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ABSTRACT

The classical Riemann-Hilbert correspondence establishes an equivalence between the triangulated category of
regular holonomic D-modules and that of constructible sheaves.

In this paper, we prove a Riemann-Hilbert correspondence for holonomic D-modules which are not necessarily
regular. The construction of our target category is based on the theory of ind-sheaves by Kashiwara-Schapira and influ-
enced by Tamarkin’s work. Among the main ingredients of our proof is the description of the structure of flat meromorphic
connections due to Mochizuki and Kedlaya.
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1. Introduction

1.1. On a complex manifold, the classical Riemann-Hilbert correspondence
establishes an equivalence between the triangulated category of regular holonomic
D-modules and that of constructible sheaves (see [9]). Here D denotes the sheaf of differ-
ential operators.

In particular, flat meromorphic connections with regular singularities correspond
to local systems on the complementary of the singular locus (see [5]).

1.2. The problem of extending the Riemann-Hilbert correspondence to cover
the case of holonomic D-modules with irregular singularities has been open for 30 years.
Some results in this direction have appeared in the literature.

In the one-dimensional case, classical results of Levelt-Turittin and Hukuhara-
Turittin describe the formal structure and the asymptotic expansion on sectors of flat
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meromorphic connections which are not necessarily regular. Using these descriptions,
Deligne and Malgrange established a Riemann-Hilbert correspondence on a complex
curve for holonomic D-modules with a fixed set of singular points (see [6]). See also the
work of Babbitt and Varadarajan [1].

Recently, Mochizuki [19, 20] and Kedlaya [16, 17] extended the results of Levelt-
Turittin and Hukuhara-Turittin to higher dimensions. Namely, they proved that any flat
meromorphic connection becomes “good” after blowing-ups. Sabbah [24] obtained an
analogue of the construction by Deligne and Malgrange on a complex manifold for
“good” flat meromorphic connections with a fixed singular locus.

1.3. In this paper, we prove a Riemann-Hilbert correspondence for holonomic
D-modules on a complex manifold. The construction of our target category is based on
the theory of ind-sheaves by Kashiwara and Schapira [13] and influenced by the work
of Tamarkin [25]. The description of the structure of flat meromorphic connections by
Mochizuki and Kedlaya is one of the key ingredients of our proof.

Let us explain our results in greater detail.

1.4. Let X be a complex manifold. As we have already mentioned, the Riemann-
Hilbert correspondence of [9] establishes an equivalence between the triangulated cate-
gory Db

rh(DX) of regular holonomic DX-modules and the triangulated category Db
C-c(CX)

of C-constructible sheaves on X. More precisely, there are functors

(1.1) Db
rh(DX)

DRX

Db
C-c(CX)

�X

quasi-inverse to each other. Here, DRX(L) :=�X ⊗L
DX

L is the holomorphic de Rham
complex with �X the sheaf of holomorphic differential forms of highest degree, and
�X(L) :=T hom (DXL,OX)[dX] is the complex of holomorphic functions tempered along
the dual DXL of L.

In particular, a regular holonomic DX-module L can be reconstructed from
DRX(L).

Let M be an irregular holonomic DX-module, and consider the regular holonomic
DX-module Mreg :=�X(DRX(M)). Since DRX(M)�DRX(Mreg), it follows that M
cannot be reconstructed from DRX(M).

1.5. The theory of ind-sheaves, that is, of ind-objects in the category of sheaves
with compact support, was initiated and developed by Kashiwara and Schapira [13]. In
such a framework, one can consider the complex O t

X of tempered holomorphic functions,
which is an object of the derived category of ind-sheaves Db(ICX). This is related to the
functor �X in (1.1), since one has RHom (F,O t

X)� T hom (F,OX) for any R-constructible
sheaf F.
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Set �t
X =�X ⊗L

OX
O t

X. For a holonomic DX-module M, the tempered de Rham

complex DRt
X(M) :=�t

X ⊗L
DX

M has been introduced and studied in [14] and studied
further in [21, 22]. This complex retains some information on the irregularity of M. For
example, let ϕ ∈ OX(∗Y) be a meromorphic function with poles at a hypersurface Y,
and denote by Eϕ

X\Y|X the exponential DX-module generated by eϕ (see Definition 6.1.1).
Then one has

(1.2) DRt
X

(
Eϕ

X\Y|X
)� RIhom

(
CX\Y, “lim−→”

a→+∞
C{x∈X\Y ; −Reϕ(x)<a}

)[dim X],

where Ihom denotes the inner-hom functor of ind-sheaves and CX\Y denotes the exten-
sion by zero to X of the constant sheaf on X \Y.

Since DRt
X(Eϕ

X\Y|X)�DRt
X(E2ϕ

X\Y|X), one cannot reconstruct M from DRt
X(M).

1.6. Denote by τ ∈ C ⊂ P the affine variable in the complex projective line P.
In this paper, we will show that M can be reconstructed from the tempered de Rham
complex DRt

X×P(M �D E−τ
C|P), an object of Db(ICX×P). In the case where X is a com-

plex curve, we outlined a proof of this fact in [3]. The proof in the general case follows
from the arguments in the present paper. However, in this paper we take as target cat-
egory a modification of Db(ICX×P). As we now explain, this is related to a construction
by Tamarkin [25] (see also Guillermou and Schapira [7] for an exposition and some
complementary results).

1.7. On a real analytic manifold M, the microlocal theory of sheaves by Kashi-
wara and Schapira [11] associates to an object of Db(CM) its microsupport, a closed
conic involutive subset of the cotangent bundle T∗M. In his study of symplectic topol-
ogy, Tamarkin [25] uses the techniques of [11] in order to treat involutive subsets of
T∗M which are not necessarily conic. To this end, he adds a real variable t ∈ R and,
denoting by (t; t∗) ∈ T∗R the associated symplectic coordinates, considers the quotient
category Db(CM×R)/C{t∗≤0} by the category C{t∗≤0} consisting of objects microsupported
on {t∗ ≤ 0}.

An important observation in [25] is that there are equivalences

(1.3) ⊥C{t∗≤0} � Db(CM×R)/C{t∗≤0} � C⊥{t∗≤0}

between the quotient category and the left and right orthogonal categories. Moreover,
such categories can be described without using the notion of microsupport. For exam-
ple, C{t∗≤0} is the full subcategory of Db(CM×R) of objects whose convolution with C{t≥0}
vanishes.

1.8. Back to our complex manifold X, recall that we aim to reconstruct a holo-
nomic DX-module M from the tempered de Rham complex DRt

X×P(M �D E−τ
C|P). As
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we explain in Section 1.13 below, a special important case is when M = Eϕ

X\Y|X for
ϕ ∈ OX(∗Y). Then, (1.2) implies that the tempered de Rham complex is described in
terms of the ind-sheaf

(1.4) “lim−→”
a→+∞

C{(x,τ )∈(X\Y)×C ; t−Reϕ(x)<a}.

Here t =Re τ is the real part of the affine coordinate τ of the complex projective line P.
We are thus led to replace the target category Db(ICX×P) with what we call the cate-
gory of enhanced ind-sheaves and denote by Eb(ICX). This is a quotient category of
Db(ICX×P), where P is the real projective line.

Let us describe the category Eb(ICX) in greater detail.

1.9. As a preliminary step, we introduce the notion of bordered space. A bor-
dered space is a pair (M,M̌) of a topological space M̌ and an open subset M⊂ M̌, and
we associate the triangulated category Db(IC(M,M̌)) :=Db(ICM̌)/Db(ICM̌\M) to it. There
is a natural fully faithful embedding

Db(CM)⊂ Db(IC(M,M̌)).

The main example for us is the bordered space R∞ := (R,P). This notion appears
naturally when we deal with ind-sheaves such as (1.4). For example, for ϕ = 0 such an
ind-sheaf becomes trivial when restricted to Db(ICX×R), but is a non trivial object of
Db(ICX×R∞).

1.10. We define the category Eb(ICX) of enhanced ind-sheaves by

Eb(ICX)= Db(ICX×R∞)/
{
K ; K� π−1L for some L ∈ Db(ICX)

}
.

Here π : X×R∞ −→X is the projection. This is related with Tamarkin’s construction as
follows. We set

Eb
+(ICX) :=Db(ICX×R∞)/IC{t∗≤0},

where IC{t∗≤0} is the full subcategory of objects whose convolution with C{t≥0} vanishes.
As in (1.3), we have

⊥IC{t∗≤0} � Eb
+(ICX)� IC⊥{t∗≤0}.

Replacing C{t≥0} with C{t≤0} one obtains the category Eb
−(ICX). It turns out that

Eb(ICX)� Eb
+(ICX)⊕ Eb

−(ICX).

This is the target category of our Riemann-Hilbert correspondence. It is a triangulated

tensor category whose tensor product is given by the convolution
+⊗ in the t variable.
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1.11. Set CE
X := “lim−→”

a→+∞
C{t≥a}. We say that an object K of Eb(ICX) is stable if

K�CE
X

+⊗K.
There is a natural fully faithful embedding of the category of ind-sheaves into the

category of stable enhanced ind-sheaves

e : Db(ICX)−→ Eb(ICX), F 
→CE
X⊗π−1F.

Denote by Db
R-c(CX×P) the full subcategory of Db(CX×P) whose objects have

R-constructible cohomology groups. We say that an object K of Eb(ICX) is R-constructi-
ble if, for any relatively compact subanalytic open subset U ⊂ X, there exists F ∈
Db

R-c(CX×P) such that

π−1CU⊗K�CE
X

+⊗ F.

Note that such a K is a stable object, and that R-constructibility is a local property on X.
We denote by Eb

R-c(ICX) the full subcategory of Eb(ICX) consisting of R-constructible
objects.

1.12. We can now state our Riemann-Hilbert correspondence.
The objects of Eb(ICX) which play a role analogous to the objects O t

X and �t
X of

Db(ICX) are

OE
X := i !RHomDP

(
E τ

C|P,O t
X×P

)[2], �E
X :=�X⊗L

OX
OE

X,

where i : X× R∞ −→ X× P is the embedding. It turns out that OE
X and �E

X are stable
objects endowed with a natural DX-module structure.

Denote by Db
hol(DX) the full subcategory of Db(DX) consisting of objects with holo-

nomic cohomologies. We define the enhanced de Rham functor

DRE
X : Db

hol(DX)−→ Eb(ICX), M 
→�E
X⊗L

DX
M

and the reconstruction functor

�E
X : Eb

R-c(ICX)−→ Db(DX), K 
→HomE
(
DE

XK,OE
X

)[dX],
where HomE is the hom-functor between enhanced ind-sheaves, with values in sheaves
on X, and DE

X is a natural duality functor of Eb
R-c(ICX).

Our main result can be stated as follows.

Theorem.

(i) The functor DRE
X is fully faithful and takes values in Eb

R-c(ICX).
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(ii) There is an isomorphism

M ∼−→�E
X

(
DRE

X(M)
)

functorial in M ∈ Db
hol(DX). In particular, one can reconstruct M from DRE

X(M).

We prove the compatibility of DRE
X with duality. We also prove compatibility with

the classical Riemann-Hilbert correspondence (1.1). More precisely, there is a quasi-
commutative diagram:

Db
rh(DX)

DRX

Db
C-c(CX)

�X

e

Db
rh(DX)

Db
hol(DX)

DRE
X

Eb
R-c(ICX)

�E
X

Db(DX).

1.13. A key ingredient in our proofs is the following (see Lemma 7.3.7).
Let PX(M) be a statement concerning a complex manifold X and a holonomic
DX-module M. For example,

PX(M)= “M ∼−→�E
X

(
DRE

X(M)
)
”.

In order to prove PX(M), the results of Mochizuki [19, 20] and Kedlaya [16, 17] allow
one, heuristically speaking, to reduce to the case when M= Eϕ

X\Y|X for ϕ ∈OX(∗Y).

1.14. Recall that irregular holonomic modules are subjected to the Stokes phe-
nomenon. In Section 9.8 we describe with an example how the Stokes data are encoded
topologically in our construction.

1.15. The contents of this paper are as follows.
Section 2 fixes notations regarding sheaves, ind-sheaves and D-modules. Refer-

ences are made to [10, 11, 13]. We also state some complementary results which are of
use in later sections.

In Section 3, we introduce the notion of bordered space and of ind-sheaves on
it, and develop the formalism of operations in this context. We also discuss a natural
t-structure in the triangulated category of ind-sheaves on a bordered space.

In Section 4, we introduce the category Eb(ICM) of enhanced ind-sheaves, men-
tioned in Section 1.10, and develop the formalism of operations in this framework. We
also introduce the notion of R-constructible objects in Eb(ICM).

Section 5 recalls from [12, 13] the construction and main properties of the ind-
sheaves of tempered distributions Dbt

M on a real analytic manifold M, and of tempered



RIEMANN-HILBERT CORRESPONDENCE 75

holomorphic functions O t
X on a complex manifold X. As explained above, this is a fun-

damental ingredient of our construction.
In Section 6, we prove the isomorphism (1.2). The fundamental example where

X=C � z and ϕ(z)= 1/z has been already treated in [14].
Mochizuki and Kedlaya’s results on the structure of flat meromorphic connections

are recalled in Section 7. There, we give a precise formulation of the heuristic argument
mentioned in Section 1.13.

Section 8 introduces and studies the enhancement OE
X of O t

X mentioned in Sec-
tion 1.12, along with the enhancement DbE

M of Dbt
M.

Our main results, mentioned in Section 1.12, are stated and proved in Section 9.

2. Notations and complements

We fix here some notations regarding sheaves, ind-sheaves and D-modules, and
state some complementary results that we will need in later sections. Our notations follow
those in [10, 11, 13], to which we refer for further detail.

Let us say that a topological space is good if it is Hausdorff, locally compact, count-
able at infinity and has finite flabby dimension.

In this paper, we take a field k as base ring. However, after minor modifications,
one can take any regular ring as base ring.

For a category C, we denote by Cop the opposite category of C. For a ring A, we
denote by Aop the opposite ring of A.

2.1. Sheaves. — Let M be a good topological space. Denote by Mod(kM) the
abelian category of sheaves of k-vector spaces on M, and by Db(kM) its bounded de-
rived category.

For a locally closed subset S⊂M, denote by kS the extension by zero to M of the
constant sheaf on S.

For f : M−→N a morphism of good topological spaces, denote by ⊗, RHom , f −1,
Rf∗, Rf! , f ! the six Grothendieck operations for sheaves. Denote by � the exterior prod-
uct.

We define the duality functor DM of Db(kM) by

DMF= RHom (F,ωM) for F ∈ Db(kM),

where ωM denotes the dualizing complex. If M is a C0-manifold of dimension dM, one
has ωM � orM[dM], where orM denotes the orientation sheaf.

2.2. Ind-sheaves. — The theory of ind-sheaves has been introduced and developed
in [13].

Let C be a category and denote by C∧ the category of contravariant functors from C
to the category of sets. Consider the Yoneda embedding h : C −→ C∧, X 
→HomC(∗,X).
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The category C∧ admits small inductive limits. Since h does not commute with inductive
limits, one denotes by “lim−→” instead of lim−→ the inductive limits taken in C∧.

An ind-object in C is an object of C∧ isomorphic to “lim−→”
i∈I

X(i) for some functor

X : I −→ C with a small filtrant category I. Denote by Ind(C) the full subcategory of C∧
consisting of ind-objects in C∧.

Let M be a good topological space. The category of ind-sheaves on M is the cate-
gory I(kM) := Ind(Modc(kM)) of ind-objects in the category Modc(kM) of sheaves with
compact support. Denote by Db(IkM) the bounded derived category of I(kM).

There is a natural exact embedding ιM : Mod(kM) −→ I(kM) given by F 
→
“lim−→”(kU⊗F), for U running over the relatively compact open subsets of M. The functor

ιM has an exact left adjoint αM : I(kM)−→Mod(kM) given by αM(“lim−→” Fi)= lim−→Fi . The

functor αM has an exact fully faithful left adjoint βM : Mod(kM)−→ I(kM). For example,
if Z⊂M is a closed subset, one has

βMkZ � “lim−→”
U

kU,

where U ranges over the family of open subsets of M containing Z.
For f : M−→N a morphism of good topological spaces, denote by ⊗, RIhom , f −1,

Rf∗, Rf!! , f ! the six Grothendieck operations for ind-sheaves. Denote by � the exterior
product.

Since ind-sheaves form a stack, they have a sheaf-valued hom-functor Hom . One
has RHom � αMRIhom .

We will need the following proposition to calculate RIhom .
For a≤ b in Z, denote by C[a,b](Mod(kM)) the category of complexes of sheaves F•

such that Fk = 0 unless a≤ k ≤ b.

Proposition 2.2.1. — Let f : M −→ N be a morphism of good topological spaces. Let G ∈
Db(IkM) and let {F•n}n∈Z≥0 be an inductive system in C[a,b](Mod(kM)) for some a≤ b in Z. Assume

that the pro-object

“lim←−”
n

Rf∗RIhom
(
F•n,G

) ∈ Pro
(
Db(IkN)

)

is represented by an object of Db(IkN). Then

Rf∗RIhom
(
“lim−→”

n

F•n,G
)� “lim←−”

n

Rf∗RIhom
(
F•n,G

)
.

Proof. — Set S•n =
⊕

k≤n F•k and denote by F̃•n the mapping cone of the morphism
S•n−1 −→ S•n . Note that the morphism F̃•n −→ F•n induced by the projection S•n −→ F•n is a
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quasi-isomorphism. Consider the morphism S•n −→ S•n ⊕ F•n+1 = S•n+1 obtained by idS•n
and S•n −→ F•n −→ F•n+1. This induces a morphism F̃k

n −→ F̃k
n+1 which has a cosection for

any k and n. Hence, replacing F•n with F̃•n , we may assume from the beginning that the
morphism Fk

n −→ Fk
n+1 has a cosection for any k and n.

We may also assume that G• is a complex of quasi-injective sheaves, i.e. that the
functor Hom (∗,Gn) is exact in Mod(kM) for any n ∈ Z.

In order to prove that the morphism

Rf∗RIhom
(
“lim−→”

n

F•n,G•) u−→ “lim←−”
n

Rf∗RIhom
(
F•n,G•)

is an isomorphism, it is enough to show that RHom (H, u) is a quasi-isomorphism for any
H ∈Mod(kN).

Set E•n =Hom (F•n ⊗ f −1H,G•). Then

lim←−
n

E•n � RHom
(
H,Rf∗RIhom

(
“lim−→”

n

F•n,G•)),

“lim←−”
n

Hk
(
E•n

)�HkRHom
(
H, “lim←−”

n

Rf∗RIhom
(
F•n,G•)).

Hence we have to show that

(2.2.1) Hk
(

lim←−
n

E•n
)
−→ “lim←−”

n

Hk
(
E•n

)� lim←−
n

Hk
(
E•n

)

is an isomorphism for any k. Since E•n+1 −→ E•n is an epimorphism and {Hk(E•n)}n satisfies
the Mittag-Leffler condition, we conclude that (2.2.1) is an isomorphism. �

Let us recall the results of [15, Section 15.4]. These provide useful tools to re-
duce proofs of many results in the framework of ind-sheaves to analogous results in sheaf
theory.

Recall that Modc(kM) denotes the category of sheaves with compact support. Then
Db(Modc(kM)) is equivalent to the full triangulated subcategory of Db(kM) consisting of
objects with compact support.

Proposition 2.2.2 (Cf. [15, Section 15.4]). — There exists a canonical functor

JM : Db(IkM)−→ Ind
(
Db

(
Modc(kM)

))

which satisfies the following properties:

(i) For F ∈ Db(Modc(kM)), and K ∈ Db(IkM), we have

HomDb(IkM)(F,K)
∼−→Hom Ind(Db(Modc(kM)))

(
JM(F), JM(K)

)
.



78 ANDREA D’AGNOLO, MASAKI KASHIWARA

(ii) The functor JM is conservative, i.e. a morphism u in Db(IkM) is an isomorphism as soon

as JM(u) is an isomorphism.

(iii) JM(F)� F for any F ∈ Db(Modc(kM)).

(iv) JM(“lim−→” Fi) � lim−→ JM(Fi) for any filtrant inductive system {Fi} in Mod(kM). Here,

lim−→ denotes the inductive limit in the category Ind(Db(Modc(kM))).

(v) JM commutes with ⊗ and JMRIhom (F,G) � RHom (F, JM(G)) for F ∈ Db(kM)

and G ∈ Db(IkM). Here, RHom (F,∗) denotes the endofunctor of

Ind(Db(Modc(kM))) induced by the endofunctor RHom (F,∗) of Db(Modc(kM)).

(vi) HnJM(F) � HnF for any n ∈ Z and F ∈ Db(IkM). Here, Hn on the right hand side

is the cohomology functor Db(IkM)−→ I(kM), and Hn on the left hand side is the func-

tor Ind(Db(Modc(kM))) −→ Ind(Modc(kM)) = I(kM) induced by the cohomology

functor Db(Modc(kM))−→Modc(kM).

(vii) Let f : M−→N be a continuous map. Then

(a) JN ◦Rf!! � Rf! ◦ JM.

(b) JM ◦ f −1 � f −1 ◦ JN and JM ◦ f ! � f ! ◦ JN. Here, for u= f −1, f ! , we denote by

the same letter the composition

Ind
(
Db

(
Modc(kN)

)) u−→ Ind
(
Db(kM)

)−→ Ind
(
Db

(
Modc(kM)

))
.

The last arrow is given by “lim−→”
i

Fi 
→ “lim−→”
i,U

(Fi)U, where U ranges over the relatively

compact open subsets of M.

Note that JN ◦Rf∗ � Rf∗ ◦ JM does not hold in general.
As an example of application of Proposition 2.2.2, one has the following result.

Corollary 2.2.3. — Let G ∈ Db(kM), K ∈ Db(IkM) and {Fi} a filtrant inductive system in

Mod(kM). If supp G is compact, then

HomDb(IkM)

(
G,K⊗“lim−→”

i

Fi

)� lim−→
i

HomDb(IkM)(G,K⊗Fi).

Proof. — One has JM(K ⊗ “lim−→”
i

Fi) � lim−→
i

JM(K ⊗ Fi) by Proposition 2.2.2(iv)

and (v). Then the assertion follows from Proposition 2.2.2(i). �

Here is another application of Proposition 2.2.2.

Proposition 2.2.4. — Let f : M −→ N be a continuous map of good topological spaces and

K ∈ Db(IkN). Let U be an open subset of M and {Vn}n∈Z≥0 an increasing sequence of open subsets

of N. Assume that

U∩ f −1(Vn)⊂ f −1(Vn+1) for any n ∈ Z≥0.
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Then, setting L= “lim−→”
n

kVn
, there is an isomorphism

kU⊗ f !K⊗ f −1L ∼−→ kU⊗ f ! (K⊗L).

Proof. — Since the question is local on M, we may assume that U is relatively
compact. By the assumption, U∩ supp(f ! (K⊗kVn

))⊂ f −1(Vn+1). Thus we have

kU⊗ f ! (K⊗kVn
)
∼←− kU⊗ f ! (K⊗kVn

)⊗ f −1kVn+1,

−→ kU⊗ f !K⊗ f −1kVn+1 .

By applying JM and taking the inductive limit with respect to n in Ind(Db(Modc(kM))),
we obtain a morphism

lim−→
n

JM

(
kU⊗ f ! (K⊗kVn

)
)−→ lim−→

n

JM

(
kU⊗ f !K⊗ f −1kVn

)
.

By Proposition 2.2.2(iv), (v) and (viib), this gives a morphism

JM

(
kU⊗ f ! (K⊗L)

)−→ JM

(
kU⊗ f !K⊗ f −1L

)
.

We can easily see that this is an inverse to the natural morphism

JM

(
kU⊗ f !K⊗ f −1L

)−→ JM

(
kU⊗ f ! (K⊗L)

)
.

Hence, the statement follows from Proposition 2.2.2(ii). �

We will use the following lemma only in Remark 4.7.13.

Lemma 2.2.5. — Let M be a good topological space and {F•n}n∈Z≥0 an inductive system in

C[a,b](Mod(kM)) for some a≤ b in Z. Then

RIhom
(
“lim−→”

n

F•n,ωM

) ∼←− RIhom
(

lim−→
n

F•n,ωM

)
.

Here, lim−→
n

F•n is the inductive limit of {F•n}n∈Z≥0 in C[a,b](Mod(kM)).

Proof. — By dévissage, we may assume that the morphism Fk
n −→ Fk

n+1 has a cosec-
tion for each k and n, as in the proof of Proposition 2.2.1, and that all the sheaves Fk

n are
soft sheaves.
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Then, for any G ∈Modc(kM),

RHomDb(IkM)

(
G,RIhom

(
“lim−→”

n

F•n,ωM

))

� RHomDb(IkM)

(
G⊗“lim−→”

n

F•n,ωM

)

� RHomDb(k)

(
R�c

(
M;G⊗“lim−→”

n

F•n
)
,k

)
.

Since G⊗Fk
n are soft sheaves (see [11, Lemma 3.1.2]),

R�c

(
M;G⊗“lim−→”

n

F•n
)
� “lim−→”

n

�c

(
M;G⊗F•n

)
.

Hence

RHomDb(k)

(
R�c

(
M;G⊗“lim−→”

n

F•n
)
,k

)
� Rπ “lim←−”

n

�c

(
M;G⊗F•n

)∗
,

where π : Pro(Mod(k))−→Mod(k) is the functor of taking the projective limit (see [15,
Corollary 13.3.16]). Since �c(M;G⊗F•n)

∗ satisfies the Mittag-Leffler condition, one has

Riπ “lim←−”
n

�c

(
M;G⊗F•n

)∗ � 0 for any i �= 0.

Hence

Rπ “lim←−”
n

�c

(
M;G⊗F•n

)∗ � lim←−
n

�c

(
M;G⊗F•n

)∗

�
(

lim−→
n

�c

(
M;G⊗F•n

))∗

� �c

(
M;G⊗ lim−→

n

F•n
)∗

� RHom
(

G,RIhom
(

lim−→
n

F•n,ωM

))
.

This implies that

RHom
(

G,RIhom
(

lim−→
n

F•n,ωM

))

∼−→ RHom
(

G,RIhom
(

“lim−→”
n

F•n,ωM

))

for any G ∈Modc(kM), and hence we obtain the desired result. �
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2.3. R-constructible sheaves. — The notion of subanalytic subset and of R-constructi-
ble sheaf, usually defined on real analytic manifolds, naturally extend to subanalytic
spaces (cf. [11, Exercise IX.2]).

Definition 2.3.1. — A subanalytic space (M,SM) is an R-ringed space which is locally

isomorphic to (Z,SZ), where Z is a closed subanalytic subset of a real analytic manifold, and SZ is

the sheaf of R-algebras of real valued subanalytic continuous functions. In this paper, we assume that

subanalytic spaces are good topological spaces.

One naturally defines the category of subanalytic spaces. The morphisms are morphisms of

R-ringed spaces.

Let M be a subanalytic space. One says that an object of Db(kM) is R-constructible
if all of its cohomologies are R-constructible. Denote by Db

R-c(kM) the full subcategory of
R-constructible objects of Db(kM). The category Db

R-c(kM) is triangulated and is closed
under ⊗, RHom and the duality functor DM.

The following two propositions are classical results (see e.g. [11, Propositions 3.4.3,
3.4.4, 8.4.9]).

Proposition 2.3.2. — Let M be a subanalytic space and F ∈ Db
R-c(kM). Then the natural

morphism

F−→DMDMF

is an isomorphism.

Proposition 2.3.3. — Let M be a subanalytic space and N a good topological space. Let

p1 : M × N −→ M and p2 : M × N −→ N be the projections. Then for any F ∈ Db
R-c(kM) and

G ∈ Db(kN) the natural morphism

p−1
1 DMF⊗ p−1

2 G−→ RHom (p−1
1 F, p!2 G)

is an isomorphism.

Hence, by applying Corollary 2.2.3, we obtain the following proposition.

Proposition 2.3.4. — Let M, N, p1 and p2 be as in Proposition 2.3.3. Let F ∈ Db
R-c(kM)

and G ∈ Db(IkN). Then there are isomorphisms

p !2 kN⊗ p−1
2 G ∼−→ p !2 G,

p−1
1 DMF⊗ p−1

2 G ∼−→ RIhom (p−1
1 F, p!2 G).
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Corollary 2.3.5. — Let M be a subanalytic space and N a good topological space. Let F1,F2 ∈
Db

R-c(kM) and G1,G2 ∈ Db(IkN). Then the canonical morphism

RHom (F1,F2) �RIhom (G1,G2)−→ RIhom (F1 �G1,F2 �G2)

is an isomorphism.

Proof. — Let p1 : M×N−→M and p2 : M×N−→N be the projections. We have

p−1
1 F2⊗ p−1

2 G2 � RIhom
(
p−1

1 DMF2, p!2 G2

)
.

Hence

RIhom
(
p−1

1 F1⊗ p−1
2 G1, p−1

1 F2⊗ p−1
2 G2

)

� RIhom
(
p−1

1 F1⊗ p−1
2 G1⊗ p−1

1 DMF2, p!2 G2

)

� RIhom
(
p−1

1 (F1⊗DMF2),RIhom
(
p−1

2 G1, p!2 G2

))

�
(∗)

RIhom
(
p−1

1 DMRHom (F1,F2), p!2 RIhom (G1,G2)
)

� p−1
1 RHom (F1,F2)⊗ p−1

2 RIhom (G1,G2).

Here, in (∗) we have used

F1⊗DMF2 �DMRHom (F1,F2),

which follows from

DM(F1⊗DMF2)= RHom (F1⊗DMF2,ωM)

� RHom
(
F1,RHom (DMF2,ωM)

)

� RHom (F1,F2). �

2.4. Subanalytic ind-sheaves. — Let M be a subanalytic space. An ind-sheaf on M is
called subanalytic if it is isomorphic to a small filtrant ind-limit of R-constructible sheaves.
Let us denote by I suban(kM) the category of subanalytic ind-sheaves. Note that it is stable
by kernels, cokernels and extensions in I (kM). An object of Db(IkM) is called subanalytic
if all of its cohomologies are subanalytic. Denote by Db

suban(IkM) the full subcategory of
subanalytic objects in Db(IkM). It is a triangulated category.∗

Let OpMsa
be the category of relatively compact subanalytic open subsets of M,

whose morphisms are inclusions.

∗ In [13], subanalytic ind-sheaves are called ind-R-constructible sheaves, and I suban(kM) and Db
suban(IkM) are de-

noted by I R-c(kM) and Db
IR-c(IkM), respectively.
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Definition 2.4.1 (Cf. [12, 13]). — A subanalytic sheaf F is a functor Opop
Msa
−→Mod(k)

which satisfies

(i) F(∅)= 0.

(ii) For U,V ∈OpMsa
, the sequence

0−→ F(U∪V)
r1−−→ F(U)⊕ F(V)

r2−−→ F(U∩V)

is exact. Here r1 is given by the restriction maps and r2 is given by the restriction F(U)−→
F(U∩V) and the opposite of the restriction F(V)−→ F(U∩V).

Denote by Mod(kMsa) the category of subanalytic sheaves.

The following result is proved in [13].

Proposition 2.4.2. — The category I suban(kM) of subanalytic ind-sheaves and the category

Mod(kMsa) of subanalytic sheaves are equivalent by the functor associating with F ∈ I suban(kM) the

subanalytic sheaf

OpMsa
�U 
−→HomI(kM)(kU,F).

In particular, we have

Proposition 2.4.3. — Let K ∈ Db
suban(IkM). Then K� 0 if and only if

HomDb(IkM)

(
kU[n],K

)� 0

for any n ∈ Z and any relatively compact subanalytic open subset U⊂M.

We will need the following result.

Lemma 2.4.4. — Let M be a subanalytic space and K ∈ Db
suban(IkM×[0,1]). Then K� 0

if and only if HomDb(IkM×[0,1])(kU[n],K)� 0 for any n ∈ Z and any relatively compact subanalytic

open subset U⊂M× [0,1] such that each fiber of U−→M is either empty or connected.

This follows from Proposition 2.4.3 and the following lemma.

Lemma 2.4.5. — Any relatively compact subanalytic open subset of M × [0,1] is a finite

union of subanalytic open sets U such that each fiber of U−→M is either empty or connected.

For a similar statement, see [12, Lemma 3.6].
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2.5. D-modules. — Let X be a complex manifold. We denote by dX its (complex)
dimension. Denote by OX and DX the sheaves of algebras of holomorphic functions and
of differential operators, respectively. Denote by �X the invertible sheaf of differential
forms of top degree.

Denote by Mod(DX) the category of left DX-modules, and by Db(DX) its bounded
derived category. For f : X−→ Y a morphism of complex manifolds, denote by ⊗D, Df ∗,
Df ∗ the operations for D-modules. Denote by �D the exterior product.

