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ON THE GENESIS OF DIRECTIONAL FRICTION THROUGH BRISTLE-LIKE
MEDIATING ELEMENTS
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Abstract. We propose an explanation of the genesis of directional dry friction, as emergent property
of the oscillations produced in a bristle-like mediating element by the interaction with microscale
fluctuations on the surface. Mathematically, we extend a convergence result by Mielke, for Prandtl–
Tomlinson-like systems, considering also non-homothetic scalings of a wiggly potential. This allows us
to apply the result to some simple mechanical models, that exemplify the interaction of a bristle with
a surface having small fluctuations. We find that the resulting friction is the product of two factors:
a geometric one, depending on the bristle angle and on the fluctuation profile, and a energetic one,
proportional to the normal force exchanged between the bristle-like element and the surface. Finally,
we apply our result to discuss the with the nap/against the nap asymmetry.
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1. Introduction

Modelling frictional interactions is a challenging task, both for the variety of behaviours experimentally ob-
served, and for the relevance of such phenomena in the study and control of mechanical devices. The common
strategy consists of a multiscale approach, where the frictional behaviour is an emergent macroscopic property
of mechanical interactions between the asperities of the two surfaces occurring at microscale [1, 2]. Such inter-
actions are often described by modelling the asperities with simple mechanical systems, such as springs and
bristles [8, 9, 17].

A classical example of such multiscale approach is the Prandtl−Tomlinson model, developed to explain the
genesis of Coulomb dry friction [33, 34]. The model considers the motion of a point mass along a sinusoidal
potential, subject to an external driving force and a viscous damping, showing convergence to a dry friction
behaviour when the sinusoidal oscillations decrease homothetically. This scenario can be related to the interac-
tion of a single asperity of the upper surface with a rigid rough lower surface. Such representation applies also
to the interaction of the cantilever with the surface in a friction force microscope.
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In this paper we follow this multiscale paradigm to propose an explanation of the genesis of a directional
asymmetry in the coefficients of Coulomb dry friction, in situations where the interaction between the two
surfaces is mediated by bristle-like elements.

Our work is motivated by a growing interest in the modelling and development of crawling locomotors,
exploiting an asymmetry in the friction coefficients [10, 11, 13, 14, 39]. Such directionality of frictional forces is
common both in Nature [29] and in bio-inspired robots [21, 22, 30], and is usually obtained thanks to elastic
elements, such as oblique filaments or bristles (e.g. the setae in earthworms), that mediate the interaction
between the crawler and the surface [16].

Our starting point is paper [24] by Mielke. Here, it is shown that the quasi-static behaviour of a family of
Prandtl–Tomlinson-like systems, in which the fluctuation in the potential decreases homothetically, converge to
that of a particle subject to dry friction. Moreover, the leftwards and rightwards friction coefficients coincide
with the minimum and maximum of the derivative of the oscillating potential. In this way, a directionality in
the friction is produced simply by assuming a suitable asymmetry in the potential. As we discuss in Section 4,
a key element in this approach is the change in the nature of the dissipation, from viscous in the approximating
systems to rate-independent in the limit one.

We apply these ideas to study the limit behaviour of systems characterized by a mediating, bristle-like
element, interacting with a wiggly surface whose periodic fluctuations scale homothetically to zero. In this way
the wiggly potential is generated by the small oscillations in the mediating element, induced by the fluctuations
of the surface. Moreover an asymmetry in the wiggly potential can be simply produced by an asymmetry in the
mediating element (e.g. the inclination of a bristle), also in the case of a symmetric surface.

In order to apply Mielke’s approach to our problem, we need to extend his framework to more general families
of approximating systems, in which the scaling of the wiggly potential is no longer homothetic, but contains
also a nonlinear term (cf . Eq. (2.5)). This is our first result, presented in Section 2 (Thm. 2.1), and constitutes
the abstract contribution of this paper.

The aim of this result is not just to satisfy a technical requirement, but also to build a setup fit to consider
a wider perspective. Assembling the components that contribute to the wiggly potential, instead of directly
assuming it as homothetically scaling, highlights the main factors characterizing the model and gives insight
on the phenomenon. As our models of Section 3 illustrate, such an approach generates naturally higher order
terms in the wiggly potential, already in very simple cases, and possibly from multiple elements. Thus, a general
result for non-homothetic scaling provide a necessary support for this and further investigations.

From the point of view of applications, our main result is to provide some physical insight into the origin
of directional friction. This is obtained by constructing some concrete examples of simple mechanical systems
producing, in the limit, directional dry friction, and by interpreting the origin of this frictional asymmetry in
terms of the parameters characterizing each example.

The friction coefficients we obtain are the product of two factors. The first one is “geometric”: it contains
the asymmetry of the system and is determined only by the roughness of the surface and by the angle of the
mediating bristle-like element. The second factor is instead “energetic”: it depends on the limit energetic state
of the mediating element, but not on the direction of motion. This last coefficient is proportional to the normal
force exerted, at the limit, by the mediating element on the surface. In this way we recover the classical structure
of Coulomb friction law, where the friction force is the product of a coefficient characteristic of the surfaces and
the modulus of the normal forces exchanged between them.

Our results are then used to discuss the with the nap/against the nap asymmetry. As we will argue better in
Section 3.4, our intuition of such asymmetry actually includes under the same name several distinct phenomena,
producing the same kind of directionality. Despite the complex behaviour that can be showed by a bristle, our
model of Section 3.3 can be used to outline two fundamental effects, corresponding to changes in the two
factors that characterize the friction coefficients. The geometric effect occurs when the bristle keeps the same
configuration during the two phases (with and against the nap), and the directionality is due to the inclination of
the bristle, that in this way “perceives” a symmetric fluctuation of the surface as asymmetric. The energetic effect
applies to situations where the configuration of the bristle flips when the velocity changes sign, so that the tip
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of the bristle is always behind its root with respect to the direction of motion. In this case the geometric
component is unchanged, but the bristle switches between two different energetic states, exerting a different
normal force on the surface.

Elastic fibrils are known to play a key role in biological adhesion mechanisms. Hairy surfaces provide lizards,
insects and spiders with extraordinary adhesion capabilities combined with rapid attachment and detachment,
allowing them to move and rest on vertical surfaces and ceilings. For instance, gecko’s toe pads have hundreds of
thousands of setae, approximately 30–120 μm long, each seta splitting into hundreds of submicron protrusions,
called spatulae. A strong effort is being invested in analysing and reproducing these structures, in order to
develop new bio-inspired nanostructured adhesive materials [6]. The main adhesion mechanism involved in these
processes are van der Waals interactions occurring between the spatulae and the surface [7]. The role of size,
elasticity and configuration of the spatulae to obtain such a strong adhesion has been widely investigated [12], as
well as the effects of surface roughness [31], and of normal and shear stress [32]. The setae act at an intermediate
hierarchy level between the spatulae and the muscular motion of the toes. The anisotropic configuration of the
setae, canting [18] or buckling [15], and the pulling forces exterted, more than three orders of magnitude over
three orders of magnitude [5, 36, 38].

We remark that the role played by bristles in those adhesion phenomena is qualitative different from the one
studied in this paper, that is more suitable to a larger scale, where other phenomena are dominant. An intuitive
example is what we experience rubbing a brush with slanted bristles: we do not perceive any molecular adhesion
force, while an anisotropic lateral friction is produced by the small oscillations produced in the bristle during
the stroke. Indeed, in our microscopic model we neglect adhesion forces between the bristles and the surface, as
those induced by the van der Waals interaction of the spatulae; instead, the surface, with its fluctuations, acts
as a frictionless rigid constraint on the bristle (a vanishing viscosity is assumed to act on the bristle as a whole,
not on the contact point). Likewise, the configuration of the bristles and their elastic deformation is no longer
a way to influence and control an adhesion phenomenon occurring at a lower hierarchy level, as gecko’s setae
affect the adhesion of the spatulae; instead, the infinitesimal periodic deformations of the bristles become the
cause of the macroscale friction.

