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MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS
FOR THE FRACTIONAL SCHRÖDINGER–POISSON SYSTEMS

WITH CRITICAL GROWTH

Zhisu Liu
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Abstract. In this paper, we study the multiplicity and concentration of solutions for the following
critical fractional Schrödinger–Poisson system:

⎧⎨
⎩

ε2s(−�)su + V (x)u + φu = f(u) + |u|2∗s−2u in R
3,

ε2t(−�)tφ = u2 in R
3,

where ε > 0 is a small parameter, (−�)α denotes the fractional Laplacian of order α = s, t ∈ (0, 1),
where 2∗

α = 6
3−2α

is the fractional critical exponent in Dimension 3; V ∈ C1(R3, R+) and f is subcritical.
We first prove that for ε > 0 sufficiently small, the system has a positive ground state solution. With
minimax theorems and Ljusternik–Schnirelmann theory, we investigate the relation between the number
of positive solutions and the topology of the set where V attains its minimum for small ε. Moreover,
each positive solution uε converges to the least energy solution of the associated limit problem and
concentrates around a global minimum point of V .
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1. Introduction

In this paper, we are concerned with the following fractional nonlinear Schrödinger–Poisson system with
critical growth {

ε2s(−�)su+ V (x)u + φu = f(u) + |u|2∗
s−2u in R

3,

ε2t(−�)tφ = u2 in R
3,

(1.1)
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where ε > 0 is a small parameter, (−�)α denotes the fractional Laplacian of order α = s, t ∈ (0, 1), 2∗α = 6
3−2α

is the fractional critical exponent in Dimension 3. For the potential V , we impose the following assumption:

(V) V ∈ C1(R3,R+) and V∞ := lim inf
|x|→∞

V (x) > V0 = inf
x∈R3

V (x) > 0,

which is firstly introduced by Rabinowitz [32] in the study of the nonlinear Schrödinger equations. The nonlin-
earity f : R → R is of C1 class and satisfies the following conditions:

(f1) f(u) = 0 for all u < 0 and f(u) = o(u3) as u→ 0+;
(f2) there exists 4 < q < 2∗s = 6

3−2s such that

lim
u→∞

f(u)
uq−1

= 0,

where s ∈ (3
4 , 1);

(f3) the function u→ f(u)
u3 is increasing in (0,∞);

(f4) f(u) ≥ ρuσ for all u > 0 with some ρ > 0 and σ ∈ (3, q − 1).

Obviously, it follows from (f1)–(f3) that

0 ≤ 3f(u) ≤ f ′(u)u, 0 ≤ 4F (u) ≤ f(u)u, ∀u ∈ R,

where F (u) =
∫ u

0 f(s)ds.

Remark 1.1. Let p ∈ (4, 2∗s) and f(u) = up−1 when u ∈ [0,+∞) and f(u) ≡ 0 when u ∈ (−∞, 0), then it is
easy to check that f satisfies the above conditions (f1)–(f4). In view of (f2), we have 4 < 6

3−2s , which implies
that s ∈ (3

4 , 1).

We remark that, if φ ≡ 0 then (1.1) reduces to the fractional Schrödinger equation of the form

(−ε2�)su+ V (x)u = f(x, u), x ∈ R
N . (1.2)

Solutions of equations like (1.2) are related to the existence of standing wave solutions for the following fractional
Schrödinger equations

iε
∂ψ

∂h
= (−ε2�)sψ + V (x)ψ − f(x, |ψ|), x ∈ R

N , (1.3)

where the standing wave solutions have the form

ψ(x, h) = u(x)e−
iEh

ε x ∈ R
N , h ∈ R,

where E is a constant, u(x) is a solution of (1.2). The fractional Schrödinger equation was introduced by
Laskin [28] and arises in fractional quantum mechanics in the study of particles on stochastic fields modeled
by Lévy processes. The operator (−�)α can be seen as the infinitesimal generators of Lévy stable diffusion
processes [1]. Recently, many mathematical investigations on problem (1.2) have been devoted to the case where
either ε ≡ 1 or V and f satisfy some various conditions. See for example [12, 13, 22, 23, 28, 37]. In particular,
when f is of subcritical growth and satisfies the following conditions:

0 < μF (u) ≤ uf(u), |f ′(u)| ≤ a1 + a2|u|p−1

and the map u 
→ u−1hf(uh) is increasing on (0,∞), h ∈ R, where a1, a2 > 0, p ∈ (1, 2∗s), and μ > 2,
Secchi [36] made use of minimax methods to prove the existence of nontrivial solutions for (1.2) with f(x, u) =
f(u). By using the Lyapunov–Schmidt reduction method, Dávila, Pino and Wei [15] studied the existence and
concentration phenomenon of solutions for (1.2) with f(x, u) = up, p ∈ (1, 2∗s) (see also [13,16]). Notice that the
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arguments of [13,15,16,21] heavily rely on the uniqueness and non-degeneracy of ground state solutions to the
corresponding autonomous problems which have been proved in [22,23]. In [42], the concentration phenomenon
of ground state solutions was investigated around the non-degenerate critical point of the potential V . Using the
penalization method, Alves and Miyagaki [2] also considered problem (1.2) in the subcritical case and obtained
a positive solution concentrating around a local minimum point of V as ε goes to zero. As for critical problems
driven by the fractional Laplace operator (−�)α, Shang and Zhang [41] investigated (1.2) with f(x, u) =
λf(u) + |u|4u and obtained some interesting results, where λ > 0 is large and f ∈ C(R3,R) satisfies the
following conditions

f(u) = o(u) asu→ 0, f(u)u > 0 for u �= 0, f(u) = 0 for u ≤ 0,
f(u)
u

is strictly increasing on (0,∞), |f(u)| ≤ c(1 + |u|p−1), c > 0, p ∈ (2, 2∗s).
(1.4)

As shown in [41], ground state solutions and multiple nonnegative solutions exist for large λ > 0 and V
satisfying (V ), and the number of solutions are related to the topology of the set where V attains its minimum.
We have to point out here that to overcome the obstacle due to the appearance of the critical nonlinearity
term, the parameter λ > 0 should be large enough in [41]. When ε = 1, Servadei and Valdinoci [38] showed that
the famous result by Brezis and Nirenberg for the Laplace equations also hold for the nonlocal setting of the
following problem: {

(−�)su− λu = |u|2∗
s−2u, x ∈ Ω,

u = 0, x ∈ R
N \Ω,

(1.5)

where λ is a positive constant, Ω ∈ R
N is an open bounded domain with a Lipschitz boundary. For more related

results, we refer the readers to [38, 44] and the references therein.
Observe that, taking formally s = t = 1, then system (1.1) reduces to the classical Schrödinger–Poisson

system: {−ε2�u+ V (x)u + λφu = f(u) in R
3,

−ε2�φ = u2, in R
3,

(1.6)

whose existence, nonexistence and multiplicity for both bound states and ground states have already been widely
studied since it was introduced in [8]. For instance, we refer the readers to [4–6,29,34] and the references therein.
For (1.6) with f(u) = up (1 < p < 5) and λ contained in some intervals, Ruiz [34] obtained some general results
about the existence, nonexistence of ground state solutions, while Ambrosetti and Ruiz [6] obtained the existence
of multiple bound state solutions. In the case where −u+f(u) satisfies Berestycki–Lions’ assumptions, Azzollini
et al. [4] showed that the existence of nontrivial solutions is determined by the parameter λ. Recently, there
are also some results on the semiclassical state of system (1.6) when the potential V and nonlinearity f satisfy
different conditions. For example, He [25] studied the multiplicity and concentration of positive solutions and
proved that positive solutions concentrate around the global minimum of the potential V in the semi-classical
limit. For system (1.6) with f(u) replaced by b(x)f(u), Wang et al. [45] studied the existence of the least energy
solutions, and also investigated the concentration behavior of ground state solutions. He [25] and Wang et al. [45]
only considered the subcritical case. For the critical case, He and Zou [26] proved that system (1.6) admits a
positive ground state solution concentrating around the global minimum of the potential V and also studied
the exponential decay of ground state solutions. For more results on the semiclassical states we refer the readers
to [3, 27, 30, 33, 48] and the references therein.

Very recently, Giammetta [24] cosidered the evolution equation associated with the following system in
Dimension one {

(−�)u+ λφu = g(u) in R,

(−�)tφ = λu2 in R.
(1.7)

In this case, the diffusion is fractional only in the Poisson equation and local and global well-posedness of the
Cauchy problem associated with the above system were obtained in [24]. Soon, Zhang, Do Ó and Squassina [49]
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investigated the more general system {
(−�)su+ λφu = g(u) in R

3,

(−�)tφ = λu2 in R
3.

(1.8)

Precisely, in [49] they considered the following subcritical case with Berestycki–Lions conditions which were
firstly introduced in [9] and critical case with a general nonlinear term:

(H1) g ∈ C(R,R) is odd;
(H2) −∞ < lim infs→0+

g(u)
u ≤ lim sups→0+

G(u)
u = −m < 0;

(H3) −∞ ≤ lim supu→0+
g(u)
ul ≤ 0, where l = 3+2s

3−2s ;

(H4) there exists ζ > 0 such that G(ζ) :=
∫ ζ

0
g(u)du > 0,

and

(H2)′ lim
u→0

g(u)
u = −a < 0;

(H3)′ lim
|s|→+∞

g(u)

u2∗s−1 = b > 0;

(H4′) there exist D > 0 and q ∈ (2, 2∗s) such that g(u) + au ≥ bu2∗
s−1 +Duq−1 for all u > 0,

respectively. The authors in [49] proved that (1.8) admits a positive radial solution if λ > 0 small enough.
To the best of our knowledge, the existence and concentration behavior of the positive solutions to (1.1) have

not ever been studied by variational methods. Motivated by the above facts, the main purpose of this paper is
to investigate the multiplicity and concentration of positive solutions to problem (1.1) involving critical growth.
Notice that, in [49], the ground state solutions are obtained in the radially symmetric space Hs

r (R3), where
Hs

r (R3) := {u ∈ Hs(R3) : u is radial}, because the embedding Hs
r (R3) ↪→ Lp(R3) (2 < p < 2∗s) is compact.

Notice that Hs(R3) will be defined in Section 2. In this paper, however, we do not require that the function V is
radial in R

3. Therefore, we have to use the standard space Hs(R3) to take the place of Hs
r (R3). Due to the lack

of compactness of the embedding Hs(R3) ↪→ Lp(R3), p ∈ (2, 2∗s], some difficulties arise in using the variational
methods in a standard way. Thus, some new estimates for (1.1) involving Palais–Smale sequences, which play
a crucial role in the variational approach, are needed to be re-established and some more tricks are needed. To
describe our main result, we set

Θ := {x ∈ R
3 |V (x) = V0}.

In view of the assumption (V), we can easily see that the set Θ is compact. For every δ > 0, define Θδ :=
{x ∈ R

3 : dist(x,Θ) ≤ δ}. We recall that, if Y is a closed subset of a topological space X , the Ljusternik–
Schnirelmann category catX(Y ) is the least number of closed and contractible sets in X which cover Y . Now
we state our main results.