Let us denote by

(2.5.1) r : Db(DX)
∼−→ Db

(
Dop

X

)

the equivalence of categories given by the functor Mr =�X ⊗L
OX

M. Consider the dual
of M ∈ Db(DX) given by

DXM= RHomDX

(
M,DX⊗OX

�⊗−1
X

)[dX],
where the shift is chosen so that DXOX �OX.

Denote by Db
coh(DX), Db

q-good(DX) and Db
good(DX) the full subcategories of Db(DX)

whose objects have coherent, quasi-good and good cohomologies, respectively. Here,
a DX-module M is called quasi-good if, for any relatively compact open subset U ⊂ X,
M|U is the sum of a filtrant family of coherent (OX|U)-submodules. A DX-module M is
called good if it is quasi-good and coherent.

Recall that to a coherent DX-module M one associates its characteristic variety
char(M), a closed conic involutive subset of the cotangent bundle T∗X. If char(M) is
Lagrangian, M is called holonomic. For the notion of regular holonomic DX-module,
refer e.g. to [10, Section 5.2].

Denote by Db
hol(DX) and Db

rh(DX) the full subcategories of Db(DX) whose objects
have holonomic and regular holonomic cohomologies, respectively.

Note that Db
coh(DX), Db

q-good(DX), Db
good(DX), Db

hol(DX) and Db
rh(DX) are triangu-

lated categories.
If Y ⊂ X is a closed hypersurface, denote by OX(∗Y) the sheaf of meromorphic

functions with poles at Y. It is a regular holonomic DX-module. For M ∈ Db(DX), set

M(∗Y)=M⊗D OX(∗Y).

If Y is a closed submanifold of X, denoting by i : Y −→ X the inclusion morphism, one
sets

(2.5.2) BY = Di∗OY.

Then BY is concentrated in degree zero, and is a regular holonomic DX-module.
For M ∈ Db

coh(DX), denote by sing. supp(M)⊂X its singular support, that is the
set of points where char(M) :=⋃

i∈Z char(HiM) is not contained in the zero-section of
T∗X.
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Proposition 2.5.1 ([10, Theorem 4.33]). — Let f : X −→ Y be a morphism of com-

plex manifolds. Let M ∈ Db
good(DX) and N ∈ Db(DY). If supp(M) is proper over Y, then

Df ∗M ∈ Db
good(DY) and there is an isomorphism

Rf∗RHomDX
(M,Df ∗N )[dX] � RHomDY

(Df ∗M,N )[dY].
In particular,

HomDb(DX)

(
M,Df ∗N [dX]

)�HomDb(DY)

(
Df ∗M,N [dY]

)
.

Proposition 2.5.2 ([10, Theorem 4.40]). — If f : X−→ Y is a smooth morphism of complex

manifolds, then for M ∈ Db(DX) and N ∈ Db
coh(DY) we have

Rf∗RHomDX
(Df ∗N ,M)[dX] � RHomDY

(N ,Df ∗M)[dY].
In particular,

HomDb(DX)

(
Df ∗N ,M[dX]

)�HomDb(DY)

(
N ,Df ∗M[dY]

)
.

A transversal Cartesian diagram is a commutative diagram

(2.5.3)
X′ f ′

g′

Y′

g

X
f

�

Y

with X′ �X×Y Y′ and such that the map of tangent spaces

Tg′(x)X⊕ Tf ′(x)Y′ −→Tf (g′(x))Y

is surjective for any x ∈X′.

Proposition 2.5.3. — Consider the transversal Cartesian diagram (2.5.3). Then, for any M ∈
Db

good(DX) such that supp(M) is proper over Y,

Dg∗Df ∗M� Df ′∗Dg′∗M.

3. Bordered spaces

Let M̌ be a good topological space, and M⊂ M̌ an open subset. For usual sheaves,
the restriction functor F 
→ F|M induces an equivalence

Db(kM̌)/Db(kM̌\M)
∼−→ Db(kM).

This is no longer true for ind-sheaves, as seen by the following example.
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Example. — Let M̌=R and M= ]0,1[. Consider the ind-sheaf on M̌

βM̌k{0} = “lim−→”
U�0

kU,

where U ranges over the family of open neighborhoods of 0 ∈ M̌. Then βM̌k{0}|M � 0,
but βM̌k{0} /∈ Db(IkM̌\M).

Therefore, in the framework of ind-sheaves one should consider the quotient cate-
gory Db(IkM̌)/Db(IkM̌\M) attached to the pair (M,M̌). We will call such a pair a bordered

space.
In this section, we define the category of bordered spaces, develop the formalism

of external operations, and define the natural t-structure on the derived category of ind-
sheaves on a bordered space.

3.1. Quotient categories. — Let D be a triangulated category and N ⊂D a full tri-
angulated subcategory. The quotient category D/N is defined as the localization D
 of
D with respect to the multiplicative system 
 of morphisms u fitting into a distinguished
triangle

X
u−→ Y−→ Z

+1−−→
with Z ∈N .

The right orthogonal N⊥ and the left orthogonal ⊥N are the full subcategories
of D

N⊥ = {
X ∈D ; HomD(Y,X)� 0 for any Y ∈N }

,

⊥N = {
X ∈D ; HomD(X,Y)� 0 for any Y ∈N }

.

The following result is elementary (cf. [15, Exercise 10.15]).

Proposition 3.1.1. — Assume that

if X,Y ∈D, Z ∈N and Z�X⊕Y, then one has X ∈N .

Then the following conditions are equivalent:

(i) the composition N⊥ −→D −→D/N is an equivalence of categories,

(ii) the embedding N −→D has a right adjoint,

(iii) the quotient functor D −→D/N has a right adjoint,

(iv) for any X ∈D there is a distinguished triangle X′ −→X−→X′′ +1−→ with X′ ∈N and

X′′ ∈N⊥.

Similar results hold for the left orthogonal.
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3.2. Bordered spaces. — Let M⊂ M̌ and N⊂ Ň be open embeddings of good topo-
logical spaces. For a continuous map f : M−→N, denote by �f its graph in M×N, and
by �f the closure of �f in M̌× Ň.

Definition 3.2.1. — The category of bordered spaces is the category whose objects are pairs

(M,M̌) with M ⊂ M̌ an open embedding of good topological spaces. Morphisms f : (M,M̌) −→
(N, Ň) are continuous maps f : M−→N such that

(3.2.1) �f −→ M̌ is proper.

The composition of (L, Ľ)
g−→ (M,M̌)

f−→ (N, Ň) is given by f ◦ g : L −→ N (see Lemma 3.2.3

below), and the identity id(M,M̌) is given by idM.

Remark 3.2.2. — The properness assumption (3.2.1) is used in Lemma 3.3.10 be-
low to prove the functoriality of external operations. It is satisfied in particular if either
M= M̌ or Ň is compact.

Lemma 3.2.3. — Let f : (M,M̌)−→ (N, Ň) and g : (L, Ľ)−→ (M,M̌) be morphisms of

bordered spaces. Then the composition f ◦ g is a morphism of bordered spaces.

Proof. — Note that �g×M̌ �f −→ �g×M̌ M̌−→ Ľ is proper. Hence �g×M̌ �f −→ Ľ×Ň
is proper. In particular, Im(�g ×M̌ �f −→ Ľ × Ň) is a closed subset of Ľ × Ň. Since it
contains �f ◦g , it also contains �f ◦g . Since �f ◦g ×Ľ×Ň (�g ×M̌ �f )−→ Ľ is proper, �f ◦g −→ Ľ
is proper. �

Note that the category of bordered spaces has

(i) a final object ({pt}, {pt}),
(ii) fiber products.

In fact, the fiber product of f : (M,M̌)−→ (L, Ľ) and g : (N, Ň)−→ (L, Ľ) is represented
by (M×L N,�f ×Ľ �g).

Regarding a space M as the bordered space (M,M), one gets a fully faithful em-
bedding of the category of good topological spaces into that of bordered spaces.

Remark 3.2.4. — For any bordered space (M,M̌), using the identifications M =
(M,M) and M̌= (M̌,M̌), there are natural morphisms

M−→ (M,M̌)−→ M̌.

Note however that idM does not necessarily induce a morphism (M,M̌) −→M of bor-
dered spaces.
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If a continuous map f : M−→ N extends to a continuous map f̌ : M̌−→ Ň, then f

induces a morphism of bordered spaces (M,M̌)−→ (N, Ň). However the converse is not
true. If f : (M,M̌)−→ (N, Ň) is a morphism of bordered spaces, the map f : M−→N does
not extend to a continuous map f̌ : M̌−→ Ň, in general. However, the next lemma shows
how one can always reduce to this case.

Lemma 3.2.5. — Any morphism of bordered spaces f : (M,M̌)−→ (N, Ň) decomposes as

(M,M̌)
∼←−
q1

(�f ,�f )−→
q2

(N, Ň),

where the first arrow is an isomorphism and the maps q1 : �f −→M and q2 : �f −→N extend to maps

q̌1 : �f −→ M̌ and q̌2 : �f −→ Ň.

Definition 3.2.6. — The derived category of ind-sheaves on a bordered space (M,M̌) is the

quotient category

Db(Ik(M,M̌)) :=Db(IkM̌)/Db(IkM̌\M),

where Db(IkM̌\M) is identified with its essential image in Db(IkM̌) by the fully faithful functor

Ri!! � Ri∗, for i : M̌ \M−→ M̌ the closed embedding.

Remark 3.2.7. — In the framework of subanalytic sheaves, an analogue of
Db(Ik(M,M̌)) is the derived category of sheaves on some site considered in Defini-
tions 6.1.1(iv) and 7.1.1 of [13].

Since the functor Ri!! � Ri∗ has both a right and a left adjoint, it follows from
Proposition 3.1.1 that there are equivalences

⊥Db(IkM̌\M)� Db(Ik(M,M̌))� Db(IkM̌\M)⊥.

Let us describe these equivalences more explicitly.

Lemma 3.2.8. — For F ∈ Db(IkM̌), one has

kM⊗RIhom (kM,F)
∼←− kM⊗F,

RIhom (kM,kM⊗F)
∼−→ RIhom (kM,F).

Proposition 3.2.9. — Let (M,M̌) be a bordered space.

(i) One has

Db(IkM̌\M)= {
F ∈ Db(IkM̌) ; F ∼−→ kM̌\M⊗F

}

= {
F ∈ Db(IkM̌) ; kM⊗F� 0

}
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= {
F ∈ Db(IkM̌) ; RIhom (kM̌\M,F)

∼−→ F
}

= {
F ∈ Db(IkM̌) ; RIhom (kM,F)� 0

}
.

(ii) One has

⊥Db(IkM̌\M)= {
F ∈ Db(IkM̌) ; kM⊗F ∼−→ F

}

= {
F ∈ Db(IkM̌) ; kM̌\M⊗F� 0

}
,

and there is an equivalence

Db(Ik(M,M̌))
∼−→⊥Db(IkM̌\M), F 
→ kM⊗F,

with quasi-inverse induced by the quotient functor.

(iii) One has

Db(IkM̌\M)⊥ = {
F ∈ Db(IkM̌) ; F ∼−→ RIhom (kM,F)

}

= {
F ∈ Db(IkM̌) ; RIhom (kM̌\M,F)� 0

}
,

and there is an equivalence

Db(Ik(M,M̌))
∼−→ Db(IkM̌\M)⊥, F 
→ RIhom (kM,F),

with quasi-inverse induced by the quotient functor.

Corollary 3.2.10. — For F,G ∈ Db(IkM̌) one has

HomDb(Ik
(M,M̌)

)(F,G)�HomDb(IkM̌)(kM⊗F,G)

�HomDb(IkM̌)

(
F,RIhom (kM,G)

)

�HomDb(IkM̌)(kM⊗F,kM⊗G)

�HomDb(IkM̌)

(
RIhom (kM,F),RIhom (kM,G)

)
.

There is a quasi-commutative diagram of natural functors

Db(kM̌)
ιM̌

Db(IkM̌)

Db(kM)
ι
(M,M̌)

Db(Ik(M,M̌)),

where the left vertical arrow is the functor of restriction to M, the right vertical arrow is
the quotient functor, and the bottom arrow is the composition

Db(kM)� Db(kM̌)/Db(kM̌\M)−→ Db(Ik(M,M̌)).
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Notation 3.2.11. — We sometimes write Db(k(M,M̌)) for Db(kM), when considered
as a full subcategory of Db(Ik(M,M̌)) by ι(M,M̌).

3.3. Operations. — Let us discuss internal and external operations in the category
of bordered spaces.

Definition 3.3.1. — The functors ⊗ and RIhom in Db(IkM̌) induce well defined functors

⊗ : Db(Ik(M,M̌))× Db(Ik(M,M̌))−→ Db(Ik(M,M̌)),

RIhom : Db(Ik(M,M̌))
op ×Db(Ik(M,M̌))−→ Db(Ik(M,M̌)).

Lemma 3.3.2. — For F1,F2 ∈ Db(Ik(M,M̌)) one has

HomDb(Ik
(M,M̌)

)

(
kM,RIhom (F1,F2)

)�HomDb(Ik
(M,M̌)

)(F1,F2).

Lemma 3.3.3. — For F1,F2,F3 ∈ Db(Ik(M,M̌)) one has

RIhom (F1⊗F2,F3)� RIhom
(
F1,RIhom (F2,F3)

)
,

HomDb(Ik
(M,M̌)

)(F1⊗F2,F3)�HomDb(Ik
(M,M̌)

)

(
F1,RIhom (F2,F3)

)
.

Let f : (M,M̌) −→ (N, Ň) be a morphism of bordered spaces, and recall that �f

denotes the graph of the associated map f : M −→ N. Since �f is closed in M× N, it is
locally closed in M̌× Ň. One can then consider the sheaf k�f

on M̌× Ň.

Definition 3.3.4. — Let f : (M,M̌)−→ (N, Ň) be a morphism of bordered spaces. For F ∈
Db(IkM̌) and G ∈ Db(IkŇ), we set

Rf!!F= Rq2 !!
(
k�f
⊗ q−1

1 F
)
, Rf∗F= Rq2∗RIhom

(
k�f

, q !1 F
)
,

f −1G= Rq1 !!
(
k�f
⊗ q−1

2 G
)
, f !G= Rq1∗RIhom

(
k�f

, q !2 G
)
,

where q1 : M̌× Ň−→ M̌ and q2 : M̌× Ň−→ Ň are the projections.

Remark 3.3.5. — Considering a continuous map f : M −→ N as a morphism of
bordered spaces with M̌=M and Ň=N, the above functors are isomorphic to the usual
external operations for ind-sheaves.

Lemma 3.3.6. — The above definition induces well-defined functors

Rf!! : Db(Ik(M,M̌))−→⊥Db(IkŇ\N)� Db(Ik(N,Ň)),

Rf∗ : Db(Ik(M,M̌))−→ Db(IkŇ\N)⊥ � Db(Ik(N,Ň)),
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f −1 : Db(Ik(N,Ň))−→⊥Db(IkM̌\M)� Db(Ik(M,M̌)),

f ! : Db(Ik(N,Ň))−→ Db(IkM̌\M)⊥ � Db(Ik(M,M̌)).

Proof. — Since the arguments are similar for all functors, let us only discuss Rf∗.
Let F ∈ Db(IkM̌).

(i) Assume that F� RIhom (kM̌\M,F). Since �f ∩ q−1
1 (M̌ \M)=∅, we have

Rf∗F� Rq2∗RIhom
(
k�f

, q !1 F
)

� Rq2∗RIhom
(
k�f

, q !1 RIhom (kM̌\M,F)
)

� Rq2∗RIhom
(
k�f
⊗ q−1

1 kM̌\M, q !1 F
)

� Rq2∗RIhom
(
k�f ∩q−1

1 (M̌\M), q !1 F
)� 0.

This shows that the functor Rf∗ : Db(IkM̌) −→ Db(IkŇ) factors through
Db(Ik(M,M̌)).

(ii) Since q−1
2 (Ň \N)∩ �f =∅, we have

RIhom (kŇ\N,Rf∗F)� RIhom
(
kŇ\N,Rq2∗RIhom

(
k�f

, q !1 F
))

� Rq2∗RIhom
(
q−1

2 kŇ\N⊗k�f
, q !1 F

)

� Rq2∗RIhom
(
kq−1

2 (Ň\N)∩�f
, q !1 F

)� 0.

This shows that Rf∗F ∈ Db(IkŇ\N)⊥. �

The following lemma is easy to prove.

Lemma 3.3.7. — Let jM : (M,M̌) −→ M̌ be the morphism given by the open embedding

M⊂ M̌. Then

(i) The functors

j−1
M � j !M : Db(IkM̌)−→ Db(Ik(M,M̌))

are isomorphic to the quotient functor.

(ii) For F ∈ Db(IkM̌) one has the isomorphisms in Db(IkM̌)

RjM !! j−1
M F� kM⊗F, RjM∗j !M F� RIhom (kM,F).

(iii) The functors ⊗ and RIhom commute with j−1
M � j !M .
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(iv) The functor ⊗ commutes with RjM !! and the functor RIhom commutes with RjM∗. More

precisely, for F1,F2 ∈ Db(Ik(M,M̌)) one has

RjM !!(F1⊗F2)� RjM !!F1⊗RjM !!F2

� RjM !!F1⊗RjM∗F2,

RjM∗RIhom (F1,F2)� RIhom (RjM !!F1,RjM !!F2)

� RIhom (RjM !!F1,RjM∗F2)

� RIhom (RjM∗F1,RjM∗F2).

Convention 3.3.8. — In the sequel, to avoid confusion, we distinguish between the objects of

Db(IkM̌) and the objects of Db(Ik(M,M̌)). In other words, if F ∈ Db(IkM̌), we avoid to denote by F
its image in the quotient category Db(Ik(M,M̌)), and write instead j−1

M F or j !M F.

Let us now show that the external operations for bordered spaces satisfy similar
properties to the external operations for usual spaces.

Lemma 3.3.9. — Let f : (M,M̌)−→ (N, Ň) be a morphism of bordered spaces.

(i) The functor Rf!! is left adjoint to f ! .
(ii) The functor f −1 is left adjoint to Rf∗.

Lemma 3.3.10. — Let g : (L, Ľ) −→ (M,M̌) and f : (M,M̌) −→ (N, Ň) be morphisms

of bordered spaces. One has

R(f ◦ g)!! � Rf!! ◦Rg!!, R(f ◦ g)∗ � Rf∗ ◦Rg∗

and

(f ◦ g)−1 � g−1 ◦ f −1, (f ◦ g) ! � g ! ◦ f ! .

Proof. — Since the proofs are similar, we treat only the first isomorphism.
For F ∈ Db(IkĽ), one has

R(f ◦ g)!! j−1
L F� j−1

N Rq2 !!
(
k�f ◦g ⊗ q−1

1 F
)
,

where q1 and q2 are the projections from Ľ× Ň to the corresponding factors. Using the
projection formula, one easily checks the isomorphism

Rf!!Rg!! j−1
L F� j−1

N Rq2 !!
(
(k�g

◦ k�f
)⊗ q−1

1 F
)
,

where

k�g
◦ k�f

:= Rq13 !!
(
q−1

12 k�g
⊗ q−1

23 k�f

)
,
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and q12, q23 and q13 denote the projections from Ľ× M̌× Ň to the corresponding factors.
For example, q13(x, y, z)= (x, z).

Hence, writing explicitly the embedding functor ι of sheaves into ind-sheaves, it is
enough to show

ιĽ×M̌ k�g
◦ ιM̌×Ň k�f

� ιĽ×Ň k�f ◦g .

Recalling that ι commutes with tensor product, ordinary inverse image, and ordinary
direct image, we have

ιĽ×M̌ k�g
◦ ιM̌×Ň k�f

:=Rq13 !!
(
q−1

12 ιĽ×M̌ k�g
⊗ q−1

23 ιM̌×Ň k�f

)

� Rq13 !! ιĽ×M̌×Ň

(
q−1

12 k�g
⊗ q−1

23 k�f

)

�
(∗)

Rq13∗ιĽ×M̌×Ň

(
q−1

12 k�g
⊗ q−1

23 k�f

)

� ιĽ×Ň Rq13∗
(
q−1

12 k�g
⊗ q−1

23 k�f

)

�
(∗)

ιĽ×Ň Rq13 !
(
q−1

12 k�g
⊗ q−1

23 k�f

)

� ιĽ×Ň k�f ◦g .

Here, in (∗), we used the fact that supp(q−1
12 k�g

⊗ q−1
23 k�f

) ⊂ �g ×M̌ �f is proper over
Ľ× Ň, which follows from the same arguments as in the proof of Lemma 3.2.3. �

Corollary 3.3.11. — If f : (M,M̌) −→ (N, Ň) is an isomorphism of bordered spaces, then

Rf∗ � Rf!! and f −1 � f ! . Moreover, Rf∗ and f −1 are quasi-inverse to each other.

Lemma 3.3.12. — Let f : (M,M̌)−→ (N, Ň) be the morphism of bordered spaces associated

with a continuous map f̌ : M̌−→ Ň such that f̌ (M)⊂N. Then

(i) For F ∈ Db(Ik(M,M̌)) there are isomorphisms in Db(Ik(N,Ň))

Rf!!F� j−1
N Rf̌!!RjM !!F, Rf∗F� j−1

N Rf̌∗RjM∗F.

(ii) For G ∈ Db(Ik(N,Ň)) there are isomorphisms in Db(Ik(M,M̌))

f −1G� j−1
M f̌ −1RjN !!G� j−1

M f̌ −1RjN∗G,

f !G� j−1
M f̌ !RjN∗G� j−1

M f̌ !RjN !!G.

Proof. — We have a commutative diagram

(M,M̌)
jM

f

M̌

f̌

(N, Ň)
jN

Ň.
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Hence Lemma 3.3.10 implies

RjN !!Rf!!F� Rf̌!!RjM !!F.

Then, by Lemma 3.3.7 we have

Rf!!F� j−1
N RjN !!Rf!!F� j−1

N Rf̌!!RjM !!F.

We can similarly obtain the other statements, except

j−1
M f̌ −1RjN !!G� j−1

M f̌ −1RjN∗G,

j−1
M f̌ !RjN∗G� j−1

M f̌ !RjN !!G.

Since the proofs are similar, let us check only the last isomorphism.
For K ∈ Db(IkŇ), we have

RIhom
(
kM, f̌ !RIhom (kN,K)

)� RIhom
(
kM,RIhom

(
f̌ −1kN, f̌ !K

))

� RIhom
(
kM⊗ f̌ −1kN, f̌ !K

)

� RIhom
(
kM, f̌ !K

)
.

Hence, applying this for K= RjN !!G,RjN∗G, we obtain

j−1
M f̌ !RjN∗G� j−1

M RIhom
(
kM, f̌ !RjN∗G

)

� j−1
M RIhom

(
kM, f̌ !RIhom (kN,RjN∗G)

)

� j−1
M RIhom

(
kM, f̌ !RIhom (kN,RjN !!G)

)

� j−1
M RIhom

(
kM, f̌ !RjN !!G

)

� j−1
M f̌ !RjN !!G. �

Proposition 3.3.13. — Let f : (M,M̌) −→ (N, Ň) be a morphism of bordered spaces. For

F ∈ Db(Ik(M,M̌)) and G,G1,G2 ∈ Db(Ik(N,Ň)), one has isomorphisms

Rf!!(f −1G⊗F)�G⊗Rf!!F,

f −1(G1⊗G2)� f −1G1⊗ f −1G2,

RIhom (G,Rf∗F)� Rf∗RIhom (f −1G,F),

RIhom (Rf!!F,G)� Rf∗RIhom (F, f !G),

f !RIhom (G1,G2)� RIhom (f −1G1, f !G2),

and a morphism

f −1RIhom (G1,G2)−→ RIhom (f −1G1, f −1G2).
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Proof. — By Lemma 3.2.5, replacing (M,M̌) with (�f ,�f ), we may assume that
there is a commutative diagram

(M,M̌)
jM

f

M̌

f̌

(N, Ň)
jN

Ň.

Then, by Lemmas 3.3.12 and 3.3.7 one has

Rf!!
(
f −1G⊗F

)� j−1
N Rf̌!!RjM !!

(
j−1
M f̌ −1RjN !!G⊗F

)

� j−1
N Rf̌!!

(
RjM !! j−1

M f̌ −1RjN !!G⊗RjM !!F
)

� j−1
N Rf̌!!

(
f̌ −1RjN !!G⊗kM⊗RjM !!F

)

� j−1
N Rf̌!!

(
f̌ −1RjN !!G⊗RjM !!F

)

� j−1
N

(
RjN !!G⊗Rf̌!!RjM !!F

)

�G⊗ j−1
N Rf̌!!RjM !!F

�G⊗Rf!!F.

This proves the first isomorphism in the statement. The other isomorphisms can be
proved along the same lines. �

Lemma 3.3.14. — Consider a Cartesian diagram in the category of bordered spaces

(M′,M̌′)
f ′

g′

(N′, Ň′)

g

(M,M̌)
f

�

(N, Ň).

Then there are isomorphisms of functors Db(Ik(M′,M̌′))−→ Db(Ik(N,Ň))

g−1Rf!! � Rf ′!! g
′−1, g !Rf∗ � Rf ′∗ g

′!.
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Proof. — By a similar argument as in the proof of the Proposition 3.3.13, the state-
ment can be reduced to the corresponding statement for a Cartesian diagram

M̌′ f̌ ′

ǧ′

Ň′

ǧ

M̌
f̌

�

Ň.

�

Definition 3.3.15. — We say that a morphism of bordered spaces f : (M,M̌)−→ (N, Ň) is

proper if the following two conditions hold:

(i) f : M−→N is proper,

(ii) the projection �f −→ Ň is proper.

Lemma 3.3.16. — A morphism f : (M,M̌)−→ (N, Ň) is proper if and only if the following

two conditions hold:

(a) �f ×Ň N⊂ �f .

(b) the projection �f −→ Ň is proper.

Proof. — Assume (a) and (b). Then M� �f ×Ň N−→N is proper. Hence f is proper.
Conversely, assume that f : (M,M̌) −→ (N, Ň) is proper. Since the composite

f : M −→ �f ×Ň N −→ N is proper, it follows that M −→ �f ×Ň N is proper. Hence �f

is a closed subset of �f ×Ň N. It follows that

�f ∩ (�f ×Ň N)= �f . �

Proposition 3.3.17. — Assume that f : (M,M̌)−→ (N, Ň) is proper. Then Rf!! � Rf∗ as

functors Db(Ik(M,M̌))−→ Db(Ik(N,Ň)).

Proof. — Consider the projections M̌
p1←− �f

p2−−→ Ň. For F ∈ Db(Ik(M,M̌)), we have
the isomorphisms (cf. Lemma 3.2.5)

Rf!!F� j−1
N Rp2 !!p−1

1 RjM !!F,

Rf∗F� j−1
N Rp2∗p !1 RjM∗F

� j−1
N Rp2 !!p !1 RjM∗F,

where the last isomorphism follows from Definition 3.3.15(ii). Hence, it is enough to prove
that

kN⊗Rp2 !!L� 0,
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where L enters the distinguished triangle

L−→ p−1
1 RjM !!F−→ p !1 RjM∗F

+1−−→ .

Since p−1
1 M−→M is an isomorphism, one has

kp−1
1 M⊗ p!1 RjM∗F� kp−1

1 M⊗ p−1
1 RjM∗F� p−1

1 RjM !!F.

Hence kp−1
1 M⊗L� 0. Then one has

kN⊗Rp2 !!L� Rp2 !!(kp−1
2 N⊗L)

� Rp2 !!(kp−1
2 N⊗kp−1

1 M⊗L)� 0,

where the second isomorphism follows from the inclusion p−1
2 N ⊂ p−1

1 M due to
Lemma 3.3.16(a). �

Definition 3.3.18. — Let f : M−→N be a continuous map of good spaces. We say that f is

topologically submersive if, for any point x ∈M, there exist an open neighborhood U of x and a

commutative diagram

U
f |U

i

N

S×N,

q2

where S is a subanalytic space, q2 is the projection, and i is an open embedding.

The following proposition follows from Proposition 2.3.4 and Corollary 2.3.5.

Proposition 3.3.19. — Let f : (M,M̌)−→ (N, Ň) be a morphism of bordered spaces. Assume

that f : M−→N is topologically submersive. Then, for any L,G ∈ Db(Ik(N,Ň)) there are isomorphisms

in Db(Ik(M,M̌))

f −1RIhom (L,G)
∼−→ RIhom (f −1L, f −1G),

f !kN⊗ f −1G ∼−→ f !G.

Lemma 3.3.20. — For k = 1,2, let fk : (Mk,M̌k)−→ (Nk, Ňk) be a morphism of bordered

spaces and Lk ∈ Db(Ik(Nk,Ňk)
). Set f = f1 × f2. Then there is a canonical morphism

(3.3.1) f !1 L1 � f !2 L2 −→ f ! (L1 �L2).
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Proof. — There are morphisms

Rf!!(f !1 L1 � f !2 L2)� Rf1 !! f !1 L1 �Rf2 !! f !2 L2 −→ L1 �L2,

and the desired morphism follows by adjunction. �

Note that the morphism (3.3.1) is not an isomorphism in general.

Remark 3.3.21. — For a bordered space (M,M̌), consider the natural functor

ι(M,M̌) : Db(kM) ↪→ Db(Ik(M,M̌)).

Then, for f : (M,M̌)−→ (N, Ň) a morphism of bordered spaces, one has

ι(M,M̌) ◦ f −1 � f −1 ◦ ι(N,Ň), ι(M,M̌) ◦ f ! � f ! ◦ ι(N,Ň),

Rf∗ ◦ ι(M,M̌) � ι(N,Ň) ◦Rf∗.

Moreover, if the projection �f −→ Ň is proper, then

Rf!! ◦ ι(M,M̌) � ι(N,Ň) ◦Rf! .

3.4. t-Structure. — Let (M,M̌) be a bordered space and let j : (M,M̌) −→ M̌ be
the natural morphism.

Notation 3.4.1.

(i) Let I M(kM̌) be the full subcategory of I (kM̌) consisting of ind-sheaves F on M̌
such that kM⊗F� F.

(ii) Let I(k(M,M̌)) be the quotient category I(kM̌)/I(kM̌\M).

Note that I M(kM̌) is an abelian category.

Lemma 3.4.2.

(i) The composition I M(kM̌)−→ I(kM̌)−→ I(k(M,M̌)) is an equivalence of categories.

(ii) There is an equivalence Db(I M(kM̌))� Db(Ik(M,M̌)).

Let us denote by (D≤0(Ik(M,M̌)),D≥0(Ik(M,M̌))) the t-structure of Db(Ik(M,M̌)) in-
duced by the canonical t-structure of Db(I M(kM̌)). By the definition, we have

D≤0(Ik(M,M̌))=
{
F ∈ Db(Ik(M,M̌)) ; Hn(RjM !!F)= 0 for n > 0

}
,

D≥0(Ik(M,M̌))=
{
F ∈ Db(Ik(M,M̌)) ; Hn(RjM !!F)= 0 for n < 0

}
.

The following two propositions are easily obtained.
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Proposition 3.4.3.

(i) The functor ⊗ is exact, i.e. it induces functors

⊗ : D≤0(Ik(M,M̌))× D≤0(Ik(M,M̌))−→ D≤0(Ik(M,M̌)),

⊗ : D≥0(Ik(M,M̌))× D≥0(Ik(M,M̌))−→ D≥0(Ik(M,M̌)).

(ii) The functor RIhom is left exact, i.e. it induces a functor

RIhom : D≤0(Ik(M,M̌))
op ×D≥0(Ik(M,M̌))−→ D≥0(Ik(M,M̌)).

Proposition 3.4.4. — Let f : (M,M̌)−→ (N, Ň) be a morphism of bordered spaces.

(i) Rf!! and Rf∗ are left exact, i.e. they induce functors

Rf!!,Rf∗ : D≥0(Ik(M,M̌))−→ D≥0(Ik(N,Ň)).

(ii) f −1 is exact, i.e. it induces functors

f −1 : D≤0(Ik(N,Ň))−→ D≤0(Ik(M,M̌)),

f −1 : D≥0(Ik(N,Ň))−→ D≥0(Ik(M,M̌)).

(iii) Let d ∈ Z≥0 and assume that f −1(y)⊂M has soft-dimension ≤ d for any y ∈N. Then

(a) Rf!!(∗)[d] is right exact, i.e. Rf!! induces a functor

Rf!! : D≤0(Ik(M,M̌))−→ D≤d(Ik(N,Ň)).

(b) f ! (∗)[−d] is left exact, i.e. f ! induces a functor

f ! : D≥0(Ik(N,Ň))−→ D≥−d(Ik(M,M̌)).