In support of our approach, we notice that the behaviour of the model of Section 3.3 has a close resemblance
to that observed experimentally for the robotic crawler developed in [30]. There, slanted bristles, interacting
with a groove-textured surface, are used to obtain net displacement, when the body of the crawler performs
a cycle of elongation and contraction. The bristle-surface interaction produces an oscillatory friction force,
and it is shown that the system can be effectively discussed considering supports moving on a flat surface
and experiencing a constant average friction force. Such result supports our approach and encourages a future
experimental validation of the predictions of our models.

2. Abstract setting

In this section we show that the evolution of a prototype one dimensional rate independent system, with
energy E and a dissipation potential R positively homogeneous of degree 1, can be constructed as the limit
of the evolutions of a family of systems (Eε,Rε), where Eε = E + Vε, with Vε an oscillatory (“wiggly”) small
perturbation, and Rε is a small viscous dissipation potential. The system (Eε,Rε) will describe a motion on an
undulatory surface with vanishing small roughness, while the system (E ,R) describes motion on a flat surface
with directional dry friction.

Let us therefore consider a mechanical system having internal energy

E(t, z) = Φ(z) − �(t)z, (2.1)

where t ∈ [0, T ] represent the time and z ∈ R is a one-dimensional state variable. We assume that Φ ∈ C2(R, R) is
a uniformly convex function, while � ∈ C1([0, T ], R). The dissipative effects of a change in the state of the system
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is described by the dissipation potential

R(v) =

{
ρ+v for v ≥ 0 ;
ρ−v for v ≤ 0 ;

(2.2)

where ρ− < 0 and ρ+ > 0 are suitable constants. We consider the quasi-static evolution of the system, de-
scribed by

0 ∈ ∂żR(ż) + DzE(t, z), (2.3)

where the dot ˙ denotes the derivative with respect to the time variable t, ∂ż denotes the subdifferential with
respect to ż and Dz denotes the derivative in the z variable (below also denoted briefly, when not ambiguous,
with a prime ′).

Similarly we introduce the following family of perturbed systems depending on a small parameter ε. The
energy of these systems is obtained by adding to E a small wiggly perturbation. More precisely we have

Eε(t, z) = Φ(z) − �(t)z + Vε(z), (2.4)

with
Vε(z) = εW

(z

ε

)
+ ε2Q

(
ε;

z

ε

)
. (2.5)

Here W ∈ C2(R, R) is a 1-periodic (non-constant) function; whereas Q : (0, εQ) × R → R, for some εQ > 0, is
1-periodic and C2 in the second variable. Moreover we assume the existence of two positive constants CQ,0 and
CQ,1 such that, for every 0 < ε < εQ and for every y ∈ R we have

|Q(ε; y)| < CQ,0, |Q′(ε; y)| < CQ,1, (2.6)

where the prime ′ denotes the derivative with respect to the second variable y.
The systems are subject to a viscous friction, described by the Rayleigh dissipation potential

Rε(ż) =
εγ

2
ż2, for some γ > 0, (2.7)

and their (quasi-static) evolution is described by the equation

0 = DżRε(ż) + DzEε(t, z). (2.8)

We are going to show that the behaviour of the system (2.3) is approximated, for ε → 0, by that of the
systems (2.8). To do so, a last assumption is needed, in order to link the two situations. Namely, we require

ρ+ = maxW ′(z) > 0, ρ− = min W ′(z) < 0. (2.9)

We are now ready to state the main result of this section.

Theorem 2.1. In the framework described above, let zε : [0, T ] → R be a family of solutions of (2.8), such that

zε(0) → z0 ∈ (Φ′)−1 ([�(0) − ρ+, �(0) − ρ−]) . (2.10)

Then, the differential inclusion (2.3) has a unique solution z̄ : [0, T ] → R for the initial conditions z̄(0) = z0.
Moreover, for ε → 0, this solution satisfies

zε → z̄ in C0([0, T ]), (2.11)∫ t2

t1

2Rε(żε(t)) dt →
∫ t2

t1

R( ˙̄z(t)) dt for every 0 ≤ t1 < t2 ≤ T . (2.12)
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Theorem 2.1 is proved in Section 5, through a convergence strategy illustrated in Section 4. Let us remark that
the right term in (2.10) is well defined since, being Φ uniformly convex, it follows that Φ′ is globally invertible
with range equal to R.

For our application, it is useful to study an apparently more general situation and show that it actually falls
in the framework of Theorem 2.1. Let us consider a function F ∈ C3([−δF , δF ], R) defined in a neighbourhood
of zero and such that

F ′(0) = α �= 0. (2.13)

Let W ∈ C2(R, R) be a 1-periodic (non-constant) function and set

μ+ = maxW ′(z) > 0, μ− = minW ′(z) < 0. (2.14)

We consider also a function Q : (0, ε̃Q)× R → R, defined for some ε̃Q > 0, and such that it is 1-periodic and
C2 in the second variable. We assume that there exist two positive constants C̃Q,0 and C̃Q,1 such that, for every
0 < ε < ε̃Q and for every y ∈ R, we have

|Q(ε; y)| < C̃Q,0, |Q′(ε; y)| < C̃Q,1. (2.15)

Let εF be small enough to satisfy εF ‖W‖∞ + ε2
F C̃Q,0 < δF . We now consider, for every positive ε <

min{εF , εQ}, the general wiggly potential Vε defined as

Vε(z) = F
[
εW

(z

ε

)
+ ε2Q

(
ε;

z

ε

)]
−F(0). (2.16)

In this formulation we have two sources of higher order perturbations: the first given by the term Q, that in
our models accounts for the nonlinearities produced by the inclination of the bristle; the second given by the
nonlinear behaviour of F , that allows a more realistic description of the elasticity of the bristle.

With the following lemma we show that this two effects can be mathematically aggregated, with the limit
evolution depending only on α and μ±; this result will facilitate the analysis of our models in the next section.

Lemma 2.2. In the framework above, for every wiggly potential Vε of the form (2.16) there exist two suitable
functions W and Q, such that Vε can be written in the form (2.5) for sufficiently small ε > 0. Moreover we
have W (y) = αW(y) and therefore

ρ+ = αμ+

ρ− = αμ−
if α > 0

(
resp. ρ+ = −αμ−

ρ− = −αμ+
if α < 0

)
. (2.17)

Proof. We recall that, expanding F as a Taylor series, we have

F(u) −F(0) = αu +
F ′′(0)

2
u2 + h(u)u2 (2.18)

with lim
u→0

h(u) = 0. Moreover, since F ∈ C3, it can be shown that h ∈ C1 and h′(0) = F ′′′(0)/6. Thus, applying

this expansion to (2.16), we get
Vε(z) = εW

(z

ε

)
+ ε2Q

(
ε;

z

ε

)
,

where we set W (y) = αW(y) and

Q(ε; y) = αQ(ε; y) +
F ′′(0)

2
W(y)2 + ε2F ′′(0)

2
Q(ε; y)2 + h

(
εW(y) + ε2Q(y)

)
[W(y) + εQ(ε; y)]2 .

All the desired properties of W follow from their analogous ones for W . To recover the desired estimates on Q
and Q′, we notice that, for any arbitrary Ch > 0, we can find εh such that∣∣h (

εW(y) + ε2Q(y)
)∣∣ < Ch∣∣h′ (εW(y) + ε2Q(y)
)∣∣ < |F ′′′(0)| + 1

for every y ∈ R and ε ∈ (0, εh).
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Thus, for every for every positive ε < min{1, εF , εQ, εh}, we have

|Q(ε; y)| ≤ CQ,0 := αC̃Q,0 +
F ′′(0)

2
‖W‖2

∞ +
F ′′(0)

2
C̃2

Q,0 + Ch

(
‖W‖∞ + C̃Q,0

)2

.