Theorem 1.2. Assume that (V) and (f1)–(f4) hold and let s ∈ (3
4 , 1), then there exists ε0 > 0 such that, for any

ε ∈ (0, ε0), system (1.1) has one positive ground state solution (uε, φε) ∈ Hs(R3) × Dt,2(R3), where Dt,2(R3)
will be defined in Section 2.

Theorem 1.3. Assume that (V) and (f1)–(f4) hold. Let s ∈ (3
4 , 1), then for any δ > 0, there exists εδ > 0 such

that, for any ε ∈ (0, εδ), system (1.1) has at least catΘδ
(Θ) positive solutions in Hs(R3) ×Dt,2(R3). Moreover,

if (uε, φε) denotes such a solution and ηε ∈ R
3 is a global maximum point of uε, then

lim
ε→0

V (ηε) = V0.

For such an ηε, vε(x) ≡ uε(εx+ ηε) converges to a positive ground state solution of

(−�)su+ V0u+ φu,tu = f(u) + |u|2∗
s−1u, u ∈ Hs(R3),

where φu,t will be defined later.
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Remark 1.4.

(1) Indeed, in our arguments it is not hard to see that the positive ground state uε in Theorem 1.2 has a similar
concentration behavior as in Theorem 1.3.

(2) We observe that, in [40, 41] the authors used Ljusternik–Schnirelmann theory to investigate the multi-
plicity of nonnegative solutions for fractional Schrödinger equations with critical growth. However, in the
present paper, we not only obtain the multiplicity of positive solutions for the critical case of the fractional
Schrödinger–Poisson system but also investigate the concentration behavior of each positive solution as ε
goes to zero. Indeed, the arguments of [40,41] are difficult to be used to get positive concentrating solutions.

(3) It is worth pointing out that, in [49], authors studied a class of fractional Schrödinger–Poisson systems with
more general critical nonlinearities than that in the present paper, and obtained the existence of positive
ground state solutions in the radial symmetric space for λ > 0 small enough. However, our results still hold
for any λ > 0 even if the term φu is replaced by λφu in system (1.1).

Remark 1.5. Compared with the classical Schrödinger equations, there are only few references on the con-
centration phenomena for fractional nonlinear equations, because the different definitions of local and nonlocal
operators cause that some techniques developed for the local case can not be adapted immediately to non-local
case. In our arguments, we summarize three points as follows to illustrate this fact.

(1) Additivity. The nonlocal operator does not satisfy the following identity:∫
R3

|(−�)su|2dx =
∫

R3
|(−�)su−|2dx+

∫
R3

|(−�)su+|2dx,

where u− = min{u, 0} and u+ = max{u, 0}, which is different from the classical local operator. We need
extra arguments based on the comparison of the critical energy value of Iμ with the best fractional critical
Sobolev constant in order to obtain the non-negativity of weak solution u (see Prop. 3.4).

(2) L∞ bound. Integration by parts of the nonlocal operator is different from that of the local operator. So the
classical Moser iterative method is very difficult to be used to get L∞ bound of nonnegative weak solutions
for the non-local case. So we borrow the idea from Barrios et al. [10] to obtain the boundedness of the weak
solutions.

(3) Hölder estimates. In order to get the concentration properties, we need to use some local Hölder estimates
of positive solutions un together with the regularity of the solutions to obtain decay estimates (that is,
un(x) → 0 as n → ∞ uniformly for n). However, the classical results on Hölder estimates of Schrödinger
equations are not adapted to the fractional case. To overcome this difficulty, together with the regularity,
we use a Hölder estimate result of the non-local case developed by Silvestre (see Thm. 5.4 of [39]) to obtain
decay estimates of positive solutions un. It is a key point in studying concentration properties.

Throughout this paper, C > 0 denotes various positive generic constants. We denote by ‖·‖r the Lr -norm and
o(1) by the quantity which tends to zero when n→ ∞. For any ρ > 0 and z ∈ R

3, Bρ(z) := {x ∈ R
3 : |x−z| ≤ ρ}.

The symbol ′ ⇀′ stands for the weak convergence in Hs(R3).
The remainder of this paper is organized as follows.

• In Section 2, some notations and preliminaries are presented.
• In Section 3, we prove the existence of positive ground state solutions to the limit equation associated

with (1.1).
• Sections 4 is denoted to proving Theorem 1.2. By virtue of the Mini-max approach (see [43]) and a new

compactness lemma, we recover the compactness of (PS) sequence and get the existence of positive ground
state solutions.

• In Section 5, we borrow an idea from Wang [46] to obtain the concentration phenomenon(see also [26, 45]),
and the proof of multiplicity relies on the standard Ljusternik–Schnirelmann category theory (see [7]).
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2. Preliminary

In this section we outline the variational framework for problem (1.1) and give some preliminary lemmas. We
first give some useful facts of the fractional order Sobolev spaces (see [17]).

For any α ∈ (0, 1), the fractional Sobolev space Hα(R3) is defined by

Hα(R3) :=

{
u ∈ L2(R3) :

|u(x) − u(y)|
|x− y| 3+2α

2

∈ L2(R3 × R
3)

}
,

endowed with the natural norm

‖u‖Hα =
(∫

R3
|u|2dx+

∫
R6

|u(x) − u(y)|2
|x− y|3+2α

dxdy
) 1

2

,

where the term

[u]α =
(∫

R6

|u(x) − u(y)|2
|x− y|3+2α

dxdy
) 1

2

is the so called Gagliardo semi-norm of u. It is well-known that the fractional Laplacian (−�)α of a function
u : R

3 → R is defined by
(−�)αu(x) = F−1(|ξ|2α(Fu))(x), ∀ξ ∈ R

3,

where F is the Fourier transform, i.e.,

F(u)(ξ) =
1

(2π)3/2

∫
R3

exp(−2πiξ · x)u(x)dx,

i is the image unit. If u is smooth enough, it can be computed by the following singular integral

(−�)αu(x) = cαP.V.
∫

R3

u(x) − u(y)
|x− y|3+2α

dy, x ∈ R
3,

where cα is a normalization constant and P.V. stands for the principle value. Now one can get an alternative
definition of the fractional Sobolev space Hα(R3) via the Fourier transform as follows:

Hα(R3) :=
{
u ∈ L2(R3) :

∫
R3

|ξ|2α|û|2dξ <∞
}
,

endowed with the norm

‖u‖α =
(∫

R3
(1 + |ξ|2α)|û|2dξ

) 1
2

,

where û ≡ F(u) denotes the Fourier transform of u. It is easy to know that ‖ · ‖Hα is equivalent to ‖ · ‖α.
The homogeneous Sobolev space Dα,2(R3) is defined by

Dα,2(R3) =
{
u ∈ L2∗

α(R3) : |ξ|αû ∈ L2(R3)
}
,

which is the completion of C∞
0 (R3) under the norm

‖u‖Dα,2 :=
(∫

R3
|(−�)α/2u|2dx

) 1
2

=
(∫

R3
|ξ|2α|û|2dξ

) 1
2

.

Now we introduce the following Sobolev embedding theorems.
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Lemma 2.1 (see [35]).
For any α ∈ (0, 1), Hα(R3) is continuously embedded into Lp(R3) for p ∈ [2, 2∗α] and compactly embedded into
Lp

loc(R
3) for p ∈ [1, 2∗α).

Lemma 2.2 (see [14]).
For any α ∈ (0, 1), Dα,2(R3) is continuously embedded into L2∗

α(R3) and define

Sα := inf
u∈Dα,2(R3)\{0}

∫
R3 |(−�)α/2u|2dx
(
∫

R3 u2∗
αdx)2/2∗

α
·

Lemma 2.3 (see [36]).
If {un} is bounded in Hs(R3) with s ∈ (0, 1) and

lim
n→∞ sup

y∈R3

∫
Br(y)

|un|2dx = 0,

where r > 0, then we have un → 0 in Lν(R3) for ν ∈ (2, 2∗s).

It follows from Lemma 2.1 thatHs(R3) is continuously embedded into L
12

3+2t (R3) if 2t+4s ≥ 3. For u ∈ Hs(R3)
and ε > 0 fixed, define a linear operator Tu : Dt,2(R3) → R as follow:

Tu(v) :=
1
ε2t

∫
R3
u2vdx.

So, from Lemma 2.2 we deduce that Tu(v) ≤ 1
ε2t ‖u‖2

12/(3+2t)‖v‖2∗
t
≤ 1

ε2tC‖u‖2
s‖v‖Dt,2 , which implies that Tu is

well defined and continuous in Dt,2(R3). It follows from the Lax–Milgram theorem that, for every u ∈ Hs(R3),
there exists a unique φ̄u,t ∈ Dt,2(R3) such that ε2t(−�)tφ̄u,t = u2. Moreover, for x ∈ R

3,

φ̄u,t :=
1
ε2t
ct

∫
R3

u2(y)
|x− y|3−2t

dy :=
1
ε2t
φu,t, (2.1)

where ct := Γ ( 3
2−2t)

π
3
2 22tΓ (t)

. Notice that formula (2.1) is called as the t-Riesz potential. It follows from (2.1) that (1.1)

can be rewritten as the following equivalent form

ε2s(−�)su+ V (x)u +
1
ε2t
φu,tu = f(u) + |u|2∗

s−1u, u ∈ Hs(R3). (2.2)

Now we summarize some properties of φu,t, which will be used later.

Lemma 2.4. For any u ∈ Hs(R3) with s ∈ (3
4 , 1), we have

(1) ‖φu,t‖2
Dt,2 =

∫
R3 φu,tu

2dx ≤ C‖u‖4
12

3+2t

;

(2) φu,t ≥ 0, x ∈ R
3;

(3) if y ∈ R
3 and ū(x) = u(x+ y), then φū,t(x) = φu,t(x+ y) and

∫
R3 φū,tū

2dx =
∫

R3 φu,tu
2dx;

(4) if un ⇀ u in Hs(R3), then φun ⇀ φu in Dt,2(R3).
(5) if un ⇀ u in Hs(R3), then

∫
R3 φun,t|un|2dx =

∫
R3 φ(un−u),t(un − u)2dx+

∫
R3 φu,t|u|2dx+ o(1).

Proof. The proof is similar as those in [34, 47], so we omit the details here. �

The lemma below provides a way to manipulate smooth truncations for the Laplacian see [31].
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Lemma 2.5. Suppose that 0 < 2α < 3 and u ∈ Dα,2(R3). Let ϕ ∈ C∞
0 (R3) and for each r > 0, ϕr(x) = ϕ(x/r).

Then
uϕr → 0 in Dα,2(R3) as r → 0.

If, in addition, ϕ ≡ 1 in a neighborhood of the origin, then

uϕr → u in Dα,2(R3) as r → ∞.

From now on, assume (V) and (f1)–(f4) hold. Making the change of variables x 
→ εx, we rewrite (2.2) as follows:

(−�)su+ V (εx)u + φu,tu = f(u) + |u|2∗
s−1u, u ∈ Hs(R3). (2.3)

Then to study problem (1.1), it suffices to consider problem (2.3). Let Hε be the Hilbert subspace of Hs(R3)
under the norm

‖u‖ε =
(∫

R3
|ξ|2s|û(ξ)|2dξ +

∫
R3
V (εx)|u|2dx

) 1
2

.