We denote by

(3.4.1) Hn : Db(Ik(M,M̌))−→ D0(Ik(M,M̌))

the cohomology functor, where we set

D0(Ik(M,M̌))= D≤0(Ik(M,M̌))∩ D≥0(Ik(M,M̌))� I(k(M,M̌)).

4. Enhanced ind-sheaves

In this section we start by adapting Tamarkin’s construction to the ind-sheaf frame-
work, introducing the category of enhanced ind-sheaves Eb(IkM). This is a quotient cate-
gory of Db(IkM×R∞), where we consider the bordered space R∞ = (R,R� {+∞,−∞})
instead of the real line R. We show that Eb(IkM) has a structure of tensor category by
convolution. We then go on to discuss internal and external operations for enhanced ind-
sheaves. In Eb(IkM) we also introduce the notions of stable object and of R-constructible
object.
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4.1. Convolution. — Consider the 2-point compactification of the real line R :=
R�{+∞,−∞}. Denote by P=R�{∞} the real projective line. Then R has a structure
of subanalytic space such that the natural map R−→ P is a subanalytic map.

Notation 4.1.1. — Instead of the real line, we will consider the bordered space

R∞ := (R,R).

Note that R∞ is isomorphic to (R,P) as a bordered space.
Consider the morphisms of bordered spaces

(4.1.1)
a : R∞ −→R∞,

μ,σ, q1, q2 : R2
∞ −→R∞,

where a(t) = −t, μ(t1, t2) = t1 + t2, σ(t1, t2) = t2 − t1 and q1, q2 are the natural projec-
tions. For a good topological space M, we will use the same notations for the associated
morphisms

a : M×R∞ −→M×R∞,

μ,σ, q1, q2 : M×R2
∞ −→M×R∞.

Consider also the natural morphisms

M×R∞
j

π

M×R

π

M.

When we want to emphasize M, we write πM, πM, jM, μM, etc., instead of π , π , j,
μ, etc.

Definition 4.1.2. — The functors

+⊗: Db(IkM×R∞)× Db(IkM×R∞)−→ Db(IkM×R∞),

Ihom+ : Db(IkM×R∞)op × Db(IkM×R∞)−→ Db(IkM×R∞)

are defined by

K1

+⊗K2 = Rμ!!
(
q−1

1 K1⊗ q−1
2 K2

)
,

Ihom+(K1,K2)= Rq1∗RIhom
(
q−1

2 K1,μ
!K2

)
.
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Remark 4.1.3. — As in Remark 3.3.21, let

ιM×R∞ : Db(kM×R)−→ Db(IkM×R∞)

be the natural functor. Then, for F1,F2 ∈ Db(kM×R) we have

ιM×R∞(F1)
+⊗ ιM×R∞(F2)� ιM×R∞

(
Rμ!

(
q−1

1 F1⊗ q−1
2 F2

))
,

Ihom+
(
ιM×R∞(F1), ιM×R∞(F2)

)� ιM×R∞
(
Rq1∗RHom

(
q−1

2 F2,μ
!F1

))
.

The following lemma is obvious.

Lemma 4.1.4. — Let K1,K2 ∈ Db(IkM×R∞). Then one has

K1

+⊗K2 �K2

+⊗K1

� Rq2 !!
(
q−1

1 K1⊗σ−1K2

)

� Rq1 !!
(
q−1

2 a−1K1⊗μ−1K2

)
,

Ihom+(K1,K2)� Rμ∗RIhom
(
q−1

2 a−1K1, q !1 K2

)

� Rq1∗RIhom
(
σ−1K1, q !2 K2

)
.

Proposition 4.1.5. — For K1,K2,K3 ∈ Db(IkM×R∞) one has

(
K1

+⊗K2

) +⊗K3 �K1

+⊗
(

K2

+⊗K3

)
,

HomDb(IkM×R∞ )

(
K1

+⊗K2,K3

)
�HomDb(IkM×R∞ )

(
K1,Ihom+(K2,K3)

)
,

Ihom+
(

K1

+⊗K2,K3

)
� Ihom+

(
K1,Ihom+(K2,K3)

)
.

In particular, for K ∈ Db(IkM×R∞), the functor K
+⊗ ∗ is left adjoint to Ihom+(K,∗).

Proof.

(i) Consider the morphisms of bordered spaces

q′1, q′2, q′3,μ
′ : M×R3

∞ −→M×R∞

where q′1, q′2, q′3 are induced by the projections R3 −→ R and μ′ is induced
by R3 � (t1, t2, t3) 
→ t1 + t2 + t3 ∈ R. Then one can easily prove that both

(K1

+⊗K2)
+⊗K3 and K1

+⊗ (K2

+⊗K3) are isomorphic to

Rμ′!!
(
q′−1

1 K1⊗ q′−1
2 K2⊗ q′−1

3 K3

)
.
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(ii) Writing Hom instead of HomDb(IkM×R∞ ), one has

Hom
(

K1

+⊗K2,K3

)
=Hom

(
Rμ!!

(
q−1

1 K1⊗ q−1
2 K2

)
,K3

)

�Hom (q−1
1 K1⊗ q−1

2 K2,μ
!K3)

�Hom
(
q−1

1 K1,RIhom
(
q−1

2 K2,μ
!K3

))

�Hom
(
K1,Rq1∗RIhom

(
q−1

2 K2,μ
!K3

))

=Hom
(
K1,Ihom+(K2,K3)

)
.

(iii) Writing again Hom instead of HomDb(IkM×R∞ ), one has for any K ∈
Db(IkM×R∞)

Hom
(

K,Ihom+
(

K1

+⊗K2,K3

))

�Hom
(

K
+⊗

(
K1

+⊗K2

)
,K3

)

�Hom
((

K
+⊗K1

) +⊗K2,K3

)

�Hom
(

K
+⊗K1,Ihom+(K2,K3)

)

�Hom
(
K,Ihom+

(
K1,Ihom+(K2,K3)

))
.

Hence, by Yoneda, one obtains

Ihom+
(

K1

+⊗K2,K3

)
� Ihom+

(
K1,Ihom+(K2,K3)

)
. �

4.2. Idempotent objects. — We set

k{t≥0} = k{(x,t)∈M×R ; t∈R, t≥0},

k{t=0} = k{(x,t)∈M×R ; t=0},

and we use similar notation for k{t>0}, k{t≤0} and k{t<0}. These are sheaves on M × R
whose stalk vanishes at points of M × (R \ R). We also regard them as objects of
Db(IkM×R∞).

Lemma 4.2.1. — For K ∈ Db(IkM×R∞) there are isomorphisms

k{t=0}
+⊗K�K� Ihom+(k{t=0},K).

More generally, for a ∈R, we have

k{t=a}
+⊗K� Rμa∗K� Ihom+(k{t=−a},K),

where μa : M×R∞ −→M×R∞ is the morphism induced by the translation t 
→ t + a.
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Corollary 4.2.2. — The category Db(IkM×R∞) has a structure of commutative tensor category

with
+⊗ as tensor product bifunctor and k{t=0} as unit object.

There are distinguished triangles in Db(IkM×R∞)

(4.2.1)

⎧
⎪⎪⎨

⎪⎪⎩

k{t≥0} −→ k{t=0} −→ k{t>0}[1] +1−−→,

k{t≥0} −→ k{t<0}[1] −→ kM×R[1] +1−−→,

k{t≥0} ⊕ k{t≤0} −→ k{t=0} −→ kM×R[1] +1−−→ .

The following lemma is easily verified.

Lemma 4.2.3. — There are isomorphisms in Db(IkM×R∞)

k{t≥0}
+⊗ k{t≥0} ∼−→ k{t≥0}, k{t≥0}

+⊗ k{t>0}[1] � 0,

k{t>0}[1]
+⊗ k{t>0}[1] ∼←− k{t>0}[1], k{t≥0}

+⊗ kM×R[1] � 0,

kM×R[1]
+⊗ kM×R[1] ∼←− kM×R[1], k{t>0}[1]

+⊗ kM×R[1] ∼←− kM×R[1],
k{t≥0}

+⊗ k{t≤0} � 0, k{t≥0}
+⊗ k{t<0}[1] ∼←− k{t≥0},

k{t>0}[1]
+⊗ k{t<0}[1] � kM×R[1].

Hence, the objects k{t≥0}, k{t>0}[1], k{t≥0} ⊕ k{t≤0} and kM×R[1] are idempotents in Db(IkM×R∞).

Recall that an idempotent in a tensor category is a pair (P, ξ) of an object P and
an isomorphism ξ : P⊗P−→ P such that ξ ⊗P= P⊗ξ as morphisms P⊗P⊗P−→ P⊗P

(cf. [15, Lemma 4.1.2]). Note that in each distinguished triangle P′ −→ P −→ P′′
+1−→ in

(4.2.1), P, P′, P′′ are idempotents and P′
+⊗ P′′ � 0, P

+⊗ P′ � P′, P
+⊗ P′′ � P′′.

Corollary 4.2.4. — Let K ∈ Db(IkM×R∞). Then

k{t≥0}
+⊗K ∼−→K ⇐⇒ k{t>0}[1]

+⊗K� 0

⇐⇒ k{t≤0}
+⊗K� 0 and kM×R[1]

+⊗K� 0.

Moreover,

k{t≥0}
+⊗K� 0 ⇐⇒ k{t>0}[1]

+⊗K ∼←−K.

Similar results hold when replacing the functor ∗ +⊗K with the functor Ihom+(∗,K).
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4.3. Properties of convolution.

Lemma 4.3.1. — For K1,K2 ∈ Db(IkM×R∞) and L ∈ Db(IkM) one has

π−1L⊗
(

K1

+⊗K2

)
� (

π−1L⊗K1

) +⊗K2,

RIhom
(
π−1L,Ihom+(K1,K2)

)� Ihom+
(
π−1L⊗K1,K2

)

� Ihom+
(
K1,RIhom

(
π−1L,K2

))
.

Proof. — Since the proofs are similar, let us only discuss the second isomorphism.
Since π ◦ q1 = π ◦ q2, one has

RIhom
(
π−1L,Ihom+(K1,K2)

)

= RIhom
(
π−1L,Rq1∗RIhom

(
q−1

2 K1,μ
!K2

))

� Rq1∗RIhom
(
q−1

1 π−1L,RIhom
(
q−1

2 K1,μ
!K2

))

� Rq1∗RIhom
(
q−1

2 π−1L,RIhom
(
q−1

2 K1,μ
!K2

))

� Rq1∗RIhom
(
q−1

2

(
π−1L⊗K1

)
,μ!K2

)

= Ihom+
(
π−1L⊗K1,K2

)
. �

Lemma 4.3.2. — For K ∈ Db(IkM×R∞) and L ∈ Db(IkM) one has

π−1L⊗K� (
π−1L⊗k{t=0}

) +⊗K,

RIhom
(
π−1L,K

)� Ihom+
(
π−1L⊗k{t=0},K

)
,

a−1RIhom
(
K,π !L

)� Ihom+
(
K,π−1L⊗k{t=0}

)
.

Proof. — The first two isomorphisms follow from Lemma 4.3.1 for K1 = k{t=0} and
K2 =K. Let us prove the third isomorphism.

Let δa : M×R∞ −→M×R2
∞ be the morphism induced by the anti-diagonal map

R −→ R2, t 
→ (−t, t), and i0 : M −→M × R∞ the morphism induced by the inclusion
x 
→ (x,0). Note that π ◦ i0 = idM, k{t=0} � Ri0∗kM, and there is a Cartesian diagram

M×R∞
δa

π

M×R2
∞

μ

M
i0

�

M×R∞.
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Then we have

Ihom+
(
K,π−1L⊗k{t=0}

)� Ihom+(K,Ri0∗L)

= Rq1∗RIhom
(
q−1

2 K,μ!Ri0∗L
)
.

On the other hand, μ!Ri0∗L� Rδa
∗π

!L, and hence

Rq1∗RIhom
(
q−1

2 K,μ!Ri0∗L
)

� Rq1∗RIhom
(
q−1

2 K,Rδa
∗π

!L
)

� Rq1∗Rδa
∗RIhom

(
δa−1q−1

2 K,π !L
)
.

Then the result follows from q1 ◦ δa = a and q2 ◦ δa = id. �

Lemma 4.3.3. — For K1,K2,K3 ∈ Db(IkM×R∞) one has

Rπ∗RIhom
(

K1

+⊗K2,K3

)
� Rπ∗RIhom

(
K1,Ihom+(K2,K3)

)
.

Proof. — The proof is similar to part (ii) in the proof of Proposition 4.1.5, using
Lemma 4.3.1. �

Lemma 4.3.4. — For K1,K2 ∈ Db(IkM×R∞) there are isomorphisms

Rπ!!
(

K1

+⊗K2

)
� Rπ!!K1⊗Rπ!!K2,

Rπ∗Ihom+(K1,K2)� RIhom (Rπ!!K1,Rπ∗K2).

Proof. — Note that π ◦μ= π ◦ q1 and that there is a Cartesian diagram

M×R2
∞

q1

q2

M×R∞

π

M×R∞
π

�

M.

Then one has

Rπ!!
(

K1

+⊗K2

)
= Rπ!!Rμ!!

(
q−1

1 K1⊗ q−1
2 K2

)

� Rπ!!Rq1 !!
(
q−1

1 K1⊗ q−1
2 K2

)

� Rπ!!
(
K1⊗Rq1 !!q−1

2 K2

)

� Rπ!!
(
K1⊗π−1Rπ!!K2

)

� Rπ!!K1⊗Rπ!!K2.

The proof of the second isomorphism is similar. �
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Since Rπ!!k{t≥0} � 0, we have the following result.

Corollary 4.3.5. — For any K ∈ Db(IkM×R∞), one has

Rπ!!
(

k{t≥0}
+⊗K

)
� 0,

Rπ∗Ihom+(k{t≥0},K)� 0.

Lemma 4.3.6. — For K ∈ Db(IkM×R∞) and L ∈ Db(IkM) one has

(
π−1L

) +⊗K� π−1(L⊗Rπ!!K),

Ihom+
(
π−1L,K

)� π !RIhom (L,Rπ∗K),

Ihom+
(
K,π !L

)� π !RIhom (Rπ!!K,L).

In particular, we have

(k{t≥0} ⊕ k{t≤0})
+⊗ π−1L� 0,

Ihom+(k{t≥0} ⊕ k{t≤0},π−1L)� 0.

Proof. — Since the proofs are similar, let us only consider the second isomorphism.
Note that π ◦ q2 = π ◦μ, and that there is a Cartesian diagram

M×R2
∞

μ

q1

M×R∞

π

M×R∞
π

�

M.

Then one has

Ihom+(π−1L,K)= Rq1∗RIhom
(
q−1

2 π−1L,μ!K
)

� Rq1∗RIhom
(
μ−1π−1L,μ!K

)

� Rq1∗μ!RIhom
(
π−1L,K

)

� π !Rπ∗RIhom
(
π−1L,K

)

� π !RIhom (L,Rπ∗K). �

By the above lemma, noticing that π−1kM � kM×R, we deduce
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Corollary 4.3.7. — For K ∈ Db(IkM×R∞) one has

kM×R

+⊗K� π−1Rπ!!K,

Ihom+(kM×R,K)� π !Rπ∗K.

Let us give an alternative description of the functors
+⊗ and Ihom+.

Notation 4.3.8. — Denote by S the closure of {(t1, t2, t3) ∈ R3 ; t1 + t2 + t3 = 0}
in R

3
. Consider the maps q̃1, q̃2, μ̃ : S −→ R given by q̃1(t1, t2, t3) = t1, q̃2(t1, t2, t3) = t2,

μ̃(t1, t2, t3) = −t3 = t1 + t2, and denote by the same letters the corresponding maps
M× S−→M×R. This is visualized in the following picture, which shows how the three
variables behave at infinity:

t2 =−∞
t3 =+∞

t 1
=+
∞

t 2
=−
∞

t 1
=
+∞

t 3
=
−∞

t2 =+∞, t3 =−∞

t 1
=−
∞

t 2
=+
∞

t 1
=
−∞

t 3
=
+∞

−∞• +∞•
−∞•

+∞•

−∞•

+∞•
q̃2

μ̃

q̃1

S

There are commutative diagrams

M×R2
∞

u

k

M× S

ũ

M×R∞
jM

M×R

for u= q1, q2,μ,

where k is the morphism associated with the embedding R2 −→ S given by (t1, t2) 
→
(t1, t2,−t1 − t2).

One has

μ̃−1
({t �= −∞})∩ q̃−1

1

({t =−∞})⊂ q̃−1
2

({t =+∞}).
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One also has

q̃−1
1 (M×R)∩ q̃−1

2 (M×R)= q̃−1
1 (M×R)∩ μ̃−1(M×R)(4.3.1)

= k
(
M×R2

)
.

We identify M×R2 with an open subset of M× S by k. Then M×R2
∞ is isomorphic to

M× (R2,S) as a bordered space. For F ∈ Db(IkM×S), one has

Rk!!k−1F� kM×R2 ⊗F, Rk∗k !F� RIhom (kM×R2,F).

The following lemma is immediate.

Lemma 4.3.9. — Let K1,K2 ∈ Db(IkM×R∞). With the above notations, one has isomor-

phisms

K1

+⊗K2 � j−1
M Rμ̃!!

(
q̃−1

1 RjM !!K1⊗ q̃−1
2 RjM !!K2

)

� j−1
M Rq̃1 !!

(
q̃−1

2 RjM !!a−1K1⊗ μ̃−1RjM !!K2

)
,

Ihom+(K1,K2)� j−1
M Rq̃1∗RIhom

(
q̃−1

2 RjM !!K1, μ̃
!RjM∗K2

)

� j−1
M Rμ̃∗RIhom

(
q̃−1

2 RjM !!a−1K1, q̃ !1 RjM∗K2

)
.

Let us now state a result which will be fundamental in the next section.
Set for short

k{t �=±∞} = k{(x,t)∈M×R ; t �=±∞} ∈ Db(IkM×R).

Recall that π : M×R−→M denotes the projection.

Proposition 4.3.10. — For K ∈ Db(IkM×R∞) there is a distinguished triangle

(4.3.2) π−1L−→ k{t≥0}
+⊗K−→ Ihom+(k{t≥0},K)

+1−−→,

where the object L ∈ Db(IkM) is given by

L= Rπ∗(k{t �=−∞} ⊗RjM∗K)

� Rπ!!Ihom+(k{t≥0},K)

� Rπ∗
(

k{t≥0}
+⊗K

)
.
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Proof. — Consider the Cartesian diagram,

M×R∞ ×R
q1

q2

M×R∞

π

M×R
π

�

M.

Remark that q !2 F� q−1
2 F[1] for any F ∈ Db(IkM×R).

Let (t1, t2) ∈R2 ⊂R
2

be the coordinates. In the sequel we will denote by {t2 ≤ t1},
{t2 < t1}, etc., the subsets of M×R2 described by these inequalities. Set

K̃= RjM∗K ∈ Db(IkM×R).

One has the isomorphisms

k{t≥0}
+⊗K�

(1)
Rq1 !!

(
k{t2≤t1} ⊗ q−1

2 K̃
)

� Rq1∗
(
kM×R2 ⊗RIhom (k{t2<t1},kM×R2)⊗ q !2 K̃[−1])

�
(2)

Rq1∗
(
kM×R2 ⊗RIhom

(
k{t2<t1}[1], q !2 K̃

))
,

where (1) follows from Lemma 4.1.4 and (2) from Proposition 2.3.4. Similarly, one has
the isomorphism

Ihom+(k{t≥0},K)� Rq1∗RIhom
(
k{t1≤t2}, q !2 K̃

)
.

Now, we claim that there are the isomorphisms in Db(IkM×R∞×R)

kM×R2 ⊗RIhom
(
k{t2<t1}[1], q !2 K̃

)
(4.3.3)

∼−→ kM×R×(R\{−∞})⊗RIhom
(
k{t2<t1}[1], q !2 K̃

)

and

RIhom
(
k{t1≤t2}, q !2 K̃

)
(4.3.4)

∼←− kM×R×(R\{−∞})⊗RIhom
(
k{t1≤t2}, q !2 K̃

)
.

We shall give a proof later. Admitting the above isomorphisms for the moment, let us
complete the proof.

We have

k{t≥0}
+⊗K� Rq1∗

(
kM×R×(R\{−∞})⊗RIhom

(
k{t2<t1}[1], q !2 K̃

))
,

Ihom+(k{t≥0},K)� Rq1∗
(
kM×R×(R\{−∞})⊗RIhom

(
k{t1≤t2}, q !2 K̃

))
.
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From the distinguished triangle

k{t1≤t2} −→ k{t2<t1}[1] −→ kM×R2[1] +1−−→,

we deduce a distinguished triangle

L̃−→ k{t≥0}
+⊗K−→ Ihom+(k{t≥0},K)

+1−−→,

where

L̃= Rq1∗
(
kM×R×(R\{−∞})⊗RIhom

(
kM×R2[1], q !2 K̃

))
.

One has the isomorphisms

RIhom
(
kM×R2, q !2 K̃

)� RIhom
(
q−1

2 kM×R, q !2 K̃
)

� q !2 RIhom (kM×R, K̃)

� q !2 K̃.

Hence,

kM×R×(R\{−∞})⊗RIhom
(
kM×R2[1], q !2 K̃

)

� q−1
2 k{t �=−∞} ⊗ q !2 K̃[−1]

� q−1
2 k{t �=−∞} ⊗ q−1

2 K̃

� q−1
2 (k{t �=−∞} ⊗ K̃)

� q !2 (k{t �=−∞} ⊗ K̃)[−1].
It follows that

L̃� Rq1∗q
!
2 (k{t �=−∞} ⊗ K̃)[−1]

� π !Rπ∗(k{t �=−∞} ⊗ K̃)[−1]
� π−1Rπ∗(k{t �=−∞} ⊗ K̃).

We have thus proved (4.3.2) with

L= Rπ∗(k{t �=−∞} ⊗RjM∗K).

Applying Rπ!! to (4.3.2), we get a distinguished triangle

Rπ!!π−1L−→ Rπ!!
(

k{t≥0}
+⊗K

)
−→ Rπ!!Ihom+(k{t≥0},K)

+1−−→ .



RIEMANN-HILBERT CORRESPONDENCE 111

Corollary 4.3.5 gives Rπ!!(k{t≥0}
+⊗K)� 0. Noticing that L� Rπ!!π−1L[1], we get

L� Rπ!!Ihom+(k{t≥0},K).

Similarly, applying Rπ∗ to (4.3.2), we get

L� Rπ∗
(

k{t≥0}
+⊗K

)
.

It remains to prove (4.3.3) and (4.3.4). It is enough to show that for any F ∈
Db(IkM×R

2) one has

kM×R×{+∞} ⊗RIhom (k{t2<t1},F)� 0,(4.3.5)

kM×R×{−∞} ⊗RIhom (k{t1≤t2},F)� 0.(4.3.6)

As in Notation 4.3.8, let S be the closure of {(t1, t2, t3) ∈ R3 ; t1 + t2 + t3 = 0}
in R

3
. Consider the map p̃ : S−→R

2
given by p̃(t1, t2, t3)= (t1, t2). Then p̃−1(R2)

∼−→R2.
We shall denote by the same letter the induced map p̃ : M× S−→M×R

2
.

Since Rp̃!!(kp̃−1({t2<t1}))� k{t2<t1} and Rp̃!!(kp̃−1({t1≤t2}))� k{t1≤t2}, we have

RIhom (k{t2<t1},F)� Rp̃∗RIhom
(
kp̃−1({t2<t1}), p̃ !F

)
,

RIhom (k{t1≤t2},F)� Rp̃∗RIhom
(
kp̃−1({t1≤t2}), p̃ !F

)
.

Then (4.3.5) follows from

kM×R×{+∞} ⊗RIhom (k{t2<t1},F)

� Rp̃∗
(
kp̃−1(M×R×{+∞})⊗RIhom

(
kp̃−1({t2<t1}), p̃ !F

))

and

p̃−1
({t2 < t1}

)∩ p̃−1
(
M×R× {+∞})=∅.

Similarly, (4.3.6) follows from

p̃−1
({t1 ≤ t2}

)∩ p̃−1
(
M×R× {−∞})=∅. �

Corollary 4.3.11. — For K ∈ Db(IkM×R∞), there are isomorphisms

Ihom+
(

k{t≥0},k{t≥0}
+⊗K

) ∼−→ Ihom+(k{t≥0},K),

k{t≥0}
+⊗ Ihom+(k{t≥0},K)

∼−→ k{t≥0}
+⊗K,

Ihom+
(

k{t≤0},k{t≥0}
+⊗K

)
� 0,

k{t≤0}
+⊗ Ihom+(k{t≥0},K)� 0.
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Proof. — By Lemma 4.3.6, for any L ∈ Db(IkM) one has

Ihom+
(
k{t≥0},π !L

)� 0, k{t≥0}
+⊗ π−1L� 0.

Recalling also Lemma 4.2.3, the isomorphisms in the statement follow by applying the

functors Ihom+(k{±t≥0},∗) and k{±t≥0}
+⊗ ∗ to the distinguished triangle (4.3.2). �

Notation 4.3.12. — For K ∈ Db(IkM×R∞), consider the functors

ψM,±∞(K)= i−1
M,±∞RjM∗K,

where iM,±∞ : M−→M×R denotes the embedding x 
→ (x,±∞).

Lemma 4.3.13. — For K ∈ Db(IkM×R∞), one has the isomorphisms

ψM,−∞
(

k{t≥0}
+⊗K

)
� 0,

ψM,+∞ Ihom+(k{t≥0},K)� 0,

ψM,+∞
(

k{t≥0}
+⊗K

)
� L,

ψM,−∞ Ihom+(k{t≥0},K)� L[1],
where L is the object defined in Proposition 4.3.10.

Proof.

(i) Since the proofs of the first and second isomorphisms in the statement are
similar, let us only check that

(4.3.7) ψM,−∞
(

k{t≥0}
+⊗K

)
� 0.

Set K′ = k{t≥0}
+⊗K. Since k{t≥0}

+⊗K�K′, Proposition 4.3.10 implies

Rπ∗
(
k{t �=−∞} ⊗RjM∗K′)� Rπ∗K′.

Since Rπ∗K′ � Rπ∗RjM∗K′, we get

Rπ∗
(
k{t=−∞} ⊗RjM∗K′)� 0.

One concludes since the above complex is isomorphic to ψM,−∞(k{t≥0}
+⊗K).
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(ii) Since the proofs of the third and fourth isomorphisms in the statement are
similar, let us only check that

(4.3.8) ψM,−∞ Ihom+(k{t≥0},K)� L[1].
Applying ψM,−∞ to the distinguished triangle (4.3.2), we obtain

ψM,−∞ Ihom+(k{t≥0},K)�ψM,−∞
(
π−1L[1]).

Here we used (4.3.7). Then (4.3.8) follows from ψM,−∞(π−1L)� L. �

Let us state an easy lemma which will be of use later.
Consider the projections

M
πM←−−M×R∞

sM−−→R∞.

Lemma 4.3.14. — Let f̃ : M×R∞ −→N×R∞ be the morphism of bordered spaces induced

by a continuous map f : M−→N of good topological spaces.

(i) For K ∈ Db(IkM×R∞) and G ∈ Db(IkR∞), there are isomorphisms

Rf̃!!
(

s−1
M G

+⊗K
)
� s−1

N G
+⊗Rf̃!!K,

Rf̃∗Ihom+
(
s−1
M G,K

)� Ihom+
(
s−1
N G,Rf̃∗K

)
.

(ii) For L ∈ Db(IkN×R∞) and G ∈ Db(IkR∞), there are isomorphisms

f̃ −1
(

s−1
N G

+⊗ L
)
� s−1

M G
+⊗ f̃ −1L,

f̃ !Ihom+
(
s−1
N G,L

)� Ihom+
(
s−1
M G, f̃ !L

)
.

(iii) One has

Rf̃!! ◦ π−1
M � π−1

N ◦Rf!!, f̃ −1 ◦ π−1
N � π−1

M ◦ f −1,

Rf̃∗ ◦ π !M � π !N ◦Rf∗, f̃ ! ◦ π !N � π !M ◦ f ! .

4.4. Enhanced ind-sheaves.

Definition 4.4.1. — Consider the full subcategories of Db(IkM×R∞)

IC{t∗≤0} =
{

K ; k{t≥0}
+⊗K� 0

}

= {
K ; Ihom+(k{t≥0},K)� 0

}
,



114 ANDREA D’AGNOLO, MASAKI KASHIWARA

IC{t∗≥0} =
{

K ; k{t≤0}
+⊗K� 0

}

= {
K ; Ihom+(k{t≤0},K)� 0

}
,

IC{t∗=0} = IC{t∗≤0} ∩ IC{t∗≥0}

=
{

K ; (k{t≥0} ⊕ k{t≤0})
+⊗K� 0

}

= {
K ; Ihom+(k{t≥0} ⊕ k{t≤0},K)� 0

}
,

where the equalities hold by Corollary 4.3.11. Consider also the corresponding quotient categories

Eb
±(IkM)= IC{±t∗≥0}/IC{t∗=0},

Eb(IkM)= Db(IkM×R∞)/IC{t∗=0}.

We call Eb(IkM) the triangulated category of enhanced ind-sheaves.

Proposition 4.4.2. — There are equivalences of triangulated categories

Eb
±(IkM)� Db(IkM×R∞)/IC{±t∗≤0},

Eb(IkM)� Eb
+(IkM)⊕ Eb

−(IkM).

This follows from Proposition 4.4.4 below.
The next lemma easily follows from Corollary 4.3.7 and the last distinguished tri-

angle in (4.2.1).

Lemma 4.4.3. — One has

IC{t∗=0} =
{
K ; π−1Rπ∗K

∼−→K
}= {

K ; K ∼−→ π !Rπ!!K
}

= {
K ; K� π−1L for some L ∈ Db(IkM)

}

= {
K ; K� π !L for some L ∈ Db(IkM)

}

=
{

K ; K ∼−→ kM×R[1]
+⊗K

}

= {
K ; K ∼←− Ihom+

(
kM×R[1],K

)}
.

Let us describe the categories Eb
±(IkM) and Eb(IkM) using Proposition 3.1.1.



RIEMANN-HILBERT CORRESPONDENCE 115

Proposition 4.4.4.

(i-a) The left orthogonal to IC{±t∗≤0} is given by

⊥IC{±t∗≤0} =
{

K ; k{±t≥0}
+⊗K ∼−→K

}

=
{

K ; k{±t>0}
+⊗K� 0

}
,

and there is an equivalence

Eb
±(IkM)−→⊥IC{±t∗≤0}, K 
→ k{±t≥0}

+⊗K,

with quasi-inverse given by the quotient functor. Note that

⊥IC{±t∗≤0} ⊂ IC{∓t∗≤0}.

(i-b) The right orthogonal to IC{±t∗≤0} is given by

IC⊥{±t∗≤0} =
{
K′ ; K′ ∼−→ Ihom+

(
k{±t≥0},K′)}

= {
K′ ; Ihom+

(
k{±t>0},K′)� 0

}
,

and there is an equivalence

Eb
±(IkM)−→ IC⊥{±t∗≤0}, K 
→ Ihom+(k{±t≥0},K),

with quasi-inverse given by the quotient functor. Note that

IC⊥{±t∗≤0} ⊂ IC{∓t∗≤0}.

(ii-a) The left orthogonal to IC{t∗=0} is given by

⊥IC{t∗=0} =
{

K ; (k{t≥0} ⊕ k{t≤0})
+⊗K ∼−→K

}

=
{

K ; kM×R

+⊗K� 0
}

= {K ; Rπ!!K� 0},
and there is an equivalence

Eb(IkM)−→⊥IC{t∗=0}, K 
→ (k{t≥0} ⊕ k{t≤0})
+⊗K,

with quasi-inverse given by the quotient functor.
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(ii-b) The right orthogonal to IC{t∗=0} is given by

IC⊥{t∗=0} =
{
K ; Ihom+(k{t≥0} ⊕ k{t≤0},K)

∼−→K
}

= {
K ; Ihom+(kM×R,K)� 0

}

= {K ; Rπ∗K� 0},
and there is an equivalence

Eb(IkM)−→ IC⊥{t∗=0}, K 
→ Ihom+(k{t≥0} ⊕ k{t≤0},K),

with quasi-inverse given by the quotient functor.

(iii) One has

⊥IC{t∗≥0} ⊕ ⊥IC{t∗≤0} � ⊥IC{t∗=0},

IC⊥{t∗≥0} ⊕ IC⊥{t∗≤0} � IC⊥{t∗=0}.