The twice continuous differentiability of Q follows from those of Q and W , recalling also that h(u)u2 is twice
continuously differentiable in u. Moreover we have the estimate

|Q′(ε; y)| ≤ CQ,1 := αC̃Q,1 + F ′′(0) ‖W‖∞ ‖W ′‖∞ + F ′′(0)C̃Q,0C̃Q,1

+ (F ′′′(0) + 1)
(
‖W‖∞ + C̃Q,0

)2

+ Ch

(
‖W‖∞ + C̃Q,0

)(
‖W ′‖∞ + C̃Q,1

)
. �

The form (2.16) of Vε is interesting from a physical point of view, since it highlights the role of two different
elements in our applications. Formula (2.17) shows that the effective friction ρ± in the ε → 0 limit is the product
of two quantities: μ± associated to W and α associated to F . On one hand the “geometric” coefficients μ+, μ−
are related to the (directional) roughness of the surface, as perceived by the geometry of the system. On the
other hand, the “energetic” coefficient α is associated to a “tension” in the element that mediates the frictional
interaction.

This duality is quite central in our applications. Firstly, this distinction reinforces the resemblance with
Coulomb’s classical formulation of dry friction, where the friction intensity depends both on a coefficient,
related to the properties of the interacting surfaces, and on the normal force exerted by each surface on the
other one. Remarkably, in our models, the term α is proportional to the normal force exerted, in the limit case,
on the surface by the mediating element.

Moreover, when discussing the with the nap/ against the nap asymmetry in Section 3.4, we will see that it
can be produced by two distinct effects: a geometric effect, given by the intrinsic asymmetry of the system, as
captured by the coefficients μ±, and a energetic effect, where we observe a change of the configuration of the
system between the two phases (with and against the nap), producing a change in the value of α.

3. Modelling

In this section we discuss three different models to obtain directional dry friction as the limit of the effects
of an interaction with a surface having vanishingly small roughness, with the mediation of a hair/bristle-like
element. We remind that, as in the previous section, we are assuming quasi-static evolution.

The limit system

We characterize a frictional interaction governed by dry friction through a system, illustrated in Figure 1,
consisting of a horizontal spring, that evolves as follows. The position of one end of the spring is controlled by
the function q ∈ C1([0, T ], R); the second end of the spring, with position u(t), is free to move and interacts
with the surface, according to the force-velocity law

f lim(u̇) =

⎧⎪⎨
⎪⎩
−ρ+ < 0 if u̇ > 0,
ρ ∈ [−ρ+,−ρ−] if u̇ = 0,
−ρ− > 0 if u̇ < 0.

(3.1)

Thus the limit system has dissipation potential (2.2) and internal energy

E =
kh

2
(
Lrest

h − q(t) + u
)2 + const., (3.2)

where kh and Lrest
h are respectively the elastic constant and the rest length of the spring.
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z(t)

u(t) q(t)

Figure 1. The limit system.

The state of the system will be described by a coordinate z of the form z(t) = u(t) + c. The constant c,
introduced for technical reasons, has different values in the models and can be thought as a gap between the
position u(t) of the second end of the spring and the position z(t) at which, in the ε → 0 limit, the bristle-like
mediating element interacts with the surface, cf . Figure 1. Thus the energy E can be written in the form (2.1)
by setting

Φ(z) =
kh

2
z2, �(t) = kh(q(t) − Lrest

h ), (3.3)

and neglecting a remaining term r(t), depending only on the time t, since it does not affect the dynamics (2.3).
We also remark that the change of variable to z does not alter the dissipative terms, since u̇ = ż. Finally, we
mention [3], where a similar model was used to study discontinuous evolutions.

The approximating systems

In the approximating systems, we imagine that the surface in no longer flat, but has a small, ε-periodic pertur-
bation of the form

wε(x) = εw
(x

ε

)
, (3.4)

where w ∈ C2(R, R) is a 1-periodic (non-constant) function. Moreover we define

ω+ = max w′(x) > 0, ω− = min w′(x) < 0. (3.5)

The approximating systems are still characterized by a horizontal spring as in the limit model. However, the
interaction with the surface is no longer subject to dry friction, but mediated by a new element, that ideally
plays the role of a hair or a bristle, attached to the end u(t) of the horizontal spring. This element has, up to a
constant, an internal energy Vε as in (2.16), that depends only on u and on the magnitude of the perturbation ε.
Finally, the only dissipative force acting on the system is a (vanishing) viscous force

fvis
ε (u̇) = −εγ u̇, (3.6)

so that the Rayleigh dissipation potential of the system is given by (2.7).
In the following we discuss three different models for this mediating element. In the first model, the mediating

element is a vertical spring. The second model is actually a generalization of the first one, since in this case the
spring forms a constant angle ϑ with the vertical axis. In the third model the mediating element is a straight
rigid bar with constant length, but now the angle with the vertical axis can change and is influenced by an
angular spring.
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wε

u(t) q(t)

h

εγ

Figure 2. First model: Vertical spring.

3.1. First model: Vertical spring

In our first model the mediating element (bristle) is a vertical spring, with horizontal position u(t), as
illustrated in Figure 2. One end of the spring has fixed height, while the height of the other end follows the
fluctuation of the surface, in such a way that the length of the spring is

L(u) = h − wε(u).

Let k > 0 and Lrest be respectively the elastic constant and the rest length of the spring. Setting z(t) = u(t),
the energy of the vertical spring is

k

2
(
Lrest − h + wε(z)

)2 = F(εW(
z

ε
)) = Vε(z) + F(0),

where W(y) = w(y) and F(y) = k
2 (Lrest − h + y)2, so that we have

α = F ′(0) = k(Lrest − h), μ+ = ω+, μ− = ω−.

We require
Lrest �= h,

so that α �= 0 and (2.13) is satisfied. We notice that, for instance, setting Lrest > h means that the spring is
always compressed.

In this way all the requirements of Lemma 2.2 are satisfied, and therefore we can apply Theorem 2.1 to obtain
the desired behaviour for the limit system. In this way, for a compressed spring, we recover a sort of Coulomb
law, since the friction coefficients are proportional to the normal force exerted by the spring on the surface,
that, in the limit, is exactly equal to α. Moreover, if the profile of the fluctuations is asymmetric, in the sense
that ω+ �= ω−, then also the friction is asymmetric.

3.2. Second model: Slanted spring

Our second model generalizes the first one, since in this case we consider a slanted spring forming a fixed
angle 0 < ϑ < π/2 with the vertical axis, as illustrated in Figure 3. As before, one end of the spring has fixed
height and horizontal position u(t). In this case, however, the horizontal position of the second end will be
different from u(t) and denoted with p(t). We therefore have

u − p

h − wε(p)
= tan ϑ. (3.7)
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wεp(t)

ϑ

u(t) q(t)

h

εγ

Figure 3. Second model: Slanted spring.

We can express explicitly u as a function of p as

u − h tanϑ = p − wε(p) tan ϑ. (3.8)

We require
ω+ < cotϑ, (3.9)

so that w′
ε(p) tan ϑ < ω+ tan ϑ < 1 and therefore pε(u) is a one-to-one correspondence. The length of the spring

is thus

L =
√

(u − p)2 + (h − wε(p))2 =
u − p

sin ϑ
=

h − wε(p)
cosϑ

. (3.10)

For our purposes, it is convenient to adopt the variable

z = u − h tanϑ

to represent the state of the system. Setting

g(p) = p − w(p) tan ϑ,

we notice that, for every choice of ε > 0, the function g relates z(t) with p(t) through the one-to-one correspon-
dences

z(t)
ε

= g

(
p(t)
ε

)
.

The bijectivity of g follows from (3.9) since

g′(p) = 1 − w′(p) tan ϑ > 0.

The inverse function g−1 is twice continuously differentiable and such that g−1(z + 1) = g−1(z) + 1 for every
z ∈ R.

We set

W(z) = w
(
g−1(z)

)
, Q(ε; z) = 0,

and

F(y) =
k

2

(
Lrest − h − y

cosϑ

)2

,
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so that, up to a constant, the internal energy of the slanted spring is given by Vε(z) = F(εW(z/ε)) of the
form (2.16).

