11 X — X X Ry denotes the morphism given by x — (x, 0).
Proof. — By Theorem 8.2.2, we have
REOE = ((£63)' @b, OL.p)I1I

Let s: {0} — P be the inclusion, and denote by the same letter the induced map s: X —
X x P. Then one has s =10 7, and

iy REOL 5" ((Eap)” @, Oxp)l1]
g) (gali’)r ®;p Dyrix ®1L>x Ox
~ (Ds*Sali,) ®g Ox >~ Ox.
Here () follows from Theorem 5.2.3(3). 0

9.6. Reconstruction. — By Lemma 9.5.2, the following result implies Theo-
rem 9.5.3(1).

Theorem 9.6.1. — Let M € DP_ (Dx). Then, the morphism in Proposition 9.5.1

hol
M — HomF (Solg(M), OF)

is an 1somorphism.

Progf: — Consider the statement
(9.6.1) Py (M) = “one has M —> ’HomE(SolE(./\/l), Of()”.

Then the hypotheses of Lemma 7.3.7 are all easily verified, except (e) and (f). We will
prove (e) in Lemma 9.6.2 below, and (f) in Lemma 9.6.6 below. Then the theorem follows
from Lemma 7.3.7. O
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Lemma 9.6.2. — Let [ X — Y be a projective morphism and M a good holonomic
Dy -module. Under notation (9.6.1), if Px (M) s true, then Py(Df , M) s true.

Proof. — One has
Hom® (Solg (Df M), OF) ~ Hom® (Ef Solg (M)[dx — dv], OF)
~ Rf, Hom" (SolE (M), Ef O [dy — dx])
=~ Rf,Hom® (Solg (M), Dyx @, OX)
~ Rf.(Dyx & Hom™ (Solx (M), O3))
~ Rf.(Dy—x ®7")X M) =Df M,

where the last isomorphism follows from the fact that Px(M) is true. O

We now have to show that Theorem 9.6.1 holds if M is a holonomic Dx-module
with a normal form along a normal crossing divisor. We begin with the following result,
analogous to [2, Proposition 7.3].

Lemma 9.6.3. — Let Y C X be a complex analytic hypersurface and ¢ € Ox(xY). Set
U = X\Y. Then there is an isomorphism in D*(I(Dx ®¢ D<)

R7.RZhom (C<re)[11, Dby, ) = Epik ®p, Dby

Progf: — Recall that j: X X Ry = X X P and 7: X X P — X denote the natural
morphisms. Recall that

Dby, =7 RHomp, (Egp, Dby wp)[1].

Hence R, RZhom (Cy<regy[11, Db;R) is represented by the complex

9.6.2) 7 Zhom (Cu<rey)s DB, ) ——> T.Lhom (Cyizreg)> Db, p)

with components in degree 0 and 1. We consider them as subanalytic ind-sheaves.
For any relatively compact open subanalytic subset V C X, (9.6.2) induces a com-
plex

(9.6.3) D o({t <Re@} N (V x R) == Db ({1 < Reg} N (V x R)).
Hence it is enough to show that (9.6.3) 1s surjective and that its kernel

ker(d, — 1) = {u(t, x) € Db p({t < Re@} N (V x R)); du=u}
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is given by
(9.6.4) {¢7"Yv); v(x) € DI (VN U}
Note that the morphism
(E0k Qo DH, )(VNU) >~ Ce ¥ @ Dby (VN U) — ker(d, — 1)

is given by ¢ @ v(x) > ¢ Vv (x).
The surjectivity follows from the surjectivity of

Db, »(VxR) 25 Dbl (VxR).
Neglecting the tempered growth, it is obvious that
{u(t, x) € Dbxxp({t <Re@} N (V xR)); du=u}
={e7Yv(x); v(x) € Dbx (VN U)}.
Hence, (9.6.4) coincides with ker(9;, — 1) by the following sublemma. O
Sublemma 9.6.4. — For v(x) € Dbx (VN U), one has
¢ v(x) € DI p({t <Rep} N (V x R))
if and only if
v(x) € Db (VN U).

Proof: — Assume v(x) € Db;(R (VN U). Since ¢7““ belongs to C;;;txp({t < Reg}),
one has

¢~*Dv(x) € Dby, p({t <Re@} N (V x R)).

Conversely, assume ¢/~ v(x) € Db&RXp({t < Rep}N(V xR)). Take a C*-function y (¢)
on P whose support is contained in {t € R; —2 < ¢t < —1} and such that fetx (Hdt = 1.
Set

Wi ={(x,0)€eUNV)xR; t<Rep(x]}
Z={(x,) e(UNV) xR; Rep(x) —2 <t <Rep(x) — 1}
W, =((UNV) xP)\Z

Then W, and W; are subanalytic open subsets and we have (UN V) x P =W, UW,.
Since x (1 — Re ga(x))eﬁlm‘p(x) belongs to C;'&’txp(wl), we obtain

X (1= Re@(x) "D (x) € Db p(W)).