Proof. — The proof is easy. Let us only note that the equality
{

K ; kM×R

+⊗K� 0
}
= {K ; Rπ!!K� 0}

follows from Corollary 4.3.7. �

The functors

(k{t≥0} ⊕ k{t≤0})
+⊗ ∗: Db(IkM×R∞)−→ Db(IkM×R∞),

Ihom+(k{t≥0} ⊕ k{t≤0},∗) : Db(IkM×R∞)−→ Db(IkM×R∞)
(4.4.1)

factor through Eb(IkM) by Lemma 4.3.6.

Notation 4.4.5. — Denote by

LE : Eb(IkM)−→⊥IC{t∗=0} ⊂ Db(IkM×R∞),

RE : Eb(IkM)−→ IC⊥{t∗=0} ⊂ Db(IkM×R∞)

the functors induced by (4.4.1).

Note that the functors LE and RE are the left and right adjoint of the quotient
functor Db(IkM×R∞)−→ Eb(IkM).

We have a morphism of functors LE −→RE.

Lemma 4.4.6. — Let F1,F2 ∈ Db(IkM×R∞). Let K1, K2 be the objects of Eb(IkM) corre-

sponding to F1, F2 by the quotient functor.
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(i) There are isomorphisms in Db(IkM×R∞)

Ihom+
(
LE K1,LE K2

)� Ihom+
(
LE K1,F2

)

� Ihom+
(
F1,RE K2

)
.

(ii) There are isomorphisms

HomEb(IkM)(K1,K2)�HomDb(IkM×R∞ )

(
LE K1,F2

)

�HomDb(IkM×R∞ )

(
F1,RE K2

)
.

4.5. Operations. — By Lemma 4.3.6 the compositions of functors

Db(IkM×R∞)× Db(IkM×R∞)

+⊗−−→ Db(IkM×R∞)−→ Eb(IkM),(4.5.1)

Db(IkM×R∞)op × Db(IkM×R∞)
Ihom+−−−−→ Db(IkM×R∞)−→ Eb(IkM),(4.5.2)

factor through Eb(IkM)× Eb(IkM) and Eb(IkM)
op × Eb(IkM), respectively.

Definition 4.5.1. — We denote by

+⊗: Eb(IkM)× Eb(IkM)−→ Eb(IkM),

Ihom+ : Eb(IkM)
op × Eb(IkM)−→ Eb(IkM),

the functors induced by (4.5.1) and (4.5.2), respectively.

Note that, for any K ∈ Eb(IkM), the composition

k{t≥0}
+⊗K−→K−→ Ihom+(k{t≥0},K)

is an isomorphism in Eb(IkM) by Proposition 4.3.10.

Definition 4.5.2. — By Lemma 4.3.2 one gets functors

π−1∗⊗∗: Db(IkM)× Eb(IkM)−→ Eb(IkM),

RIhom
(
π−1∗,∗) : Db(IkM)op × Eb(IkM)−→ Eb(IkM),

RIhom
(∗,π ! ∗) : Eb(IkM)op ×Db(IkM)−→ Eb(IkM).

Remark 4.5.3. — The composition

Db(IkM×R∞)× Db(IkM×R∞)
⊗−−→ Db(IkM×R∞)−→ Eb(IkM)
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does not factor through Eb(IkM)× Eb(IkM), and the composition

Db(IkM×R∞)op × Db(IkM×R∞)
RIhom−−−−→ Db(IkM×R∞)−→ Eb(IkM)

does not factor through Eb(IkM)
op × Eb(IkM).

Lemma 4.5.4. — For K1,K2,K3 ∈ Eb(IkM) there is an isomorphism

HomEb(IkM)

(
K1

+⊗K2,K3

)
�HomEb(IkM)

(
K1,Ihom+(K2,K3)

)
,

i.e., for K ∈ Eb(IkM), K
+⊗ ∗ is a left adjoint of Ihom+(K,∗).

Lemma 4.5.5. — For K0,K1,K2 ∈ Eb(IkM) there are natural morphisms in Eb(IkM)

K0

+⊗ Ihom+(K0,K1)−→K1,

Ihom+(K0,K1)
+⊗ Ihom+(K1,K2)−→ Ihom+(K0,K2),

K0

+⊗ Ihom+(K1,K2)−→ Ihom+
(

K1,K0

+⊗K2

)
,

Ihom+(K1,K2)−→ Ihom+
(

K0

+⊗K1,K0

+⊗K2

)
,

Ihom+(K1,K2)−→ Ihom+
(
Ihom+(K0,K1),Ihom+(K0,K2)

)
,

K0 −→ Ihom+
(
Ihom+(K0,K1),K1

)
.

Proof. — The first morphism is the image of the identity by the isomorphism

HomEb(IkM)

(
Ihom+(K0,K1),Ihom+(K0,K1)

)

∼−→HomEb(IkM)

(
K0

+⊗ Ihom+(K0,K1),K1

)
.

The second morphism follows from

K0

+⊗ Ihom+(K0,K1)
+⊗ Ihom+(K1,K2)

−→K1

+⊗ Ihom+(K1,K2)−→K2.

The third morphism is the image by the isomorphism

HomEb(IkM)

(
K0

+⊗K1

+⊗ Ihom+(K1,K2),K0

+⊗K2

)

∼−→HomEb(IkM)

(
K0

+⊗ Ihom+(K1,K2),Ihom+
(

K1,K0

+⊗K2

))
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of the morphism

(4.5.3) K0

+⊗K1

+⊗ Ihom+(K1,K2)−→K0

+⊗K2

induced by the first morphism in the statement.
The fourth morphism is obtained from (4.5.3).
The fifth morphism is obtained from the second one.
The last morphism follows from the first one. �

Let f : M−→N be a continuous map of good topological spaces. Denote by f̃ : M×
R∞ −→N×R∞ the associated morphism. Then, by Lemma 4.3.14(iii), the compositions
of functors

Db(IkM×R∞)
Rf̃!! , Rf̃∗−−−−−→ Db(IkN×R∞)−→ Eb(IkN),(4.5.4)

Db(IkN×R∞)
f̃ −1, f̃ !−−−−→ Db(IkM×R∞)−→ Eb(IkM)(4.5.5)

factor through Eb(IkM) and Eb(IkN), respectively.

Definition 4.5.6. — We denote by

Ef !!, Ef ∗ : Eb(IkM)−→ Eb(IkN),

Ef −1, Ef ! : Eb(IkN)−→ Eb(IkM),

the functors induced by (4.5.4) and (4.5.5), respectively.

Definition 4.5.7. — For K ∈ Eb(IkM) and L ∈ Eb(IkN), set

K
+
� L= Ep−1

1 K
+⊗ Ep−1

2 L ∈ Eb(IkM×N),

where p1 and p2 denote the projections from M×N to M and N, respectively.

Using Notation 4.4.5, for K ∈ Eb(IkM) and L ∈ Eb(IkN) one has isomorphisms in
Eb(IkM) or Eb(IkN):

Ef !!K� Rf̃!! LE K� Rf̃!! RE K,

Ef ∗K� Rf̃∗ LE K� Rf̃∗RE K,

Ef −1L� f̃ −1 LE L� f̃ −1 RE L,

Ef !L� f̃ ! LE L� f̃ ! RE L.

Let us now show that the above operations satisfy similar properties to the external
operations for ind-sheaves.

The following two propositions immediately follow from their counterpart in Lem-
mas 3.3.9 and 3.3.10.
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Proposition 4.5.8. — Let f : M−→N be a continuous map of good topological spaces.

(i) The functor Ef !! is left adjoint to Ef !.
(ii) The functor Ef −1 is left adjoint to Ef ∗.

Proposition 4.5.9. — Given two continuous maps of good topological spaces L
g−→M

f−→N,

one has

E(f ◦ g)!! � Ef !! ◦ Eg!!, E(f ◦ g)∗ � Ef ∗ ◦ Eg∗

and

E(f ◦ g)−1 � Eg−1 ◦ Ef −1, E(f ◦ g) ! � Eg ! ◦ Ef !.

Proposition 4.5.10. — Let f : M−→ N be a continuous map of good topological spaces. For

K ∈ Eb(IkM) and L,L1,L2 ∈ Eb(IkN), one has isomorphisms

Ef !!
(

Ef −1L
+⊗K

)
� L

+⊗ Ef !!K,

Ef −1
(

L1

+⊗ L2

)
� Ef −1L1

+⊗ Ef −1L2,

Ihom+(L,Ef ∗K)� Ef ∗ Ihom+
(
Ef −1L,K

)
,

Ihom+(Ef !!K,L)� Ef ∗ Ihom+
(
K,Ef !L

)
,

Ef !Ihom+(L1,L2)� Ihom+
(
Ef −1L1,Ef !L2

)
,

and a morphism

Ef −1Ihom+(L1,L2)−→ Ihom+
(
Ef −1L1,Ef −1L2

)
.

Proof.

(i) Since the proofs of the five isomorphisms in the statement are similar, let us
only deal with the fourth one. Consider the morphisms

qM1, qM2,μM : M×R2
∞ −→M×R∞,

qN1, qN2,μN : N×R2
∞ −→N×R∞

induced by (4.1.1). Consider the Cartesian diagrams

M×R2
∞

f ′

u

N×R2
∞

v

M×R∞
f̃

�

N×R∞

for (u, v)= (qM1, qN1), (qM2, qN2), (μM,μN).
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Then one has

Ihom+(Ef !!K,L)� RqN1∗RIhom
(
q−1

N2Rf̃!! LE K,μ!N RE L
)

� RqN1∗RIhom
(
Rf ′!!q

−1
M2 LE K,μ!N RE L

)

� RqN1∗Rf ′∗RIhom
(
q−1

M2 LE K, f ′ !μ!N RE L
)

� Rf̃∗RqM1∗RIhom
(
q−1

M2 LE K,μ!M f̃ ! RE L
)

� Ef ∗Ihom+
(
K,Ef !L

)
.

(ii) The last morphism in the statement is obtained by adjunction from

Ef −1L1

+⊗ Ef −1Ihom+(L1,L2) � Ef −1
(

L1

+⊗ Ihom+(L1,L2)
)

−→ Ef −1L2.

Here, the last morphism follows from Lemma 4.5.5. �

The next proposition follows from Lemma 3.3.14.

Proposition 4.5.11. — Consider a Cartesian diagram of good topological spaces

M′ f ′

g′

N′

g

M
f

�

N.

Then there are isomorphisms of functors Eb(IkM)−→ Eb(IkN′)

Eg−1Ef !! � Ef ′!!Eg′−1, Eg !Ef ∗ � Ef ′∗Eg′ !.

Lemma 4.5.12. — Let F1,F2 ∈ Db(IkM×R∞). Let K1, K2 be the objects of Eb(IkM)

corresponding to F1, F2 by the quotient functor. Then one has

Rπ∗RIhom
(
LE K1,RE K2

)� Rπ∗RIhom
(
LE K1,F2

)

� Rπ∗RIhom
(
F1,RE K2

)
.

Proof. — The first isomorphism follows from

Rπ∗RIhom
(
LE K1,π

!L
)� RIhom

(
Rπ!! LE K1,L

)� 0,

and the second isomorphism follows from

Rπ∗RIhom
(
π−1L,RE K2

)� RIhom
(
L,Rπ∗RE K2

)� 0. �
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Definition 4.5.13. — We define the hom-functor

HomE : Eb(IkM)
op × Eb(IkM)−→ Db(kM)

as follows

HomE(K1,K2)= αM Rπ∗RIhom
(
LE K1,LE K2

)

� αM Rπ∗RIhom
(
LE K1,RE K2

)

� αM Rπ∗RIhom
(
RE K1,RE K2

)

�
(∗)

αMRπ∗RIhom
(
RjM !! LE K1,RjM∗RE K2

)

� Rπ∗RHom
(
RjM !! LE K1,RjM∗RE K2

)
.

Here, (∗) follows from Lemma 3.3.7(iv) and in the last isomorphism we used the fact that α commutes

with Rπ∗.

Lemma 4.5.14. — For K1,K2 ∈ Eb(IkM), one has

HomEb(IkM)(K1,K2)�H0R�
(
M;HomE(K1,K2)

)

�HomDb(kM)

(
kM,HomE(K1,K2)

)
.

Lemma 4.5.15. — For K1,K2,K3 ∈ Eb(IkM), one has

HomE
(

K1

+⊗K2,K3

)
�HomE

(
K1,Ihom+(K2,K3)

)
.

In particular,

HomE(K1,K2)�HomE
(
k{t=0},Ihom+(K1,K2)

)
.

Let i0 : M−→M×R∞ be the embedding x 
→ (x,0).

Lemma 4.5.16. — For K ∈ Eb(IkM) and L ∈ Db(IkM), one has

HomE(k{t=0} ⊗π−1L,K)� αMRIhom
(
L, i !0 RE K

)
.

Note that α does not commute with i !0 .

Proof. — There is the chain of isomorphisms

HomE
(
k{t=0} ⊗π−1L,K

)� αM Rπ∗RIhom
(
k{t=0} ⊗π−1L,RE K

)

� αM Rπ∗RIhom
(
π−1L,RIhom

(
k{t=0},RE K

))
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� αMRIhom
(
L,Rπ∗Ri0∗i !0 RE K

)

� αMRIhom
(
L, i !0 RE K

)
.

Here the first isomorphism follows from Lemma 4.5.12. �

The following lemma follows from the fact that α commutes with Rf∗.

Lemma 4.5.17. — For f : M −→ N a morphism of good topological spaces, K ∈ Eb(IkM)

and L ∈ Eb(IkN), one has

Rf∗HomE
(
K,Ef !L

)�HomE(Ef !!K,L),

Rf∗HomE
(
Ef −1L,K

)�HomE(L,Ef ∗K).

Remark 4.5.18.

(i) For K1,K2 ∈ Eb(IkM) and F ∈ Db(kM), the isomorphism

RHom
(
F,HomE(K1,K2)

)�HomE
(
π−1F⊗K1,K2

)

does not hold in general.
(ii) Let f : M −→ N be a morphism of good topological spaces and L1,L2 ∈

Eb(IkN). Since α and f ! do not commute in general, the isomorphism
f !HomE(L1,L2)�HomE(Ef −1L1,Ef !L2) does not hold in general.

4.6. t-Structure of Eb(IkM). — In this subsection, we will give a t-structure on
Eb(IkM). Recall the t-structure on Db(IkM×R∞) defined in Section 3.4.

Definition 4.6.1. — We set

E≤0(IkM)= {
K ∈ Eb(IkM) ; LE K ∈ D≤0(IkM×R∞)

}
,

E≥0(IkM)= {
K ∈ Eb(IkM) ; LE K ∈ D≥0(IkM×R∞)

}
.

Proposition 4.6.2. — The pair (E≤0(IkM),E≥0(IkM)) is a t-structure on Eb(IkM).

Proof. — It is enough to show that for K ∈ Eb(IkM) there are isomorphisms

(k{t≥0} ⊕ k{t≤0})
+⊗ τ≤0 LE K� τ≤0 LE K,

(k{t≥0} ⊕ k{t≤0})
+⊗ τ .0 LE K� τ>0 LE K.

In other words, we have to prove

(4.6.1) τ≤0 LE K, τ>0 LE K ∈ ⊥C{t∗=0}.
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Hence it is enough to show

(4.6.2) Rπ!!τ≤0 LE K� Rπ!!τ>0 LE K� 0.

We have a distinguished triangle

Rπ!!τ≤0 LE K−→ Rπ!! LE K−→ Rπ!!τ>0 LE K
+1−−→ .

Since the middle term vanishes we have

Rπ!!τ>0 LE K� Rπ!!τ≤0 LE K[1].
By Proposition 3.4.4(iii)(a), we have

Rπ!!τ>0 LE K ∈ D>0(IkM×R∞) and Rπ!!τ≤0 LE K[1] ∈ D≤0(IkM×R∞).

Hence we obtain (4.6.2). �

Let τ≤n, τ≥n and Hn be the truncation functors and the cohomology functor for
this t-structure. Then we have the quasi-commutative diagrams

Eb(IkM)
u

LE

Eb(IkM)

LE

id
Eb(IkM)

Db(IkM×R∞)
u

Db(IkM×R∞)

Q
for u= τ≤0, τ≥0, Hn,

where Q is the quotient functor.

Lemma 4.6.3. — For a ∈R, the functors

k{t=a}
+⊗ ∗, k{t≥a}

+⊗ ∗, k{t≤a}
+⊗ ∗

are exact endofunctors of Eb(IkM).

Proof. — The functor k{t=a}
+⊗ ∗ � Rμa∗(∗) is an exact functor, where μa : M ×

R∞ −→M×R∞ is the morphism induced by the translation t 
→ t + a.
For K ∈ Eb(IkM), there are isomorphisms

(k{t≥a} ⊕ k{t≤a})
+⊗K� k{t=a}

+⊗ (k{t≥0} ⊕ k{t≤0})
+⊗K

� k{t=a}
+⊗K.

It follows that (k{t≥a} ⊕ k{t≤a})
+⊗ ∗ is an exact functor. Hence so are k{t≥a}

+⊗ ∗ and

k{t≤a}
+⊗ ∗. �
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4.7. Stable objects.

Notation 4.7.1. — Consider the objects of Db(IkM×R∞)

k{t�0} := “lim−→”
a→+∞

k{t≥a}, k{t<∗} := “lim−→”
a→+∞

k{t<a}.

We have a distinguished triangle in Db(IkM×R∞)

(4.7.1) kM×R −→ k{t�0} −→ k{t<∗}[1] +1−−→ .

Proposition 4.7.2. — For K ∈ Db(IkM×R∞) and n ∈ Z one has

RjM !!Hn
(

k{t�0}
+⊗K

)
� “lim−→”

a→+∞
RjM !!Hn

(
k{t≥a}

+⊗K
)
,

Hn
(

k{t�0}
+⊗K

)
� k{t�0}

+⊗Hn
(

k{t≥0}
+⊗K

)
.

Proof.

(i) The first isomorphism follows from Proposition 5.2.6(i) of [13].
(ii) Let us prove the second isomorphism. Lemma 4.6.3 implies

Hn
(

k{t≥a}
+⊗K

)
� k{t≥a}

+⊗Hn(K).

Taking the ind-limit with respect to a→+∞, we obtain the desired result. �

We have the isomorphisms in Db(IkM×R∞)

k{t�0}
+⊗ k{t�0} � k{t�0},(4.7.2)

k{t≥−a}
+⊗ k{t�0}

∼−→ k{t�0}
∼−→ k{t≥a}

+⊗ k{t�0}(4.7.3)

for any a ∈R≥0.

Notation 4.7.3. — Denote by kE
M the object of Eb(IkM) associated with k{t�0} ∈

Db(IkM×R∞). More generally, for F ∈ Db(kM), set

FE := kE
M⊗π−1F ∈ Eb(IkM).

Note that one has

LE kE
M � k{t�0} and RE kE

M � k{t<∗}[1].
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Lemma 4.7.4. — The functor kE
M

+⊗ ∗ is an exact endofunctor of Eb(IkM).

Proof. — By Proposition 4.7.2, for K ∈ Eb(IkM) one has

Hn
(

kE
M

+⊗K
)
� kE

M

+⊗Hn(K).

Hence kE
M

+⊗ ∗ is an exact functor. �

Proposition 4.7.5. — Let K ∈ Eb(IkM). Then the following conditions are equivalent.

(i) K ∼←− k{t≥0}
+⊗K ∼−→ k{t≥a}

+⊗K for any a≥ 0,

(ii) Ihom+(k{t≥a},K)
∼−→ Ihom+(k{t≥0},K)

∼←−K for any a≥ 0,

(iii) K ∼←− k{t≥0}
+⊗K ∼−→ kE

M

+⊗K,

(iv) Ihom+(kE
M,K)

∼−→ Ihom+(k{t≥0},K)
∼←−K,

(v) K� kE
M

+⊗ L for some L ∈ Eb(IkM),

(vi) K� Ihom+(kE
M,L) for some L ∈ Eb(IkM).

Proof. — The less obvious implications (i) =⇒ (iii) and (ii) =⇒ (iv) follows from
Corollary 2.2.3 and Proposition 2.2.1.

Note also that Ihom+(k{t≥a},K)� k{t≥−a}
+⊗K for any a ∈R. Hence, for example,

(iii)=⇒ (ii) is given by

Ihom+(k{t≥a},K)� k{t≥−a}
+⊗K

� k{t≥−a}
+⊗ kE

M

+⊗K

� kE
M

+⊗K�K. �

Definition 4.7.6. — A stable object is an object of Eb
+(IkM) that satisfies the equivalent condi-

tions of Proposition 4.7.5.

Remark 4.7.7. — The notion of stable object is related to the notion of torsion
object from [25] (compare [7, Section 5] and Proposition 4.7.9 below).

Note that, for K ∈ Eb(IkM), one has isomorphisms in Eb(IkM)

kE
M

+⊗ Ihom+
(
kE

M,K
)� Ihom+

(
kE

M,K
)
,

Ihom+
(

kE
M,kE

M

+⊗K
)
� kE

M

+⊗K.
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Corollary 4.7.8. — For K1,K2 ∈ Eb(IkM) there is an isomorphism in Eb(IkM)

Ihom+
(

kE
M

+⊗K1,kE
M

+⊗K2

)
� Ihom+

(
K1,kE

M

+⊗K2

)
.

Proposition 4.7.9. — Let F ∈ Db(kM×R∞) and K ∈ Eb(IkM). Assume that

π(supp(RjM !F)) is compact. Then there are isomorphisms

HomEb(IkM)

(
kE

M

+⊗ F,kE
M

+⊗K
)

� lim−→
a→+∞

HomEb(IkM)

(
F,k{t≥a}

+⊗K
)

� lim−→
a→+∞

HomEb(IkM)

(
k{t≥−a}

+⊗ F,K
)
.

Proof.

(i) We have

HomEb(IkM)

(
kE

M

+⊗ F,kE
M

+⊗K
)

�HomEb(IkM)

(
k{t≥0}

+⊗ F,Ihom+
(

kE
M,kE

M

+⊗K
))

�HomEb(IkM)

(
k{t≥0}

+⊗ F,kE
M

+⊗K
)

�HomDb(IkM×R)

(
RjM !!

(
k{t≥0}

+⊗ F
)
,RjM∗

(
k{t�0}

+⊗ LE K
))

�
(∗)

lim−→
a→+∞

HomDb(IkM×R)

(
RjM !!

(
k{t≥0}

+⊗ F
)
,RjM∗

(
k{t≥a}

+⊗ LE K
))

� lim−→
a→+∞

HomEb(IkM)

(
F,k{t≥a}

+⊗K
)
.

Here (∗) follows from Corollary 2.2.3.
(ii) The other isomorphism follows from

HomEb(IkM)

(
k{t≥−a}

+⊗ F,K
)
�HomEb(IkM)

(
F,k{t≥a}

+⊗K
)
. �

Lemma 4.7.10. — For F ∈ Db(kM×R∞) and K ∈ Eb(IkM), there is an isomorphism in

Eb(IkM)

kE
M

+⊗ Ihom+(F,K)
∼−→ Ihom+

(
F,kE

M

+⊗K
)
.
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Proof. — Let us first show that, for L ∈ Db(IkM×R∞), the morphism in Db(IkM×R∞)

(4.7.4) k{t�0}
+⊗ Ihom+(F,L)−→ k{t≥0}

+⊗ Ihom+
(

F,k{t�0}
+⊗ L

)

is an isomorphism. For any a ∈R, there are isomorphisms in Eb(IkM)

k{t≥a}
+⊗ Ihom+(F,L)� Ihom+

(
k{t≥−a},Ihom+(F,L)

)

� Ihom+
(
F,Ihom+(k{t≥−a},L)

)

� Ihom+
(

F,k{t≥a}
+⊗ L

)
.

Hence we have an isomorphism in Db(IkM×R∞)

k{t≥a}
+⊗ Ihom+(F,L)

∼−→ k{t≥0}
+⊗ Ihom+

(
F,k{t≥a}

+⊗ L
)
.

In order to see that (4.7.4) is an isomorphism, we shall use Proposition 2.2.2. We have

JM×R RjM !!
(

k{t�0}
+⊗ Ihom+(F,L)

)

� lim−→
a→+∞

JM×R RjM !!
(

k{t≥a}
+⊗ Ihom+(F,L)

)

� lim−→
a→+∞

JM×R RjM !!
(

k{t≥0}
+⊗ Ihom+

(
F,k{t≥a}

+⊗ L
))

� JM×R RjM !!
(

k{t≥0}
+⊗ Ihom+

(
F,k{t�0}

+⊗ L
))

.

By Proposition 2.2.2, it follows that (4.7.4) is an isomorphism.
It remains to notice that for K ∈ Eb(IkM) we have isomorphisms in Eb(IkM)

kE
M

+⊗ Ihom+(F,K)� k{t≥0}
+⊗ Ihom+

(
F,kE

M

+⊗K
)

� Ihom+
(

k{t≥0},Ihom+
(

F,kE
M

+⊗K
))

� Ihom+
(

F,Ihom+
(

k{t≥0},kE
M

+⊗K
))

� Ihom+
(

F,kE
M

+⊗K
)
. �

Corollary 4.7.11. — For K ∈ Eb(IkM) and F ∈ Db(kM), we have

kE
M

+⊗RIhom (π−1F,K)� RIhom
(
π−1F,kE

M

+⊗K
)
.
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Proof. — This easily follows from Lemma 4.7.10 and the isomorphism

RIhom
(
π−1F,K

)� Ihom+
(
π−1F⊗k{t=0},K

)
,

due to Lemma 4.3.2. �

Proposition 4.7.12. — Let F ∈ Db(kM×R∞) and G ∈ Db(IkM). Then there is an isomor-

phism in Eb(IkM)

(4.7.5) kE
M

+⊗ a−1RIhom
(
F,π !G

)� Ihom+
(
F,kE

M⊗π−1G
)
.

Proof. — Recall that, by Lemma 4.3.2, one has

a−1RIhom
(
F,π !G

)� Ihom+
(
F,k{t=0} ⊗π−1G

)
.

Hence, Lemma 4.7.10 implies

kE
M

+⊗ a−1RIhom
(
F,π !G

)� kE
M

+⊗ Ihom+
(
F,k{t=0} ⊗π−1G

)

� Ihom+
(

F,kE
M

+⊗ (
k{t=0} ⊗π−1G

))

� Ihom+
(
F,kE

M⊗π−1G
)
. �

Remark 4.7.13. — By Lemma 2.2.5, one has

RIhom
(
kE

M,π !ωM

)� j−1
M RIhom (k{t�0},ωM×R)� 0.

Moreover, one has

Ihom+
(
kE

M,kE
M⊗π−1ωM

)� kE
M⊗π−1ωM.

Hence (4.7.5) does not hold for F= kE
M and G= ωM.

Proposition 4.7.14. — Let f : M−→N be a continuous map of good topological spaces.

(i) For K ∈ Eb(IkM) one has

Ef !!
(

kE
M

+⊗K
)
� kE

N

+⊗ Ef !!K.

(ii) For L ∈ Eb(IkN) one has

Ef −1
(

kE
N

+⊗ L
)
� kE

M

+⊗ Ef −1L,

Ef !
(

kE
N

+⊗ L
)
� kE

M

+⊗ Ef !L.
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Proof. — The isomorphisms

Ef !!
(

kE
M

+⊗K
)
� kE

N

+⊗ Ef !!K,

Ef −1
(

kE
N

+⊗ L
)
� kE

M

+⊗ Ef −1L

follow from Proposition 4.5.10 and Ef −1kE
N � kE

M. Let us prove

(4.7.6) Ef !
(

kE
N

+⊗ L
)
� kE

M

+⊗ Ef !L.

If L ∈ Eb
−(IkN), then both sides of (4.7.6) vanish. We may then assume L ∈ Eb

+(IkN), i.e.
L ∼−→ Ihom+(k{t≥0},L).

Set L̃= RjN∗RE L, so that

L̃� RjN∗Ihom+
(
k{t≥0}, j−1

N L̃
)
.

Let f : M×R−→N×R be the map induced by f . By Lemma 4.3.14, we have

f
!
L̃� RjM∗Ihom+

(
k{t≥0}, j−1

M f
!
L̃
)
.

Then, Lemma 4.3.13 implies

k{t=+∞} ⊗ L̃� 0, k{t=+∞} ⊗ f
!
L̃� 0.

Set

CM = “lim−→”
a→+∞

kM×{−∞≤t<a}[1],

CN = “lim−→”
a→+∞

kN×{−∞≤t<a}[1],

so that

CM � RjM∗RE
(
kE

M

)
, CN � RjN∗RE

(
kE

N

)
.

Using Notation 4.3.8, consider the maps

q̃1M, q̃2M, μ̃M : M× S−→M×R,

q̃1N, q̃2N, μ̃N : N× S−→N×R,

f ′ : M× S−→N× S,

where f ′ is the map induced by f .
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Then, by Lemma 4.3.9, kE
M

+⊗ Ef !L is represented by the object of Db(IkM×R)

Rμ̃M∗
(
kM×R2 ⊗ q̃−1

1MCM⊗ q̃−1
2Mf

!
L̃
)
.

Since

kq̃−1
1M(M×{+∞})⊗ q̃−1

1MCM � 0,

kq̃−1
2M(M×{+∞})⊗ q̃−1

2Mf
!
L̃� 0,

μ̃−1
M (M×R)∩M× (

S \R2
)⊂ q̃−1

1M

({t =+∞})∪ q̃−1
2M

({t =+∞}),
we obtain

kμ̃−1
M (M×R)⊗kM×R2 ⊗ q̃−1

1MCM⊗ q̃−1
2Mf

!
L̃

� kμ̃−1
M (M×R)⊗ q̃−1

1MCM⊗ q̃−1
2Mf

!
L̃.

Moreover, one has

kμ̃−1
M (M×R)⊗ q̃−1

2Mf
!
L̃� kμ̃−1

M (M×R)⊗ q̃ !2M f
!
L̃[−1],

since q̃2M is topologically submersive and q̃ !2M kM×R � kμ̃−1(M×R)∪q̃−1
1M(M×R)[1].

Hence we conclude that kE
M

+⊗ Ef !L is represented by

Rμ̃M∗
(
q̃−1

1MCM⊗ q̃ !2M f
!
L̃[−1]).

On the other hand, by the same reasoning, kE
N

+⊗ L is represented by the object of
Db(IkN×R)

Rμ̃N∗
(
q̃−1

1NCN⊗ q̃ !2N L̃[−1]).

Hence Ef !(kE
N

+⊗ L) is represented by the object of Db(IkM×R)

f
!
Rμ̃N∗

(
q̃−1

1NCN⊗ q̃ !2N L̃[−1])� Rμ̃M∗f ′ !
(
q̃−1

1NCN⊗ q̃ !2N L̃[−1]).
Finally, Proposition 2.2.4 implies that

f ′ !
(
q̃−1

1NCN⊗ q̃ !2N L̃[−1])� f ′−1q̃−1
1NCN⊗ f ′ ! q̃ !2N L̃[−1]

� q̃−1
1MCM⊗ q̃ !2M f

!
L̃[−1]. �

Proposition 4.7.15. — The functor e(F)= kE
M⊗π−1F gives a fully faithful embedding

e : Db(IkM)−→ Eb(IkM).
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Proof. — For F,G ∈ Db(IkM) one has

HomEb(IkM)

(
kE

M⊗π−1F,kE
M⊗π−1G

)

�HomEb(IkM)

(
kE

M

+⊗ (
k{t=0} ⊗π−1F

)
,kE

M⊗π−1G
)

�HomEb(IkM)

(
k{t=0} ⊗π−1F,Ihom+

(
kE

M,kE
M⊗π−1G

))

�HomEb(IkM)

(
k{t=0} ⊗π−1F,kE

M⊗π−1G
)
.

Since

LE
(
k{t=0} ⊗π−1F

)� (k{t≥0} ⊕ k{t≤0})⊗π−1F,

LE
(
kE

M⊗π−1G
)� k{t�0} ⊗π−1G,

one further has

HomEb(IkM)

(
k{t=0} ⊗π−1F,kE

M⊗π−1G
)

�HomDb(IkM×R∞ )

(
(k{t≥0} ⊕ k{t≤0})⊗π−1F,k{t�0} ⊗π−1G

)

�HomDb(IkM×R∞ )

(
π−1F,k{t�0} ⊗π−1G

)

�HomDb(IkM)

(
F,Rπ∗

(
k{t�0} ⊗π−1G

))

�
(∗)

HomDb(IkM)(F,G).

Here, in (∗), we used the fact that

Rπ∗
(
k{t�0} ⊗π−1G

)� Rπ∗RjM∗
(
k{t�0} ⊗π−1G

)

� Rπ∗
(
“lim−→”
a→+∞

k{a≤t≤+∞} ⊗π−1G
)
,

and Rπ∗ “lim−→”
a→+∞

k{a≤t≤+∞} � kM. �

4.8. Duality.

Definition 4.8.1. — We define the duality functor

DE
M : Eb(IkM)−→ Eb(IkM)

op
, K 
→ Ihom+

(
K,ωE

M

)
,

where we recall that ωE
M := kE

M⊗π−1ωM.