Define the energy functional associated with (2.3) by

Iε(u) =
1
2
‖u‖2

ε +
1
4

∫
R3
φu,tu

2dx−
∫

R3
F (u)dx− 1

2∗s

∫
R3

|u|2∗
s dx, (2.4)

which is of C1 class and whose derivative is given by

I ′ε(u)v =
∫

R3
((−�)s/2u(−�)s/2v + V (εx)uv + φu,tuv)dx−

∫
R3

(f(u) + |u|2∗
s−2u)vdx (2.5)

for all v ∈ Hs(R3). Critical points of I are called as weak solutions of system (2.3).
In the sequel, we need a compactness lemma to handle the difficulty due to the lack of compactness in the

embedding Hs(R3) ↪→ Lp(R3) for p ∈ (2, 2∗s).

Lemma 2.6. If (V) holds with V∞ = ∞, then Hε ↪→ Lp(R3) is compact for p ∈ [2, 2∗s).

Proof. For any fixed ε > 0 and assume that {un} is a bounded sequence in Hε. It follows from Lemma 2.1 that
there exists u0 ∈ Hε such that un ⇀ u0 in Hε and un → u0 in Lp

loc(R
3) for p ∈ [1, 2∗s). We claim that for every

ε > 0 there exists R′
ε > 0 such that ∫

|x|≥R′
ε

|un|2dx ≤ ε. (2.6)

Indeed, for any fixed ε > 0, choosing M >
‖u‖2

ε

ε , by (V) there exists R′
ε > 0 such that V (εx) ≥M for |x| ≥ R′

ε.
Then we have ∫

|x|≥R′
ε

|un|2dx ≤
∫
|x|≥R′

ε

V (εx)
M

|un|2dx ≤ ‖u‖2
ε

M
< ε.

From u0 ∈ Hε, we can find Rε > R′
ε such that

∫
|x|≥Rε

|u0|2dx < ε. Then

∫
R3

|un − u0|2dx =
∫
|x|≥Rε

|un − u0|2dx+
∫
|x|≤Rε

|un − u0|2dx ≤ 3ε,

for large n, which implies that un → u0 in L2(R3). Let vn := un − u0. It follows from Lemma 2.3 that un → u0

in Lp(R3) for p ∈ [2, 2∗s). �
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Let
Nε := {u ∈ Hε \ {0} : I ′ε(u)u = 0},

then Nε is a Nehari manifold associated to Iε. It follows from the Implicit Function Theorem that Nε is a
C1-manifold. Moreover, Iε is bounded below on Nε. So we can consider the following minimization problem:

c∗ε := inf
u∈Nε

Iε(u).

Recall that Iε satisfies the Palais–Smale condition at level c ((PS)c for short) if every sequence {un} ⊂ Hε

satisfying Iε(un) → c and I ′ε(un) → 0 in H−1
ε possesses a convergent subsequence in Hε.

Now we state some properties of c∗ε , Iε and Nε.

Lemma 2.7. If the assumptions (V), (f1)–(f4) hold, then the following statements hold.

(i) If {un} is a (PS)c sequence in Hε, then un ⇀ u for some u ∈ Hε and I ′ε(u) = 0.
(ii) For every u ∈ Hε \ {0}, there is a unique hu > 0 such that huu ∈ Nε and

Iε(huu) = max
h≥0

Iε(hu).

(iii) For every u ∈ Nε, there exists C > 0 such that ‖u‖ε ≥ C.
(iv) Let {un} ⊂ Hε satisfying I ′ε(un)un → 0 and

∫
R3(f(un)un + |un|2∗

s )dx → τ as n → ∞, where τ > 0, then
up to a subsequence, there exists hn > 0 such that I ′ε(hnun)hnun = 0, and hn → 1 as n→ ∞.

Proof.

(i) From the conclusion (4) of Lemma 2.4 we can easily prove (i).
(ii) Let u ∈ Hε \ {0} be fixed and let g(h) := Iε(hu) for h ≥ 0. We observe that g′(h) = I ′ε(hu)u = 0 for h > 0
if and only if hu ∈ Nε. Observe that g′(h) = 0 is equivalent to∫

R3
φu,t|u|2dx = −‖u‖2

ε

h2
+
∫

R3

f(hu)u4

(hu)3
dx+ h2∗

s−4

∫
R3

|u|2∗
s dx, (2.7)

which immediately implies that the right side of (2.7) is an increasing function of h > 0 by (f4). It is easy to
see that g(0) = 0, g(h) > 0 for h > 0 small and g(h) < 0 for h large. Hence, there exists a unique h(u) > 0 such
that g′(h(u)) = 0, i.e., h(u)u ∈ Nε. Moreover, Iε(h(u)u) = maxh≥0 Iε(hu).
(iii) For any ε > 0, it follows from (f1) and (f2) that there exists Cε > 0 such that

|f(u)| ≤ ε|u| + Cε|u|2∗
s−1, |F (u)| ≤ ε

2
|u|2 +

Cε

2∗s
|u|2∗

s . (2.8)

Notice that for every u ∈ Nε, we have I ′ε(u)u = 0. Let ε < 1
2 , then by Lemma 2.1

0 = ‖u‖2
ε +

∫
R3
φu,t|u|2dx−

∫
R3
f(u)udx−

∫
R3

|u|2∗
s dx

≥ 1
2
‖u‖2

ε − CεC‖u‖2∗
s

ε − C‖u‖2∗
s

ε ,

which implies that ‖u‖ε ≥ C, where C is independent of u.
(iv) Let {un} ⊂ Hε and satisfy I ′ε(un)un → 0 and

∫
R3(f(un)un + |un|2∗

s )dx → τ as n → ∞. It is easy to get
that {un} ⊂ Hε is bounded and

lim inf
n→∞ ‖un‖ε > 0 and lim inf

n→∞ ‖un‖2∗
s
> 0. (2.9)
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It follows from (ii) that, for each n ∈ N, there exists hn > 0 such that hnun ∈ Nε. Then,

‖un‖2
ε

h2
n

+
∫

R3
φun,t|un|2dx =

∫
R3

f(hnun)u4
n

(hnun)3
dx+ h

2∗
s−4

n

∫
R3

|un|2∗
s dx, (2.10)

which implies that {hn} ⊂ R
+ is bounded. Up to a subsequence, we assume that hn → A for some A ≥ 0.

Obviously, A �= 0. Otherwise, there exists a subsequence of {hn}(still denoted by {hn}) such that hn → 0 as
n→ ∞. By (f1)–(f2), there exist C1, C2 > 0 such that

‖un‖2
ε

h2
n

+
∫

R3
φun,t|un|2dx =

∫
R3

f(hnun)u4
n

(hnun)3
dx+ h

2∗
s−4

n

∫
R3

|un|2∗
s dx

≤
∫

R3
(C1|un|4 + C2h

q−4
n |un|q)dx + h

2∗
s−4

n

∫
R3

|un|2∗
s dx,

which yields by (2.9) a contradiction for large n. So A > 0. In view of (f1)–(f2), we infer that for any ε > 0,
there exists δ > 0 such that |f(s)| ≤ ε|s|2∗−1, for |s| ≥ Aδ/2. Let Ωn(δ) := {x ∈ R

3 : |un(x)| ≥ δ}, then for n
large, hn ∈ [A/2, 2A] and

∣∣∣∣
∫

R3
[f(hnun) − f(Aun)]undx

∣∣∣∣ ≤
∣∣∣∣∣
∫

Ωn(δ)

[f(hnun) − f(Aun)]undx

∣∣∣∣∣+
∣∣∣∣∣
∫

R3\Ωn(δ)

[f(hnun) − f(Aun)]undx

∣∣∣∣∣
≤ (1 + 22∗−1)A2∗−1ε

∫
R3

|un|2∗
dx+ |(hn −A)| max

|s|≤2Aδ
|f ′(s)|

∫
R3

|un|2dx

= (1 + 22∗−1)A2∗−1ε

∫
R3

|un|2∗
dx+ on(1).

By the arbitrary choice of ε, we get
∫

R3 [f(hnun) − f(Aun)]un → 0 as n→ ∞, which yields that∫
R3

[f(hnun)hnun − f(Aun)Aun]dx→ 0, n→ ∞.

Then, by (2.10) we have

‖un‖2
ε

A2
+
∫

R3
φun,t|un|2dx =

∫
R3

f(Aun)u4
n

(Aun)3
dx+A2∗

s−4

∫
R3

|un|2∗
s dx+ o(1),

which, together with I ′ε(un)un = o(1), implies that(
1 − 1

A2

)
‖un‖2

ε =
∫

R3

(
f(un)u4

n

u3
n

− f(Aun)u4
n

(Aun)3

)
dx+ (1 −A2∗

s−4)
∫

R3
|un|2∗

s dx+ o(1). (2.11)

If A > 1, then by (f3) we have

0 <
(

1 − 1
A2

)
‖un‖2

ε < (1 −A2∗
s−4)

∫
R3

|un|2∗
s dx < 0

for large n, which is impossible. If A < 1, then by (f3) we also have

0 >
(

1 − 1
A2

)
‖un‖2

ε < (1 −A2∗
s−4)

∫
R3

|un|2∗
s dx > 0

for large n, which is impossible. Hence, A = 1. The proof is complete. �
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The functional Iε satisfies the mountain pass geometry.

Lemma 2.8. The functional Iε has the following properties.

(i) There exist α, ρ > 0 such that Iε(u) ≥ α for ‖u‖ε = ρ;
(ii) There exists e ∈ Hε satisfying ‖e‖ε > ρ such that Iε(e) < 0.

The proof of Lemma 2.8 is standard and hence is also omitted. Let

cε = inf
γ∈Γ

sup
h∈[0,1]

Iε(γ(h)) > 0,

where Γ := {γ ∈ C1([0, 1], Hε) : Iε(γ(0)) = 0, Iε(γ(1)) < 0}. By Lemma 2.8 and the mountain pass theorem
without (PS) condition (see [43]), there exists a (PS)cε sequence {un} ⊂ Hε such that Iε(un) → cε and I ′ε(un) → 0
in H−1

ε . Motivated by [32], we also have the following equivalent characterization of cε, which is more adequate
to our purpose.