We now want to determine the coefficients ρ±. Since

α =
k

cosϑ

(
Lrest − h

cosϑ

)
, (3.11)

it remains to find μ+ and μ−. Since this involves the derivative of g−1, difficulties may arise trying a direct
computation, since g cannot be always inverted explicitly and thus, in general, W may not be explicitly deter-
mined. Such is the case, for instance, of a sinusoidal choice of w, for which the inversion of g leads to the well
studied problem of the inverse Kepler equation [4].

However, for our purpose, the full knowledge of the fluctuation profile as perceived by the slanted spring,
i.e. the explicit form of W , is not necessary, since we are only interested in the minimum and maximum of
W ′. Such values can be computed without inverting g explicitly. Since the same issue will arise also in the next
model, we summarize the result in the following lemma.

Lemma 3.1. Let w ∈ C2(R, R), be a 1-periodic function with ω+ = max w′(z) > 0 and ω− = min w′(z) < 0 .
For some constant a, with ω−1

− < −a < ω−1
+ , we consider

g(p) = p + aw(p) > 0, W(z) = w
(
g−1(z)

)
.

Then

μ+ = maxW ′(z) =
ω+

1 + aω+
, μ− = minW ′(z) =

ω−
1 + aω−

· (3.12)

Proof. For any fixed z̄ ∈ R, let us define p̄ = g−1(z̄). We have

W ′(z̄) = w′(p̄) · (g−1)′(z̄) = w′(p̄)
1

g′(p̄)
=

w′(p̄)
1 + aw′(p̄)

· (3.13)

Since g is a bijection and the function y �→ y

1 + ay
is increasing monotone for y ∈ [ω−, ω+], we get

μ+ = max
z̄∈R

W ′(z̄) = max
p̄∈R

w′(p̄)
1 + aw′(p̄)

=
ω+

1 + aω+
,

μ− = min
z̄∈R

W ′(z̄) = min
p̄∈R

w′(p̄)
1 + aw′(p̄)

=
ω−

1 + aω−
·

�

Thus, for our second model, we have

μ+ =
ω+

1 − ω+ tanϑ
, μ− =

ω−
1 − ω− tanϑ

· (3.14)

We notice that, for ϑ = 0, we recover the situation of the first model, as expected. The behaviour of the
coefficient as function of ϑ is illustrated in Figure 4.

Thus all the requirements of Lemma 2.2 are satisfied, and Theorem 2.1 can be applied. We also observe
from (3.11) that the coefficient α is proportional to the normal force exerted by the spring on flat surface at
ε = 0, by a factor 1/ cos2 ϑ.

We notice that, for this model, we have ρ+ > −ρ−, meaning that the friction opposing a rightward movement
(u̇ > 0) is greater than the one corresponding to a leftward movement (u̇ < 0). This is exactly the opposite
of what we usually experience in the with the nap/against the nap asymmetry, for which, as we will discuss in
Section 3.4, other explanations can be found.

Remarkably, such a “reversed” with the nap/against the nap asymmetry has been observed in experiments
dealing with friction force microscopy on molecular monolayers [19, 20]; the resemblance with such situations
suggests a possible connection.
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Figure 4. Behaviour of μ+ and μ− in the second model as a function of ϑ. We are setting
ω+ = −ω− = 0.1, so that by (3.9) the admissible domain is 0 < ϑ < arccot 0.1.

3.3. Third model: Angular spring

In this model, the mediating element consists of a straight rigid rod with length L, as illustrated in Figure 5.
One end of the rod has constant height and horizontal position u(t). The rod can rotate around this end and
we denote with ϑ > 0 the angle formed with the vertical axis. We denote with p(t) the horizontal coordinate of
the second end of the rod and assume that the systems is oriented so that p < u. Denoting with h the distance
between the first end of the rod and the limit flat surface, we require L > h, so that, for sufficiently small
oscillations wε, the rod can always touch the surface. We define

ϑlim = arccos
h

L
> 0 (3.15)

as the angle of the rod when it touches the flat surfaces in the limit ε → 0. The rod has an angular spring with
rest angle ϑrest. We assume

ϑlim > ϑrest > −π

2
· (3.16)

The internal energy of the spring is
k

2
(
ϑ − ϑrest

)2
.

wεp(t)

ϑ(t)

u(t) q(t)

h

εγ

Figure 5. Third model: Angular spring, for ϑrest = 0.
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Since the surface acts as a constraint on the system and we consider quasi-static motion, for each value of u,
we deduce that the rod assumes the minimum angle possible ϑ = ϑ(u), touching the surface.

We require, for every x ∈ R,
− tanϑlim < w′(x) < cotϑlim. (3.17)

For ε sufficiently small, the right inequality assures that the rod touches the wiggly surface only with its second
end, whereas the left inequality implies that, when u(t) changes, then also p(t) changes, but without jumps.
Thus, since the second end of the rod touches the surface, we can deduce the following relationships:

L =
√

(u − p)2 + (h − wε(p))2 =
u − p

sin ϑ
=

h − wε(p)
cosϑ

· (3.18)

From this, we can express explicitly ϑ(t) as a function of p(t), namely

ϑ(t) = arccos
h − wε(p(t))

L
· (3.19)

Let us introduce the new variable
z(t) = u(t) −

√
L2 − h2. (3.20)

We now want to show that wε(p(t)) can be expressed as a function of z(t) of the form

wε(p(t)) = εW
(

z(t)
ε

)
+ ε2Q

(
ε;

z(t)
ε

)
,

with W and Q as in (2.16); in this way also ϑ(t) can be expressed as a function of z(t).
From (3.18) we can express z(t) as a function of p(t), as

z(t) = p(t) + A(wε(p(t))), (3.21)

where
A(y) =

√
L2 − (h − y)2 −

√
L2 − h2.

We notice that A(0) = 0 and A′(y) = h−y√
L2−(h−y)2

. Equation (3.21) gives a one-to-one correspondence between

z(t) and p(t), since
dz

dp
= 1 + A′(wε(p))w′

(p

ε

)
= 1 + (cotϑ)w′

(p

ε

)
> 0 (3.22)

for ε sufficiently small. The last inequality follows from the fact that, for ε → 0, we have ‖wε‖∞ → 0 and
ϑ ≈ ϑlim. Hence, by (3.17), we can find εϑ such that, for ε < εϑ, we always have cotϑ > 0.

Let us denote Z = z/ε and P = p/ε. From (3.21), we get a twice continuously differentiable bijection
Z = G(ε; P ), that can be decomposed as

G(ε; P ) = G0(P ) + εGR(ε; P ),

where
G0(P ) = P +

h√
L2 − h2

w(P ) = P + (cotϑlim)w(P )

and GR(ε; P ) is 1-periodic and twice continuously differentiable in P ; moreover GR and its derivative in P are
uniformly bounded for ε sufficiently small.

From (3.22) we know that DP G(ε; P ) > 0 for every P ∈ R; thus, for each ε < εϑ, the function G(ε; ·) has
a twice continuously differentiable inverse H(ε; ·), so that P = H(ε, Z). The function H can be written in the
form

H(ε; Z) = H0(Z) + εHR(ε; Z).
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Here H0 is twice continuously differentiable, 1-periodic in Z and there are two positive constants CH and εH

such that
|HR (ε; Z)| < CH

|DZHR (ε; Z)| < CH
for every Z ∈ R and every ε ∈ (0, εH).

A straightforward computation shows that H0 = G−1
0 .

Let us notice that, since w is periodic and twice continuously differentiable, there exists a continuously
differentiable function hw : R × R → R, 1-periodic and such that

w(x + ε) = w(x) + εhw(ε; x).

Moreover there exist two positive constants Cw and εw such that

|hw (ε; x)| < Cw

|Dxhw (ε; x)| < Cw
for every x ∈ R and every ε ∈ (0, εw).

Thus we have

w(P ) = w (H0(Z) + εHR(ε; Z))
= w(H0(Z)) + εhw(εHR(ε; Z); H0(Z))HR(ε; Z).