Proposition 4.8.2. — Let f : M −→ N be a continuous map of good topological spaces and

K ∈ Eb(IkM). Then one has an isomorphism in Eb(IkN)

DE
NEf !!K� Ef ∗D

E
MK.
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Proof. — This follows from Proposition 4.5.10 and Ef !ωE
N � ωE

M, which is a conse-
quence of Proposition 4.7.14(ii). �

Proposition 4.8.3. — For F ∈ Db(kM×R∞), one has

DE
M

(
kE

M

+⊗ F
)
� kE

M

+⊗ a−1DM×RF.

Here a is the involution of M×R defined by a(x, t)= (x,−t).

Proof. — We have

DE
M

(
kE

M

+⊗ F
)
= Ihom+

(
kE

M

+⊗ F,ωE
M

)

� Ihom+
(
F,Ihom+

(
kE

M,ωE
M

))

� Ihom+
(
F,ωE

M

)

= Ihom+
(
F,kE

M⊗π−1ωM

)

� kE
M

+⊗ a−1RHom
(
F,π !ωM

)
.

Here, the last isomorphism follows from Proposition 4.7.12. �

Corollary 4.8.4. — For F ∈ Db(kM), one has

DE
M

(
kE

M⊗π−1F
)� kE

M⊗π−1DMF.

Proof. — We have

DE
M

(
kE

M⊗π−1F
)�DE

M

(
kE

M

+⊗ (k{t=0} ⊗π−1F)
)

� kE
M

+⊗ a−1DM×R

(
k{t=0} ⊗π−1F

)

� kE
M

+⊗ (
k{t=0} ⊗π−1DMF

)

� kE
M⊗π−1DMF. �

4.9. R-constructible objects. — In this subsection, we assume that M is a subanalytic
space. Recall the natural morphism

jM : M×R∞ −→M×R,

and the category Db(kM×R∞) from Notation 3.2.11.
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Definition 4.9.1. — We denote by Db
R-c(kM×R∞) the full subcategory of Db(kM×R∞) whose

objects F are such that RjM !F is an R-constructible object of Db(kM×R).

We regard Db
R-c(kM×R∞) as a full subcategory of Db(IkM×R∞).

Note that Db
R-c(kM×R∞) is stable by the functors

+⊗, Ihom+ and ⊗, RIhom .

Definition 4.9.2. — We say that an object K ∈ Eb(IkM) is R-constructible if for any

relatively compact subanalytic open subset U⊂M there exists an isomorphism

π−1kU⊗K� kE
M

+⊗ F for some F ∈ Db
R-c(kM×R∞).

Denote by Eb
R-c(IkM) the full subcategory of Eb(IkM) whose objects are R-constructible.

Note in particular that R-constructible objects of Eb(IkM) are stable objects.

Proposition 4.9.3. — Let K′ ϕ−→K−→K′′ +1−−→ be a distinguished triangle in Eb(IkM).

If K′ and K are R-constructible, so is K′′.

Proof. — We may assume that K′ = kE
M

+⊗ F′ and K = kE
M

+⊗ F for F,F′ ∈
Db

R-c(kM×R∞). By replacing F′ with k{t≥0}
+⊗ F′, we may also assume that F′ � k{t≥0}

+⊗ F′.
We may assume further that π(supp(RjM !F′)) is compact. Then, by Proposition 4.7.9,

HomEb(IkM)

(
K′,K

)� lim−→
a→+∞

HomDb(IkM×R∞ )

(
F′,k{t≥a}

+⊗ F
)
.

Hence there exist a ∈R and a morphism in Db(kM×R∞)

ϕ′ : F′ −→ k{t≥a}
+⊗ F

such that ϕ : K′ −→K is equal to

K′ = kE
M

+⊗ F′
ϕ′−−→ kE

M

+⊗
(

k{t≥a}
+⊗ F

)
� kE

M

+⊗ F=K.

Completing ϕ′ in a distinguished triangle F′
ϕ′−−→ k{t≥a}

+⊗ F −→ F′′
+1−−→, we have F′′ ∈

Db
R-c(kM×R∞) and K′′ � kE

M

+⊗ F′′. �

Corollary 4.9.4. — The category Eb
R-c(IkM) is a triangulated category.

Lemma 4.9.5. — Let K ∈ Eb(IkM). Then K is R-constructible if and only if HnK is

R-constructible for any n ∈ Z.
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Proof. — For F ∈ Db(kM×R∞), we have

Hn
(

kE
M

+⊗ F
)
� kE

M

+⊗Hn
(

k{t≥0}
+⊗ F

)

by Proposition 4.7.2. �

Proposition 4.9.6. — Let K1,K2 ∈ Eb(IkM). If K1⊕K2 is R-constructible, then K1 and

K2 are R-constructible.

Proof. — Let f : K1⊕K2 −→K1⊕K2 be the morphism given by
( 0 0

0 idK2

)
. Then we

have a distinguished triangle

K1⊕ K2
f−→K1⊕ K2 −→K1⊕ K1[1] +1−−→ .

Hence, Proposition 4.9.3 implies that K1⊕ K1[1] is R-constructible.
It is therefore enough to show that

(4.9.1) K ∈ Eb(IkM) is R-constructible if K⊕ K[1] is R-constructible.

We may assume Hn(K)= 0 unless a ≤ n ≤ b. Let us show (4.9.1) by induction on b− a.
By Lemma 4.9.5, Ha(K) � Ha−1(K ⊕ K[1]) is R-constructible. Hence Ha(K)[−a] ⊕
Ha(K)[−a+ 1] is R-constructible. There is a distinguished triangle

Ha(K)[−a] ⊕Ha(K)[−a+ 1]−→K⊕ K[1] −→ τ>aK⊕ (
τ>aK

)[1] +1−−→,

where τ>a is the truncation functor with respect to the t-structure of Eb(IkM). Hence,
τ>aK⊕ (τ>aK)[1] is R-constructible by Proposition 4.9.3. By the induction hypothesis,
τ>aK is R-constructible. Then, by the distinguished triangle

Ha(K)[−a] −→K−→ τ>aK
+1−−→,

we conclude that K is R-constructible. �

Lemma 4.9.7. — Let K ∈ Eb(IkM). Then the following conditions are equivalent.

(i) K ∈ Eb
R-c(IkM),

(ii) there exist a locally finite family {Zi}i∈I of locally closed subanalytic subsets of M and

Fi ∈ Db
R-c(kM×R∞) such that M=⋃

i∈I Zi and

π−1kZi
⊗K� kE

M

+⊗ Fi for all i ∈ I,

(iii) there exist a filtration ∅ = M−1 ⊂ M0 ⊂ · · · ⊂ Mr = M and objects Fk ∈
Db

R-c(IkM×R∞) for 0≤ k ≤ r such that Mk is a closed subanalytic subset of M and

π−1kMk\Mk−1 ⊗K� kE
M

+⊗ Fk.
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Proof.

(i)=⇒ (ii) is obvious.
(ii)=⇒ (iii) There exists a filtration {Mk} such that each connected component of

Mk \Mk−1 is contained in some Zi .
(iii)=⇒ (i) Follows from Proposition 4.9.3. �

Corollary 4.9.8. — R-constructibility of K ∈ Eb(IkM) is a local property on M.

The following lemma is not used in this paper, but it might help the reader to
understand the category Eb

R-c(IkM).

Lemma 4.9.9. — The complex K ∈ Eb(IkM) is R-constructible if and only if there exist

(i) a locally finite family {Zi}i∈I of locally closed subanalytic subsets of M,

(ii) finite sets Ai , for i ∈ I,
(iii) continuous subanalytic functions ϕi,a : Zi −→ R and ψi,a : Zi −→ R ∪ {+∞} for i ∈ I

and a ∈ Ai , such that ϕi,a(x) < ψi,a(x) for all x ∈ Zi (here a function is called subanalytic

if its graph is subanalytic in M×R),

(iv) integers mi,a ∈ Z for i ∈ I and a ∈ Ai ,

such that M=⊔

i∈I
Zi and there are isomorphisms for any i ∈ I

π−1kZi
⊗K�

⊕

a∈Ai

kE
M

+⊗ kWi,a
[mi,a],

where we set

Wi,a =
{
(x, t) ∈ Zi ×R ; ϕi,a(x)≤ t < ψi,a(x)

}
.

Proof. — We may assume K= kE
M

+⊗F for F ∈ Db
R-c(kM×R∞) such that F� k{t≥0}

+⊗F.
Since F is R-constructible, there exist a partition M = ⊔

i∈I
Zi , integers ri ∈ Z>0

(i ∈ I), and continuous subanalytic functions ξi,a : Zi −→ R (i ∈ I, 0 ≤ a ≤ ri ), such that
−∞= ξi,0(x) < · · · < ξi,ri(x) = +∞ for any x ∈ Zi , and such that F|Zi×R is locally con-

stant on {(x, t) ; x ∈ Zi, t = ξi,a(x)} (for 0 < a < ri ) and on Zi ×R \
ri−1⋃

a=1
{t = ξi,a(x)}.

We may further assume that Zi is contractible. Then π−1kZi
⊗F is a finite direct

sum of shifts of sheaves of the form

(i) k{ξi,a(x)<t<ξi,b(x)} for 0≤ a < b≤ ri ,
(ii) k{ξi,a(x)≤t<ξi,b(x)} for 0 < a < b≤ ri ,

(iii) k{ξi,a(x)<t≤ξi,b(x)} for 0≤ a < b < ri ,
(iv) k{ξi,a(x)≤t≤ξi,b(x)} for 0 < a≤ b < ri .
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Since we assumed F� k{t≥0}
+⊗ F, any direct summand of π−1kZi

⊗F satisfies the same
condition. Hence only the case (ii) survives. �

Notation 4.9.10. — For K ∈ Eb(IkM), we set

suppE(K)= π
(
supp

(
RjM !! LE K

))⊂M.

Proposition 4.9.11. — Let f : M−→N be a continuous subanalytic morphism of subanalytic

spaces.

(i) The functors Ef −1 and Ef ! send Eb
R-c(IkN) to Eb

R-c(IkM).

(ii) Let K ∈ Eb
R-c(IkM) be such that suppE(K) is proper over N. Then Ef !!K� Ef ∗K ∈

Eb
R-c(IkN).

Proof.

(i) Note that Ef −1 and Ef ! send Db
R-c(kN×R∞) to Db

R-c(kM×R∞). Then the statement
follows from Proposition 4.7.14.

(ii) We may assume that K= kE
M

+⊗ F for F ∈ Db
R-c(kM×R∞) such that π supp(F) is

compact. Then Ef !!F ∈ Db
R-c(kN×R∞), and the statement follows from Proposi-

tion 4.7.14. �

Theorem 4.9.12. — If K ∈ Eb
R-c(IkM), then DE

MK ∈ Eb
R-c(IkM) and the natural morphism

K−→DE
MDE

MK

is an isomorphism.

Proof. — The natural morphism is constructed using Lemma 4.5.5.

We may assume K= kE
M

+⊗ F for F ∈ Db
R-c(kM×R∞). Then

DE
MK�DE

M

(
kE

M

+⊗ F
)

� kE
M

+⊗ a−1DM×RF

by Proposition 4.8.3. Since DM×RF belongs to Db
R-c(kM×R∞), it follows that DE

MK is R-
constructible. Moreover, we have

DE
MDE

MK�DE
M

(
kE

M

+⊗ a−1DM×RF
)

� kE
M

+⊗DM×RDM×RF

� kE
M

+⊗ F�K.

Hence K−→DE
MDE

MK is an isomorphism. �
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Proposition 4.9.13. — Let K,K′ ∈ Eb
R-c(IkM). Then both K

+⊗K′ and Ihom+(K,K′)
are R-constructible, and one has isomorphisms

(i) DE
M(K

+⊗K′)� Ihom+(K,DE
MK′),

(ii) DE
MIhom+(K,K′)�K

+⊗DE
MK′,

(iii) Ihom+(K,K′)� Ihom+(DE
MK′,DE

MK),

(iv) HomE(K,K′)�HomE(DE
MK′,DE

MK).

Proof. — Let us first show that K
+⊗K′ is R-constructible if both K and K′ are so. It

is not restrictive to assume K� kE
M

+⊗F and K′ � kE
M

+⊗F′ for F,F′ ∈ Db
R-c(kM×R∞). Then

K
+⊗K′ � kE

M

+⊗ (F
+⊗ F′), and hence K

+⊗K′ is R-constructible.
The first isomorphism in the statement is immediate.

Hence Ihom+(K,K′)�DE
M(K

+⊗DE
MK′) is R-constructible.

The second isomorphism follows from this isomorphism by applying the func-
tor DE

M.
The third isomorphism follows from (i).
The fourth isomorphism follows from

HomE
(
K,K′)�HomE

(
kE

M,Ihom+
(
K,K′))

�HomE
(
kE

M,Ihom+
(
DE

MK′,DE
MK

))

�HomE
(
DE

MK′,DE
MK

)
. �

Proposition 4.9.14. — Let f : M −→ N be a continuous subanalytic morphism. For L ∈
Eb

R-c(IkN) there are isomorphisms

Ef !
(
DE

NL
)�DE

M

(
Ef −1L

)
, Ef −1

(
DE

NL
)�DE

M

(
Ef !L

)
.

Proof.

(i) There are isomorphisms

Ef !
(
DE

NL
)= Ef !Ihom+

(
L,ωE

N

)

� Ihom+
(
Ef −1L,Ef !ωE

N

)

�
(∗)

Ihom+
(
Ef −1L,ωE

M

)

=DE
M

(
Ef −1L

)
.

Here (∗) follows from Proposition 4.7.14(ii).
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(ii) By (i), there are isomorphisms

DE
M

(
Ef −1DE

NL
)� Ef !DE

NDE
NL� Ef !L.

Further applying DE
M, we get Ef −1(DE

NL)�DE
M(Ef !L). �

Proposition 4.9.15. — Let M be a subanalytic space, N a good topological space, and K ∈
Eb

R-c(IkM), L ∈ Eb(IkN). Then one has an isomorphism in Eb(IkM×N)

Ihom+
(

Ep−1
1 K,kE

M×N

+⊗ Ep!2L
)
�DE

MK
+
� L,

where p1 and p2 denote the projections from M×N to M and N, respectively.

In order to prove the above proposition, we need some preliminary results.

Proposition 4.9.16. — Let M be a subanalytic space, N a good topological space, and consider

the morphism

μ : M×N×R2
∞ −→M×N×R∞

induced by (t1, t2) 
→ t1 + t2. Then, for any F ∈ Db
R-c(kM×R∞) and G ∈ Db(IkN×R∞), there exists

a distinguished triangle in Db(IkM×N×R∞)

Rμ!!(F �G)−→ Rμ∗(F �G)−→ π−1
M×N(L+ ⊕ L−)

+1−→,

where

L± =ψM,±∞(F) �ψN,∓∞(G)

(see Notation 4.3.12). Here, we identify M×R∞ ×N×R∞ with M×N×R2
∞.

Proof. — Set X=M×N. With Notation 4.3.8, consider the diagram

X×R∞
jX−−→X×R

μ̃←−X× S
p̃−→X×R

2
,

where p̃ is induced by (q̃1, q̃2). Set

F̃= RjM∗F ∈ Db
R-c(kM×R), G̃= RjN∗G ∈ Db(IkN×R).

Then we have

Rμ!!(F �G)� j−1
X Rμ̃∗

(
kX×R2 ⊗ p̃−1(̃F � G̃)

)
,

Rμ∗(F �G)� j−1
X Rμ̃∗

(
RIhom

(
kX×R2, p̃−1(̃F � G̃)

))
.
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In Sublemma 4.9.17 below, we will prove the isomorphism

μ̃−1kX×R⊗RIhom
(
kX×R2, p̃−1(̃F � G̃)

)
(4.9.2)

� μ̃−1kX×R⊗ p̃−1(̃F � G̃).

Admitting (4.9.2), we have

Rμ∗(F �G)� j−1
X Rμ̃∗p̃−1(̃F � G̃).

Hence, we obtain a distinguished triangle

Rμ!!(F �G)−→ Rμ∗(F �G)−→ j−1
X Rμ̃∗

(
kX×(S\R2)⊗ p̃−1(̃F � G̃)

) +1−→ .

We have

μ̃−1(X×R)∩ (
X× (

S \R2
))

(4.9.3)

= μ̃−1(X×R)∩ p̃−1
(
X× {

(+∞,−∞), (−∞,+∞)
})

.

Moreover, we have

kX×{(+∞,−∞),(−∞,+∞)} ⊗ (̃F � G̃)� Ri+∗L+ ⊕ Ri−∗L−,

where i± : X−→X×R
2

is the inclusion x 
→ (x,±∞,∓∞). Hence we obtain

kX×R⊗Rμ̃∗
(
kX×(S\R2)⊗ p̃−1(̃F � G̃)

)
(4.9.4)

� Rμ̃∗
(
kμ̃−1(X×R)⊗ p̃−1(Ri+∗L+ ⊕ Ri−∗L−)

)
.

By the commutative diagram

μ̃−1(X×R)∩ p̃−1(X× {(±∞,∓∞)}) p̃

μ̃�
X× {(±∞,∓∞)}

X×R
πX

X,

�i±

the right hand side of (4.9.4) is isomorphic to π−1
M×N(L+ ⊕ L−). Hence we obtain the

desired result. �

Sublemma 4.9.17. — With the same notations as in the proof of Proposition 4.9.16, we have

μ̃−1kX×R⊗RIhom
(
kX×(S\R2), p̃−1(̃F � G̃)

)� 0,

where F̃= RjM∗F and G̃= RjN∗G.
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Proof. — By Proposition 2.2.2, we may assume G ∈ Db(kN×R∞) without loss of
generality. Set

�M,N(F,G)= RHom
(
kX×(S\R2), p̃−1(̃F � G̃)

) ∈ Db(kX×S).

By (4.9.3), it is enough to show

(4.9.5) kμ̃−1(X×R)∩p̃−1(X×(R\R)2)⊗�M,N(F,G)� 0.

(i) We shall first show (4.9.5) when M= {pt}, so that F ∈ Db
R-c(kR∞). Note that Db

R-c(kR∞)

is the smallest triangulated category which is stable by taking direct summands and con-
tains kR and k[a,b] for −∞< a≤ b <+∞. Hence we may assume F= kR or F= k[a,b].

(i-1) If F= k[a,b], then

supp(̃F � G̃)∩ (
X× (R \R)2

)=∅,

so that (4.9.5) is obvious.

(i-2) If F= kR, then

�M,N(F,G)= RHom
(
kX×(S\R2), p̃−1p

−1
2 G̃

)
,

where p2 : X×R
2 −→N×R is the projection. Since

μ̃−1(X×R)∩ (
X× (

S \R2
))= μ̃−1(X×R)∩ p̃−1p

−1
2

(
N× (R \R)

)
,

we have

kμ̃−1(X×R)∩p̃−1(X×(R\R)2)⊗�M,N(F,G)

� kμ̃−1(X×R)∩p̃−1(X×(R\R)2)⊗RHom
(
kp̃−1p

−1
2 (N×(R\R)), p̃−1p

−1
2 G̃

)

�
(∗)

kμ̃−1(X×R)∩p̃−1(X×(R\R)2)⊗ p̃−1p
−1
2 RHom (kN×(R\R),RjN∗G)

� 0,

where (∗) is due to Proposition 3.3.19, since p2 p̃ is topologically submersive.

(ii) Let us now prove (4.9.5) in the general case. We shall show that

�M,N(F,G)(x0,y0,z0) � 0

for any (x0, y0, z0) ∈M×N× S such that

(x0, y0, z0) ∈ μ̃−1(X×R)∩ p−1
(
X× (R \R)2

)
.
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For any k ∈ Z, one has

Hk�M,N(F,G)(x0,y0,z0) � lim−→
U,V

Hk
(
U×V;�M,N(F,G)

)
,

where U ⊂M ranges over the family of relatively compact subanalytic open neighbor-
hoods of x0 ∈M, and V ranges over the family of open neighborhoods of (y0, z0) ∈N×S.

Let r : M×R∞ −→R∞ be the projection, and set

�U(F) :=Rr∗(F⊗kU×R) ∈ Db
R-c(kR∞).

Then

Hk
(
U×V;�M,N(F,G)

)�Hk
(
U× (

V∩ (
N×R2

));F �G
)

�Hk
(
V∩ (

N×R2
);�U(F) �G

)

�Hk
(
V;�{pt},N

(
�U(F),G

))
.

Hence, taking the limit on U and V, we obtain

Hk�M,N(F,G)(x0,y0,z0) � lim−→
U

Hk�{pt},N
(
�U(F),G

)
(y0,z0)

,

which vanishes by (i). �

As a consequence of Proposition 4.9.16 we get

Corollary 4.9.18. — Let M be a subanalytic space and N a good topological space. For

F ∈ Db
R-c(IkM×R∞) and L ∈ Db(IkN×R∞), the morphism

Rμ!!(F �L)−→ Rμ∗(F �L)

is an isomorphism in Eb(IkM×N).

Remark 4.9.19. — The above result is not true in general if we drop the assumption
that F ∈ Db

R-c(kM×R∞). For example, if M = N = {pt} and F = L = K =⊕
n∈Z k{n} ∈

Mod(kR∞), one has

Rμ!!(F �L)� k⊕Z⊗K,

Rμ∗(F �L)� kZ⊗K.

Proposition 4.9.20. — Let M be a subanalytic space, N a good topological space. Let p1 : M×
N −→M and p2 : M× N −→ N be the natural projections. Then, for F ∈ Db

R-c(kM×R∞) and L ∈
Eb(IkN) there is an isomorphism in Eb(IkM×N)

Ihom+
(
Ep−1

1 F,Ep!2L
)� a−1DM×RF

+
� L.
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Proof. — Set G=RE L ∈ Db(IkN×R∞). Consider the morphisms

r1 : M×N×R2
∞ −→M×R∞,

r2 : M×N×R2
∞ −→N×R∞,

μ : M×N×R2
∞ −→M×N×R∞

induced by (t1, t2) 
→ t1, (t1, t2) 
→ t2 and (t1, t2) 
→ t1 + t2, respectively. Then

Ihom+
(
Ep−1

1 F,Ep!2L
)� Rμ∗RIhom

(
r−1
1 a−1F, r !2 G

)
,

a−1DM×RF
+
� L� Rμ!!

(
r−1
1 a−1DM×RF⊗ r−1

2 G
)
.

By Proposition 2.3.4,

RIhom
(
r−1
1 a−1F, r !2 G

)� r−1
1 a−1DM×RF⊗ r−1

2 G,

and Corollary 4.9.18 implies that

Rμ!!
(
r−1
1 a−1DM×RF⊗ r−1

2 G
)−→ Rμ∗

(
r−1
1 a−1DM×RF⊗ r−1

2 G
)

is an isomorphism in Eb(IkM×N). �

Proof of Proposition 4.9.15. — Let p1 : M × N −→M and p2 : M × N −→ N be the
natural projections. We have

DE
MK

+
� L= Ep−1

1 DE
MK

+⊗ Ep−1
2 L.

Hence we have a sequence of morphisms

Ep−1
1 K

+⊗
(

DE
MK

+
� L

)
� Ep−1

1 K
+⊗ Ep−1

1 DE
MK

+⊗ Ep−1
2 L

−→ Ep−1
1 ωE

M

+⊗ Ep−1
2 L

= Ep−1
1

(
kE

M⊗π−1
M ωM

) +⊗ Ep−1
2 L

�
(∗)

kE
M×N

+⊗ (
π−1

M×Np−1
1 ωM⊗Ep−1

2 L
)

� kE
M×N

+⊗ Ep!2L,

where (∗) follows from Lemma 4.3.1. Hence we obtain a morphism

DE
MK

+
� L−→ Ihom+

(
Ep−1

1 K,kE
M×N

+⊗ Ep!2L
)
.
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We shall show that it is an isomorphism for K ∈ Eb
R-c(IkM). We may assume K� kE

M

+⊗F
for F ∈ Db

R-c(kM×R∞). Then

Ihom+
(

Ep−1
1 K,kE

M×N

+⊗ Ep!2L
)

� Ihom+
(

Ep−1
1 kE

M

+⊗ Ep−1
1 F,kE

M×N

+⊗ Ep!2L
)

� Ihom+
(

Ep−1
1 F,Ihom+

(
kE

M×N,kE
M×N

+⊗ Ep!2L
))

� Ihom+
(

Ep−1
1 F,kE

M×N

+⊗ Ep!2L
)

� Ihom+
(

Ep−1
1 F,Ep!2

(
kE

N

+⊗ L
))

.

Here, the last isomorphism follows from Proposition 4.7.14(ii). By Proposition 4.9.20, one
has

Ihom+
(

Ep−1
1 F,Ep!2

(
kE

N

+⊗ L
))
� Ep−1

1 a−1DM×RF
+⊗ Ep−1

2

(
kE

N

+⊗ L
)

� Ep−1
1 a−1DM×RF

+⊗ kE
M×N

+⊗ Ep−1
2 L

� Ep−1
1

(
kE

M

+⊗ a−1DM×RF
) +⊗ Ep−1

2 L.

By Proposition 4.8.3, one finally has

Ep−1
1

(
kE

M

+⊗ a−1DM×RF
) +⊗ Ep−1

2 L� Ep−1
1 DE

M

(
kE

M

+⊗ F
) +⊗ Ep−1

2 L

� Ep−1
1 DE

MK
+⊗ Ep−1

2 L. �

Proposition 4.9.21. — Let M and N be subanalytic spaces. For K ∈ Eb
R-c(IkM) and L ∈

Eb
R-c(IkN) we have

DE
M×N

(
K

+
� L

)
�DE

MK
+
� DE

NL.

Proof. — Let p1 and p2 be the projections from M× N to M and N, respectively.
Then we have

DE
M×N

(
K

+
� L

)
= Ihom+

(
Ep−1

1 K
+⊗ Ep−1

2 L,ωE
M×N

)

� Ihom+
(
Ep−1

1 K,Ihom+
(
Ep−1

2 L,ωE
M×N

))

� Ihom+
(
Ep−1

1 K,DE
M×N(Ep−1

2 L)
)
.



RIEMANN-HILBERT CORRESPONDENCE 145

Since DE
M×N(Ep−1

2 L)� Ep!2DE
NL by Proposition 4.9.14, one has

DE
M×N

(
K

+
� L

)
� Ihom+

(
Ep−1

1 K,Ep!2DE
NL

)

�DE
MK

+
� DE

NL

by Proposition 4.9.15. �

Proposition 4.9.22. — For k = 1,2 let fk : Mk −→ Nk be a morphism of subanalytic spaces

and Lk ∈ Eb
R-c(IkNk

). Set f = f1 × f2 : M1 ×M2 −→N1 ×N2. Then we have

Ef −1
(

L1

+
� L2

)
� Ef −1

1 L1

+
� Ef −1

2 L2,

Ef !
(

L1

+
� L2

)
� Ef !1L1

+
� Ef !2L2.

Proof. — The first isomorphism is immediate from Proposition 4.5.10.
Let us show the second isomorphism. By the first isomorphism, we have

Ef −1
(

DE
N1

L1

+
� DE

N2
L2

)
� Ef −1

1 DE
N1

L1

+
� Ef −1

2 DE
N2

L2

�DE
M1

Ef !1L1

+
� DE

M2
Ef !2L2,

where the last isomorphism follows from Proposition 4.9.14. Applying DE
M1×M2

, and using
Proposition 4.9.21, we obtain

DE
M1×M2

(
Ef −1

(
DE

N1
L1

+
� DE

N2
L2

))
� Ef !DE

N1×N2

(
DE

N1
L1

+
� DE

N2
L2

)

� Ef !
(

L1

+
� L2

)

and

DE
M1×M2

(
DE

M1
Ef !1L1

+
� DE

M2
Ef !2L2

)
� Ef !1L1

+
� Ef !2L2. �

Proposition 4.9.23. — For K ∈ Eb
R-c(IkM) and K′ ∈ Eb(IkM), one has

Ihom+
(

K,kE
M

+⊗K′
)
� Eδ !

(
DEK

+
� K′

)
,

HomE
(

K,kE
M

+⊗K′
)
�HomE

(
kE

M,Eδ !
(

DE
MK

+
� K′

))

� δ−1HomE
(

kE
�,DE

MK
+
� K′

)
,

where δ : �−→M×M denotes the diagonal embedding.
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Proof.

(i) Let p1, p2 : M×M−→M be the projections. By Proposition 4.7.14(ii), one has

kE
M

+⊗K′ � kE
M

+⊗ Eδ !Ep !2K′

� Eδ !
(

kE
M×M

+⊗ Ep!2K′
)
.

Then one has

Ihom+
(

K,kE
M

+⊗K′
)
� Ihom+

(
Eδ−1Ep−1

1 K,Eδ !
(

kE
M×M

+⊗ Ep!2K′
))

�
(∗)

Eδ !Ihom+
(

Ep−1
1 K,kE

M×M

+⊗ Ep!2K′
)

�
(∗∗)

Eδ !
(

DE
MK

+
� K′

)
,

where (∗) follows from Proposition 4.5.10 and (∗∗) from Proposition 4.9.15.
(ii) The second isomorphism follows from (i) and Lemma 4.5.15.

(iii) The third isomorphism follows by applying δ−1 to

Rδ∗HomE
(

kE
M,Eδ !

(
DE

MK
+
� K′

))
�HomE

(
Eδ!!kE

M,DE
MK

+
� K′

)
. �

4.10. Ring action. — Let S be a good topological space, and A a sheaf of k-algebras
on S. Recall from [13] that the category of A-modules in the category of ind-sheaves is
defined by†

I(A)=
{
(F, ϕ) ; F ∈ I(kS),

ϕ : A−→ End(F) is a k-algebras homomorphism

}
.

Here, End(F) is the sheaf of k-algebras given by U 
→ EndI(kU)(F|U).

Definition 4.10.1. — Let f : (M,M̌)−→ S be a morphism of bordered spaces, and A a sheaf

of k-algebras on S. Recall that f is decomposed as (M,M̌)
∼←− (�f ,�f )−→ S. We set

Db(IA(M,M̌))= Db
(
I
(
p−1

2 A
))

/Db
(
I
((

p−1
2 A

)
�f \�f

))
,

where p2 : �f −→ S is the projection.

Remark 4.10.2. — If f is induced by a map f̌ : M̌−→ S, then one has an equivalence

Db(IA(M,M̌))� Db
(
I f̌ −1A

)
/Db

(
I
((

f̌ −1A
)

M̌\M
))

.

† The category I(A) is denoted by I(βA) in [13].



RIEMANN-HILBERT CORRESPONDENCE 147

Let us set

A(M,M̌) = p−1
2 A,

where p2 : �f −→ S. It is a sheaf of k-algebras on �f . One can define the functors‡

RIhom : Db(Ik(M,M̌))
op × Db(IA(M,M̌))−→ Db(IA(M,M̌)),

⊗L
A : Db

(
Aop

(M,M̌)

)× Db(IA(M,M̌))−→ Db(Ik(M,M̌)),

RHomA : Db(A(M,M̌))
op × Db(IA(M,M̌))−→ Db(Ik(M,M̌)).

Lemma 4.10.3. — Let F ∈ Db(k(M,M̌)) � Db(kM), M ∈ Db(A(M,M̌)), N ∈
Db(Aop

(M,M̌)
) and K ∈ Db(IA(M,M̌)). Then there are isomorphisms

RIhom
(
F,N ⊗L

A K
)�N ⊗L

A RIhom (F,K),

RIhom
(
F,RHomA(M,K)

)� RHomA
(
M,RIhom (F,K)

)

� RHomA(F⊗M,K).

Recall that π : M×R∞ −→M denotes the projection.

Definition 4.10.4. — For A a sheaf of k-algebras on M, we set

Eb(IA)= Db(IAM×R∞)/
{
K ; π−1Rπ∗K

∼−→K
}
.

We have a forgetful functor

Eb(IA)−→ Eb(IkM).

Remark 4.10.5. — The results on Eb(IkM) can be extended to this context with
Eb(IA).

5. Review of tempered functions

We recall here some constructions of [12, 13]. In particular, we recall the ind-sheaf
O t

X of tempered holomorphic functions on a complex analytic manifold X, which plays
a fundamental role in this paper. We end this section by adapting the notion of bordered
space to the framework of analytic spaces.

‡ For M= M̌= S, the functors ⊗L
A and RHomA are denoted by β(∗)⊗L

βA ∗ and RIhomβA(β(∗),∗), respectively,
in [13].
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5.1. Real setting. — Let M be a real analytic manifold and let U⊂M be an open
subset.