Lemma 2.9.
cε = c∗ε = c∗∗ε := inf

u∈Hε\{0}
max
h≥0

Iε(hu) > 0. (2.12)

Proof. Indeed, it follows form Lemma 2.7(ii) that c∗ε = c∗∗ε . Notice that for any u ∈ Hε \ {0}, there exists
some h0 > 0 large, such that Iε(h0u) < 0. Define a path γ : [0, 1] → Hε by γ(h) = hh0u. Clearly, γ ∈ Γ and
consequently, cε ≤ c∗∗ε . On the other hand, for every path γ ∈ Γ , let g(t) := I ′ε(γ(t))γ(t), then g(0) = 0 and
g(t) > 0 for t > 0 small. Meanwhile, by (f3)

4Iε(γ(1)) − I ′ε(γ(1))γ(1) ≥ 0,

which implies that g(1) ≤ 4Iε(γ(1)) < 0. Then there exists t0 > 0 such that g(t0) = 0, i.e., γ(t0) ∈ Nε. So
c∗ε ≤ cε. �

3. The limit problem

In this section, we consider the existence of ground state solutions to the following equation

(−�)su+ μu+ φu,tu = f(u) + |u|2∗
s−1u, u ∈ Hs(R3), (3.1)

where μ > 0 and the associated energy functional is

Iμ(u) =
1
2

∫
R3

|ξ|2s|û(ξ)|2dξ +
∫

R3

(
1
2
μu2 +

1
4
φu,tu

2

)
dx−

∫
R3

(
F (u) +

1
2∗s

|u|2∗
s

)
dx. (3.2)

The Nehari manifold corresponding to Iμ is defined by

Nμ = {u ∈ Hμ \ {0} : I ′μ(u)u = 0},

where Hμ = Hs(R3) with the norm ‖u‖2
Hμ =

∫
R3 |ξ|2s|û(ξ)|2dξ +

∫
R3 μu

2dx. Define the ground state en-
ergy mμ by

mμ := inf
u∈Nμ

Iμ(u).

It is easy to check that mμ and Nμ have properties similar to those of c∗ε and Nε which have been defined in
Section 2.

In the following lemma, we give an upper estimate of the minimax level mμ.
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Lemma 3.1. For any μ > 0, there exists some v ∈ Hμ \ {0} such that

max
t∈[0,∞)

Iμ(tv) <
s

3
S

3
2s
s .

In particular, mμ <
s
3S

3
2s
s .

Proof. It follows from [38] that Ss can be achieved by

uε(x) :=
κε−

3−2s
2

(θ2 + | x

εS
1/2s
s

|)− 3−2s
2

for any fixed ε > 0, where κ ∈ R, θ > 0 are fixed constants. Let η ∈ C∞
0 (R3) be a cut-off function with support

B2(0) such that η ≡ 1 on B1(0) and η ∈ [0, 1] on B2(0). Define Uε(x) = η(x)uε(x), from [38] we have∫
R3

|(−�)s/2Uε(x)|2dx = S3/(2s)
s +O(ε3−2s),

∫
R3

|Uε|2∗
s dx = S3/(2s)

s +O(ε3), (3.3)

and ∫
R3

|Uε|2dx = Cε3−2s +O(ε2s), (3.4)

∫
R3

|Uε|qdx = O(ε3−
(3−2s)q

2 ) for q ∈
(

4,
6

3 − 2s

)
· (3.5)

Let vε = Uε

‖Uε‖2∗s
be such that

∫
R3 |(−�)s/2vε(x)|2dx ≤ Ss +O(ε3−2s). Moreover,

∫
R3

|vε|2dx = O(ε3−2s), (3.6)

∫
R3

|vε|qdx = O(ε3−
(3−2s)q

2 ) for q ∈
(

4,
6

3 − 2s

)
· (3.7)

In view of the definition of mμ, we infer that mμ ≤ max
λ≥0

Iμ(λvε). Define

y(λ) :=
λ2

2
‖vε‖2

Ds,2 − λ2∗
s

2∗s

∫
R3

|vε|2∗
s dx.

It is clear that y(λ) attains its maximum at

λ0 =
( ‖vε‖2

Ds,2∫
R3 |vε|2∗

s dx

) 1
2∗s−2

= ‖vε‖
2

2∗s−2

Ds,2

and y(λ0) = 1
2‖vε‖

4
2∗s−2

Ds,2 ‖vε‖2
Ds,2 − 1

2∗
s
‖vε‖

22∗s
2∗s−2

Ds,2 . It is easy to see that y(λ0) ≤ s
3S

3
2s
s + O(ε3−2s). Observe that

there exists λ′ ∈ (0, 1) such that for ε < 1,

max
λ∈[0,λ′]

Iμ(λvε) ≤ max
λ∈[0,λ′]

[
λ2‖vε‖2

Hμ

2
+
λ4

4

∫
R3
φvε,t|vε|2dx

]
<
s

3
S

3
2s
s . (3.8)

It follows from (f4) that

Iμ(λvε) ≤ λ2‖vε‖2
Hμ

2
+
λ4

4

∫
R3
φvε,t|vε|2dx− ρλσ+1

σ + 1

∫
R3

|vε|σ+1dx− λ2∗
s

2∗s

∫
R3

|vε|2∗
s dx,
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which, together with (3.6) and (3.7), implies that there exists ε0 ∈ (0, 1) such that lim
λ→∞

Iμ(λvε) = −∞ uniformly

for ε ∈ (0, ε0). Thus, there exists λ′′ > 0 such that for ε ∈ (0, ε0),

max
λ∈[λ′′,+∞)

Iμ(λvε) <
s

3
S

3
2s
s . (3.9)

On the other hand, from the definition of Iμ, Lemma 2.4, (f4) and (3.6)–(3.7), we derive that

max
λ∈[λ′,λ′′]

Iμ(λvε) ≤ max
λ∈(0,∞)

y(λ) +
∫

R3
(
λ4

4
φuε,t|uε|2 +

λ2

2
|vε|2)dx −

∫
R3
F (λvε)dx

≤ s

3
S

3
2s
s +O(ε3−2s) + C‖vε‖4

12
3+2t

− ρλσ+1

σ + 1

∫
R3

|vε|σ+1dx+
λ2

2

∫
R3

|vε|2dx

≤ s

3
S

3
2s
s +O(ε3−2s) +O

(
ε2t+4s−3

)−O
(
ε3−

(3−2s)(σ+1)
2

)
≤ s

3
S

3
2s
s (3.10)

for small ε > 0 since 3 − (3−2s)(σ+1)
2 < min{3 − 2s, 2t + 4s − 3}. Therefore, it follows from (3.8)–(3.10) that

mμ <
s
3S

3
2s
s . �

Remark 3.2. Notice that from the lemma above, in case V∞ <∞ we have mV∞ < s
3S

3
2s
s .

Lemma 3.3. Let {un} ⊂ Hμ be a (PS)mμ sequence for Iμ, where mμ < s
3S

3
2s
s . Then one of the following

conclusions holds:

(a) un → 0 in Hμ;
(b) there exists a sequence {yn} ⊂ R

3 and constants R, τ > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
ndx ≥ τ > 0.

Proof. Suppose that (b) does not occur. It follows from Lemma 2.3 that un → 0 in Lν(R3) for ν ∈ (2, 2∗s). We
observe that, by (f1) and (f2), for any ε > 0, there exists Cε > 0 such that f(un) ≤ ε|un| + Cε|un|q. Then, we
have

∫
R3 F (un)dx → 0,

∫
R3 f(un)undx → 0, as n → ∞. On the other hand, from Lemma 2.4 we derive that∫

R3 φun,t|un|2dx→ 0, as n→ ∞. In view of the above facts and the behavior of (PS)c sequence, we can easily
know that

o(1) = Iμ(un)un = ‖un‖2
Hμ −

∫
R3

|un|2∗
s dx,

mμ + o(1) = Iμ(un) =
1
2
‖un‖2

Hμ − 1
2∗s

∫
R3

|un|2∗
s dx.

Let l := ‖un‖2
Hμ + o(1), then l =

∫
R3 |un|2∗

s dx+ o(1) and l ≥ 0. Furthermore, mμ = s
3 l. If l > 0, then from the

definition of Ss, we get Ss ≤ l
2∗s−2
2∗s , which contradicts mμ = s

3 l <
s
3S

3
2s
s . Therefore, l = 0. This implies that

un → 0 in Hμ. �

Proposition 3.4. For any μ > 0, problem (3.1) has a positve ground state solution in Hs(R3).

Proof. We divide the proof into three steps.
Step 1. Existence. It is easy to check that Iμ satisfies the mountain pass geometry. Thus, there exists a sequence
un ⊂ Hμ such that Iμ(un) → mμ and I ′μ(un) → 0. Moreover, {un} is a bounded sequence in Hμ. Then, up to a
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subsequence, un ⇀ u in Hμ and un → u a.e. in R
3 for some u ∈ Hμ as n→ ∞. The weak convergence of {un}

implies that I ′μ(u) = 0. We remark that u ∈ Nμ if u �= 0. Using the Fatou’s lemma we get

mμ ≤ Iμ(u) − 1
4
I ′μ(u)u

≤ 1
4
‖u‖2

Hμ +
∫

R3

[
1
4
f(u)u− F (u)

]
dx+

(
1
4
− 1

2∗s

)∫
R3

|u|2∗
sdx

≤ lim inf
n→∞

(
1
4
‖un‖2

Hμ +
∫

R3

(
1
4
f(un)un − F (un)

)
dx+

(
1
4
− 1

2∗s

)∫
R3

|un|2∗
s dx

)
= mμ.

Then, Iμ(u) = mμ. Now we consider the case u = 0. Since mμ > 0 and Iμ is continuous in Hμ, we deduce that
‖un‖Hμ �→ 0. It follows from Lemma 3.1 that there exist a sequence {yn} ⊂ R

3 and constants R, τ > 0 such
that lim inf

n→∞
∫

BR(yn) u
2
ndx ≥ τ > 0. Set vn(x) = un(x + yn), then we use the invariance of R

3 by translation to

conclude that Iμ(vn) → mμ and I ′μ(vn) → 0. Moreover, there exists a critical point v ∈ Hμ of Iμ such that, up
to a subsequence, vn ⇀ v in Hμ and vn → v in L2(BR(0)). Observe that∫

BR(0)

v2dx = lim inf
n→∞

∫
BR(0)

v2
ndx = lim inf

n→∞

∫
BR(yn)

u2
ndx ≥ τ > 0,

we know v �≡ 0 and similar as above, Iμ(v) = mμ. Let u ∈ Hμ be a ground state solution of problem (3.1). Now,
we claim that u ≥ 0. Using u− = min{u, 0} as a test function in equation (3.1), and integrating by parts, by
Lemma 2.4 we obtain ∫

R3
(−�)suu−dx+ μ

∫
R3

|u−|2dx+
∫

R3
φu,t|u−|2dx =

∫
R3

|u−|2∗
s . (3.11)

It is easy to check that for any x, y ∈ R
3,

[u−(x) − u−(y)] =[u+(x) − u+(y)][u−(x) − u−(y)] + [u−(x) − u−(y)]2

≥[u−(x) − u−(y)]2,

which yields that ∫
R3

(−�)suu−dx = cs

∫
R6

[u(x) − u(y)][u−(x) − u−(y)]
|x− y|3+2s

dxdy

≥ cs

∫
R6

[u−(x) − u−(y)]2

|x− y|3+2s
dxdy = ‖u−‖2

Ds,2 .