We set

W(y) = w(H0(y)),

Q(ε; y) = hw(εHR(ε; y); H0(y))HR(ε; y),

F(y) =
k

2

(
arccos

h − y

L
− ϑrest

)2

,

and observe the energy of the angular spring is, up to a constant, expressed by a function Vε(z) of the form (2.16),
with constants C̃Q,0 = CwCH , C̃Q,1 = CwCH(‖H ′

0‖∞ + 1) and εQ = min{εϑ, εH , εw}.
We obtain that

α = F ′(0) =
k√

L2 − h2
(ϑlim − ϑrest), (3.23)

so that, by (3.16), the assumption (2.13) is satisfied, as are also the other requirements of Lemma 2.2. Thus
Theorem 2.1 gives the desired behaviour for ε → 0.

As in the previous model, in general G cannot be inverted explicitly. However we can apply Lemma 3.1 to
recover the coefficients μ+, μ−. We have

μ+ =
ω+

1 + ω+ cotϑlim
, μ− =

ω−
1 + ω− cotϑlim

, (3.24)

where we recall that cotϑlim = h√
L2−h2 . The behaviour of the coefficient as a function of ϑlim is illustrated in

Figure 6.

3.4. Interpretation of the with the nap/against the nap effect

A hairy surface is a common denominator of many situations where we experience a directionality in the
friction: stroking a cat, rubbing a brush with slanted bristles, using climbing skins for backcountry skiing
or brushing napped fabric. Although we intuitively gather all this instances under the same name of with the
nap/against the nap asymmetry, what we are actually considering is family of different phenomena, all producing
the same kind of directional effect. For instance, in some situations there is no significant change in the bristle
configuration between the two phases (e.g., rubbing gently a hard brush), while in others large deformations
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Figure 6. Behaviour of μ+ and μ− in the third model as a function of ϑlim. We are setting
ω+ = −ω− = 0.1, so that by (3.17) the admissible domain is arctan0.1 < ϑlim < arccot 0.1.

of the bristles occur and we observe a dramatic change in their configuration passing from one direction to the
other one (e.g., stroking a cat).

Clearly a comprehensive and complete characterization of all these with the nap/against the nap phenomena
would require a sophisticated modelling of the mechanical behaviour of a bristle. Yet, with the help of the model
of Section 3.3, we can easily identify two fundamental effects that are involved. The geometric one is a direct
application of the angular spring model, and holds for sufficiently rigid bristles, remaining straight also under
small compressions. The energetic one instead applies to flexible bristles, buckling very easily when compressed.

Geometric effect

From (3.24), we obtain that, for the angular spring model, we have ρ+ > −ρ−, meaning that the friction
opposing a rightward movement (u̇ > 0) is smaller than the one corresponding to a leftward movement (u̇ < 0).
This is exactly what we expect by the with the nap/against the nap effect.

However, it is not obvious that a bristle should always behave as a rigid bar with an angular spring. Indeed,
especially during strokes against the nap, the rod is subject to a longitudinal compression, that could produce
buckling in a flexible bar, invalidating the model. An estimate of the axial tension along the bar, obtained by
considering the limit case when the lower end of the bar moves on a flat surface experiencing dry friction, is

T = − k

L
(ϑlim − ϑrest) cotϑlim +

ρ±
sin ϑlim

, (3.25)

where ρ± depends on the direction of motion. We observe that during a stroke against the nap (so ρ± = ρ− < 0)
the bar is always compressed (T < 0), however this tension is small when the bristle oscillates near its rest
position (ϑlim ≈ ϑrest) and the friction coefficients are small. This situation suits well to the motion of a hard
brush rubbed gently on a smooth surface.

Energetic effect

When the critical load for buckling is too low, the above description is no longer valid, but we can still apply
the model of Section 3.3 when the bristle is subject to traction. The following interpretation of the with the
nap/against the nap effect is based on such assumption.

When moved with the nap, the hair is rotated in the same direction of its rest angle, as shown in Figure 7a,
so that the angular spring is only slightly stretched. On the other hand, when the hair is moved against the
nap, it is rotated in the opposite direction of its rest position, as shown in Figure 7b; in this way the angular
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(a) With the nap. (b) Against the nap.

Figure 7. Energetic interpretation of the with the nap/against the nap asymmetry. The dashed
line represent the rest angle of the bar.

spring is much more stretched than in the previous case. Another way to describe this scenario is to notice that
the tip of the hair is always behind its root, with respect to the direction of motion.

Hence, if we report both situations to the framework of our model of Section 3.3 (as done in Fig. 7), we
observe that the two cases share the same coefficient μ+, while we have a change in the coefficient α, since the
rest angle of the hair changes. In case of with the nap motion, the rest angle of the hair is ϑwith > 0. On the
other hand, the case of against the nap motion corresponds to ϑagainst = −ϑwith < 0.

In this way we can immediately recover the friction coefficients using (3.23) and (3.24). We get

ρwith =
μ+

tan ϑlim

(
ϑlim − ϑwith

)
,

ρagainst =
μ+

tan ϑlim

(
ϑlim − ϑagainst

)
=

μ+

tanϑlim

(
ϑlim + ϑwith

)
,

where we trivially have ρagainst > ρwith, in agreement with our common experience of the phenomenon.
We now analyse the compatibility of this interpretation with the tension of the bristle during the motion. We

notice that, since in both phases we have ρ± = ρ+, the last term in (3.25) gives always a positive contribution
to the tension. Thus, if the surface is quite rough (ρ+ large) and the bristle flexible (k/L small), the rod is
subject to traction, so that our model provides a good approximation.

We remark that this energetic interpretation requires a transitional phase, where the bristle is strongly
deformed, to account for the change of configuration occurring when the direction of motion is inverted. Since
we assume a small critical load and high friction, we expect this transition to be triggered by buckling when the
direction is changed, and that, afterwards, a sufficiently long motion in same same direction restores the bristle
to a stable straight state, as those we discussed above.

4. Convergence structure

The main issue in Section 2 is the change in the nature of the dissipation: in the approximating systems
(Eε,Rε) we have a viscous drag (i.e. the dissipation potential Rε is quadratic), whereas in the limit system it is
rate independent (i.e. the dissipation potential Rε is positively homogeneous of degree 1). Such a situation has
been successfully addressed in continuum mechanics, showing that rate-independent plasticity can be obtained
as limit of a chain of viscous bistable springs [28, 35]. Here we follow the recent approach by Mielke [24]
(cf . also [25]), based on the De Giorgi’s (R,R∗) formulation, also called energy-dissipation principle.

We begin by recalling some known facts about the Legendre transform (cf . for instance [37]).
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Legendre transform and De Giorgi’s (R,R∗) formulation

Let us consider a function Ψ : R → R ∪ {+∞} that is proper (i.e. not identically +∞), lower semi-continuous
and convex . The Legendre transform Ψ∗ : R → R ∪ {+∞} of Ψ is defined as

Ψ∗(ξ) = sup
x∈X

[ξx − Ψ(x)] .

The function Ψ∗ is proper, lower semi-continuous and convex; moreover we have (Ψ∗)∗ = Ψ .
We now briefly recall some well-known properties of the Legendre transform. The Fenchel estimate states

that, for every x ∈ R and ξ ∈ R, we have

Ψ(x) + Ψ∗(ξ) ≥ ξx. (4.1)

The case when the equality holds is characterized by the Legendre–Fenchel equivalence:

ξ ∈ ∂Ψ(x) ⇐⇒ x ∈ ∂Ψ∗(ξ) ⇐⇒ Ψ(x) + Ψ∗(ξ) = ξx. (4.2)

Let us now consider the problem
0 ∈ ∂żR̃(ż) + DzẼ(t, z), (4.3)

where Ẽ ∈ C1([0, T ] × R, R) and R̃ : R → R is a convex function. A solution of the problem is a function
z : [0, T ] → R that satisfies (4.3) for almost every t ∈ [0, T ]. Note that this framework covers both the wiggly
systems (2.8) and the limit system (2.3).