One says that a function ϕ : U−→C has polynomial growth at x◦ ∈M \U if there
exist a sufficiently small compact neighborhood K of x◦ and constants C > 0, r ∈ Z>0

such that

(5.1.1)
∣
∣ϕ(x)

∣
∣≤C dist(K \U, x)−r for any x ∈K∩U.

(Here “dist” denotes the Euclidean distance with respect to a local coordinate system.)
One says that a smooth function ϕ ∈ C∞M (U) is tempered at x0 ∈M \U if all of its

derivatives have polynomial growth at x0.
Denote by DbM the sheaf of Schwartz’s distributions on M.

Definition 5.1.1 ([13, Definition 7.2.5]).

(i) For a subanalytic open subset U ⊂M, we define C∞,t
M (U) as the set of C∞-functions

defined on U which are tempered at every point of M \ U. Then C∞,t
M is a subanalytic

sheaf.

(ii) For a subanalytic open subset U ⊂ M, we define the sheaf of C-algebras C∞,temp

U|M :=
Hom (CU,C∞,t

M ).

(iii) The subanalytic sheaf of tempered distributions on M is defined by

Dbt
M(V) :=DbM(M)/�M\V(M;DbM)

� Im
(
DbM(M)−→DbM(V)

)

for any subanalytic open subset V⊂M. We still denote by Dbt
M the corresponding suban-

alytic ind-sheaf.

There is a morphism Dbt
M −→DbM of ind-sheaves.

For any open subset V⊂M we have

C∞,temp
U|M (V)= {

ϕ ∈ C∞M (V∩U) ; ϕ is tempered at any point of V \U
}
.

One has the following lemma.

Lemma 5.1.2. — For any R-constructible sheaf F,

HkRIhom
(
F,Dbt

M

)= 0 for any k �= 0.

Proof. — For any R-constructible sheaf G and any k �= 0, one has

HkRHom
(
G,RIhom

(
F,Dbt

M

))�HkRHom
(
G⊗F,Dbt

M

)� 0,

where the last isomorphism follows from [13, Proposition 7.2.6(i)]. �



RIEMANN-HILBERT CORRESPONDENCE 149

Proposition 5.1.3. — Let U⊂M be a subanalytic open subset. The product C∞M ⊗DbM −→
DbM induces a CM-algebra homomorphism

C∞,temp

U|M −→ End
(
Ihom

(
CU,Dbt

M

))
.

In other words, Ihom (CU,Dbt
M) ∈ I(C∞,temp

U|M ).

Proof. — Let V ⊂ M be a relatively compact subanalytic open subset. By [9,
Lemma 3.3], the product induces a natural morphism

C∞,t
M (U∩V)⊗Dbt

M(U∩V)−→Dbt
M(U∩V). �

For a closed subset Z⊂M, denote by I∞M,Z ⊂ C∞M the subsheaf of functions which
vanish on Z up to infinite order. Recall the Whitney functor of [12]

∗ w⊗ C∞M : Db
R-c(CM)−→ Db(CM).

It is characterized by setting CU
w⊗C∞M :=I∞M,M\U for any subanalytic open subset U⊂M.

One says that a function ϕ ∈ C∞M (U) is rapidly decreasing at x◦ ∈M \ U if there
exists a sufficiently small compact neighborhood K of x◦ such that for any r ∈ Z>0 and
α ∈ Zn

≥0 there is a constant C > 0 with
∣∣∂α

x ϕ(x)
∣∣≤C dist(K \U, x)r for any x ∈K∩U.

(Here “dist” and ∂α are taken with respect to a local coordinate system.)
One says that ϕ ∈ C∞M (U) is rapidly decreasing at the boundary of U if it is rapidly

decreasing at each point of the boundary of U.

Lemma 5.1.4. — A section of C∞M (U) extends to a global section of CU
w⊗ C∞M if and only if

it is rapidly decreasing at the boundary of U.

5.2. Complex setting. — Let X be a complex analytic manifold. Denote by XR the
real analytic manifold underlying X. It is identified with the diagonal of X×X, where X
is the conjugate complex manifold of X. Recall that (X)R =XR and that sections of OX

are the complex conjugates of sections of OX.
Recall that, by Dolbeault resolution, one has

OX � RHomDX
(OX,DbXR).

Definition 5.2.1 ([13, Section 7.3]). — One sets

O t
X = RHomDX

(
OX,Dbt

XR

) ∈ Db(IDX),

�t
X =�X⊗OX

O t
X ∈ Db

(
IDop

X

)
.
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The canonical morphism Dbt
XR
−→DbXR induces a canonical morphism O t

X −→OX

in Db(IDX). Note that O t
X ∈ Db

suban(ICX). It is not concentrated in degree zero, in gen-
eral.

Notation 5.2.2. — The classical de Rham and solution functors are

DRX : Db(DX)−→ Db(CX), M 
→�X⊗L
DX

M,

SolX : Db(DX)op −→ Db(CX), M 
→ RHomDX
(M,OX),

and the tempered de Rham and solution functors are

DRt
X : Db(DX)−→ Db(ICX), M 
→�t

X⊗L
DX

M,

Sol t
X : Db(DX)op −→ Db(ICX), M 
→ RHomDX

(
M,O t

X

)
.

One has

SolX � αXSol t
X, DRX � αXDRt

X.

Recall that, by [13, Lemma 7.4.11], for L ∈ Db
rh(DX) one has

Sol t
X(L)� SolX(L), DRt

X(L)�DRX(L).

For M ∈ Db
coh(DX), one has

Sol t
X(M)�DRt

X(DXM)[−dX].
Note that

DRt
X(OX)�DRX(OX)�CX[dX].

Let us recall some functorial properties of the tempered de Rham and solution
functors.

Theorem 5.2.3 ([13, Theorems 7.4.1, 7.4.6 and 7.4.12]). — Let f : X−→ Y be a complex

analytic map.

(i) There is an isomorphism in Db(I f −1DY)

f !O t
Y[dY] �DY←X⊗L

DX
O t

X[dX].

(ii) For any N ∈ Db(DY) there is an isomorphism in Db(ICX)

DRt
X

(
Df ∗N

)[dX] � f !DRt
Y(N )[dY].
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(iii) Let M ∈ Db
good(DX), and assume that suppM is proper over Y. Then there is an

isomorphism in Db(ICY)

DRt
Y(Df ∗M)� Rf!!DRt

X(M).

(iv) Let L ∈ Db
rh(DX). Then there is an isomorphism in Db(IDX)

O t
X⊗L

OX
L� RIhom

(
SolX(L),O t

X

)
.

In particular, for a closed hypersurface Y⊂X, one has

O t
X⊗L

OX
OX(∗Y)� RIhom

(
CX\Y,O t

X

)
.

5.3. Back to the real setting.

Proposition 5.3.1 ([12, Theorem 5.10]). — Let X be a complexification of a real analytic

manifold M, and denote by i : M−→X the embedding. Then

i !O t
X[dX] �Dbt

M⊗orM .

Lemma 5.3.2. — Let f : M−→N be a morphism of real analytic manifolds. Then

f !Dbt
N �DN←M⊗L

DM
Dbt

M,

where DN←M =DY←X|M⊗orM⊗f −1 orN for a complexification X−→ Y of f .

Proof. — Consider the diagram

M
f

iM

N

iN

X
f̃

Y.

Then one has the isomorphisms

DN←M⊗L
DM

Dbt
M �

(∗)
i−1
M DY←X⊗L

i−1
M DX

i !MO t
X⊗ f −1 orN[dM]

� i !M
(
DY←X⊗L

DX
O t

X

)⊗ f −1 orN[dM]
�
(∗∗)

i !M f̃ !O t
Y⊗ f −1 orN[dN]

� f ! i !NO t
Y⊗ f −1 orN[dN]

�
(∗)

f !Dbt
N,

where (∗)’s follow from Proposition 5.3.1, and (∗∗) follows from Theorem 5.2.3(i). �
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5.4. Real analytic bordered spaces.

Definition 5.4.1. — The category of real analytic bordered spaces is the category whose

objects are pairs (M,M̌) where M̌ is a real analytic manifold and M ⊂ M̌ is an open subanalytic

subset. Morphisms f : (M,M̌)−→ (N, Ň) are real analytic maps f : M−→N such that

(i) �f is a subanalytic subset of M̌× Ň, and

(ii) �f −→ M̌ is proper.

Hence a morphism of real analytic bordered spaces is a morphism of bordered
spaces.

Lemma 5.4.2. — Let f : (M,M̌)−→ (N, Ň) be a morphism of real analytic bordered spaces.

Then f is an isomorphism if the following conditions are satisfied

(i) f : M−→N is an isomorphism of real analytic manifolds,

(ii) �f −→ Ň is proper.

Recall that jM : (M,M̌)−→ M̌ and jN : (N, Ň)−→ Ň denote the natural morphisms.

Proposition 5.4.3. — Let f : (M,M̌)−→ (N, Ň) be an isomorphism of real analytic bordered

spaces. Then there is an isomorphism in Db(IC(M,M̌))

j−1
M Dbt

M̌
� f −1j−1

N Dbt
Ň
.

Proof. — We shall regard RjM∗j−1
M Dbt

M̌
and RjM∗f −1j−1

N Dbt
Ň

as subanalytic sheaves

on M̌. Hence it is enough to show that

Dbt
M̌

(
f −1(V)

)�Dbt
Ň
(V)

for any relatively compact subanalytic open subset V of Ň contained in N.
By [12, Theorem 6.1], the topological dual of the above isomorphism is given by

�
(

M̌;Cf −1(V)

w⊗ C∞
M̌

)
� �

(
Ň;CV

w⊗ C∞
Ň

)
.

Hence, by Lemma 5.1.4, the proposition follows from Lemma 5.4.4 below. �

Lemma 5.4.4. — With the same notations as in the above proposition, let V be a relatively

compact subanalytic open subset of Ň contained in N, and let u ∈ C∞
Ň

(V). Then u is rapidly decreasing

at the boundary of V if and only if f ∗(u) ∈ C∞
M̌

(f −1(V)) is rapidly decreasing at the boundary of

f −1(V).
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Proof. — Denote by q1 : �f −→ M̌ and q2 : �f −→ Ň the projections. Note that, since
f is an isomorphism of real analytic bordered spaces, one has

�f = �f ×M̌ M= �f ×Ň N.

Assume that u is rapidly decreasing at the boundary of V. For x◦ ∈ ∂(f −1(V)) let us
choose a sufficiently small open neighborhood W of x0 and local coordinates (x1, . . . , xn).
Since q−1

1 (x◦) is compact, shrinking W if necessary, there exist finitely many relatively
compact subanalytic open subsets {Vi} and {V′i} of Ň such that

(a) V′i ⊂Vi ,
(b) q−1

1 (W)⊂⋃

i

(W×V′i),

(c) there exist local coordinates (yi
1, . . . , yi

n) on Vi .

Then f (f −1(V)∩W)⊂⋃

i

V′i .

It follows that the derivatives ∂α
x f ∗(u) are linear combinations of derivatives ∂

β

yi u

with coefficients given by products of terms of the form ∂γ
x yi

k . Since ∂
β

yi u are rapidly de-
creasing and ∂γ

x yi
k have polynomial growth, it follows that f ∗(u)|f −1(V∩V′i) is rapidly de-

creasing at x◦ for any i. Hence f ∗(u) ∈ C∞
M̌

(f −1V) is rapidly decreasing at x◦. �

6. Exponential D-modules

Let X be a complex analytic manifold. According to the results of Mochizuki
[19, 20] and Kedlaya [16, 17] (see Section 7.3 below), a fundamental model for irregular
holonomic DX-modules is the exponential DX-module associated with a meromorphic
connection d + dϕ for a meromorphic function ϕ ∈OX(∗Y) with poles on a hypersur-
face Y. In this section we describe the tempered de Rham complex of such exponential
DX-modules.

6.1. Exponential D-modules. — Let X be a complex analytic manifold.

Definition 6.1.1. — Let Y ⊂ X be a complex analytic hypersurface. Set U = X \ Y. For

ϕ ∈OX(∗Y), set

DXeϕ =DX/
{
P ; Peϕ = 0 on U

}
,

Eϕ

U|X =DXeϕ(∗Y).

Hence DXeϕ ⊂ Eϕ

U|X. Note that Eϕ

U|X is a holonomic DX-module which satisfies

Eϕ

U|X � Eϕ

U|X(∗Y), sing. supp
(
Eϕ

U|X
)= Y.

Note that the map OX(∗Y)
·eϕ−→ Eϕ

U|X induces an isomorphism as OX-modules.
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Lemma 6.1.2. — For ϕ ∈OX(∗Y) one has

(
DXEϕ

U|X
)
(∗Y)� E−ϕ

U|X.

Proof. — The morphism DXe−ϕ(∗Y) ⊗D DXeϕ(∗Y) −→ OX(∗Y) induces a mor-
phism DXEϕ

U|X −→ E−ϕ

U|X. Since it is an isomorphism outside of Y, the statement follows. �

Remark 6.1.3. — The isomorphism DXEϕ

U|X � E−ϕ

U|X does not hold in general. For
example, let X = C2 � (u, v), Y = {v = 0} and ϕ(u, v) = u2/v2. Then Eϕ

U|X � DXv−2eϕ

and there is an epimorphism

Eϕ

U|X � B{(0,0)} �DX/(DXu+DXv).

Hence DXEϕ

U|X contains B{(0,0)} as a submodule.

6.2. Tempered de Rham. — Our aim in this subsection is to describe the tempered
de Rham complex of an exponential D-module.

Let X, Y, U and ϕ be as in Definition 6.1.1. For c ∈R, set for short

{Reϕ < c} = {
x ∈U ; Reϕ(x) < c

}⊂X.

Notation 6.2.1. — We set

C{Reϕ<∗} := “lim−→”
c→+∞

C{Reϕ<c} ∈ I(CX),

Eϕ

U|X :=RIhom (CU,C{Reϕ<∗}) ∈ Db(ICX).

For example, denoting by z ∈ C⊂ P the affine coordinate of the complex projec-
tive line, one has

(6.2.1) HjEz
C|P �

⎧
⎪⎨

⎪⎩

C{Re z<∗} for j = 0,

C{∞} for j = 1,

0 otherwise.

Proposition 6.2.2. — Let Y ⊂ X be a closed complex analytic hypersurface, and set U =
X \Y. For ϕ ∈OX(∗Y), there is an isomorphism in Db(ICX)

DRt
X

(
E−ϕ

U|X
)� Eϕ

U|X[dX].
The fundamental case where X=C and ϕ(z)= 1/z was considered in [14, Propo-

sition 7.3].
In order to prove the above proposition, we need some preliminary results.
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Lemma 6.2.3. — With the above notations, one has

DRt
X

(
E−ϕ

U|X
) ∼−→ RIhom

(
CU,DRt

X

(
E−ϕ

U|X
))

.

Proof. — One has

�t
X⊗L

DX
E−ϕ

U|X ��t
X⊗L

DX

(
E−ϕ

U|X⊗D OX(∗Y)
)

� (
OX(∗Y)⊗L

OX
�t

X

)⊗L
DX

E−ϕ

U|X

� RIhom
(
CU,�t

X⊗L
DX

E−ϕ

U|X
)
.

The last isomorphism follows from Theorem 5.2.3(iv). �

Let M be a real analytic manifold, and i : M −→ X a complexification of M. For
M ∈ Db(DX), let us set

DRt
M(M)=Db

t,∨
M ⊗L

DX
M

� i !DRt
X(M)[dX] ∈ Db(ICM),

where Db
t,∨
M =Dbt

M ⊗ orM⊗i−1OX
i−1�X � i !�t

X[dX] is the subanalytic ind-sheaf of tem-
pered distribution densities.

Note that, considering the complexification XR ⊂X×X, one has

(6.2.2) DRt
X(M)�DRt

XR

(
M�D OX

)[−dX].
Let P be the real projective line and denote by x the coordinate on R= P \ {∞}.

Note that the object of Db(ICP)

RIhom (CR,C{x<∗})� Ihom (CR,C{x<∗})

� “lim−→”
c→+∞

C{x<c}∪{∞}

is concentrated in degree zero.

Lemma 6.2.4. — Let P be the real projective line. Denote by x the coordinate on R= P \ {∞}
and by z the coordinate on C= P \ {∞}. Then there is an isomorphism in Db(ICP)

DRt
P

(
E−z

C|P
)� Ihom (CR,C{x<∗})[1].

Proof. — One has

Db
t,∨
P ⊗L

DP
E−z

C|P � Ihom
(
CR,Db

t,∨
P

)⊗L
DP

E−z
C|P

� (
E−z

C|P
)r⊗L

DP
Ihom

(
CR,Dbt

P

)

� (
Ihom

(
CR,Dbt

P

) ∂x−1−−→ Ihom
(
CR,Dbt

P

))=: S,
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where the complex S is in degree−1 and 0. Here, the first isomorphism follows from the
real analogue of Lemma 6.2.3, r is the functor in (2.5.1) and the last isomorphism follows
from E−z

C|P �DP/DP(∂z + 1) and (E−z
C|P)

r �DP/(∂z − 1)DP.
Hence, we have to prove the isomorphisms of subanalytic sheaves

H−1S � Ihom (CR,C{x<∗}), H0S � 0.

Let U⊂ P be an open subanalytic subset, so that U ∩R is a finite union of open
intervals.

The first isomorphism follows from the fact that ex ∈ Dbt
P(U ∩ R) if and only if

U∩R⊂ {x < c} for some c.
To show that H0S � 0 it is enough to consider the commutative diagram

Dbt
P(R)

∂x−1
Dbt

P(R)

Dbt
P(U∩R)

∂x−1
Dbt

P(U∩R)

and notice that the vertical arrow, as well as the top horizontal arrow, is surjective. �

Lemma 6.2.5 (Cf. [14, Proposition 7.3]). — Let P be the complex projective line and denote

by z the coordinate on C= P \ {∞}. There is an isomorphism in Db(ICP)

DRt
P

(
E−z

C|P
)� Ez

C|P[1].
Proof. — Consider the real analytic bordered spaces (CR,PR) and (R2,P2). Then

the morphism f : (R2,P2) −→ (CR,PR) given by (x, y) 
→ x +√−1y is an isomorphism
of real analytic bordered spaces. Consider the morphisms

P2 (R2,P2)
k f

(CR,PR)
j

PR.

By Proposition 5.4.3,

f −1j−1Dbt
PR
� k−1Dbt

P2 .

By (6.2.2) and Lemma 6.2.3,

DRt
P

(
E−z

C|P
)� Rj∗j−1

((
E−z

C|P �D OP

)r⊗L
DP×P

Dbt
PR

)[−1].

Note that j−1((E−z
C|P �D OP)

r⊗L
DP×P

Dbt
PR

) is represented by the complex

j−1Dbt
PR

(∂z−1, ∂ z)−−−−−−→ (
j−1Dbt

PR

)2 (−∂ z, ∂z−1)−−−−−−−→ j−1Dbt
PR

.
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Applying f −1, we get the complex

k−1Dbt
P2

(∂x−1, ∂y−
√−1)−−−−−−−−−→ (

k−1Dbt
P2

)2 (−∂y+
√−1, ∂x−1)−−−−−−−−−−→ k−1Dbt

P2 .

This last complex represents k−1((E−u
C|P �D E−

√−1v

C|P )r ⊗L
DP2

Dbt
P2), where (u, v) ∈ C2 is a

complexification of (x, y) ∈R2.
We have thus proved

DRt
P

(
E−z

C|P
)� Rj∗Rf∗k−1

((
E−u

C|P �D E−
√−1v

C|P
)r⊗L

DP2
Dbt

P2

)[−1].

By Proposition 5.1.3, the function e−
√−1y ∈ C∞,t

P2 (R2) induces an automorphism of
k−1Dbt

P2 . This automorphism interchanges the actions of ∂y and of ∂y−
√−1. Hence, for

a DP-module M, it induces an isomorphism

(6.2.3) k−1
((
M�D E−

√−1v

C|P
)r⊗L

DP2
Dbt

P2

)� k−1
((
M�D OP

)r⊗L
DP2

Dbt
P2

)
.

We then have, denoting by p1 the first projection P2 −→ P,

DRt
P

(
E−z

C|P
)� Rj∗Rf∗k−1

((
E−u

C|P �D OP

)r⊗L
DP2

Dbt
P2

)[−1]
� Rj∗Rf∗k−1

((
E−u

C|P
)r⊗L

DP
D

P
p1←−P2

⊗L
DP2

Dbt
P2

)[−1]
�
(1)

Rj∗Rf∗k−1
((
E−u

C|P
)r⊗L

DP
p !1Dbt

P

)[−1]
� Rj∗Rf∗k−1p−1

1 DRt
P

(
E−u

C|P
)

�
(2)

Rj∗Rf∗k−1p−1
1 C{x<∗}[1]

� Rj∗j−1C{Re z<∗}[1],
where (1) follows from Lemma 5.3.2 and (2) follows from Lemma 6.2.4. �

Lemma 6.2.6. — Denote by (u, v) the coordinates of C2. There is an isomorphism in

Db(ICC2)

DRt
C2

(
E−u/v

{v �=0}|C2

)� Eu/v

{v �=0}|C2[2].

Proof. — Recall that z denotes the coordinate on C= P \ {∞}. Denote by C̃2 the
blow-up of the origin in C2. Recall that C̃2 ⊂C2×P is the surface of equation uz0 = vz1,
where (z0 : z1) ∈ P are homogeneous coordinates with z= z1/z0. Consider the maps

C2 C̃2
p q

P
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induced by the projections from C2 × P. Since q−1(∞)⊂ p−1({v = 0}), one has

p−1
({v �= 0})⊂ q−1(C),

E−u/v

{v �=0}|C2 �OC2

(∗{v = 0})⊗D Dp∗Dq∗E−z
C|P.

(6.2.4)

It follows

DRt
C2

(
E−u/v

{v �=0}|C2

)�DRt
C2

(
OC2

(∗{v = 0})⊗D Dp∗Dq∗E−z
C|P

)

� RIhom
(
C{v �=0},DRt

C2

(
Dp∗Dq∗E−z

C|P
))

,

where the last isomorphism follows from Theorem 5.2.3(iv). Note that

DRt
C2

(
Dp∗Dq∗E−z

C|P
)� Rp∗q !

(
DRt

P

(
E−z

C|P
))[−1]

� Rp∗q !RIhom (CC,C{Re z<∗})

� Rp∗RIhom
(
q−1CC, q !C{Re z<∗}

)

� Rp∗RIhom
(
q−1CC, q−1C{Re z<∗}

)[2].
Here, the first isomorphism follows from Theorem 5.2.3(ii) and (iii), the second isomor-
phism follows from Lemma 6.2.5, and the last isomorphism follows from the fact that q

is smooth with fiber C. Hence

RIhom
(
C{v �=0},DRt

C2

(
Dp∗Dq∗E−z

C|P
))

� RIhom
(
C{v �=0},Rp∗RIhom

(
q−1CC, q−1C{Re z<∗}

))[2]
� Rp∗RIhom

(
p−1C{v �=0} ⊗ q−1CC, q−1C{Re z<∗}

)[2]
�
(1)

Rp∗RIhom
(
p−1C{v �=0}, q−1C{Re z<∗}

)[2]
� Rp∗RIhom

(
p−1C{v �=0}, p−1C{v �=0} ⊗ q−1C{Re z<∗}

)[2]
�
(2)

Rp∗RIhom
(
p−1C{v �=0}, p−1C{Re(u/v)<∗}

)[2]
�
(3)

Rp∗RIhom
(
p−1C{v �=0}, p !C{Re(u/v)<∗}

)[2]
� RIhom

(
C{v �=0},C{Re(u/v)<∗}

)[2].
Here, (1) follows from (6.2.4), (2) follows from the equality

q−1
({Re z < c})∩ p−1

({v �= 0})= p−1
({

Re(u/v) < c
})

for c ∈R,

and (3) follows from the fact that p is an isomorphism over {v �= 0}. �
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Proof of Proposition 6.2.2. — As in the previous lemma, denote by (u, v) the coordi-
nates in C2. Write ϕ = a/b for a, b ∈OX such that Y= b−1(0), and consider the map

f = (a, b) : X−→C2.

Since f −1({v = 0})= b−1(0)= Y, one has

f −1
({v �= 0})=U,(6.2.5)

Eϕ

U|X � Df ∗E u/v

{v �=0}|C2 .(6.2.6)

Note that

DRt
X

(
Df ∗E−u/v

{v �=0}|C2

)� f !
(
DRt

C2

(
E−u/v

{v �=0}|C2

))[2− dX]
� f !RIhom (C{v �=0},C{Re(u/v)<∗})[4− dX],

where the first isomorphism follows from Theorem 5.2.3(ii), and the second isomorphism
follows from Lemma 6.2.6. Hence

DRt
X

(
E−ϕ

U|X
)� f !RIhom

(
C{v �=0},C{Re(u/v)<∗}

)[4− dX]
� RIhom

(
f −1C{v �=0}, f !C{Re(u/v)<∗}

)[4− dX]
�
(1)

RIhom
(
CU, f !C{Re(u/v)<∗}

)[4− dX]
�
(2)

RIhom
(
CU, f −1C{Re(u/v)<∗}

)[dX]
� RIhom (CU,C{Reϕ<∗})[dX],

where (1) follows from (6.2.5), and (2) follows from Proposition 2.2.4. �

7. Normal form of holonomic D-modules

On a complex curve, the classical results of Levelt-Turittin and of Hukuhara-
Turittin describe the formal structure of a flat meromorphic connection and its asymp-
totic expansion on sectors. Analogous statements in higher dimension have recently been
obtained by Mochizuki [19, 20] and Kedlaya [16, 17], after preliminary results and con-
jectures by Sabbah [23].

In this section we recall these statements in the language of D-modules, and estab-
lish some lemmas that will be used later. In particular, Lemma 7.3.7 below will be a key
ingredient in our proof of the irregular Riemann-Hilbert correspondence.
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7.1. Real blow-up. — Let X be a complex manifold and D ⊂ X a smooth closed
hypersurface. The total real blow-up

�tot : X̃tot
D −→X

of X along D is the real analytic map of real analytic manifolds locally defined as follows.
We take coordinates (z,w) ∈C×Cn−1 on X such that D= {z= 0}. Then one has

X̃tot
D =

{
(t, ζ,w) ∈R×C×Cn−1 ; |ζ | = 1

}

and

�tot : X̃tot
D −→X, (t, ζ,w) 
→ (tζ,w).

Note that �tot is an unramified 2-sheeted covering over X \D, so that we may write

�−1
tot (X \D)= (X \D)× {+,−}.

Consider the subsets locally defined by

X̃>0
D =

{
(t, ζ,w) ∈ X̃tot

D ; t > 0
}= (X \D)× {+},

X̃D =
{
(t, ζ,w) ∈ X̃tot

D ; t ≥ 0
}= X̃>0

D ,

X̃0
D =

{
(t, ζ,w) ∈ X̃tot

D ; t = 0
}= X̃D \ X̃>0

D .

We call the subanalytic space X̃D the real blow-up of X along D, and we denote by

� : X̃D −→X

the map induced by �tot. Note that � induces an isomorphism

� : X̃>0
D
∼−→X \D,

and one has

X̃0
D =�−1(D)= SDX,

where SDX= (TDX \D)/R>0 denotes the normal sphere bundle to D in X.
Let now D⊂X be a normal crossing divisor, and write (locally)

(7.1.1) D=D1 ∪ · · · ∪Dr,

where Dk ⊂X are smooth hypersurfaces of X. The total real blow-up

�tot : X̃tot
D −→X
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of X along D is defined by

X̃tot
D = X̃tot

D1
×X · · · ×X X̃tot

Dr
.

Note that �tot is an unramified 2r-sheeted covering over X \D, so that we may write

�−1
tot (X \D)= (X \D)× {+,−}r.

Set

X̃>0
D = X̃>0

D1
×X · · · ×X X̃>0

Dr
= (X \D)× {

(+, . . . ,+)
}
,

X̃D = X̃>0
D ,

X̃0
D = X̃D \ X̃>0

D .

We call the subanalytic space X̃D the real blow-up of X along D, and we denote by

� : X̃D −→X

the proper map induced by �tot. Note that � induces an isomorphism

� : X̃>0
D
∼−→X \D.

Remark 7.1.1. — The spaces X̃D, X̃>0
D and X̃0

D are determined canonically. On the
contrary, the space X̃tot

D is not canonical. For example, writing D=D2 ∪ · · · ∪Dr near a
point x ∈D \D1, �tot becomes a 2r−1-sheeted covering over X \D.

7.2. Sheaves of functions on the real blow-up. — Let X be a complex manifold and
D⊂X a normal crossing divisor. Set for short X̃= X̃D.

Notation 7.2.1.

(i) Set C∞,temp
X̃ = i−1C∞,temp

X̃>0|X̃tot , where i : X̃−→ X̃tot is the closed embedding. In other
words, C∞,temp

X̃ is the sheaf of C-algebras on X̃ defined by

X̃ ⊃
open

V 
→ {
u ∈ C∞X̃tot

(
V∩ X̃>0

) ; u is tempered at any point of V∩ X̃0
}
.

(ii) Let AX̃ be the sheaf of rings on X̃ defined by

X̃ ⊃
open

V 
→ {
u ∈ C∞,temp

X̃ (V) ; u is holomorphic on V∩ X̃>0
}
.

(iii) Set DA
X̃ =AX̃⊗�−1OX

�−1DX.
(iv) Denote by DC∞,temp

X̃ the ring of differential operators with C∞,temp
X̃ coefficients.
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Lemma 7.2.2. — One has

AX̃ ��−1OX(∗D)⊗�−1OX
AX̃.

Remark 7.2.3. — By Lemma 7.2.2, there is an action of �−1DX on AX̃. Hence DA
X̃

has a natural algebra structure. Note also that there are natural C-algebra morphisms

�−1DX −→DA
X̃ ,

DA
X̃ ⊗C �−1DX −→DC∞,temp

X̃ .

Notation 7.2.4. — Consider the ind-sheaf on X̃

Dbt
X̃ := i−1Ihom

(
CX̃>0,Dbt

X̃tot

)
,

where i : X̃−→ X̃tot is the closed embedding.

Note that one has

i−1Ihom
(
CX̃>0,Dbt

X̃tot

)� RIhom
(
CX̃>0, i !Dbt

X̃tot

)
,

where CX̃>0 on the left hand side denotes a sheaf on X̃tot and on the right hand side a
sheaf on X̃.

Lemma 7.2.5. — The ind-sheaf Dbt
X̃ has a structure of DC∞,temp

X̃ -module. In particular, it has

a structure of (DA
X̃ ⊗C �−1DX)-module.

This immediately follows from Proposition 5.1.3.

Notation 7.2.6. — We set

O t
X̃ = RHom�−1DX

(
�−1OX,Dbt

X̃

) ∈ Db
(
IDA

X̃

)
,

the Dolbeault complex with coefficients in Dbt
X̃.

Theorem 7.2.7. — There is an isomorphism in Db(I�−1DX)

for
(
O t

X̃

)�� !RIhom
(
CX\D,O t

X

)
,

where for : Db(IDA
X̃ )−→ Db(I�−1DX) is the forgetful functor.

Proof. — It is enough to prove the isomorphism

Dbt
X̃ �� !RIhom

(
CX\D,Dbt

X

)
.
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Consider a complexification of morphisms of real analytic manifolds

X̃tot XR

X̃0

↪→
X̃tot

C XC

X̃0
C.

Then Dbt
X̃ is a module over

DX̃tot
C

(∗X̃0
C

) :=DX̃tot
C
⊗OX̃tot

C
OX̃tot

C

(∗X̃0
C

)
.

Hence

� !RIhom
(
CX\D,Dbt

X

)� RIhom
(
CX̃>0,� !Dbt

X

)

� RIhom
(
CX̃>0,DXC←X̃tot

C
⊗L

DX̃tot
C

Dbt
X̃

)

�DXC←X̃tot
C
⊗L

DX̃tot
C

RIhom
(
CX̃>0,Dbt

X̃

)

�DXC←X̃tot
C
⊗L

DX̃tot
C

Dbt
X̃

�DXC←X̃tot
C
⊗L

DX̃tot
C

DX̃tot
C

(∗X̃0
C

)⊗L

DX̃tot
C

(
∗X̃0

C

) Dbt
X̃,

where the second isomorphism follows from Lemma 5.3.2. To conclude, note that

DXC←X̃tot
C
⊗L

DX̃tot
C

DX̃tot
C

(∗X̃0
C

)�DX̃tot
C

(∗X̃0
C

)
. �

Remark 7.2.8. — The importance of Theorem 7.2.7 is in showing that
� !RIhom (CX\D,O t

X) has a structure of DA
X̃ -module.