Then it follows from (3.11) that if u− �≡ 0, ‖u−‖2∗
s

2∗
s
≥ ‖u−‖2

Ds,2 ≥ S
3
2s
s . Similarly, for any x, y ∈ R

3, [u(x) −
u(y)][u+(x) − u+(y)] ≥ [u+(x) − u+(y)]2. Then we get

∫
R3(−�)suu+dx ≥ ‖u+‖2

Ds,2 and

s

3
S

3
2s
s > Iμ(u) = Iμ(u) − 1

4
I ′μ(u)u

≥ 1
4
‖u‖2

μ +
(

1
4
− 1

2∗s

)
‖u‖2∗

s
2∗

s

≥ 1
4
‖u−‖2

Ds,2 +
(

1
4
− 1

2∗s

)
‖u−‖2∗

s
2∗

s
≥ s

3
S

3
2s
s ,

which is a contradiction. So u− ≡ 0 and u ≥ 0.
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Step 2. L∞-estimates. We use an iteration method which was firstly introduced in [10] to prove u ∈ L∞(R3).
Our argument is similar to that developed in Proposition 3.2 of [10] but we give the details for the reader’s
convenience.

Define

ψ(t) = ψT,κ(t) =

⎧⎪⎨
⎪⎩

0, t ≤ 0

tκ 0 < t < T,

κT κ−1(t− T ) + T κ t ≥ T.

Observe that ψ is a convex and differentiable function, then (−�)sψ(u) ≤ ψ′(u)(−�)su. Moreover, ‖ψ(u)‖Ds,2 ≤
κT κ−1‖u‖Ds,2. From Lemma 2.2 we have

∫
R3 ψ(u)(−�)sψ(u)dx = ‖ψ(u)‖2

Ds,2 ≥ Ss‖ψ(u)‖2
2∗

s
. On the other hand,

since u ≥ 0 solves (3.1), it follows from (f1) and (f2) that there exists C1 > 0 such that (−�)su ≤ C1u
2∗

s−1.
Then, we have ∫

R3
ψ(u)(−�)sψ(u)dx ≤

∫
R3
ψ(u)ψ′(u)(−�)sudx ≤ C1

∫
R3
ψ(u)ψ′(u)u2∗

s−1dx,

which, together with Lemma 2.2, implies that ‖ψ(u)‖2
2∗

s
≤ C1

Ss

∫
R3 ψ(u)ψ′(u)u2∗

s−1dx. It follows from uψ′(u) ≤
κψ(u) that

‖ψ(u)‖2
2∗

s
≤ Cκ

∫
R3
ψ2(u)u2∗

s−2dx. (3.12)

Let κ1 = 2∗s/2, we claim that u ∈ Lκ12
∗
s . Indeed, by Hölder’s inequality we infer that∫

R3
ψ2(u)u2∗

s−2dx =
∫
{u≤R}

ψ2(u)u2∗
s−2dx+

∫
{u≥R}

ψ2(u)u2∗
s−2dx

≤
∫
{u≤R}

ψ2(u)R2∗
s−2dx+ ‖ψ(u)‖2

2∗
s

(∫
{u≥R}

u2∗
sdx

) 2∗s−2
2∗s

, (3.13)

where R > 0. Clearly, taking R large enough, we get
∫
{u≥R} u

2∗
sdx ≤ (Cκ1)

−2∗s
2∗s−2 . Then, combining (3.12)

and (3.13) we have ‖ψ(u)‖2
2∗

s
≤ 2Cκ1

∫
{u≤R} ψ

2(u)R2∗
s−2dx. Using that ψT,κ1 ≤ uκ1 in the right hand side of the

above formula and then letting T → ∞ in the left hand side, by 2κ1 = 2∗s we have ‖u‖2κ1
κ12∗

s
≤ 2Cκ1R

2∗
s−2‖u‖2∗

s
2∗

s
<

∞. Our claim is true. Using that ψT,κ1 ≤ uκ1 in the right hand side of (3.12) and then letting T → ∞ in the
left hand side, we have ‖u‖2κ

κ2∗
s
≤ Cκ

∫
R3 u

2κ+2∗
s−2dx. So, let Cκ = Cκ,

(∫
R3
uκ2∗

s

) 1
(κ−1)2∗s ≤ C

1
2(κ−1)
κ

(∫
R3
u2κ+2∗

s−2dx
) 1

2(κ−1)

.

For m ≥ 1, we define κm+1 inductively so that 2κm+1 + 2∗s − 2 = 2∗sκm and κ1 = 2∗
s

2 . So we have

(∫
R3
uκm+12

∗
s

) 1
(κm+1−1)2∗s ≤ C

1
2(κm+1−1)
κm+1

(∫
R3
u2∗

sκmdx
) 1

2∗s (κm−1)

.

Then, define for m ≥ 1, Dm :=
(∫

R3 u
2∗

sκmdx
) 1

2∗s (κm−1) . By using the iteration technique, we conclude that there
exists C0 > 0, independent of m, such that

Dm+1 ≤
m∏

k=1

C
1

2(κk+1−1)
κk+1 ·D1 ≤ C0D1.
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Letting m→ 0, we are going to obtain ‖u‖∞ ≤ C0D1.

Step 3. Positivity, i.e., u > 0. Observing that u ∈ L∞(R3), by the definition of φu,t(x), there exists C > 0
such that

φu,t(x) ≤
∫
|x−y|≥1

u2(y)
|x− y|3−2t

dy +
∫
|x−y|<1

u2(y)
|x− y|3−2t

dy

≤ ‖u‖2
2 + C

∫
|x−y|<1

1
|x− y|3−2t

dy < +∞

and |g| ≤ C(|u| + |u|q−1), where g(x) = f(u(x)) + |u(x)|2∗
s−2u(x) − μu(x) − φu,t(x)u(x). Then it follows from

Theorem 3.4 in [19] that there exists σ ∈ (0, 1) such that u ∈ C0,σ. Let w satisfy −�w = −μu− φu,tu+ f(u) +
|u|2∗

s−2u ∈ C0,σ. By the Hölder regularity theory for the Laplacian, we have w ∈ C2,σ. It follows from 2s+σ > 1
that (−�)1−sw ∈ C1,2s+σ−1. Then, since (−�)s(u − (−�)1−sw) = 0, the function u− (−�)1−sw is harmonic
and we get u has the same regularity as (−�)1−sw. That is, u ∈ C1,2s+σ−1. The regularity obtained above
implies that

(−�)su = −
∫

R3

u(x+ y) + u(x− y) − 2u(x)
|y|3+2s

dy.

Assume there exists x0 ∈ R
3 such that u(x0) = 0, then by u �≡ 0 and u ≥ 0,

(−�)su(x0) = −
∫

R3

u(x0 + y) + u(x0 − y)
|y|3+2s

dy < 0.

However, noting that (−�)su = −μu−φu,tu+f(u)+ |u|2∗
s−2u we get (−�)su(x0) = 0, which is a contradiction.

Therefore, u > 0. The proof is complete. �

4. Existence of positive solutions

Let u0 ∈ Hs be a ground state solution of the following equation:

(−�)su+ V0u+ φu,tu = f(u) + |u|2∗
s−2u in R

3, (4.1)

and IV0(u0) = mV0 , where IV0 and mV0 are given in Section 3 by replacing μ by V0. Similar for mV∞ and IV∞ .
Here, we give an upper estimate of the minimax level cε, which is defined in Section 2.

Lemma 4.1. Assume that (V ) and (f1)–(f4) hold. Then there exists ε0 > 0 such that for ε ∈ (0, ε0),

cε <
s

3
S

3
2s
s .

Moreover, if V∞ <∞, then cε < mV∞ for ε ∈ (0, ε0).

Proof. Firstly, we claim that cε → mV0 as ε → 0+. For each R > 0, set uR(x) = ψR(x)u0, here u0 is a positive
ground state solution of problem (4.1) and ψR(x) = φ(x/R), where φ ∈ C∞(R3, [0, 1]) is such that φ(x) = 1 if
|x| ≤ 1

2 , and φ(x) = 0 if |x| ≥ 1. From Lemma 2.5 we derive that

uR → u0 in Hs(R3) as R→ ∞. (4.2)

For each ε, R > 0, there exists hε,R > 0 such that Iε(hε,RuR) = max
h≥0

Iε(huR). Thus, I ′ε(hε,RuR) = 0 and

1
h2

ε,R

∫
BR(0)

(|(−�)suR|2 +V (εx)u2
R)dx+

∫
BR(0)

φuR,t|uR|2dx =
∫

BR(0)

f(hε,RuR)
h3

ε,Ru
3
R

u4
Rdx+h

2∗
s−4

ε,R

∫
BR(0)

|uR|2∗
s dx,

(4.3)
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which implies that

1
h2

ε,R

∫
BR(0)

(|(−�)suR|2 + ‖V ‖∞(|x|<R)u
2
R)dx +

∫
BR(0)

φuR,t|uR|2dx

≥
∫

BR(0)

f(hε,RuR)
h3

ε,Ru
3
R

u4
Rdx+ h

2∗
s−4

ε,R

∫
BR(0)

|uR|2∗
s dx.

Thus, from (4.3), (f3) and the last inequality, for each R > 0 we deduce that

0 < lim
ε→0+

hε,R = hR <∞.

Passing to the limit as ε→ 0+ in (4.3), we get

1
h2

R

∫
BR(0)

(|(−�)suR|2+V0u
2
R)dx+

∫
BR(0)

φuR,t|uR|2dx =
∫

BR(0)

f(hRuR)
h3

Ru
3
R

u4
Rdx+h2∗

s−4
R

∫
BR(0)

|uR|2∗
s dx. (4.4)

It follows from (4.2) and (4.4) that limR→∞ hR = 1, and IV0(hRuR) = maxt≥0 IV0(huR). Then, by (4.4),
cε ≤ maxh≥0 Iε(huR) = Iε(hε,RuR) and lim sup

ε→0+
cε ≤ IV0(hRuR) uniformly for R > 0. From (4.2), we deduce

that lim supε→0+ cε ≤ mV0 . Now it suffices to verify that

cε ≥ mV0 for all ε > 0. (4.5)

In fact, we assume on the contrary that cε∗ < mV0 for some ε∗ > 0. From Lemma 2.9 and the definition of cε∗ ,
we know that there exists uε∗ ∈ Hs(R3) \ {0} such that cε∗ ≤ maxh>0 Iε∗(huε∗) < mV0 . Again by the definition
of mV0 , we know that mV0 ≤ maxh>0 IV0 (huε∗). It follows from V0 ≤ V (εx) for all ε > 0 and x ∈ R

3 that
mV0 > maxh>0 Iε∗(huε∗) ≥ maxh>0 IV0(huε∗) ≥ mV0 , which is a contradiction. So (4.5) holds. It is easy to see
lim infε→0+ cε ≥ mV0 . Hence, limε→0+ cε = mV0 .

If V∞ < ∞, then mV0 < mV∞ . It follows from mV0 < min{ s
3S

3
2s
s ,mV∞} that there exists ε0 > 0 such that

cε < min{ s
3S

3
2s
s ,mV∞} for ε ∈ (0, ε0). �

Lemma 4.2. Assume that (V) and (f1)–(f4) hold and for ε ∈ (0, ε0) there exists a sequence {un} ⊂ Hε satisfying

Iε(un) → cε, I ′ε(un) → 0 as n→ ∞, (4.6)

then {un} has a subsequence, still denoted by {un}, satisfying un → u0 in Hε as n→ ∞.