Let us therefore define R̃∗ : R → R ∪ {+∞} as the Legendre transform of the function R̃. First of all, let us
notice that, by the Legendre–Fenchel equivalence (4.2), the inclusion (4.3) is equivalent to(

ż(t),−DzẼ(t, z(t))
)
∈ C̃Ψ+Ψ∗ = {(x, ξ) : Ψ(x) + Ψ∗(ξ) = ξx} . (4.4)

De Giorgi’s (R,R∗) formulation of the problem consists in the following sufficient condition for being a
solution of (4.3).

Proposition 4.1. A function z : [0, T ] → R is a solution of (4.3) if and only if it satisfies

Ẽ(T, z(T )) +
∫ T

0

[
R̃(ż(s)) + R̃∗

(
−DzẼ(s, z(s))

)]
ds ≤ Ẽ(0, z(0)) +

∫ T

0

∂tẼ(s, z(s)) ds. (4.5)

We now prove a slightly more general proposition, suitable to our purposes. Let us replace the integral
dissipation term in the left-hand side of (4.5) with a term of the form

D̃(z) =
∫ T

0

M̃(ż(s),−DzẼ(s, z)) ds, (4.6)

where we require
M̃(x, ξ) ≥ ξx for every x ∈ R, ξ ∈ R. (4.7)

Moreover let us define the set
C̃M =

{
(x, ξ) : M̃(x, ξ) = ξx

}
. (4.8)

Proposition 4.2. A function z : [0, T ] → R satisfies

Ẽ(T, z(T )) + D̃(z) ≤ Ẽ(0, z(0)) +
∫ T

0

∂tẼ(s, z(s)) ds (4.9)

if and only if it satisfies (
ż(t),−DzẼ(t, z(t))

)
∈ C̃M for almost every t ∈ [0, T ]. (4.10)
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Proof. Using the chain rule, we get that the estimate (4.9) is equivalent to∫ T

0

M̃(ż(s),−DzẼ(s, z)) ds ≤ −
∫ T

0

DzẼ(s, z(s))ż(s) ds.

Looking at estimate (4.7), we get that (4.9) is true if and only if equality in (4.7) holds for almost every
t ∈ [0, T ]. �

We remark that Proposition 4.2 applies to the case M̃(x, ξ) = R(x) + R∗(ξ). Thus Proposition 4.1 follows
as an immediate corollary, since, as we have seen, the Legendre–Fenchel equivalence implies the equivalence
between (4.3) and (4.4).

Convergence structure

Our strategy to prove Theorem 2.1 is to consider the convergence of the systems only once they have been
reformulated in the form (4.5).

Let us consider a family of energy functions Eε ∈ C1([0, T ] × R, R), and the corresponding dissipation func-
tionals Dε of the form

Dε(z) =
∫ T

0

Mε(ż(s),−DzEε(s, z)) ds, (4.11)

where Mε(x, ξ) ≥ ξx for every x ∈ R, ξ ∈ R. We are given a family of functions zε : [0, T ] → R that solve the
associated evolution problems, i.e. each zε satisfies the estimate

Eε(T, zε(T )) + Dε(zε) ≤ Eε(0, zε(0)) +
∫ T

0

∂tEε(s, zε(s)) ds. (4.12)

Then, we consider a limit energy function E ∈ C1([0, T ]×R, R), and a limit dissipation functional D of the form

D(z) =
∫ T

0

M(ż(s),−DzE(s, z)) ds, (4.13)

where M(x, ξ) ≥ ξx for every x ∈ R, ξ ∈ R. We define

CM = {(x, ξ) : M(x, ξ) = ξx} . (4.14)

Proposition 4.3. Let Eε,Dε, zε, E and D be as above. Assume that there exists a continuous function z̄ : [0, T ] →
R such that zε → z̄ in C([0, T ], R). Suppose that, for every t ∈ [0, T ], the following estimates hold

E(t, z̄(t)) ≤ lim inf
ε→0

Eε(t, zε(t)),

∂tE(t, z̄(t)) = lim
ε→0

∂tEε(t, zε(t)),

D(z̄) ≤ lim inf
ε→0

Dε(zε),

and moreover
E(0, z̄(0)) = lim

ε→0
Eε(0, zε(0)). (4.15)

Then z̄ is a solution of the problem(
˙̄z(t),−DzẼ(t, z̄(t))

)
∈ CM for almost every t ∈ [0, T ]. (4.16)

Proof. The convergence assumptions, applied to (4.12), lead to the estimate

E(T, z̄(T )) + D(z̄) ≤ E(0, z̄(0)) +
∫ T

0

∂tE(s, z̄(s)) ds. (4.17)

The thesis follows from Proposition 4.2. �
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5. Proof of Theorem 2.1

We now implement the convergence strategy of Section 4 to the situation described in Section 2, in order to
prove Theorem 2.1. From now on the symbols E , Eε,R,Rε, etc. have the same properties and meaning considered
in Section 2. In addition, we assume that the hypothesis (2.10) of Theorem 2.1 holds.

Our plan is to apply Proposition 4.3. To begin, we recall the definition (2.7) of Rε and define Dε and Mε by
setting

Mε(v, ξ) = Rε(v) + R∗
ε(ξ) =

εγv2

2
+

ξ2

2εγ
. (5.1)

By Proposition 4.1, each function zε satisfies the estimate (4.12).
The reformulation of the limit system requires a little more attention. Let us first define the set Ω0 = [ρ−, ρ+]

and denote, for any set A ⊆ R,

χA(ξ) =

{
0 for ξ ∈ A,

+∞ for ξ /∈ A.
(5.2)

To define the functions D and M, instead of the trivial choice associated to De Giorgi’s formulation of prob-
lem (2.3), we set

M(v, ξ) = |v|K(ξ) + χΩ0(ξ), (5.3)

where

K(ξ) =
∫ 1

0

|ξ − W ′(y)| dy. (5.4)

Since W ′ is continuous, 1-periodic with zero average and has image Ω0, we deduce that K(ξ) > |ξ| if ξ ∈ intΩ0,
whereas K(ξ) = |ξ| if ξ /∈ intΩ0. As a consequence, we obtain the desired estimate M(x, ξ) ≥ ξx. Moreover we
have

CM = ({0} × Ω0) ∪ ((−∞, 0) × {ρ−}) ∪ ((0, +∞) × {ρ+}) . (5.5)

Recalling the definition (2.2) of R, we have R∗(ξ) = χΩ0(ξ), and so CM = CR+R∗ . This means that, by
Proposition 4.1, problem (4.16) is equivalent to (2.3).

To apply Proposition 4.3 and complete the proof of Theorem 2.1, it is left to prove

• the existence of a limit function z̄, such that zε → z̄ in C([0, T ], R);
• that the estimate D(z̄) ≤ lim inf

ε→0
Dε(zε) holds.

These will be the subjects of the next two subsections.

5.1. Convergence of the solutions

Preliminary notation

Without loss of generality, we restrict our discussion to the interval ε ∈ (0, ε̄], where ε̄ is sufficiently small
to satisfy ε̄ < min{1, εQ}. We set β = min{1, γ} and notice that, for the values of ε considered, we have
εβ = max{ε, εγ}.

Let us also introduce the following notations for some recurrent constants. We call Λ� the Lipschitz constant
of �. By the uniform convexity of Φ, we can find a constant ϕ > 0 such that Φ′′(z) > ϕ for all z ∈ R. Since W
and its first derivative are bounded, we denote

CW,0 = ‖W‖∞ , CW,1 = ‖W ′‖∞ .
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Strip of admissible solutions

Let us now define z̃± : [0, T ] → R as

z̃−(t) = (Φ′)−1(�(t) − ρ+), z̃+(t) = (Φ′)−1(�(t) − ρ−). (5.6)

We recall that this definition is well-posed since, by the uniform convexity of Φ, Φ′ is globally invertible and
Im Φ′ = R. Since the image of � is bounded, by compactness arguments, we also have

C± = max
{∥∥ ˙̃z+

∥∥
∞ ,

∥∥ ˙̃z−
∥∥
∞

}
< +∞.