Corollary 7.2.9. — There is an isomorphism in Db(IDX)

R�∗O t
X̃ � RIhom

(
CX\D,O t

X

)
.

Proof. — By the above theorem, we have

O t
X̃ �� !RIhom

(
CX\D,O t

X

)

� RIhom
(
�−1CX\D,� !O t

X

)
.

Hence

R�∗O t
X̃ � R�∗RIhom

(
�−1CX\D,� !O t

X

)

� RIhom
(
R�!!�−1CX\D,O t

X

)

� RIhom
(
CX\D,O t

X

)
. �
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Proposition 7.2.10. — One has

AX̃ � αX̃O t
X̃.

Proof. — By the definition of AX̃, using [12, Theorem 10.5] one has

AX̃ �H0αX̃O t
X̃.

Let U be a relatively compact subanalytic open subset of X̃tot and set V=�(U∩ X̃>0).
Then we have

R�
(
U;αX̃O t

X̃

)� RHom
(
CU∩X̃>0,O t

X̃

)

� RHom
(
CV,O t

X

)
,

where the last isomorphism follows from Corollary 7.2.9. Hence the vanishing of the
higher cohomology groups of the complex αX̃O t

X̃ follows from the fact that, if V is a
relatively compact subanalytic convex open subset of Cn, then,

HkRHom
(
CV,O t

Cn

)= 0 for k �= 0.

This last fact follows e.g. from [4, Theorem 5.10]. �

7.3. Normal forms. — Let X be a complex manifold and D⊂X a normal crossing
divisor. Let (z1, . . . , zn) be a system of local coordinates of X such that D= {z1 · · · zr = 0}.

Notation 7.3.1. — For M ∈ Db(DX), set

MA =DA
X̃ ⊗L

�−1DX
�−1M.

Lemma 7.3.2. — If M is a holonomic DX-module such that sing. supp(M) ⊂ D and

M ∼−→M(∗D), then one has

(7.3.1) MA �DA
X̃ ⊗�−1DX

�−1M.

Proof. — This follows from

DA
X̃ ⊗L

�−1DX
�−1M� (

AX̃⊗L
�−1OX

�−1DX

)⊗L
�−1DX

�−1M

�AX̃⊗L
�−1OX

�−1M

by noticing that M is flat over OX. �

It is well known that if M is a regular holonomic DX-module such that M �
M(∗D) and sing. supp(M)⊂D, then MA is isomorphic to a finite direct sum of copies
of (OX)A, locally on X̃0. (Note that zλ

k (log zk)
m is a section of AX̃, locally on X̃0, for λ ∈C,

k = 1, . . . , r and m ∈ Z≥0.)
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Definition 7.3.3. — We say that a holonomic DX-module M has a normal form along D
if

(i) M�M(∗D),

(ii) sing. supp(M)⊂D,

(iii) for any x ∈ X̃0, there exist an open neighborhood U ⊂ X of �(x) and finitely many

ϕi ∈ �(U;OX(∗D)) such that

(
MA)|V �

(⊕

i

(
Eϕi

U\D|U
)A)∣∣

∣
V

for some neighborhood V⊂�−1(U) of x.

A ramification of X along D on a neighborhood U of x ∈D is a finite map

p : X′ −→U

of the form p(z) = (z
m1
1 , . . . , zmr

r , zr+1, . . . , zn) for some (m1, . . . ,mr) ∈ (Z>0)
r . Here

(z1, . . . , zn) is a local coordinate system such that D= {z1 · · · zr = 0}.
Definition 7.3.4. — We say that a holonomic DX-module M has a quasi-normal form

along D if it satisfies (i) and (ii) in Definition 7.3.3, and if for any x ∈ D there exists a ramification

p : X′ −→U on a neighborhood U of x such that Dp∗(M|U) has a normal form along p−1(D∩U).

Remark 7.3.5. — With the above notations, Dp∗(M|U) and Dp∗Dp∗(M|U) are
concentrated in degree zero, and M|U is a direct summand of Dp∗Dp∗(M|U).

Theorem 7.3.6 (See [16–20, 23]). — Let X be a complex manifold, M a holonomic DX-

module and x ∈X. Then there exist an open neighborhood U of x, a closed analytic hypersurface Y⊂U,

a complex manifold X′ and a projective morphism f : X′ −→U such that

(i) sing. supp(M)∩U⊂ Y,

(ii) D := f −1(Y) is a normal crossing divisor of X′,
(iii) f induces an isomorphism X′ \D−→U \Y,

(iv) (Df ∗M)(∗D) has a quasi-normal form along D.

Remark that, under assumption (iii), (Df ∗M)(∗D) is concentrated in degree zero.
The above fundamental result provides the following tool to prove statements con-

cerning holonomic objects.

Lemma 7.3.7. — Let PX(M) be a statement concerning a complex manifold X and a holo-

nomic object M ∈ Db
hol(DX). Consider the following conditions.

(a) Let X=⋃
i∈I Ui be an open covering. Then PX(M) is true if and only if PUi

(M|Ui
) is

true for any i ∈ I.
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(b) If PX(M) is true, then PX(M[n]) is true for any n ∈ Z.

(c) Let M′ −→M −→M′′ +1−→ be a distinguished triangle in Db
hol(DX). If PX(M′) and

PX(M′′) are true, then PX(M) is true.

(d) Let M and M′ be holonomic DX-modules. If PX(M⊕M′) is true, then PX(M) is

true.

(e) Let f : X−→ Y be a projective morphism and M a good holonomic DX-module. If PX(M)

is true, then PY(Df ∗M) is true.

(f) If M is a holonomic DX-module with a normal form along a normal crossing divisor of X,

then PX(M) is true.

If conditions (a)–(f) are satisfied, then PX(M) is true for any complex manifold X and any M ∈
Db

hol(DX).

Proof. — Let X be a complex manifold and M ∈ Db
hol(DX). Let us show that

PX(M) is true.

(i) Let a ≤ b be integers such that M ∈ D[a,b]hol (DX). Then one says that M has
amplitude ≤ b− a. By applying (b) and (c) to the distinguished triangle

τ≤aM−→M−→ τ>aM +1−−→
and arguing by induction on the amplitude of M, we may assume that M
is concentrated in degree zero. In other words, we may assume that M is
a holonomic DX-module. Since the question is local on X by (a), we may
further assume that M is good.

(ii) Assume that M is a good holonomic DX-module with a quasi-normal form
along a normal crossing divisor D⊂X.

Locally, there exists a ramification p : X′ −→X as in Definition 7.3.4, such
that Dp∗M has a normal form. Then, PX′(Dp∗M) is true by (f). Hence
PX(Dp∗Dp∗M) is true by (e). Since M is a direct summand of Dp∗Dp∗M, it
follows from (d) that PX(M) is true.

(iii) Let M be a good holonomic DX-module. We will argue by induction on
dim X and by induction on the dimension of Y := suppM.

(iii-1) Assume first Y = X. Then, locally on X, there exist a closed hypersurface
Z⊂X and a projective morphism f : X′ −→X such that D := f −1Z is a nor-
mal crossing divisor of X′, f induces an isomorphism X′ \D ∼−→X \Z, and
(Df ∗M)(∗D) has a quasi-normal form. Hence PX′(Df ∗M(∗D)) is true by
(ii). Since Df ∗M(∗D) is good and M(∗Z)� Df ∗Df ∗M(∗D), PX(M(∗Z))

is true by (e). Let us consider a distinguished triangle

M−→M(∗Z)−→N +1−−→ .

Then dim suppN < dim Y, and hence PX(N ) is true by the induction hy-
pothesis. Therefore PX(M) is true by (b) and (c).
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(iii-2) Assume now that Y �=X. Let Ysing be its singular locus, and let f : Y′ −→X be
a projective morphism such that Y′ is a complex manifold, f (Y′)= Y, Z′ :=
f −1Ysing is a closed hypersurface of Y′, and f induces an isomorphism Y′ \
Z′ ∼−→ Y \Ysing. Then N :=Df ∗M(∗Z′)[dY′ − dX] is a good holonomic DY′ -
module. Since dim Y′ < dim X, PY′(N ) is true by the induction hypothesis
on dim X. Hence PX(Df ∗N ) is also true by (e). Consider a distinguished
triangle

M−→ Df ∗N −→L +1−−→ .

Since suppL⊂ Ysing, the induction hypothesis on dim Y implies that PX(L)

is true. Hence PX(M) is also true by (b) and (c). �

8. Enhanced tempered functions

We define in this section the enhanced ind-sheaves of tempered distributions and
of tempered holomorphic functions.

8.1. Enhanced tempered distributions. — Denote by P and P the real and complex
projective line, respectively. Let t ∈ R ⊂ P and τ ∈ C ⊂ P be the affine coordinates,
with t = τ |R. Let M be a real analytic manifold, and consider the natural morphism of
bordered spaces

j : M×R∞ −→M× P.

Definition 8.1.1. — Set

DbT
M = j !RHomDP

(
E τ

C|P,Dbt
M×P

)[1] ∈ Db(ICM×R∞),

and denote by DbE
M the associated object of Eb(ICX).

Here the shift has been chosen so that Propositions 8.2.4 and 9.1.3 below hold.
Note that, by an argument similar to that in the proof of Lemma 6.2.4, one has

Hk
(
DbT

M

)= 0 for k �= −1.

Remark 8.1.2. — There are monomorphisms

C{t<∗} ⊗π−1Dbt
M � H−1

(
DbT

M

)
� π−1DbM.

The first one is induced by v(x) 
→ etv(x), and the second is induced by u(x, t) 
→
e−tu(x, t). They are not isomorphisms (if dim M ≥ 1). In fact, for M = R and U =
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{(x, t) ∈ M × R ; x > 0, t < −1/x}, one has ete1/x ∈ Hom (CU,H−1(DbT
M)) but e1/x ∈

Hom (CU,π−1DbM)�Hom (C{x>0},DbM) does not belong to

Hom
(
CU,C{t<∗} ⊗π−1Dbt

M

)�Hom
(
CU,π−1Dbt

M

)

�Hom
(
C{x>0},Dbt

M

)
.

Proposition 8.1.3. — There are isomorphisms in Db(ICM×R∞)

DbT
M
∼−→ Ihom+

(
C{t≥0},DbT

M

)

∼←− Ihom+
(
C{t≥a},DbT

M

)
for any a≥ 0.

Proof.

(i) Let us prove the isomorphism

DbT
M
∼−→ Ihom+

(
C{t≥0},DbT

M

)
.

Denote by p : M× P−→M the projection. Let U⊂M× P be an open suban-
alytic subset such that U ∩ (M×R) ∩ p−1(x) is connected for all x ∈M. Note
that Rj∗DbT

M belongs to Db
suban(ICM×P). By Lemma 2.4.4, it is then enough to

show

RHom
(
CU,Ihom+

(
C{t>0},DbT

M

))� 0.

One has

RHom
(
CU,Ihom+

(
C{t>0},DbT

M

))� RHom
(

CU

+⊗C{t>0},DbT
M

)
.

Set V = p(U) ⊂M and U ∩ (M × R) = {(x, t) ∈ V × R ; ϕ(x) < t < ψ(x)},
where ϕ,ψ : V−→R are subanalytic functions with ϕ(x) < ψ(x) for all x ∈V.
Then

CU

+⊗C{t>0} �CW[−1],
where W= {(x, t) ∈ V×R ; ϕ(x) < t}. Note that ϕ takes value in R \ {+∞}.
Hence we have to prove that the bottom arrow in the commutative diagram
below is an isomorphism.

Hom (CM×R,Dbt
M×P)

∂t−1
Hom (CM×R,Dbt

M×P)

Hom (CW,Dbt
M×P)

∂t−1
Hom (CW,Dbt

M×P).
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Since the top arrow is surjective and the vertical arrows are surjective, also
the bottom arrow is surjective. By Lemma 8.1.4 below, the bottom arrow is
injective.

(ii) In order to prove the isomorphism

Ihom+
(
C{t≥a},DbT

M

) ∼−→ Ihom+
(
C{t≥0},DbT

M

)
,

it is enough to show that

Ihom+
(
C{t<a},DbT

M

) ∼−→ Ihom+
(
C{t<0},DbT

M

)
.

Hence, as in (i), it is enough to show that

RHom
(
CU,Ihom+

(
C{t<a},DbT

M

)) ∼−→ RHom
(
CU,Ihom+

(
C{t<0},DbT

M

))

for any subanalytic open subset U⊂M× P such that

U∩ (M×R)= {
(x, t) ∈V×R ; ϕ(x) < t < ψ(x)

}
,

where V= p(U). One has CU

+⊗C{t<a} �CWa
[−1], where

Wa =
{
(x, t) ∈V×R ; t − a < ψ(x)

}
.

Hence we have to show that the following morphism is a quasi-isomorphism

(
Hom

(
CWa

,Dbt
M×P

) ∂t−1−−→Hom
(
CWa

,Dbt
M×P

))

−→ (
Hom

(
CW0,Dbt

M×P

) ∂t−1−−→Hom
(
CW0,Dbt

M×P

))
.

Since the arrows ∂t − 1 are surjective, we have to show that the natural mor-
phism

ker
(
Hom

(
CWa

,Dbt
M×P

) ∂t−1−−→Hom
(
CWa

,Dbt
M×P

))

−→ ker
(
Hom

(
CW0,Dbt

M×P

) ∂t−1−−→Hom
(
CW0,Dbt

M×P

))

is an isomorphism. Indeed, its inverse is given by u(x, t) 
→ ea u(x, t − a). �

Lemma 8.1.4. — Let u ∈ �(M;DbM) and assume that u(x)et ∈ �(M×{t > 0};DbM×P)

is tempered at t =∞. Then u= 0.

Proof. — For any v ∈ C∞c (M), set c = ∫
v(x)u(x)dx. Then the function cet =∫

v(x)u(x)etdx is tempered at t =∞, and hence c= 0. �
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8.2. Enhanced tempered holomorphic functions. — Let X be a complex manifold. Con-
sider the natural morphism of bordered spaces

i : X×R∞ −→X× P.

Let τ ∈C⊂ P be the affine coordinate such that τ |R = t, the affine coordinate of R.

Definition 8.2.1. — Set

OE
X = i !

((
E−τ

C|P
)r⊗L

DP
O t

X×P

)[1]
� i !RHomDP

(
E τ

C|P,O t
X×P

)[2] ∈ Eb(IDX),

�E
X =�X⊗L

OX
OE

X

� i !
(
�t

X×P⊗L
DP

E−τ
C|P

)[1] ∈ Eb(IDop
X ).

Recall that r : Db(DP)−→ Db(Dop
P ) is the functor given by Mr =�P⊗L

OP
M.

Theorem 8.2.2. — There is an isomorphism in Db(ICX×R∞)

RE OE
X � i !

((
E−τ

C|P
)r⊗L

DP
O t

X×P

)[1],
and there are isomorphisms in Eb(IDX)

OE
X
∼−→ Ihom+

(
C{t≥0},OE

X

)

∼←− Ihom+
(
C{t≥a},OE

X

)
for any a≥ 0.

Proof. — This follows from Proposition 8.1.3, noticing that

OE
X � RHomπ−1DX

(
π−1OX,DbE

XR

)
,

where XR denotes the real analytic manifold underlying X. �

As a consequence of Theorem 8.2.2 and Proposition 4.7.5, we get the following
result.

Corollary 8.2.3. — There are isomorphisms in Eb(IDX)

OE
X � Ihom+

(
CE

X,OE
X

)

�CE
X

+⊗OE
X.

Proposition 8.2.4. — There is a canonical morphism

OE
X

+
�OE

Y −→OE
X×Y.
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In order to prove this proposition, we need a complex analytic analogue of the
construction in Notation 4.3.8.

Notation 8.2.5. — Denote by S′ the closure of {(x1, x2, x3) ∈C3 ; x1 + x2 + x3 = 0}
in P×P×P. Then S′ has a quadratic singularity at (∞,∞,∞). Denote by S the blow-
up of S′ with center (∞,∞,∞). Then S is a smooth projective surface. Consider the
maps

P
μ̃←− S

p̃−→ P× P

induced by (x1, x2, x3) 
→ −x3, and (x1, x2, x3) 
→ (x1, x2), respectively. We denote by the
same letters the induced maps

X×Y× P
μ̃←−X×Y× S

p̃−→X×Y× P× P.

Remark 8.2.6. — The algebraic surface S is also obtained as the blow-up of the
complex projective plane P2(C) with center at three points on a line.

Proof of Proposition 8.2.4. — Consider the diagrams of bordered spaces

X×R∞

iX

X×Y×R∞ ×R∞
p1 p2

j

Y×R∞

iY

X× P X×Y× P× P
p1 p2

Y× P

and

X×Y× S
μ̃

p̃

X×Y× P

X×Y× P× P X×Y×R∞ ×R∞

jS

μ

j
X×Y×R∞.

iX×Y

Recall that

OE
X = i !X

((
E−τ1

C|P
)r⊗L

DP
O t

X×P

)[1],
OE

Y = i !Y
((
E−τ2

C|P
)r⊗L

DP
O t

Y×P

)[1],
where τ1 and τ2 are coordinates on C⊂ P.
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There are morphisms

p−1
1 OE

X⊗ p−1
2 OE

Y

−→ j !
(
p
−1
2

((
E−τ1

C|P
)r⊗L

DP
O t

X×P

)⊗ p
−1
2

((
E−τ2

C|P
)r⊗L

DP
O t

Y×P

))[2]
−→ j !

((
E−τ1

C|P �E−τ2
C|P

)r⊗L
DP�DP

(
p
−1
1 O t

X×P⊗ p
−1
2 O t

Y×P

))[2]
−→ j !

((
E−τ1−τ2

C2|P×P

)r⊗L
DP×P

O t
X×Y×P×P

)[2],
where the first morphism follows from Lemma 3.3.20.

Since j = p̃ ◦ jS, we have

j !
((
E−τ1−τ2

C2|P×P

)r⊗L
DP×P

O t
X×Y×P×P

)[2]
� j !S p̃ !

((
E−τ1−τ2

C2|P×P

)r⊗L
DP×P

O t
X×Y×P×P

)[2]
� j !S

(
p̃−1

(
E−τ1−τ2

C2|P×P

)r⊗L
p̃−1DP×P

p̃ !O t
X×Y×P×P

)[2]
�
(∗)

j !S
(
p̃−1

(
E−τ1−τ2

C2|P×P

)r⊗L
p̃−1DP×P

D
P×P

p̃←−S
⊗L

DS
O t

X×Y×S

)[2]

� j !S
(
Dp̃

∗(E−τ1−τ2
C2|P×P

)r⊗L
DS

O t
X×Y×S

)[2],
where (∗) follows from Theorem 5.2.3(i). We have a morphism

Dp̃
∗(E−τ1−τ2

C2|P×P

)−→ Dp̃
∗(E−τ1−τ2

C2|P×P

)(∗p̃−1
(
P× P \C2

))

� Dμ̃
∗(E−τ

C|P
)(∗p̃−1

(
P× P \C2

))
.

Hence we obtain

p−1
1 OE

X⊗ p−1
2 OE

Y −→ j !S
(
Dμ̃

∗(E−τ
C|P

)(∗p̃−1
(
P× P \C2

))r⊗L
DS

O t
X×Y×S

)[2]
� j !S RIhom

(
CX×Y×C2,Dμ̃

∗(E−τ
C|P

)r⊗L
DS

O t
X×Y×S

)[2].
Since j−1

S (CX×Y×C2)�CX×Y×R2 , one has

j !S RIhom
(
CX×Y×C2,Dμ̃

∗(E−τ
C|P

)r⊗L
DS

O t
X×Y×S

)[2]
� j !S

(
Dμ̃

∗(E−τ
C|P

)r⊗L
DS

O t
X×Y×S

)[2]
� j !S

(
μ̃−1

(
E−τ

C|P
)r⊗L

μ̃−1DP
D

P
μ̃←−S
⊗L

DS
O t

X×Y×S

)[2]
�
(∗)

j !S
(
μ̃−1

(
E−τ

C|P
)r⊗L

μ̃−1DP
μ̃!O t

X×Y×P

)[1]
� j !S μ̃!

((
E−τ

C|P
)r⊗L

DP
O t

X×Y×P

)[1]
� μ! i !X×Y

((
E−τ

C|P
)r⊗L

DP
O t

X×Y×P

)[1],
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where (∗) follows from Theorem 5.2.3(i). We thus get a morphism

p−1
1 OE

X⊗ p−1
2 OE

Y −→ μ!OE
X×Y.

The desired morphism follows by adjunction. �

9. Riemann-Hilbert correspondence

We have now all the ingredients to state and prove a Riemann-Hilbert correspon-
dence for holonomic D-modules which are not necessarily regular. It is an analogue of
the classical Riemann-Hilbert correspondence for regular holonomic D-modules, in the
framework of enhanced ind-sheaves.

9.1. Enhanced de Rham and solution functors. — Recall that

i : X×R∞ −→X× P

is the natural morphism of bordered spaces, τ ∈ C ⊂ P is the affine coordinate and
t = τ |R.

Definition 9.1.1. — For M ∈ Db(DX), set

DRE
X(M)=�E

X⊗L
DX

M

� i !DRt
X×P

(
M�D E−τ

C|P
)[1],

SolE
X(M)= RHomDX

(
M,OE

X

)

� i !Sol t
X×P

(
M�D E τ

C|P
)[2].

They induce the functors

DRE
X : Db(DX)−→ Eb(ICX),

SolE
X : Db(DX)op −→ Eb(ICX).

Note that one has

SolE
X(M)�DRE

X(DXM)[−dX].
From Theorem 5.2.3, one deduces

Theorem 9.1.2. — Let f : X−→ Y be a complex analytic map.

(i) There is an isomorphism in Eb(I f −1DY)

Ef !OE
Y[dY] �DY←−X⊗L

DX
OE

X[dX].
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(ii) For any N ∈ Db(DY) there is an isomorphism in Eb(ICX)

DRE
X(Df ∗N )[dX] � Ef !DRE

Y(N )[dY].
(iii) Let M ∈ Db

good(DX), and assume that suppM is proper over Y. Then there is an

isomorphism in Eb(ICY)

DRE
Y(Df ∗M)� Ef !!DRE

X(M).

(iv) Let L ∈ Db
rh(DX) and M ∈ Db(DX). Then

DRE
X

(
L⊗D M

)� RIhom
(
π−1SolX(L),DRE

X(M)
)
,

where SolX(L) = RHomDX
(L,OX). In particular, for a closed hypersurface Y ⊂ X,

one has

DRE
X

(
M(∗Y)

)� RIhom
(
π−1CX\Y,DRE

X(M)
)
.

Proposition 9.1.3. — For L ∈ Db
rh(DX) one has an isomorphism in Eb(ICM)

DRE
X(L)� e

(
DRX(L)

) :=CE
X⊗π−1DRX(L).

In particular, one has

DRE
X(OX)�CE

X[dX].
Proof.

(i) When X= {pt}, by Lemma 6.2.4 we have

DRE
{pt}(C)�C{t<∗}[1] �CE

{pt}.

Hence, Theorem 9.1.2(ii) and Proposition 4.7.14(ii) imply

DRE
X(OX)� Ea !XCE

{pt}[−dX] �CE
X[dX],

where aX : X−→ {pt} is the canonical map.
(ii) By (i), setting M=OX in Theorem 9.1.2(iv) one has

DRE
X(L)� RIhom

(
π−1SolX(L),CE

X[dX]
)
.

Moreover,

RIhom
(
π−1SolX(L),CE

X[dX]
)�CE

X

+⊗RIhom
(
π−1SolX(L),C{t=0}[dX]

)

�CE
X

+⊗ (
π−1DX

(
SolX(L)[dX]

)⊗C{t=0}
)

�CE
X⊗π−1DX

(
SolX(L)[dX]

)

�CE
X⊗π−1DRX(L),

where the first isomorphism follows from Corollary 4.7.11. �
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9.2. Real blow-up. — Let D⊂X be a normal crossing divisor, and denote by X̃ the
real blow-up of X along D. Similarly, denote by X̃× P the real blow-up of X× P along
D× P. There is a natural identification X̃× P= X̃× P. Hence, following the notations
in Section 7.2, we have the sheaves of rings on X̃× P

AX̃×P ⊂�−1RHom (C(X\D)×P,OX×P),

DA
X̃×P =AX̃×P⊗�−1OX×P

�−1DX×P,

and the complex

O t
X̃×P ∈ Db

(
IDA

X̃×P

)
.

Consider the natural morphisms

X̃
πX̃←−− X̃×R∞

ı̃−→ X̃× P.

Definition 9.2.1. — Set

OE
X̃ = ı̃ !

((
E−τ

C|P
)r⊗L

DP
O t

X̃×P

)[1]
� ı̃ !RHomDP

(
E τ

C|P,O t
X̃×P

)[2] ∈ (
IDA

X̃

)
,

�E
X̃ = π−1

X̃ �−1�X⊗L
π−1

X̃
�−1OX

OE
X̃

� ı̃ !
(
�t

X̃×P⊗L
DP

E−τ
C|P

)[1] ∈ (
I
(
DA

X̃

)op)

and

DRE
X̃(L)=�E

X̃⊗L
DA

X̃
L ∈ Eb(ICX̃) for L ∈ Db

(
DA

X̃

)
.

Theorem 7.2.7 and Corollary 7.2.9 imply

Theorem 9.2.2. — There are an isomorphism in Eb(IDop
X )

E� ∗�E
X̃ � RIhom

(
π−1CX\D,�E

X

)
,

and an isomorphism in Eb(I�−1DX
op)

for
(
�E

X̃

)� E� !RIhom
(
π−1CX\D,�E

X

)
,

where for : Eb(I(DA
X̃ )op)−→ Eb(I�−1DX

op) is the forgetful functor.

Corollary 9.2.3. — For M ∈ Db
hol(DX) such that M ∼−→M(∗D), we have

DRE
X(M)� E� ∗DRE

X̃

(
MA)

,

DRE
X̃

(
MA)� E� !DRE

X(M).
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Proof. — By the first isomorphism in Theorem 9.2.2, one has

E� ∗DRE
X̃

(
MA)= E� ∗

(
�E

X̃⊗L
DA

X̃
MA)

� E� ∗
(
�E

X̃⊗L
�−1DX

�−1M
)

� (
E� ∗�E

X̃

)⊗L
DX

M

� RIhom
(
π−1CX\D,�E

X

)⊗L
DX

M

��E
X⊗L

DX

(
OX(∗D)⊗D M

)

�DRE
X(M).

The proof of the second isomorphism in the statement is similar, using the second iso-
morphism in Theorem 9.2.2. �

9.3. Constructibility. — Let Y ⊂ X be a complex analytic hypersurface and ϕ ∈
OX(∗Y). Set U= X \ Y. Let τ ∈ C⊂ P be the affine coordinate such that τ |R = t. We
set

{t =Reϕ} = {
(x, t) ∈U×R ; t =Reϕ(x)

}⊂X× P

and define the object EE
U|X(ϕ) of Eb(ICX) by

EE
U|X(ϕ)=CE

X

+⊗RIhom (CU×R,C{t=Reϕ}).

Recall the notation Eϕ

U|X from Definition 6.1.1.

Lemma 9.3.1. — Let Y⊂ X be a closed hypersurface. Let ϕ ∈OX(∗Y) be a meromorphic

function with poles at Y. Then we have an isomorphism in Eb(ICX)

DRE
X

(
Eϕ

U|X
)� EE

U|X(ϕ)[dX].
In particular, DRE

X(Eϕ

U|X) is R-constructible.

Proof. — We have

Eϕ

U|X �D E−τ
C|P � Eϕ−τ

U×C|X×P.

By Proposition 6.2.2,

DRt
X×P

(
Eϕ−τ

U×C|X×P

)= RIhom
(
CU×C, “lim−→”

a→+∞
C{Re(τ−ϕ)<a}

)[dX + 1],

and by the definition,

DRE
X

(
Eϕ

U|X
)� i !DRt

X×P

(
Eϕ−τ

U×C|X×P

)[1].
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Hence

DRE
X

(
Eϕ

U|X
)� RIhom

(
CU×R, i ! “lim−→”

a→+∞
C{Re(τ−ϕ)<a}[dX + 2])

� RIhom
(
CU×R, “lim−→”

a→+∞
C{t−Reϕ<a}[dX + 1]),

where the last isomorphism follows from

CU×R⊗ i !C{Re(τ−ϕ)<a} �C{t−Reϕ<a}[−1].
In Eb(ICX) we have

“lim−→”
a→+∞

C{t−Reϕ<a}[1] � “lim−→”
a→+∞

C{t−Reϕ≥a} �CE
X

+⊗C{t=Reϕ}.

Thus we obtain

DRE
X

(
Eϕ

U|X
)� RIhom

(
CU×R,CE

X

+⊗C{t=Reϕ}
)
[dX]

�CE
X

+⊗RIhom (CU×R,C{t=Reϕ})[dX].
Here, the last isomorphism follows from Corollary 4.7.11. �

Theorem 9.3.2. — For M ∈ Db
hol(DX), the object DRE

X(M) of Eb(ICX) is

R-constructible.

Proof.

(i) Assume first that M is a holonomic DX-module with a normal form along a
normal crossing divisor D. Then

MA :=DA
X̃ ⊗L

�−1DX
�−1M

is locally a direct sum of DA
X̃ -modules of the form (Eϕ

X\D|X)A for ϕ ∈OX(∗D)

as in Lemma 9.3.1. By Corollary 9.2.3, one has

DRE
X̃

((
Eϕ

X\D|X
)A)� E� !DRE

X

(
Eϕ

X\D|X
)
.

Since DRE
X(Eϕ

X\D|X) is R-constructible, Proposition 4.9.11 implies that
DRE

X̃((Eϕ

X\D|X)A) is R-constructible. Hence also DRE
X̃(MA) is R-constructible.

By Corollary 9.2.3, DRE
X(M)� E� ∗DRE

X̃(MA) is R-constructible.
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(ii) We shall apply Lemma 7.3.7 to the statement

PX(M)= “DRE
X(M) is R-constructible”.

Hypotheses (a) and (b) are obvious, (c) follows from Proposition 4.9.3, (d) from
Proposition 4.9.6, (e) from Theorem 9.1.2(iii) and Proposition 4.9.11, and (f)
from step (i). �

Theorem 9.3.3. — For M ∈ Db
hol(DX) and N ∈ Db

hol(DY), there is a canonical isomor-

phism

DRE
X(M)

+
�DRE

Y(N )
∼−→DRE

X×Y

(
M�D N

)
.

Proof. — The morphism is defined by using Proposition 8.2.4.
By dévissage, using Lemma 7.3.7, we may assume that both M and N are holo-

nomic D-modules having a normal form along a normal crossing divisor. Denote by
DX ⊂ X and DY ⊂ Y the normal crossing divisors of the singularities of M and N ,
respectively. Note that M�D N has singularities at DX×Y := (DX ×Y)∪ (X×DY).

Consider the real blow-ups �X : X̃ −→ X and �Y : Ỹ −→ Y. Note that X̃×Y �
X̃× Ỹ.

There is a natural morphism

�E
X̃

+
� �E

Ỹ −→�E
˜X×Y

.

Hence there are morphisms

(
�E

X̃⊗L
DX

M
) +
�

(
�E

Ỹ⊗L
DY

N
)−→�E

˜X×Y
⊗L

DX�DY
(M�N )

��E
˜X×Y
⊗L

DX×Y

(
M�D N

)
.

The composite of the above morphisms is isomorphic to

(
�E

X̃⊗L
DA

X̃
MA) +

�
(
�E

Ỹ⊗L
DA

Ỹ
NA)−→ (

�E
˜X×Y

)⊗L
DA

˜X×Y

(
M�D N

)A
,

i.e. to

DRE
X̃

(
MA) +

�DRE
Ỹ

(
NA)−→DRE

˜X×Y

((
M�D N

)A)
.

By Corollary 9.2.3, it is enough to show that this morphism is an isomorphism. Then, by
Theorem 7.3.6, we may assume M � Eϕ

X\DX|X and N � Eψ

Y\DY|Y for ϕ ∈OX(∗DX) and
ψ ∈OY(∗DY). Hence, by Corollary 9.2.3, one has

DRE
X̃

(
MA)� E� !

XDRE
X(M),

and similarly for M replaced by N and M�D N .
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On the other hand, Proposition 4.9.22 implies

E� !
XDRE

X(M)
+
� E� !

YDRE
Y(N )� E� !

X×Y

(
DRE

X(M)
+
�DRE

Y(N )
)
.