Proof. If ε ∈ (0, ε0), then by Lemma 4.1, we have cε < s
3S

3
2s
s . Moreover, if V∞ < ∞, we have cε < cV∞ for

ε ∈ (0, ε0). It is easy to see that {un} is bounded in Hε, we assume that, up to a subsequence, un ⇀ u0 in Hε

and un → u0 a.e. in R
3 as n → ∞, for some u0 ∈ Hε. Then, I ′ε(u0) = 0. Now we use two steps to complete the

proof.

Step 1. u0 �≡ 0. We observe that if there exist constants β,R > 0 such that

lim inf
n→∞

∫
BR(0)

|un|2dx ≥ β, (4.7)

then u0 �≡ 0. Suppose on the contrary that u0 ≡ 0. Then there exists a subsequence of {un}, still denoted by
{un}, such that for every R1 > 0,

lim sup
n→∞

∫
BR1(0)

|un|2dx = 0. (4.8)
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Case 1: V∞ <∞. Let μ be such that

inf
x∈R3

V (x) < μ < lim inf
|x|→∞

V (εx) = V∞

and take R > 0 such that V (εx) ≥ μ, ∀x ∈ R
3 \ BR(0). Observe that ‖un‖2

ε → C for some C > 0. Indeed,
assume on the contrary that ‖un‖2

ε → 0 after extracting a subsequence, then we have Iε(un) → 0, which
is impossible. Then, there exists C > 0 such that

∫
R3(f(un)un + |u|2∗

s )dx → C > 0. It follows from (iv) of
Lemma 2.7 that there exists a sequence {h̄n} ⊂ R

+ with h̄n → 1 and h̄nun ∈ Nε. Consequently,

Iε(un) = Iε(h̄nun) + o(1) ≥ Iε(hun) + o(1)

=
h2

2
‖un‖2

ε +
h4

4

∫
R3
φun,t|un|2dx−

∫
R3
F (hun) − h2∗

s

6

∫
R3

|un|2∗
s dx

+ Iμ(hun) − Iμ(hun) + o(1)

≥ h2

2

∫
BR(0)

(V (εx) − μ)|un|2dx+ Iμ(hun) + o(1) (4.9)

for any h > 0. Let hn ≥ 0 be such that Iμ(hnun) = max
h≥0

Iμ(hun), then {hn} is bounded. If not, there exists a

subsequence of {hn}, still denoted by {hn}, such that hn → ∞ as n→ ∞. We observe that

h2
n

∫
R3

(|(−�)s/2un|2 + μu2
n)dx+ h4

n

∫
R3
φun,t|un|2dx ≥ |hn|2∗

s

∫
R3

|un|2∗
s dx. (4.10)

Now we show that there exists δ > 0 such that

‖un‖2∗
s

2∗
s
≥ δ > 0. (4.11)

Otherwise, there exists a subsequence of {un}, still denoted by {un}, such that ‖un‖2∗
s

2∗
s
→ 0 as n → ∞. Then,

we have for any r > 0,

lim
n→∞ sup

y∈R3

∫
Br(y)

|un|2∗
s dx = 0.

Lemma 2.3 implies un → 0 in Lν(R3) for ν ∈ (2, 2∗s]. So, from (f1) and (f2) we deduce that
∫

R3 F (un)dx→ 0 as
n→ ∞. In view of Lemma 2.4, we can easily see that∫

R3
φun,tu

2
ndx ≤ C‖un‖4

12
3+2t

→ 0,

which, together with the definition of Iε, implies that

cε = Iε(un) + o(1)

=
1
2
‖un‖2

ε +
1
4

∫
R3
φun,tu

2
ndx−

∫
R3
F (un)dx− 1

2∗s

∫
R3

|un|2∗
s dx+ o(1)

=
1
2
‖un‖2

ε + o(1).

Thus, there exists some constant C > 0 such that ‖un‖2
ε > C. Based on the above facts, we infer from the

definition of Iε and Lemma 2.9 that

cε + o(1) = Iε(un) ≥ Iε(Kun)

=
K2

2
‖un‖2

ε +
K4

4

∫
R3
φun,tu

2
ndx−

∫
R3
F (Kun)dx− K2∗

s

2∗s

∫
R3

|un|2∗
s dx

≥ K2C

2
−
∫

R3
F (Kun)dx− K2∗

s

2∗s

∫
R3

|un|2∗
s dx→ K2C

2
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as n→ ∞. Now we arrive a contradiction if K is large enough. Therefore, (4.11) holds. Combining (4.10), (4.11)
and the boundedness of {un} in Hs(R3), we obtain a contradiction. Consequently, {hn} is bounded. Letting
h = hn in (4.9), we have

Iε(un) ≥ h2
n

2

∫
BR(0)

(V (εx) − μ)u2
ndx+mμ + o(1).

Taking the limit as n→ +∞, from (4.8) and the Sobolev embedding inequality, we have cε ≥ mμ. Next, letting
μ → V∞, we obtain cε ≥ mV∞ , which is a contradiction.

Case 2: V∞ = ∞. It follows from Lemma 2.6 that the embedding Hε ↪→ Ls(R3) is compact for 2 ≤ s < 6. Hence,
using (4.8), up to a subsequence, un → 0 in Ls(R3) as n → ∞. Furthermore, by (f1)-(f2) and I ′ε(un) = o(1),
we have ‖un‖2

ε =
∫

R3 |un|2∗
s dx + o(1). Since {un} is bounded in Hε, up to a subsequence, we can assume

‖un‖2
ε → l > 0 and ‖un‖2∗

s
2∗

s
→ l. In view of Iε(un) = cε + o(1), we have l

2 − l
2∗

s
= cε. Noting that l ≥ S

3
2s
s ,

S
3
2s
s ≤ l = 3

scε < S
3
2s
s which is a contradiction. Therefore, u0 �≡ 0.

Step 2. We prove that un → u0 in Hε as n → ∞. Set vn = un − u0. Assume on the contrary that ‖vn‖ε ≥ θ
for large n and some constant θ > 0. Noting that I ′ε(u0) = 0, we get

‖u0‖2
ε +

∫
R3
φu0,tu

2
0dx =

∫
R3
f(u0)u0dx +

∫
R3

|u0|2∗
s dx (4.12)

and
‖un‖2

ε +
∫

R3
φun,tu

2
ndx =

∫
R3
f(un)undx+

∫
R3

|un|2∗
s dx+ o(1), (4.13)

respectively. Using the Brezis–Lieb lemma [11], we obtain
∫

R6

|vn(x) − vn(y)|2
|x− y|3+2s

dxdy =
∫

R6

|un(x) − un(y)|2
|x− y|3+2s

dxdy

−
∫

R6

|u0(x) − u0(y)|2
|x− y|3+2s

dxdy + o(1),∫
R3
f(vn)vndx =

∫
R3
f(un)undx−

∫
R3
f(u0)u0dx,∫

R3
|vn|pdx =

∫
R3

|un|pdx−
∫

R3
|u0|pdx+ o(1), p ∈ [2, 2∗s].

Then, by (4.12), (4.13), and Lemma 2.4, we obtain

‖vn‖2
ε +

∫
R3
φvn,tv

2
ndx =

∫
R3
f(vn)vndx+

∫
R3

|vn|2∗
s dx+ o(1).

Since ‖vn‖ε ≥ θ for large n, similar as above, there exists a sequence {τn} ⊂ R
+ with τn → 1 as n → ∞ and

τnvn ∈ Nε, that is,

‖τnvn‖2
ε +

∫
R3
φτnvn,t(τnvn)2dx =

∫
R3
f(τnvn)τnvndx+

∫
R3

(τnvn)2
∗
s dx.

So
Iε(vn) = Iε(τnvn) + o(1) ≥ cε + o(1). (4.14)

Similarly, it follows from (4.12) that
Iε(u0) ≥ cε. (4.15)
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Thus, by (4.14), (4.15), the Brezis–Lieb lemma [11] and Lemma 2.4,

Iε(un) =
1
2
‖un‖2

ε +
1
4

∫
R3
φun,tu

2
ndx−

∫
R3
F (un)dx+

1
2∗s

∫
R3

|un|2∗
s dx

=
1
2
‖u0‖2

ε +
1
4

∫
R3
φu0,tu

2
0dx−

∫
R3
F (u0)dx+

1
2∗s

∫
R3

|u0|2∗
s dx

+
1
2
‖vn‖2

ε +
1
4

∫
R3
φvn,tv

2
ndx−

∫
R3
F (vn)dx+

1
2∗s

∫
R3

|vn|2∗
s dx+ o(1)

≥2cε + o(1),

which implies that lim
n→∞ Iε(un) = cε ≥ 2cε, which contradicts cε > 0 for any ε > 0. Therefore, up to a

subsequence, un → u0 in Hε as n→ ∞. �

Proof of Theorem 1.2. Combining Lemmas 2.8, 4.1 and 4.2, we conclude that for any ε ∈ (0, ε0), Iε admits a
nontrivial critical point uε ∈ Hε. It follows from Lemma 2.9 that uε is a ground state solution of (2.3). Similarly
as in Proposition 3.4, we have uε ∈ L∞(R3), uε ∈ C1,2s+σ−1 and uε(x) > 0 for x ∈ R

3. Therefore, (wε, φwε,t) is
a positive solution of system (1.1), where wε(x) = uε(x

ε ). �

5. Multiplicity and concentration of positive solutions

This section is devoted to the multiplicity and concentration of positive solutions of (1.1). For this purpose,
we first give the following compactness lemma.

Lemma 5.1. Let {un} ⊂ NV0 be a sequence satisfying IV0(un) → mV0 . Then either {un} has a strongly
convergent subsequence in Hs(R3) or there exists {yn} ⊂ R

3 such that wn(x) = un(x + yn) converges strongly
in Hs(R3). In particular, there exists a minimizer of mV0 .

Proof. It is easy to see that {un} is a bounded sequence in Hs(R3). Up to a subsequence, we assume that there
exists u ∈ Hs(R3) such that un ⇀ u in Hs(R3). Now we claim that

IV0(un) → mV0 I ′V0
(un) → 0 in Hs(R3). (5.1)

Due to the Ekeland’s variational principle in [20], there exists a sequence {ūn} ⊂ NV0 such that

‖ūn − un‖s = o(1), IV0(ūn) = mV0 + o(1), I ′V0
(ūn) − γnJ

′
V0

(ūn) = o(1),

where γn is a real number and JV0(u) = I ′V0
(u)u for all u ∈ Hs(R3). We show that there is b > 0 such that

|J ′
V0

(ūn)ūn| ≥ b for all n ∈ N. Indeed, by (f3) and (f4), and the definition of JV0,0, we have

−J ′
V0

(ūn)ūn = −2
∫

R3
(|(−�)s/2ūn|2 + V0ū

2
n)dx− 4

∫
R3
φūn,tū

2
ndx

+
∫

R3
(f(ūn)ūn + f ′(ūn)ū2

n + 2∗s|ūn|2∗
s )dx

≥ 2
∫

R3
(|(−�)s/2ūn|2 + V0ū

2
n)dx− 3

∫
R3
f(ūn)ūndx

+
∫

R3
f ′(ūn)ū2

ndx+ (2∗s − 4)
∫

R3
|ūn|2∗

s dx

≥ 2
∫

R3
(|(−�)s/2ūn|2 + V0ū

2
n)dx, (5.2)
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which follows from 3f(τ)− f ′(τ)τ ≤ 0 for any τ ∈ R. Assume by contradiction that J ′
V0,0(ūn)ūn → 0, then one

has
∫

R3(|(−�)s/2ūn|2+V0ū
2
n)dx→ 0 as n→ ∞. Consequently, we can deduce that ūn → 0 in Hs(R3) as n→ ∞.