190 ANDREA D’AGNOLO, MASAKI KASHIWARA

Since x (¢t — Re(p(x))e‘/__”m‘/’(")v(x) vanishes on W; N Wy, there exists w(x,?) €
Db, ,.p((UNYV) x P) such that

w(x, Hlw, = x (t — Reg(x)) ¢ “Dv(x) and w(x, ) |, = 0.
Hence, v(x) = f w(x, t)dt € Db;(R (UnNnv). O
We deduce the following result, analogous to [2, Proposition 8.1].

Proposition 9.6.5. — Using the same notations as in Lemma 9.6.3, one has

R RZhom (LF Solg (£ k), REOF) ~ Ef ¢ ®(L9X Ox.
In particular,

Hom" (Solg (Efx), O%) ~ Efx-

Progf: — We have

+

LE SO[)E(85|X) ;:\') C{t>>0} Y C{t<7Re(p}[1]9
RE O >~ RHomp_(Ox, Dby, ),
Oy ~ Rt omp_ (Oy, Db%R),

where (x) follows from Corollary 9.4.12.
The statement then follows by applying the functor R’Hompg((')g, *) to the iso-
morphism of Lemma 9.6.3. 0J

Now it remains to prove the following result, required in the proof of Theo-
rem 9.6.1.

Lemma 9.6.6. — Let M be a holonomic Dx-module with a normal form along a normal
crossing divisor. Then

M HomE(SOZE(M), Oi)

Proof. — Let D C X be a normal crossing divisor and M a holonomic Dx-module
with a normal form along D. Set U = X\ D. We keep the same notations as in Section 7.1
suchas w: X — X and Dé. We also consider the natural morphisms

XxRy X xR, 23X
For a D;é—module L, we set

Sol;(([,) = R’Hompé (ﬁ, C’))Ez) e E’1Cx).
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Similarly to the construction of (9.5.1), we have a morphism

(9.6.5) L — Hom"(Sol&(L), OF).

(i) We shall first show

(9.6.6) &' Cy @ SolE (M) ~ Ew ™' Solg (M).
Since

9.6.7) Of ~Ew 'RThom (7' Cy, OF),

we have

SolE (M) = RHompa (M4, 0F)
~ RHom ,-1p (@' M,Ew 'RZhom (7~ Cy, 0F))
~ Ew 'RZhom (n ™' Gy, RHomp (M, 0F))
~ RZhom (&'~ Cy, Ewr 'SolE (M)
~ RZhom (fv_lrc_ICU, Ew‘lSol)E(./\/l)),

where the last isomorphism follows from the fact that @ is an isomorphism over U.
Hence we obtain

& 'n 7 Cy @ SolE (M) ~ ' Cy ® Ew ! Solg (M)
~Ew ' (17 Cy ® S0l (M))
~Ew 'SolE(M).
Here, the last isomorphism follows from Corollary 9.4.11.
(ii) Next, we shall show
(9.6.8) MA S Hom®(Sol§ (M), OF).
Since the question is local, we can assume M = &{  for ¢ € Ox (D). Then we have
RZhom (LE Sol§ (M), RE OF)
~ RZhom (L Sol&(M*), RZhom (& ~'n ' Cy, &' REO))
~ RZhom (L Solg (M) @ & ' ~'Cy, &' R OF)

(’V_) RZhom (lff_l LESolS (M), ' RE Oi)

~ @' RZhom (LF Solg (M), RF O3),
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where (%) follows (9.6.6). Hence
Rz, RZhom (LF Sol§ (M), RE OF)
~ Rrg, @ ' RZhom (LF Solg (M), RF OX)
~ w'Rr,RZhom (LE Solg (M), RE Of()
~w' (J\/l ®(L9X O;),
where the last isomorphism follows from Proposition 9.6.5. We have

o (M & OL) = o' (M &b RThom (Cu, OL))

~wm MR- 10y Ot
Hence, by applying ok, we obtain
(9.6.9) Hom® (Solf(MH), 0F) ~ ax(w ' M &, O%) ~ M
by Proposition 7.2.10.
(ii1) Now we shall prove the statement
M= HomE(SOZE(M), Oi)
By Proposition 7.2.10, we have
R, M4 NaXRw*(Ot —1(’)x _IM)
=~ (axRZhom (Cu, O%)) ®, M
~ Ox(xD) ®(L9X M= M.

We have
Hon (Slf (M), OF)
~ HomE(SOZgE(MA), RZhom (zﬁ_ln_lcU, Ew!(’)i))
o~ 'HOmE(Sol;E(MA) Q@ ‘77 'Cy, Ew!(’)i)
~ Hom" (Ewilsoli(/\/l), Ew!(’)i),
where the last isomorphism follows from (9.6.6). It follows that
R, Hom® (SOZ;E(MA), sz) ~ HomE(Ew”Ew_lSoli(M), Oi)
by Lemma 4.5.17. Hence, applying Rw, to (9.6.8), we get
(9.6.10) M 5 Hom® (Ew \Ew ™' Solg (M), 0%).
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By Corollary 9.4.11, we have SolE(M) >~ 77 'Cy ® SolE(M). Moreover, o : X — Xis

an isomorphism over U. Hence we have

Ew Ew ' SolS (M) ~ Ew,,Ew‘l(n_ICU ®Sol§(./\/l))
~ 717 'Cy @ Ew \Eor ™' Sol (M)
~ 17 'Cy ® SolE (M)
~ SolE(M).