We have thus reduced the theorem to the case M= Eϕ

X\DX|X and N = Eψ

Y\DY|Y, and we
conclude by using the lemma below. �

Lemma 9.3.4. — Let X, Y be complex manifolds, DX ⊂X, DY ⊂ Y closed hypersurfaces,

and ϕ ∈OX(∗DX), ψ ∈OY(∗DY). Then we have an isomorphism in Eb(ICX×Y)

EE
X\DX|X(ϕ)

+
� EE

Y\DY|Y(ψ)� EE
(X\DX)×(Y\DY)|X×Y(ϕ +ψ).

Proof. — We have

DE
X

(
EE

X\DX|X(ϕ)[dX]
)�CE

X

+⊗C{t=−Reϕ}[dX].
One checks easily that

(
CE

X

+⊗C{t=−Reϕ}[dX]
) +

�
(

CE
Y

+⊗C{t=−Reψ}[dY]
)

�CE
X×Y

+⊗C{t=−Re(ϕ+ψ)}[dX + dY].

Applying DE
X×Y and noticing that DE commutes with

+
� by Proposition 4.9.21, we obtain

the desired result. �

9.4. Duality. — Let T be a tensor category with unit object 1. Recall that an ad-
junction in T is a datum (X1,X2, η, ε) where X1,X2 ∈ T and

1
η−→X1⊗X2, X2⊗X1

ε−→ 1

are morphisms such that the compositions

X2 �X2⊗1
η−→X2⊗X1⊗X2

ε−→ 1⊗X2 �X2,

X1 � 1⊗X1
η−→X1⊗X2⊗X1

ε−→X1⊗1�X1

are the identities. In this case, HomT (Z,X2)�HomT (Z⊗X1,1) functorially in Z ∈ T ,
and one calls X2 a right dual of X1.

Let X be a complex manifold. We shall adapt the construction above to the cate-
gories Db

hol(DX) and Eb
R-c(ICX).

Define the maps

pn
i1···im : Xn −→Xm by (x1, . . . , xn) 
→ (xi1, . . . , xim).

In particular, p1
11 is the diagonal embedding δ : X−→X×X.
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Recall that B�X is the holonomic DX×X-module associated with the diagonal set
�X (see (2.5.2)).

Lemma 9.4.1. — For M,M′ ∈ Db
good(DX) one has

HomDb(DX)

(
M,M′)(9.4.1)

�HomDb(DX3 )

(
B�X[−dX]�D M,M′ �D B�X[dX]

)
,

HomDb(DX)

(
M,M′)(9.4.2)

�HomDb(DX3 )

(
M�D B�X[−dX],B�X[dX]�D M′).

Proof. — Let us prove only (9.4.1). We have

B�X[−dX]�D M� Dp2
112∗Dp2∗

2 M[−dX],
M′ �D B�X[dX] � Dp2

122∗Dp2∗
1 M′[dX].

By Proposition 2.5.1,

HomDb(DX3 )

(
Dp2

112∗Dp2∗
2 M[−dX],Dp2

122∗Dp2∗
1 M′[dX]

)

�HomDb(DX2 )

(
Dp2∗

2 M,Dp2∗
112Dp2

122∗Dp2∗
1 M′[dX]

)
.

Since

(9.4.3)

X
δ

δ

X×X

p2
122

X×X
p2

112

�

X×X×X

is a transversal Cartesian diagram, Proposition 2.5.3 gives

Dp2∗
112Dp2

122∗Dp2∗
1 M′ � Dδ∗Dδ∗Dp2∗

1 M′

� Dδ∗M′.

Hence

HomDb(DX3 )

(
B�X[−dX]�D M,M′ �D B�X[dX]

)

�HomDb(DX2 )

(
Dp2∗

2 M,Dδ∗M′[dX]
)

�
(∗)

HomDb(DX)

(
M,Dp2

2∗Dδ∗M′)

�HomDb(DX)

(
M,M′),

where (∗) follows from Proposition 2.5.1. �
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Definition 9.4.2. — An adjunction in Db
hol(DX) is a datum (M1,M2, η, ε), where

M1,M2 ∈ Db
hol(DX) and

B�X[−dX] η−→M1 �D M2,

M2 �D M1
ε−→ B�X[dX]

are morphisms such that:

(a) the composition

B�X[−dX]�D M1
η−→M1 �D M2 �D M1

ε−→M1 �D B�X[dX]
corresponds to idM1 by (9.4.1),

(b) the composition

M2 �D B�X[−dX] η−→M2 �D M1 �D M2
ε−→ B�X[dX]�D M2

corresponds to idM2 by (9.4.2).

Proposition 9.4.3.

(i) For M ∈ Db
hol(DX) there is a natural adjunction (M,DXM, η, ε), that we denote by

(M,DXM) for short.

(ii) If (M1,M2, η, ε) is an adjunction in Db
hol(DX), then M2 �DXM1.

Proof. — Since (i) is obvious, we will prove only (ii).

(ii-a) First, let us show that there is a functorial isomorphism in L ∈ Db
hol(DX)

(9.4.4) HomDb(DX)(L,M2)�HomDb(DX2 )

(
L�D M1,B�X[dX]

)
.

Consider the map sending ϕ ∈ HomDb(DX)(L,M2) to the morphism ψ given by the
composition

L�D M1
ϕ−→M2 �D M1

ε−→ B�X[dX].
Consider the map sending ψ ∈ HomDb(DX2 )(L �D M1,B�X[dX]) to the morphism ϕ

which corresponds by (9.4.2) to the composition

L�D B�X[−dX] ε−→L�D M1 �D M2
ψ−−→ B�X[dX]�D M2.

Then it is easy to check that these maps are inverse to each other.
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(ii-b) By applying (9.4.4) first to the natural adjunction (M1,DXM1), and then to the
adjunction (M1,M2, η, ε), we have

HomDb(DX)(L,DXM1)�HomDb(DX2 )

(
L�D M1,B�X[dX]

)

�HomDb(DX)(L,M2).

Hence, by Yoneda, M2 �DXM1. �

Now, we have a similar formulation for Eb
R-c(ICX). Recall from Notation 4.7.3 that

CE
�X
=CE

X×X⊗π−1
X×XC�X,

ωE
�X
=CE

X×X⊗π−1
X×Xω�X .

Lemma 9.4.4. — For K,K′ ∈ Eb
R-c(ICX) one has

HomEb(ICX)

(
K,K′)�HomEb(ICX3 )

(
CE

�X

+
� K,K′ +� ωE

�X

)
,(9.4.5)

HomEb(ICX)

(
K,K′)�HomEb(ICX3 )

(
K

+
� CE

�X
,ωE

�X

+
� K′

)
.(9.4.6)

Proof. — The proof is parallel to that of Lemma 9.4.1.
Let us prove only (9.4.5). We have

CE
�X

+
� K� Ep2

112 !!Ep2−1
2 K,

K′ +� ωE
�X
� Ep2

122∗Ep2 !
1 K′.

Hence

HomEb(ICX3 )

(
CE

�X

+
� K,K′ +� ωE

�X

)

�HomEb(ICX3 )

(
Ep2

112 !!Ep2−1
2 K,Ep2

122∗Ep2 !
1 K′)

�HomEb(ICX2 )

(
Ep2−1

2 K,Ep2 !
112Ep2

122∗Ep2 !
1 K′)

�
(∗)

HomEb(ICX2 )

(
Ep2−1

2 K,Eδ∗Eδ !Ep2 !
1 K′)

�HomEb(ICX2 )

(
Ep2−1

2 K,Eδ∗K′)

�HomEb(ICX)

(
K,Ep2

2∗Eδ∗K′)

�HomEb(ICX)

(
K,K′),

where (∗) follows from the fact that there is a Cartesian diagram (9.4.3). �
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Definition 9.4.5. — An adjunction in Eb
R-c(ICX) is a datum (K1,K2, η, ε), where

K1,K2 ∈ Eb
R-c(ICX) and

CE
�X

η−→K1

+
� K2,

K2

+
� K1

ε−→ ωE
�X

,

are morphisms such that:

(a) the composition

CE
�X

+
� K1

η−→K1

+
� K2

+
� K1

ε−→K1

+
� ωE

�X

corresponds to idK1 by (9.4.5),
(b) the composition

K2

+
� CE

�X

η−→K2

+
� K1

+
� K2

ε−→ ωE
�X

+
� K2

corresponds to idK2 by (9.4.6).

Similarly to the case of Db
hol(DX), we obtain:

Proposition 9.4.6.

(i) For K ∈ Eb
R-c(ICX) there is a natural adjunction (K,DE

XK, η, ε), that we denote by

(K,DE
XK) for short.

(ii) If (K1,K2, η, ε) is an adjunction in Eb
R-c(ICX), then K2 �DE

XK1.

Note that

DRE
X×X

(
B�X[−dX]

)�CE
�X

, DRE
X×X

(
B�X[dX]

)� ωE
�X

.

Proposition 9.4.7. — Let (M1,M2, η, ε) be an adjunction in Db
hol(DX). Then

(DRE
X(M1),DRE

X(M2),DRE
X×X(η),DRE

X×X(ε)) is an adjunction in Eb
R-c(ICX).

Proof. — This easily follows from the functorial properties of DRE
X. �

In particular, the natural adjunction (M,DXM) in Db
hol(DX) induces an adjunc-

tion (DRE
X(M),DRE

X(DXM)) in Eb
R-c(ICX). We thus get the following result.

Theorem 9.4.8. — For M ∈ Db
hol(DX) there is an isomorphism

DE
XDRE

X(M)�DRE
X(DXM).
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Recalling that

DRE
X(DXM)� SolE

X(M)[dX],

we deduce

Corollary 9.4.9. — For M ∈ Db
hol(DX) there is an isomorphism

SolE
X(M)[dX] �DE

X

(
DRE

X(M)
)
.

Hence we obtain the following corollary of Theorems 9.1.2, 9.3.3 and Proposi-
tion 4.9.21.

Corollary 9.4.10. — Let f : X−→ Y be a complex analytic map.

(i) For any N ∈ Db
hol(DY) there is an isomorphism in Eb(ICX)

SolE
X

(
Df ∗N

)� Ef −1SolE
Y(N ).

(ii) Let M ∈ Db
hol(DX) ∩ Db

good(DX), and assume that suppM is proper over Y. Then

there is an isomorphism in Eb(ICY)

SolE
Y(Df ∗M)[dY] � Ef ∗SolE

X(M)[dX].

(iii) Let M ∈ Db
hol(DX) and N ∈ Db

hol(DY). Then there is an isomorphism in Eb(ICX×Y)

SolE
X(M)

+
� SolE

Y(N )
∼−→ SolE

X×Y

(
M�D N

)
.

We obtain the following corollary of Theorem 9.1.2(iv).

Corollary 9.4.11. — If M ∈ Db
hol(DX) and Y⊂X is a closed hypersurface, then

SolE
X

(
M(∗Y)

)� π−1CX\Y⊗SolE
X(M).

We also obtain the following corollary of Lemma 9.3.1.

Corollary 9.4.12. — If Y⊂X is a closed hypersurface and ϕ ∈OX(∗Y), then

SolE
X

(
Eϕ

X\Y|X
)�CE

X

+⊗C{t=−Reϕ}.
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9.5. Riemann-Hilbert correspondence. — Let X be a complex manifold. Recall the
hom-functor from Definition 4.5.13

HomE : Eb(ICX)
op × Eb(ICX)−→ Db(CX).

Proposition 9.5.1. — There is a functorial morphism in M ∈ Db(DX)

(9.5.1) M−→HomE
(
SolE

X(M),OE
X

)
.

Proof. — Recall the natural morphisms

X×R∞
jX−−→X×R

πX−−→X.

By the definition of SolE
X, one has

RjX∗RE SolE
X(M)� RHomπ−1

X DX

(
π−1

X M,RjX∗RE OE
X

)
.

Hence, there is a morphism in Db(π−1
X DX)

π−1
X M−→ RHom

(
RjX∗RE SolE(M),RjX∗RE OE

X

)
,

which induces by adjunction the desired morphism. �

Consider the diagonal embedding

δ : X−→X×X.

Lemma 9.5.2. — For M ∈ Db
hol(DX), one has

HomE
(
SolE

X(M),OE
X

)�HomE
(

C{t=0},Eδ !
(
DRE

X(M)
+
�OE

X

))
[dX].

In particular, there is a functorial morphism in M ∈ Db
hol(DX)

(9.5.2) M−→HomE
(

C{t=0},Eδ !
(
DRE

X(M)
+
�OE

X

))
[dX].

Proof. — By Proposition 4.9.23 and Corollary 8.2.3, for K ∈ Eb
R-c(ICX) one has

HomE
(
DE

XK,OE
X

)�HomE
(

C{t=0},Eδ !
(

K
+
�OE

X

))
.

Moreover, by Theorem 9.4.8, one has

DE
X

(
DRE

X(M)
)� SolE

X(M)[dX]. �

We can now state our Riemann-Hilbert correspondence.
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Consider the quasi-commutative diagram of functors

(9.5.3) Db
hol(DX)

SolE
X

Eb
R-c(ICX)

op
HomE(∗,OE

X)

DE
X(∗[dX])�

Db(DX)

Db
hol(DX)

DRE
X

Eb
R-c(ICX)

HomE(C{t=0},Eδ !(∗+�OE
X))[dX]

Db(DX).

Theorem 9.5.3.

(i) For M ∈ Db
hol(DX), the morphisms (9.5.1) and (9.5.2) are isomorphisms. This means in

particular that we can reconstruct M from DRE
X(M).

(ii) The functor

DRE
X : Db

hol(DX)−→ Eb
R-c(ICX)

is fully faithful.

We will prove (i) in Section 9.6 and (ii) in Section 9.7.
Let us check that the correspondence (9.5.3) is compatible with the classical

Riemann-Hilbert correspondence.

Proposition 9.5.4. — There is a quasi-commutative diagram

Db
rh(DX)

DRX

Db
C-c(CX)

RHom (DX(∗),O t
X)[dX]

e

Db
rh(DX)

Db
hol(DX)

DRE
X

Eb
R-c(ICX)

HomE(C{t=0},Eδ !(∗+�OE
X))[dX]

Db(DX),

where e(F)=CE
X⊗π−1F is the fully faithful functor of Proposition 4.7.15.

Proof.

(i) The quasi-commutativity of the left hand side square follows from Proposi-
tion 9.1.3.

(ii) Denote by i0 : X −→ X × R∞ the morphism given by x 
→ (x,0). The quasi-
commutativity of the right hand side square follows from

HomE
(
DE

X

(
CE

X⊗π−1F
)
,OE

X

)

�
(1)
HomE

(
CE

X⊗π−1DXF,OE
X

)
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�HomE
(

CE
X

+⊗ (C{t=0} ⊗π−1DXF),OE
X

)

�HomE
(
C{t=0} ⊗π−1DXF,OE

X

)

�
(2)

RHom
(
DXF, i !0 RE OE

X

)

�
(3)

RHom
(
DXF,O t

X

)
.

Here, (1) follows from Corollary 4.8.4, (2) follows from Lemma 4.5.16, and
(3) follows from Lemma 9.5.5 below. �

Lemma 9.5.5. — One has

i !0 RE OE
X �O t

X,

where i0 : X−→X×R∞ denotes the morphism given by x 
→ (x,0).

Proof. — By Theorem 8.2.2, we have

RE OE
X = i !

((
E−τ

C|P
)r⊗L

DP
O t

X×P

)[1].
Let s : {0} −→ P be the inclusion, and denote by the same letter the induced map s : X−→
X× P. Then one has s= i ◦ i0, and

i !0 RE OE
X � s !

((
E−τ

C|P
)r⊗L

DP
O t

X×P

)[1]
�
(∗)

(
E−τ

C|P
)r⊗L

DP
D

X×P
s←−X
⊗L

DX
O t

X

� (
Ds∗E−τ

C|P
)⊗L

C O t
X �O t

X.

Here (∗) follows from Theorem 5.2.3(i). �

9.6. Reconstruction. — By Lemma 9.5.2, the following result implies Theo-
rem 9.5.3(i).

Theorem 9.6.1. — Let M ∈ Db
hol(DX). Then, the morphism in Proposition 9.5.1

M−→HomE
(
SolE

X(M),OE
X

)

is an isomorphism.

Proof. — Consider the statement

(9.6.1) PX(M)= “one has M ∼−→HomE
(
SolE

X(M),OE
X

)
”.

Then the hypotheses of Lemma 7.3.7 are all easily verified, except (e) and (f). We will
prove (e) in Lemma 9.6.2 below, and (f) in Lemma 9.6.6 below. Then the theorem follows
from Lemma 7.3.7. �
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Lemma 9.6.2. — Let f : X −→ Y be a projective morphism and M a good holonomic

DX-module. Under notation (9.6.1), if PX(M) is true, then PY(Df ∗M) is true.

Proof. — One has

HomE
(
SolE

Y(Df ∗M),OE
Y

)�HomE
(
Ef ∗SolE

X(M)[dX − dY],OE
Y

)

� Rf∗HomE
(
SolE

X(M),Ef !OE
Y[dY − dX]

)

� Rf∗HomE
(
SolE

X(M),DY←X⊗L
DX

OE
X

)

� Rf∗
(
DY←X⊗L

DX
HomE

(
SolE

X(M),OE
X

))

� Rf∗
(
DY←X⊗L

DX
M

)= Df ∗M,

where the last isomorphism follows from the fact that PX(M) is true. �

We now have to show that Theorem 9.6.1 holds if M is a holonomic DX-module
with a normal form along a normal crossing divisor. We begin with the following result,
analogous to [2, Proposition 7.3].

Lemma 9.6.3. — Let Y ⊂ X be a complex analytic hypersurface and ϕ ∈ OX(∗Y). Set

U=X \Y. Then there is an isomorphism in Db(I(DX⊗C DX))

Rπ∗RIhom
(
C{t<Reϕ}[1],DbT

XR

)� E−ϕ

U|X⊗L
OX

Dbt
XR

.

Proof. — Recall that j : X×R∞ −→X× P and π : X× P−→X denote the natural
morphisms. Recall that

DbT
XR
= j !RHomDP

(
E τ

C|P,Dbt
XR×P

)[1].
Hence Rπ∗RIhom (C{t<Reϕ}[1],DbT

XR
) is represented by the complex

(9.6.2) π∗Ihom
(
C{t<Reϕ},Dbt

XR×P

) ∂t−1−−−→ π∗Ihom
(
C{t<Reϕ},Dbt

XR×P

)

with components in degree 0 and 1. We consider them as subanalytic ind-sheaves.
For any relatively compact open subanalytic subset V⊂X, (9.6.2) induces a com-

plex

(9.6.3) Dbt
XR×P

({t < Reϕ} ∩ (V×R)
) ∂t−1−−−→Dbt

XR×P

({t < Reϕ} ∩ (V×R)
)
.

Hence it is enough to show that (9.6.3) is surjective and that its kernel

ker(∂t − 1)= {
u(t, x) ∈Dbt

XR×P

({t < Reϕ} ∩ (V×R)
) ; ∂tu= u

}
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is given by

(9.6.4)
{
et−ϕ(x)v(x) ; v(x) ∈Dbt

XR
(V∩U)

}
.

Note that the morphism
(
E−ϕ

U|X⊗OX
Dbt

XR

)
(V∩U)�C e−ϕ ⊗Dbt

XR
(V∩U)−→ ker(∂t − 1)

is given by e−ϕ ⊗v(x) 
→ et−ϕ(x)v(x).
The surjectivity follows from the surjectivity of

Dbt
XR×P(V×R)

∂t−1−−→Dbt
XR×P(V×R).

Neglecting the tempered growth, it is obvious that
{
u(t, x) ∈DbXR×P

({t < Reϕ} ∩ (V×R)
) ; ∂tu= u

}

= {
et−ϕ(x)v(x) ; v(x) ∈DbXR(V∩U)

}
.

Hence, (9.6.4) coincides with ker(∂t − 1) by the following sublemma. �

Sublemma 9.6.4. — For v(x) ∈DbXR(V∩U), one has

et−ϕ(x)v(x) ∈Dbt
XR×P

({t < Reϕ} ∩ (V×R)
)

if and only if

v(x) ∈Dbt
XR

(V∩U).

Proof. — Assume v(x) ∈Dbt
XR

(V ∩U). Since et−ϕ(x) belongs to C∞,t
XR×P({t < Reϕ}),

one has

et−ϕ(x)v(x) ∈Dbt
XR×P

({t < Reϕ} ∩ (V×R)
)
.

Conversely, assume et−ϕ(x)v(x) ∈Dbt
XR×P({t < Reϕ}∩(V×R)). Take a C∞-function χ(t)

on P whose support is contained in {t ∈ R ; −2 < t <−1} and such that
∫

etχ(t)dt = 1.
Set

W1 =
{
(x, t) ∈ (U∩V)×R ; t < Reϕ(x)

}

Z= {
(x, t) ∈ (U∩V)×R ; Reϕ(x)− 2≤ t ≤Reϕ(x)− 1

}

W2 =
(
(U∩V)× P

) \ Z

Then W1 and W2 are subanalytic open subsets and we have (U ∩ V)× P =W1 ∪W2.
Since χ(t −Reϕ(x))e

√−1 Imϕ(x) belongs to C∞,t
XR×P(W1), we obtain

χ
(
t −Reϕ(x)

)
et−Reϕ(x)v(x) ∈Dbt

XR×P(W1).
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Since χ(t − Reϕ(x))e
√−1 Imϕ(x)v(x) vanishes on W1 ∩ W2, there exists w(x, t) ∈

Dbt
XR×P((U∩V)× P) such that

w(x, t)|W1 = χ
(
t −Reϕ(x)

)
et−Reϕ(x)v(x) and w(x, t)|W2 = 0.

Hence, v(x)= ∫
w(x, t)dt ∈Dbt

XR
(U∩V). �

We deduce the following result, analogous to [2, Proposition 8.1].

Proposition 9.6.5. — Using the same notations as in Lemma 9.6.3, one has

Rπ∗RIhom
(
LE SolE

X

(
Eϕ

U|X
)
,RE OE

X

)� Eϕ

U|X⊗L
OX

O t
X.

In particular,

HomE
(
SolE

X

(
Eϕ

U|X
)
,OE

X

)� Eϕ

U|X.

Proof. — We have

LE SolE
X

(
Eϕ

U|X
)�

(∗)
C{t�0}

+⊗C{t<−Reϕ}[1],
RE OE

X � RHomDX

(
OX,DbT

XR

)
,

O t
X � RHomDX

(
OX,Dbt

XR

)
,

where (∗) follows from Corollary 9.4.12.
The statement then follows by applying the functor RHomDX

(OX,∗) to the iso-
morphism of Lemma 9.6.3. �

Now it remains to prove the following result, required in the proof of Theo-
rem 9.6.1.

Lemma 9.6.6. — Let M be a holonomic DX-module with a normal form along a normal

crossing divisor. Then

M ∼−→HomE
(
SolE

X(M),OE
X

)
.

Proof. — Let D⊂X be a normal crossing divisor and M a holonomic DX-module
with a normal form along D. Set U=X\D. We keep the same notations as in Section 7.1
such as � : X̃−→X and DA

X̃ . We also consider the natural morphisms

X×R∞
�̃←− X̃×R∞

πX̃−→ X̃.

For a DA
X̃ -module L, we set

SolE
X̃(L)= RHomDA

X̃

(
L,OE

X̃

) ∈ Eb(ICX̃).
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Similarly to the construction of (9.5.1), we have a morphism

(9.6.5) L−→HomE
(
SolE

X̃(L),OE
X̃

)
.

(i) We shall first show

(9.6.6) �̃−1π−1CU⊗SolE
X̃

(
MA)� E�−1SolE

X(M).

Since

(9.6.7) OE
X̃ � E� !RIhom

(
π−1CU,OE

X

)
,

we have

SolE
X̃

(
MA)= RHomDA

X̃

(
MA,OE

X̃

)

� RHom�−1DX

(
�−1M,E� !RIhom

(
π−1CU,OE

X

))

� E� !RIhom
(
π−1CU,RHomDX

(
M,OE

X

))

� RIhom
(
�̃−1π−1CU,E� !SolE

X(M)
)

� RIhom
(
�̃−1π−1CU,E�−1SolE

X(M)
)
,

where the last isomorphism follows from the fact that � is an isomorphism over U.
Hence we obtain

�̃−1π−1CU⊗SolE
X̃

(
MA)� �̃−1π−1CU⊗E�−1SolE

X(M)

� E�−1
(
π−1CU⊗SolE

X(M)
)

� E�−1SolE
X(M).

Here, the last isomorphism follows from Corollary 9.4.11.

(ii) Next, we shall show

(9.6.8) MA ∼−→HomE
(
SolE

X̃

(
MA)

,OE
X̃

)
.

Since the question is local, we can assume M= Eϕ

U|X for ϕ ∈OX(∗D). Then we have

RIhom
(
LE SolE

X̃

(
MA)

,RE OE
X̃

)

� RIhom
(
LE SolE

X̃

(
MA)

,RIhom
(
�̃−1π−1CU, �̃ ! RE OE

X

))

� RIhom
(
LE SolE

X̃

(
MA)⊗ �̃−1π−1CU, �̃ ! RE OE

X

)

�
(∗)

RIhom
(
�̃−1 LE SolE

X(M), �̃ ! RE OE
X

)

� �̃ !RIhom
(
LE SolE

X(M),RE OE
X

)
,
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where (∗) follows (9.6.6). Hence

RπX̃∗RIhom
(
LE SolE

X̃

(
MA)

,RE OE
X̃

)

� RπX̃∗�̃
!RIhom

(
LE SolE

X(M),RE OE
X

)

�� !Rπ∗RIhom
(
LE SolE

X(M),RE OE
X

)

�� ! (M⊗L
OX

O t
X

)
,

where the last isomorphism follows from Proposition 9.6.5. We have

� ! (M⊗L
OX

O t
X

)�� ! (M⊗L
OX

RIhom
(
CU,O t

X

))

��−1M⊗L
�−1OX

O t
X̃.

Hence, by applying αX̃, we obtain

(9.6.9) HomE
(
SolE

X̃

(
MA)

,OE
X̃

)� αX̃

(
�−1M⊗L

�−1OX
O t

X̃

)�MA

by Proposition 7.2.10.

(iii) Now we shall prove the statement

M ∼−→HomE
(
SolE

X(M),OE
X

)
.

By Proposition 7.2.10, we have

R�∗MA � αXR�∗
(
O t

X̃⊗L
�−1OX

�−1M
)

� (
αXRIhom

(
CU,O t

X

))⊗L
OX

M

�OX(∗D)⊗L
OX

M�M.

We have

HomE
(
SolE

X̃

(
MA)

,OE
X̃

)

�HomE
(
SolE

X̃

(
MA)

,RIhom
(
�̃−1π−1CU,E� !OE

X

))

�HomE
(
SolE

X̃

(
MA)⊗ �̃−1π−1CU,E� !OE

X

)

�HomE
(
E�−1SolE

X(M),E� !OE
X

)
,

where the last isomorphism follows from (9.6.6). It follows that

R�∗HomE
(
SolE

X̃

(
MA)

,OE
X̃

)�HomE
(
E� !!E�−1SolE

X(M),OE
X

)

by Lemma 4.5.17. Hence, applying R�∗ to (9.6.8), we get

(9.6.10) M ∼−→HomE
(
E� !!E�−1SolE

X(M),OE
X

)
.
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By Corollary 9.4.11, we have SolE
X(M)� π−1CU⊗SolE

X(M). Moreover, � : X̃−→X is
an isomorphism over U. Hence we have

E� !!E�−1SolE
X(M)� E� !!E�−1

(
π−1CU⊗SolE

X(M)
)

� π−1CU⊗E� !!E�−1SolE
X(M)

� π−1CU⊗SolE
X(M)

� SolE
X(M).

We thus obtain the desired result. �

Thus the proof of Theorem 9.6.1 is complete.
As a consequence of Theorem 9.6.1, we get the following result (which is also a

consequence of Lemmas 9.5.5 and 4.5.16).

Corollary 9.6.7. — There is an isomorphism in Db(DX)

OX �HomE
(
CE

X,OE
X

)
.

9.7. Fully faithfulness. — Let us now show that the functor DRE
X is fully faithful.

Theorem 9.7.1. — For M,N ∈ Db
hol(DX), there is an isomorphism

RHomDX
(M,N )

∼−→HomE
(
DRE

X(M),DRE
X(N )

)
.

In particular, the functor

DRE
X : Db

hol(DX)−→ Eb(ICX)

is fully faithful.

Proof. — By Theorem 9.4.8 and Proposition 4.9.13(iv), we have

HomE
(
DRE

XM,DRE
XN

)�HomE
(
SolE

XN ,SolE
XM

)
.

Then, we have

HomE
(
SolE

XN ,SolE
XM

)�HomE
(
SolE

XN ,RHomDX

(
M,OE

X

))

� RHomDX

(
M,HomE

(
SolE

XN ,OE
X

))

� RHomDX
(M,N ).

Here the last isomorphism follows from Theorem 9.6.1. �
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9.8. Stokes phenomenon. — Liner ordinary differential equations with irregular sin-
gularities are subjected to the Stokes phenomenon (see for example [26, Section 15] or
[8, Section 9.7]). Following [3, Section 7], we show here through an example how, in our
setting, the Stokes phenomenon arises in a purely topological fashion.

Let X be an open disc in C centered at 0. (We will shrink X if necessary.) Consider
the real blow-up � : X̃ −→ X of X along {0}, and recall that X̃0 =�−1(0) is the set of
normal directions to 0 in X.

Let ϕ,ψ ∈ OX(∗0), and assume that ψ − ϕ has an effective pole at 0. For U =
X \ {0}, set

M0 := Eϕ

U|X⊕ Eψ

U|X.

Let M be a holonomic DX-module such that M �M(∗0), sing. supp(M)= {0}, and
one has

(9.8.1)
(
MA)∣∣

θ
� (

MA
0

)∣∣
θ

for any θ ∈ X̃0.

Note that M has a normal form along {0}.
The Stokes curves are the real analytic arcs �i ⊂X defined by

{
Re(ψ − ϕ)= 0

}=
⊔

i∈I
�i.

(Here we possibly shrink X to avoid crossings of the �i ’s and to ensure that they admit |z|
as parameter.) Since Eϕ

U|X � Eϕ+ϕ0
U|X for ϕ0 ∈OX, the Stokes curves depend on the choice

of ϕ and ψ .
The Stokes lines Li , defined as the half-lines tangent to �i at 0, are independent of

the choice of ϕ and ψ .
The Stokes multipliers of M describe how the isomorphism (9.8.1) changes when

θ crosses a Stokes line.
Let us show how these data are topologically encoded in DRE

X(M).
Set

F :=CE
X

+⊗C{t=Reϕ} � “lim−→”
a→+∞

C{t−Reϕ≥a},

G :=CE
X

+⊗C{t=Reψ} � “lim−→”
a→+∞

C{t−Reψ≥a}.

By Corollary 9.2.3, Lemma 9.3.1 and (9.8.1),

(9.8.2) DRE
X(M)� RIhom

(
π−1CU,H

)[1],
where H is an enhanced ind-sheaf such that H� π−1CU⊗H and

π−1CS⊗H� π−1CS⊗ (F⊕ G)

for any sufficiently small open sector S.
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Let b± be the vector space of upper/lower triangular matrices in M2(C), and let
t= b+ ∩ b− be the vector space of diagonal matrices. Using Proposition 4.7.9 one gets

Lemma 9.8.1. — Let S be an open sector.

(i) If S⊂ {±Re(ϕ −ψ) > 0}, then

EndEb(ICX)

(
π−1CS⊗ (F⊕ G)

)� b
±.

(ii) If S⊃ Li for some i ∈ I and S∩ Lj =∅ for i �= j , then

EndEb(ICX)

(
π−1CS⊗ (F⊕ G)

)� t.

This proves that the Stokes lines are encoded in H. Let us show how to recover the
Stokes multipliers of M as gluing data for H.

Let Si be an open sector which contains Li and is disjoint from Lj for i �= j. We
choose Si so that

⋃
i∈I Si =U.

Then for each i ∈ I, there is an isomorphism

αi : π−1CSi
⊗H ∼−→ π−1CSi

⊗ (F⊕ G).

Note that αi is unique only up to left multiplication by elements of t ∩ GL2(C) by
Lemma 9.8.1(ii).

Take a cyclic ordering of I such that the Stokes lines get ordered counterclockwise.
Since {Si}i∈I is an open cover of U, the enhanced ind-sheaf H is reconstructed from

F⊕ G via the gluing data given by the Stokes multipliers

Ai = αi+1α
−1
i |π−1(Si∩Si+1),

where Ai ∈ b± ∩GL2(C) if ±Re(ϕ −ψ) > 0 on Si ∩ Si+1 by Lemma 9.8.1(i).
Note that, replacing Ai with A′i = γi+1Aiγ

−1
i for γi ∈ t ∩GL2(C), one gets an en-

hanced ind-sheaf isomorphic to H.
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