However, this is impossible because {ūn} ⊂ NV0 . So |J ′
V0

(ūn)ūn| ≥ b for all n ∈ N. By I ′V0,0(ūn)ūn = o(1), we
have γnJ

′
V0,0(ūn)ūn = o(1). Then, from (5.2), we see that γn = o(1), which yields that {ūn} is a (PS)mV0

sequence in Hs(R3) for IV0 . Hence, it is easy to check that (5.1) holds.
Since I ′V0

is weakly sequentially continuous, we know that I ′V0
(u) = 0 in Hs(R3). If u �= 0, then from the

definition of IV0 we deduce that

mV0 ≤IV0(u) = IV0(u) − 1
4
I ′V0

(u)u

=
1
4

∫
R3

(|(−�)s/2u|2 + V0u
2)dx+

∫
R3

(
1
4
f(u)u− F (u)

)
dx+

(
1
4
− 1

2∗s

)∫
R3

|u|2∗
sdx

≤ lim inf
n→∞

{
1
4

∫
R3

(|(−�)s/2un|2 + V0u
2
n)dx +

∫
R3

(
1
4
f(un)un − F (un)

)
dx

+
(

1
4
− 1

2∗s

)∫
R3

|un|2∗
s dx

}

= lim inf
n→∞

(
IV0(un) − 1

4
I ′V0

(un)un

)
≤ mV0 .

Then limn→∞ 1
4

∫
(|(−�)s/2un|2 + V0u

2
n)dx =

∫
R3(|(−�)s/2u|2 + V0u

2)dx. That is, un → u in Hs(R3).
Now we consider the case u = 0. We claim that there exist r, δ > 0 and {yn} ⊂ R

3 such that

lim inf
n→∞

∫
Br(yn)

u2
ndx ≥ δ > 0. (5.3)

To this end, we assume on the contrary that for all R > 0 lim
n→∞ sup

y∈R3

∫
BR(y) u

2
ndx = 0, then from Lemma 2.3 we

deduce that un → 0 in Lν(R3) for ν ∈ (2, 2∗s). Then
∫

R3 f(un)undx → 0 as n → ∞. Moreover, it follows from
I ′V0

(un)un = 0 that ∫
R3

|(−�)s/2un|2dx+
∫

R3
V0u

2
ndx =

∫
R3

|un|2∗
s dx. (5.4)

We also assume that as n→ ∞, there exists l ≥ 0 such that∫
R3

|(−�)s/2un|2dx+
∫

R3
V0u

2
ndx→ l,

∫
R3

|un|2∗
s dx→ l,

then from the definition of Ss, it is easy to know l ≥ S
3
2s
s . Thus, mV0 = (1

2 − 1
2∗

s
)l ≥ s

3S
3
2s
s , which is impossible.

Hence, (5.3) holds. Set vn(x) = un(x + yn), then IV0(vn) → mV0 and I ′V0
(vn) → 0 in H−1, where H−1 is the

dual space of Hs(R3). So there exists v ∈ Hs(R3) with v �= 0 such that vn ⇀ v in Hs(R3). Then the proof
follows from the arguments used in the case u �= 0. �

Lemma 5.2. Let uε ∈ Nε satisfy Iε(uε) → mV0 as ε→ 0+, then there exist {ỹε} ⊂ R
3 and R, β > 0 such that∫

BR(ỹε)

u2
εdx ≥ β (5.5)

for small ε > 0. Moreover, let εn → 0 and {uεn} be such that Iεn(uεn) → mV0 , then vn(x) = uεn(x+ ỹεn) has a
strongly convergent subsequence in Hs(R3). Moreover, up to a subsequence, yn := εnỹεn → y∗ ∈ Θ and the limit
of {vn} is a ground state solution of problem (4.1).
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Proof. Suppose by contradiction that (5.5) does not hold. Then, there is a sequence εn converging to zero such
that for all R > 0, lim

n→∞ sup
y∈R3

∫
BR(y) |uεn |2dx = 0. Using a similar argument as we have done in the proof of

Lemma 5.1, we can deduce that (5.5) holds. Let un := uεn and ỹn := ỹεn . Then, it follows from (5.5) that there
exist R, β > 0 and a sequence {ỹn} ⊂ R

3 such that
∫

BR(ỹn) u
2
ndx ≥ β > 0. Moreover, we know that {un} is

bounded in Hs(R3). Take vn = un(x+ ỹn) such that vn ⇀ v �= 0 in Hs(R3) and vn(x) → v(x) a.e., in R
3. Then,

vn := un(x + ỹn) is a solution of the following equation⎧⎨
⎩

(−�)svn + Vn(x)vn + φvn,tvn = f(vn) + |vn|2∗
s−2vn in R

3,

vn ∈ Hs(R3), vn > 0,

where Vn(x) = V (εnx+ εnỹn) and the associated energy functional is

Lεn(vn) :=
1
2

∫
R3

(|(−�)s/2vn|2 + Vn(x)|vn|2)dx+
1
4

∫
R3
φvn,t|vn|2dx−

∫
R3
F (vn)dx− 1

6

∫
R3

|vn|2∗
s dx.

Choosing hn > 0 such that hnvn ∈ NV0 , we deduce from un ∈ Nεn that

IV0(hnvn) ≤ h2
n

2

∫
R3

|(−�)s/2vn|2 + V (εnx+ εnỹn)|vn|2)dx+
h4

n

4

∫
R3
φvn,t|vn|2dx

−
∫

R3
F (hnvn)dx− h

2∗
s

n

6

∫
R3

|vn|2∗
s dx

= Iεn(hnun) ≤ Iεn(un) = mV0 + o(1).

So it follows from IV0(hnvn) ≥ mV0 that limn→∞ IV0(hnvn) = mV0 . We first claim that {hn} is bounded. If
not, then hn → +∞ and IV0(hnvn) → −∞, which contradicts IV0 (hnvn) > mV0 for all n ∈ N. Without loss
of generality we assume that hn → h ≥ 0. If h = 0, by the boundness of sequence {vn} in Hs(R3), we have
hnvn → 0 in Hs(R3). Hence IV0(hnvn) → 0 as n → ∞, which contradicts mV0 > 0. So h > 0 and the weak
limit of hnvn is nontrivial. Let v̄n := hnvn ⇀ v̄ in Hs(R3). By the uniqueness of the weak limit, v̄ = hv. From
Lemma 5.1, v̄ ∈ NV0 and v̄n → v̄ in Hs(R3), and so vn → v in Hs(R3).

Now we show that yn := εnỹn is bounded. If not, we assume |yn| → ∞. We first consider the case V∞ = ∞.
From Fatou’s Lemma that and L′

εn
(vn)vn = 0, we infer that

∞ = lim inf
n→∞

∫
R3
Vn(x)|vn|2dx ≤

∫
R3

(|(−�)s/2vn|2 + Vn(x)|vn|2)dx+
∫

R3
φvn,t|vn|2dx

=
∫

R3
f(vn)vndx+

∫
R3

|vn|2∗
s dx <∞,

which is a contradiction. For the case V∞ <∞. It follows from hnvn ∈ NV0 and Fatou’s Lemma that

mV0 ≤IV0(hv) < IV∞(hv) − 1
4
I ′V0

(hv)hv

=
∫

R3

[
1
4
|(−�)s/2hv|2 +

(
1
2
V∞ − 1

4
V0

)
h2v2

]
dx

+
∫

R3

(
f(hv)hv − 1

4
F (hv)

)
dx+

(
1
4
− 1

2∗s

)∫
R3

|hv|2∗
s dx

≤ lim inf
n→∞

(
1
4

∫
R3

|(−�)s/2hnvn|2dx+
∫

R3

(
1
2
V (εnx+ yn) − 1

4
V0

)
h2

nv
2
ndx

)

+ lim inf
n→∞

(∫
R3

(
f(hnvn)hnvn − 1

4
F (hnvn)

)
dx+

(
1
4
− 1

2∗s

)∫
R3

|hnvn|2∗
s dx

)
= lim inf

n→∞ Iεn(hnun) ≤ lim inf
n→∞ Iεn(un) = mV0 ,
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which gives a contradiction. So {yn} is bounded. Without loss of generality we may assume that yn → y∗. For
each η ∈ C∞

0 (R3), we deduce from vn → v in Hs(R3) that

lim
n→∞L′

εn
(vn)η = lim

n→∞

∫
R3

((−�)s/2vn(−�)s/2η + Vn(x)vnη)dx

+ lim
n→∞

(∫
R3
φvn,tvnηdx −

∫
R3
f(vn)ηdx −

∫
R3

|vn|2∗
s−2vnηdx

)

=
∫

R3
((−�)s/2v(−�)s/2η + V (y∗)vη)dx

∫
R3
φv,tvηdx−

∫
R3

(f(v) + |v|2∗
s−2v)ηdx.

Then, the limit v of the sequence {vn} solves the equation

(−�)su+ V (y∗)u+ φu,tu = f(u) + |u|2∗
s−2u in R

3.

Define the functional

Iy∗(u) :=
1
2

∫
R3

(|(−�)s/2u|2 + V (y∗)u2)dx +
1
4

∫
R3
φu,tu

2dx−
∫

R3
F (u)dx− 1

2∗s

∫
R3

|u|2∗
s dx.

If y∗ �∈ Θ, then V (y∗) > V0 and we can get a contradiction by similar arguments as above. So y∗ ∈ Θ and
Iy∗(v) = mV0 . �

Let w be a ground state solution of problem (4.1) and η be a smooth non-increasing function defined in [0,∞)
such that η(s) = 1 if 0 ≤ s ≤ 1 and η(s) = 0 if s ≥ 2. For every y ∈ Θ, we define

Ψε,y = η (|εx− y|)w
(
x− y

ε

)
, (5.6)

and then there exists hε > 0 such that maxh≥0 Iε(hΨε,y) = Iε(hεΨε,y). and Φε : Θ → Nε Let Φε(y) := hεΨε,y. It
is easy to check that Φε(y) has a compact support for all y ∈ Θ.

Lemma 5.3. Assume (V) and (f1)–(f4), then limε→0 Iε(Φε(y)) = mV0 uniformly for y ∈ Θ.