We notice that condition (2.10) can be restated by writing z0 ∈ [z̃−(0), z̃+(0)]. Moreover, looking carefully at
the inclusion (2.3), we observe that the solution z̄ is bounded between z̃− and z̃+, and the current state can
possibly change (i.e. ˙̄z(t) �= 0) only if z̄ = z̃− (and therefore ˙̄z(t) ≥ 0) or z̄ = z̃+ (and therefore ˙̄z(t) ≤ 0). The
strip [z̃−(t), z̃+(t)] gives the evolution of the elastic domains of the limit system.

Hence, we define the distance at each time t of a solution zε of (2.8) from this region, by setting

δε(t) = dist (zε(t), [z̃−(t), z̃+(t)]) .

Notice that (2.10) implies δε(0) → 0 for ε → 0.

Estimates on zε

Let us recall that, by (2.8), the solution zε satisfies

εγ żε(t) = −Φ′(zε(t)) − W ′
(

zε(t)
ε

)
− εQ′

(
ε;

zε(t)
ε

)
+ �(t). (5.7)

The value of δε(t) is controlled by the following estimate.

Lemma 5.1. There exists a constant C0 > 0 such that, for every t ∈ [0, T ] and ε ∈ (0, ε̄), we have

δε(t) ≤ δε(0)e−ϕt/εγ

+ εβC0. (5.8)

Moreover, if t ∈ [0, T ] is such that δε(t) > εβC0, we have that δ̇ε(t) < 0.

Proof. If zε(t) ∈ (z̃−(t), z̃+(t)), then the estimate follows immediately. Let us now consider the case zε(t) ≥ z̃+(t).
We have

εγ δ̇ε = εγ żε − εγ ˙̃z+

≤ −Φ′(zε) − W ′
(z

ε

)
− εQ′

(
ε;

z

ε

)
+ Φ′(z̃+) + ρ− + εγC±

≤ −Φ′(zε) + Φ′(z̃+) + εCQ,1 + εγC±
≤ −ϕδε + εCQ,1 + εγC±
≤ −ϕδε + C1ε

β,

where C1 = C± + CQ,1. The same estimate can be obtained analogously in the case zε(t) ≥ z̃+(t). Thus the
required estimate for δε follows, by a suitable application of Gronwall’s Lemma, for with C0 = C1/ϕ. �

Let us notice that, combining Lemma 5.1 with assumption (2.10) and the Lipschitz continuity of z̃±, it can
be shown that all the solutions zε are bounded within an interval [zmin, zmax]. By compactness, in this interval
the function Φ′ is Lipschitz continuous with Lipschitz constant ΛΦ′ .
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Lemma 5.2. For every C2 > 0, there exists C3 > 0 such that, for every ε ∈ (0, ε̄) and every solutions zε

of (2.8), if
δε(t0) ≤ εβC2 for some t0 ∈ [0, T ], (5.9)

then
|zε(t) − zε(t0)| ≤ εβC3 for every t ∈ I0

ε = [t0, t0 + εβ] ∩ [0, T ].

Proof. Let us set
bε(z) = −Φ′(z) − V ′

ε (z).

We plan to find two points ζ− and ζ+ such that

zε(t0) − εβC3 ≤ ζ− ≤ zε(t0) ≤ ζ+ ≤ zε(t0) + εβC3

and, for every t ∈ I0
ε ,

bε(ζ−) + �(t) > 0 and bε(ζ+) + �(t) < 0.

This last condition implies that every solution of (2.8) starting at t0 inside the interval [ζ−, ζ+] cannot cross its
boundary in the time interval I0

ε .
We present the proof only for ζ+, since ζ− can be found similarly. Let y+ ∈ R be any point such that

W ′(y+) = ρ+; we will look for ζ+ ∈ y+ + εZ, so that W ′(ζ+) = ρ+. We know that, for every t ∈ I0
ε ,

�(t) ≤ �(t0) + Λ�(t − t0) ≤ Φ′(z̃−(t0)) + ρ+ + εβΛ�

≤ Φ′(zε(t0)) + εβΛΦ′C2 + ρ+ + εβΛ�.

Thus we have

bε(ζ+) + �(t) ≤ −Φ′(ζ+) − ρ+ + εCQ,1 + Φ′(zε(t0)) + εβC2ΛΦ′ + ρ+ + εβΛ�

≤ −(ζ+ − zε(t0))ϕ + εβC4

where C4 = CQ,1 +ΛΦ′C2 +Λ�. Therefore we take the smallest value ζ+ ∈ y+ +εZ satisfying ζ+ > zε(t0)+ εβC4
ϕ .

This choice gives one part of the thesis with C3 = 1 + C4/ϕ.
We proceed similarly for ζ− and conclude the proof. �

Lemma 5.3. There exists a constant C > 0 such that, for every s, t ∈ [0, T ], the following estimate holds:

|zε(t) − zε(s)| ≤ C(δε(0) + |t − s| + εβ). (5.10)

Proof. Using Lemma 5.1 we can characterize the possible behaviours of zε.
If δε(0) ≤ 2εβC0, then δε(t) ≤ 2εβC0 for every t ∈ [0, T ]. In this case the assumptions (5.9) of Lemma 5.2

are satisfied for every t0 ∈ [0, T ] by taking C2 = 2C0. Now, for every s, t ∈ [0, T ], we set k ∈ N such that
|t − s| /εβ ≤ k < |t − s| /εβ + 1. We can therefore construct a partition s = τ0 < τ1 < · · · < τk−1 < τk = t, such
that, for every i = 1, . . . , k, we have τi − τi−1 < εβ . Thus we have

|zε(t) − zε(s)| ≤
k∑

i=1

|zε(τi) − zε(τi−1)| ≤ C3kεβ ≤ C3(|t − s| + εβ), (5.11)

where C3 is given by Lemma 5.2 and does not depend on ε.
On the other hand, if δε(0) > 2εβC0, Lemma 5.1 shows that the solution zε monotonically gets closer to the

strip [z̃−, z̃+], and possibly at some time tε satisfies δε(tε) = 2εβC0, so that δε(t) ≤ 2εβC0 for every t ∈ [tε, T ].
For s, t ∈ [0, tε] (or in [0, T ] if there is no such tε), we have the estimate

|zε(t) − zε(s)| ≤ δε(0) + C± |t − s| . (5.12)
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Indeed, since in [0, tε] the solution zε draws near the strip [z̃−, z̃+] monotonically but without reaching it, we
can decompose |zε(t) − zε(s)| in two terms: the movement of zε relatively to the strip, that is smaller than δε(0),
and the movement of the strip in that interval, that is bounded above by C± |t − s|.

If there is a tε ∈ [0, T ] defined as above, since δε(t) ≤ 2εβC0 for every t ∈ [tε, T ] we can proceed as in the
first part of the proof and the estimate (5.11) holds for every s, t ∈ [tε, T ].

We set C = C3 + C± + 1 and the proof is completed by combining (5.11) and (5.12), possibly splitting the
estimate in two parts if s < tε < t. �

Convergence of the solutions zε

By Lemma 5.3 we obtain the equicontinuity of the family of functions zε : [0, T ] → R, for ε ∈ (0, ε̄]. By the
Ascoli−Arzelà theorem we can find a subsequence (zεi)i∈N

with εi → 0 for which there exists a continuous
function z̄ : [0, T ] → R such that zεi → z̄ uniformly in C([0, T ]). A second consequence of Lemma 5.3 is that z̄
is Lipschitz continuous with constant C, that is |z̄(t) − z̄(s)| < C |t − s| for every s, t ∈ [0, T ].

It remains to show that z̄ is a solution of (2.3) and that actually the whole sequence zε converges to z̄, not
only a subsequence zεi . We will address these issues in Subsection 5.3.