We thus obtain the desired result. O

Thus the proof of Theorem 9.6.1 is complete.
As a consequence of Theorem 9.6.1, we get the following result (which is also a
consequence of Lemmas 9.5.5 and 4.5.16).

Corollary 9.6.7. — There is an isomorphism in D" (Dx)
O ~ Hon (CE, OF).
9.7. Fully faithfulness. — Let us now show that the functor DRY, is fully faithful.
Theorem 9.7.1. — For M, N € D} ,(Dx), there is an isomorphism
RHomp (M, N) = Hom" (DRL(M), DRYN)).
In particular, the functor
DRy: Dy,
us fully faithful.

Progf. — By Theorem 9.4.8 and Proposition 4.9.13(iv), we have

(Dx) - E’(1Cx)

Hom" (DREM, DRIN) = Hom" (SolgN', Solg M).
Then, we have

Hom® (SolgN', Solg M) = Hom (SolgN', R omp (M, OF))
~RHomp, (./\/l, ’HomE(Sol;N, (’);))
~ RHomDX(./\/l,N).

Here the last isomorphism follows from Theorem 9.6.1. O
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9.8. Stokes phenomenon. — Liner ordinary differential equations with irregular sin-
gularities are subjected to the Stokes phenomenon (see for example [26, Section 15] or
[8, Section 9.7]). Following [3, Section 7], we show here through an example how, in our
setting, the Stokes phenomenon arises in a purely topological fashion.

Let X be an open disc in C centered at 0. (We will shrink X if necessary.) Consider
the real blow-up @ : X = X of X along {0}, and recall that X0 = @ ~1(0) is the set of
normal directions to 0 in X.

Let ¢, ¥ € Ox(%0), and assume that ¥ — ¢ has an effective pole at 0. For U =
X\ {0}, set

Let M be a holonomic Dx-module such that M ~ M (x0), sing. supp(M) = {0}, and
one has

9.8.1) (M), = (M|

0
) = for any 6 € X".

0

Note that M has a normal form along {0}.
The Stokes curves are the real analytic arcs £; C X defined by

{Re(w —gp) =0} =] | _e¢.

(Here we possibly shrink X to avoid crossings of the ¢;’s and to ensure that they admit |z|
as parameter.) Since £y ~ 53?0 for ¢y € O, the Stokes curves depend on the choice
of ¢ and .

The Stokes lines L;, defined as the half-lines tangent to ¢; at 0, are independent of
the choice of ¢ and .

The Stokes multipliers of M describe how the isomorphism (9.8.1) changes when
0 crosses a Stokes line.

Let us show how these data are topologically encoded in DR (M).

Set
F:=CE®C ~ “lim” G
=05 ® Gpmreg) = Im™ G—regp=a).
a—> 400
G = CE & Cypey) = “lim” C
1= U @ Gpmreyy = M7 Gy pey >4
a—>+00
By Corollary 9.2.3, Lemma 9.3.1 and (9.6.1),
(9.8.2) DR (M) =~ RZhom (r~' Gy, H)[1],

where H is an enhanced ind-sheaf such that H ~ 7 ~'Cy ® H and
7 'Cs@H~7"'Cs @ (F D G)

for any sufficiently small open sector S.
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Let b* be the vector space of upper/lower triangular matrices in My(C), and let
t=0b" N b~ be the vector space of diagonal matrices. Using Proposition 4.7.9 one gets

Lemma 9.8.1. — Let S be an open sector.
(i) If'S C {£Re(p — ) > 0}, then
Endgye, (7 7'Cs @ (F @ G)) > b
(ii) ZfS DL forsomei €l and SN Ly =@ fori # j, then

Endgge (77 'Cs @ F @ G)) > t.

This proves that the Stokes lines are encoded in H. Let us show how to recover the
Stokes multipliers of M as gluing data for H.
Let S; be an open sector which contains L; and is disjoint from L, for 7 #;. We

choose S; so that |, S; = U.
Then for each 7 € I, there is an isomorphism

a;:17'Cs, ®H = 717'Cs, @ (F @ G).

Note that «; is unique only up to left multiplication by elements of t N GLy(C) by
Lemma 9.8.1(11).
Take a cyclic ordering of I such that the Stokes lines get ordered counterclockwise.
Since {S;};c1 1s an open cover of U, the enhanced ind-sheaf H is reconstructed from
F @ G via the gluing data given by the Stokes multipliers

_ ~1
Ai =10 [r-1sin80)s

where A; € b* N GLy(C) if £ Re(p — ¥) > 0 on S; N S;;; by Lemma 9.8.1(i).
Note that, replacing A; with Al = yi+1Aiyi_1 for y; € tN GLy(C), one gets an en-
hanced ind-sheaf isomorphic to H.
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