Proof. Assume on the contrary that there exist some τ0 > 0, {yn} ⊂ Θ and εn → 0 such that

|Iεn(Φεn(yn)) −mV0 | ≥ τ0. (5.7)

We show that limn→∞ hεn = 1. Indeed, it follows from the definition of hεn and Lemma 2.7 that, there exists
ρ > 0 such that

0 < ρ ≤
∫

R3
(|(−�)s/2hεnΨεn,yn |2 + V (εnx)|hεnΨεn,yn |2)dx

+
∫

R3
φhεn Ψεn,yn ,t|hεnΨεn,yn |2dx

=
∫

R3
f(hεnΨεn,yn)hεnΨεn,yndx+

∫
R3

|hεnΨεn,yn |2
∗
s dx,

which implies that {hεn} can not converge to zero, that is, hεn ≥ h0 > 0 for some h0 > 0 and large n. If
hεn → ∞, then from the boundedness of Ψεn,yn we deduce that

1
h2

εn

∫
R3

(|(−�)s/2Ψεn,yn |2 + V (εnx)|Ψεn,yn |2)dx+
∫

R3
φΨεn,yn ,t|Ψεn,yn |2dx

=
∫

R3

f(hεnΨεn,yn)
h3

εn
Ψ3

εn,yn

Ψ4
εn,yn

dx+ h
2∗

s−4
εn

∫
R3

|Ψεn,yn |2
∗
s dx

≥ h
2∗

s−4
εn

∫
R3

(η(|εnz|)w(z))2
∗
s dz

≥ h
2∗

s−4
εn

∫
B 1

2
(0)

|w(z)|2∗
s dz → ∞ as n→ ∞, (5.8)
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which contradicts hεn → ∞ as n → ∞. Hence, {hεn} is bounded uniformly for n. Up to a subsequence, we
assume that hεn → T . It suffices to prove that T = 1. Using Lebesgue’s theorem and Lemma 2.5, one can verify
that

lim
n→∞ ‖Ψεn,yn‖2

εn
=
∫

R3
(|(−�)s/2w|2 + V0w

2)dx,

lim
n→∞

∫
R3
φΨεn,yn ,t|Ψεn,yn |2dx =

∫
R3
φw,t|w|2dx,

lim
n→∞

∫
R3

f(hεnΨεn,yn)
h3

εn
Ψ3

εn,yn

Ψ4
εn,yn

dx =
∫

R3

f(Tw)
T 3w3

w4dx,

lim
n→∞

∫
R3

|Ψεn,yn |2
∗
s dx =

∫
R3

|w|2∗
s dx. (5.9)

Then, from (5.8) we have

1
T 2

∫
R3

(|(−�)s/2w|2 + V0w
2)dx+

∫
R3
φw,t|w|2dx =

∫
R3

f(Tw)
T 3w3

w4dx+ T 2∗
s−2

∫
R3

|w|2∗
s dx. (5.10)

On the other hand, since w is a ground state solution of (4.1), then we have∫
R3

(|(−�)s/2w|2 + V0w
2)dx+

∫
R3
φw,t|w|2dx =

∫
R3
f(w)wdx +

∫
R3

|w|2∗
s dx. (5.11)

It follows from (5.10) and (5.11) that T = 1. Notice that

Iεn(Φεn(yn)) =
h2

εn

2

∫
R3

(|(−�)s/2Ψεn,yn |2 + V (εnx)|Ψεn,yn |2)dx

+
h4

εn

4

∫
R3
φΨεn,yn ,t|Ψεn,yn |2dx−

∫
R3
F (hεnΨεn,yn)dx− h

2∗
s

εn

2∗s

∫
R3

|Ψεn,yn |2
∗
s dx.

Then limn→∞ Iεn(Φεn(yn)) = IV0(w) = mV0 , which contradicts (5.7). This completes the proof. �

For any δ > 0, take ρ = ρ(δ) > 0 such that Θδ ⊂ Bρ(0), where Θδ was given in Section 1. Define χ : R
3 → R

3

by χ(x) = x for |x| ≤ ρ and χ(x) = ρx/|x| for |x| ≥ ρ. Set βε : Nε → R
3 as

βε(u) =

∫
R3 χ(εx)u4dx∫

R3 u4dx
, ε > 0.

Lemma 5.4. Assume (V) and (f1)–(f4), then limε→0 βε(Φε(y)) = y uniformly for y ∈ Θ.

Proof. Suppose, by contradiction, there exist δ0 > 0, {yn} ⊂ Θ and εn → 0 such that |βεn(Φεn(yn)) − yn| ≥ δ0.
Set z = (εnx− yn)/εn, we then have

βεn(Φεn(yn)) = yn +

∫
R3(χ(εnz + yn) − yn)|w(z)η(|εz|)|4dz∫

R3 |w(z)η(|εz|)|4dz ·

Since Θ ⊂ Bρ(0) and χ|Bρ(0) ≡ Id, it follows from Lebesgue’s theorem that |βεn(Φεn(yn))− yn| = o(1), which is
a contradiction. The lemma is proved. �

Let H : R
+ → R

+ be a positive function satisfying H(ε) → 0+ as ε→ 0+ and set

Σε := {u ∈ Nε : Iε(u) ≤ mV0 +H(ε)}.
Given y ∈ Θ, we can use Lemma 5.3 to conclude that H(ε) = |Iε(Φε(y))−mV0 | → 0 as ε→ 0. Thus, Φε(y) ∈ Σε

and Σε �= ∅ for all ε > 0. Moreover, the following lemma holds.
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Lemma 5.5. For any δ > 0, lim
ε→0+

sup
u∈Σε

dist(βε(u), Θδ) = 0, where Θδ was given in Section 1.

Proof. Let {εn} ⊂ R and εn → 0+, then there exists {un} ⊂ Σεn such that

dist(βεn(un), Θδ) = sup
u∈Σεn

dist(βεn(u), Θδ) + o(1).

Thus, it suffices to find a sequence {yn} ⊂ Θδ such that

|βεn(un) − yn| = o(1). (5.12)

Since {un} ⊂ Σεn ⊂ Nεn , mV0 ≤ cεn ≤ Iεn(un) ≤ mV0 +H(εn), and Iεn(un) → mV0 . Noting that {un} satisfies
the conditions of Lemma 5.2, then by Lemma 5.2, there exists {ỹεn} ⊂ R

3 such that yn = εnỹεn ∈ Θδ for n
large. Hence, we have

βεn(un) = yn +

∫
R3(χ(εnz + yn) − yn)u4

n(z + ỹεn)dz∫
R3 u4

n(z + ỹεn)dz
·

Since εnz + yn → y∗ ∈ Θ and {un(x + ỹεn)} has a convergent subsequence by Lemma 5.2, we get βεn(un) =
yn + o(1) and therefore {yn} is what we want. �

The proof of Theorem 1.3 will be done by applying the following Ljusternik–Schnirelmann abstract result
(see [43]).

Proposition 5.6. Let I be a C1 functional defined on a C1-Finsler manifold ν. If I is bounded from below and
satisfies the (PS) condition, then I has at least catν(ν) distinct critical points.

Proof of Theorem 1.3. We first show that (3.1) has at least catΘδ
(Θ) positive solutions. Given δ > 0, we can

use Lemmas 5.3–5.5 to obtain some εδ > 0 such that, for every ε ∈ (0, εδ), the diagram Θ
Φε−→ Σε

βε−→ Θδ is
well defined and βε ◦ Φε is homotopically equivalent to the embedding Id : Θ → Θδ. Similarly to the proof of
Lemmas 4.2 and 4.3 in [7], we obtain that catΣε(Σε) ≥ catΘδ

(Θ). Moreover, use the definition of Σε and take

εδ small if necessary such that mV0 +H(ε) < min{mV∞ ,
s
3S

3
2s
s }. Thus, Iε satisfies the Palais–Smale condition in

Σε. By the standard Ljusternik–Schnirelmann theory, Iε restricted to Nε has at least catΣε(Σε) critical points.
We claim that any critical point u of Iε restricted on Nε is a free critical point in Hε. Let

G(u) = I ′ε(u)u =
∫

R3
(|(−�)s/2u|2 + V (εx)u2)dx

+
∫

R3
φu,t|u|2dx−

∫
R3
f(u)udx+

∫
R3

|u|2∗
sdx.

If u is a critical point of Iε constrained on Nε, then there exists ν ∈ R such that I ′ε(u) = νG′(u). Hence,

0 = G(u) = I ′ε(u)u = νG′(u)u. (5.13)

By simple calculations, we have

G′(u)u = 2
∫

R3
(|(−�)s/2u|2 + V (εx)u2)dx+ 4

∫
R3
φu,t|u|2dx

−
∫

R3
[f ′(u)u2 + f(u)u+ 2∗s|u|2

∗
s ]dx

≤ −2
∫

R3
(|(−�)s/2u|2 + V (εx)u2)dx+ (4 − 2∗s)

∫
R3

|u|2∗
s dx < 0.
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Therefore, ν = 0 and then I ′ε(u) = 0 in Hε. Consequently, we conclude that Iε has at least catΘδ
(Θ) critical

points in Hε. Similarly to the proof of Propositions 3.4, each critical point uε having been obtained belongs
to space L∞(R3) and uε ∈ C1,2s+σ−1 for some σ ∈ (0, 1) and uε is positive. Then, problem (2.3) has at least
catΘδ

(Θ) positive solutions in Hε.
In the following, we show the concentration properties. Let un ∈ Σεn be a positive solution, where εn → 0.

Then from the definition of Σε we have Iεn(un) → mV0 . Similarly to the arguments in Lemma 5.2, we deduce
that there exists {ȳn} ⊂ R

3 such that wn := un(· + ȳn) → ū �= 0 in Hs(R3). Then for any ε > 0, there exists
Rε > 0 such that

∫
|x|≥Rε

|wn|2∗
s dx ≤ ε. Similarly to the iteration method in Proposition 3.4, from the above

fact we deduce that there exists C > 0 independent of n such that ‖wn‖∞ ≤ C, and then ‖un‖∞ ≤ C. Now, we
claim that there exists c > 0 such that ‖un‖∞ ≥ c > 0. If not, we suppose that ‖un‖∞ → 0, by (f1)-(f3), for n
large enough, we have ∫

R3
(|(−�)s/2un|2 + V0|un|2)dx ≤ V0

2

∫
R3

|un|2dx,

which is a contradiction. So c ≤ ‖un‖∞ ≤ C uniformly for n. It follows from Theorem 5.4 in [39] that for any
r > 0 and any fixed x0 ∈ R

3, there exists τ ∈ (0, 1) (independent of n, r) such that |un(x)− un(y)| ≤ Cr|x− y|τ
for any x, y ∈ Br(x0), where Cr > 0 only depends on r. Since un ∈ L∞(R3)∩L2(R3) ∩C1,2s+σ−1(R3) for some
σ ∈ (0, 1), we get un(x) → 0 as |x| → ∞. Let ỹn be any global maximum point of un and y = x0 := ỹn and
r = 1, then |un(ỹn)− un(x)| ≤ C1|x− ỹn|τ for any x ∈ B1(ỹn). Taking R > 0 (independent of n) small enough,
we have un(x) ≥ c

2 for x ∈ BR(ỹn) uniformly for n. Then it follows from Lemma 5.2 that vn := un(x+ ỹn) is a
solution of the following equation⎧⎨

⎩
(−�)svn + Vn(x)vn + φvn,tvn = f(vn) + |vn|2∗

s−2vn in R
3,

vn ∈ Hs(R3), vn > 0,

where Vn(x) = V (εnx + εnỹn). Moreover, vn → v �= 0 in Hs(R3) and yn → y ∈ Θ with yn = εnỹn. Here we
know that v is a positive ground state solution of problem (4.1). The proof is complete. �
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