5.2. Estimate on the dissipation functionals

Provided the convergence of the solutions zε, our next step is to show that the estimates assumed in Proposi-
tion 4.3 hold. Whereas the estimates on the internal energy E , Eε follow straightforwardly by the vanishing and
time-independence of the wiggly perturbation Vε, the estimate on dissipation requires more effort.

Let us recall that we are considering dissipation in the integral form (4.11) and (4.13), where the integral
functions Mε and M are defined as in (5.1) and (5.3). We write

ηε(t) = −Φ′(zε(t)) + �(t),

uε(t) = W ′
(

zε(t)
ε

)
+ εQ′

(
ε;

zε(t)
ε

)
,

ξε(t) = ηε(t) − uε(t).

Lemma 5.4. Let zε, z̄ ∈ W 1,1([0, T ]) and ηε, η̄ ∈ C0([0, T ]) be such that, for ε → 0,

zε → z̄ and ηε → η̄ in C0([0, T ]).

Then

lim inf
ε→0

∫ T

0

Mε

(
żε(t), ξε(t)

)
dt ≥

∫ T

0

M(
˙̄z(t), η(t)

)
dt. (5.13)

Proof. Let us define the interval
Ωε = [ρ− − εCQ,1 , ρ+ + εCQ,1]

so that uε ∈ Ωε and Ω0 = [ρ−, ρ+], as defined above. We recall that ξε = ηε − uε, implying |ξε| ≥ dist(ηε, Ωε).
We therefore obtain the following lower bound for Mε:

Mε(v, ξε) =
εγv2

2
+

(1 − ε
γ
2 )ξ2

ε

2εγ
+

ε
γ
2 ξ2

ε

2εγ

≥ (1 − ε
γ
2 ) |v| |ξε| + 1

2ε
γ
2

[dist(ηε, Ωε)]
2
. (5.14)

We now derive two separate estimates for the two terms of the right hand side of (5.14).
For the second term, we observe that

lim inf
ε→0

1
2ε

γ
2

[dist(ηε, Ωε)]
2 ≥ χΩ0(η), (5.15)
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so, by Fatou’s Lemma, we obtain

lim inf
ε→0

∫ T

0

1
2ε

γ
2

[dist(ηε(t), Ωε)]
2 dt ≥

∫ T

0

χΩ0(η(t)) dt. (5.16)

To study the integral of the remaining term in (5.14), let us consider the integral

D(1)
ε =

∫ T

0

|żε(t)| |ξε(t)| dt. (5.17)

We define, for every integer n > (ε̄)−1 and j ∈ {1, 2, . . . , n}, the time interval

In
j =

[
j − 1

n
T,

j

n
T

)
, (5.18)

to which we associate the value

hn
j (y) = inf

{
|ηε̃(s) − W ′(y) − ε̃Q′(ε̃; y)| , for s ∈ In

j , ε̃ ∈
(

0,
1
n

)}
.

We remark that hn
j is periodic with period 1. We also notice that, by definition, for every t ∈ In

j and every

ε ∈ (
0, 1

n

)
we have |ξε(t)| > hn

j

(
zε(t)

ε

)
. Thus, for each ε < 1

n ,

D(1)
ε ≥

n∑
j=1

∫
In

j

|żε(t)| hn
j

(
zε(t)

ε

)
dt.

Let us now consider the case z( j−1
n T ) < z( j

nT ). We have

∫
In

j

|żε(t)| hn
j

(
zε(t)

ε

)
dt ≥

∫ zε( j
n T )

zε( j−1
n T )

hn
j

(z

ε

)
dz

ε→0−−−→ [
z

(
j
nT

) − z
(

j−1
n T

)] ∫ 1

0

hn
j (y) dy,

since, due to the periodicity of hn
j , for ε → 0 the integral of hn

j (z/ε) on a given interval tends to the integral of
the average value of hn

j . Arguing similarly for z( j−1
n T ) > z( j

nT ), we get

lim inf
ε→0

∫
In

j

|żε(t)| hn
j

(
zε(t)

ε

)
dt ≥ ∣∣z (

j
nT

) − z
(

j−1
n T

)∣∣ ∫ 1

0

hn
j (y) dy. (5.19)

Let zn be the piecewise affine interpolant such that zn( j
nT ) = z( j

nT ) for every j +0, 1, . . . , n. We define kn(t)
as the average of hn

j , where j is the one such that t ∈ In
j , that means

kn(t) =
∫ 1

0

hn
j (y) dy for

j − 1
n

T ≤ t <
j

n
T .

Thus, summing the estimates (5.19) for j + 1, . . . , n, we get

lim inf
ε→0

D(1)
ε ≥

n∑
j=1

∣∣z (
j
nT

)− z
(

j−1
n T

)∣∣ ∫ 1

0

hn
j (y) dy =

∫ T

0

kn(t) |żn(t)| dt.

Since we assumed that z ∈ W 1,1([0, T ]), we know that żn → ż strongly in L1([0, T ]) for n → ∞. Moreover,
the uniform convergence (ηε, zε) → (η, z̄) assures us that kn(t) → K(η(t)) uniformly. Thus we get

lim inf
ε→0

D(1)
ε ≥

∫ T

0

|ż(t)|K(η(t)) dt. (5.20)

The proof is completed combining the estimates (5.16) and (5.20). �
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5.3. Completion of the proof

At the end of Subsection 5.1, we have shown that there exist a subsequence (zεi)i∈N
with εi → 0 and a

continuous function z̄ : [0, T ] → R such that zεi → z̄ uniformly in C([0, T ]). Setting η̄(t) = −Φ′(z̄(t)) + �(t), we
can apply Lemma 5.4 to the subsequence zεi and get that

lim inf
i→∞

Dεi(zεi) ≤ D(z̄).

We can therefore apply Proposition 4.3 to find that z̄ is a solution of (4.16) for z̄(0) = z0 and so, as we have
seen, of (2.3).

It is however well known in literature that problem (2.3) has only one solution for each choice of z0 (cf . [26],
Thm. 5.4). This implies that actually the whole sequence zε converges to z̄. Suppose by contradiction that there
exists a subsequence (zεk

)k∈N with εk → 0 such that ‖zεk
− z̄‖∞ > δ̄, for some δ̄ > 0 and every k ≥ 0. Then

we can repeat the same reasoning done for zε, to find a function ẑ ∈ C([0, T, ]), and a subsequence of zεk
that

converges to ẑ. But, proceeding as above, ẑ must be a solution of (4.16) with ẑ(0) = z0, and so, because of the
uniqueness of the solutions, ẑ = z̄, contradicting ‖zεk

− z̄‖∞ > δ̄.
To complete the proof, it remains only to prove (2.12). Let us first notice that, since (2.8) gives εγ żε(t) = ξε(t),

a straightforward computation shows that Rε(żε(t)) = R∗
ε(ξε(t)) for almost every t ∈ [0, T ]. Moreover, since

Rε(żε(t)) + R∗
ε(ξε(t)) = żε(t)ξε(t) for almost every t, by the chain rule we get, for every 0 ≤ t1 < t2 ≤ T ,∫ t2

t1

2Rε(zε(s)) ds = Eε(t2, zε(t2)) − Eε(t1, zε(t1)) +
∫ t2

t1

�̇(s)zε(s) ds.

On the other hand, for the limit system, since −DzE(t, z̄(t)) ∈ Ω0, it follows that R∗(−DzE(t, z̄(t))) = 0 for
almost every t ∈ [0, T ]. Thus, again by the chain rule∫ t2

t1

R(z̄(s)) ds = E(t2, z̄(t2)) − E(t1, z̄(t1)) +
∫ t2

t1

�̇(s)z̄(s) ds.

Since, for ε → 0, we have zε → z̄ uniformly and Eε(t, zε(t)) → E(t, z̄(t)) for every t ∈ [0, T ], it follows that∫ t2

t1

2Rε(żε(s)) ds →
∫ t2

t1

R( ˙̄z(s)) ds for every 0 ≤ t1 < t2 ≤ T ,

and the proof is complete.
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