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STABLE WELL-POSEDNESS AND TILT STABILITY WITH RESPECT
TO ADMISSIBLE FUNCTIONS ∗
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Abstract. Note that the well-posedness of a proper lower semicontinuous function f can be equiva-
lently described using an admissible function. In the case when the objective function f undergoes the
tilt perturbations in the sense of Poliquin and Rockafellar, adopting admissible functions ϕ and ψ, this
paper introduces and studies the stable well-posedness of f with respect to ϕ (in brief, ϕ-SLWP) and
tilt-stable local minimum of f with respect to ψ (in brief, ψ-TSLM). In the special case when ϕ(t) = t2

and ψ(t) = t, the corresponding ϕ-SLWP and ψ-TSLM reduce to the stable second order local mini-
mizer and tilt stable local minimum respectively, which have been extensively studied in recent years.
We discover an interesting relationship between two admissible functions ϕ and ψ: ψ(t) = (ϕ′)−1(t),
which implies that a proper lower semicontinuous function f on a Banach space has ϕ-SLWP if and
only if f has ψ-TSLM. Using the techniques of variational analysis and conjugate analysis, we also
prove that the strong metric ϕ′-regularity of ∂f is a sufficient condition for f to have ϕ-SLWP and
that the strong metric ϕ′-regularity of ∂[co(f + δBX [x̄,r])] for some r > 0 is a necessary condition for f
to have ϕ-SLWP. In the special case when ϕ(t) = t2, our results cover some existing main results on
the tilt stability.
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1. Introduction

Well-posedness is a fundamental notion in variational analysis and optimization theory and has been well
studied (cf . [8, 13, 17, 25, 28] and the references therein). Let f be a proper lower semicontinuous function on
a Banach space X and recall that f is well-posed at x̄ ∈ dom(f) (in the Tykhonov sense) if every minimizing
sequence {xn} of f converges to x̄. Clearly, the well-posedness of f at x̄ implies that argminx∈X f(x) = {x̄}. In
the case that arg minx∈X f(x) is not a singleton, we can adopt the following weak (or generalized) well-posedness:

d

(
xn, argmin

z∈X
f(z)

)
:= inf

{
‖xn − x‖ : x ∈ argmin

z∈X
f(z)

}
→ 0
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for every minimizing sequence {xn} of f . We note that well-conditionedness, Levitin-Polyak well-posedness,
Hadamard well-posedness and other concepts are closely related or essentially equivalent to the above
well-posedness and weak well-posedness (cf . [2, 8, 17]). Recall that ϕ : R+ → R+ is an admissible function
if it is a nondecreasing function such that ϕ(0) = 0 and [ϕ(t) → 0 ⇒ t→ 0]. Some authors named an admissible
function as a forcing function, conditioning function and so on (cf . [2,3,8]). It is known (cf . [8], p. 6, Thm. 12)
that f is well-posed at x̄ if and only if there exists an admissible function ϕ : R+ → R+ such that

ϕ(‖x− x̄‖) ≤ f(x) − f(x̄) ∀x ∈ X ; (WP)

while f has weak well-posedness at x̄ if and only if there exists an admissible function ϕ : R+ → R+ such that

ϕ(d(x, arg min
x∈X

f(x))) ≤ f(x) − f(x̄) ∀x ∈ X. (GWP)

Replacing the entire spaceX with some open ball BX(x̄, r), one can consider the following respective localization
of (WP) and (GWP):

ϕ(‖x− x̄‖) ≤ f(x) − f(x̄) ∀x ∈ BX(x̄, r) (LWP)

and

ϕ

(
d

(
x, arg min
x∈BX (x̄,r)

f(x)

))
≤ f(x) − f(x̄) ∀x ∈ BX(x̄, r). (LGWP)

In Attouch and Wets [2], x̄ is called a ϕ-minimizer of f if (LWP) holds. In the case that ϕ(t) = ct with c being a
positive constant, (LWP) and (LGWP) reduce respectively to Polyak’s sharp minimizer and Ferris’ weak sharp
minimizer which have been extensively studied (cf . [5, 11, 27, 31, 33, 34]). In the case that ϕ(t) = ct2, (LWP)
means that x̄ is a second-order local minimizer of f . When f undergoes tilt perturbations, under the name of
“uniform second-order growth condition”, Bonnans and Shapiro [4] essentially introduced the following notion:
x̄ is said to be a stable second order local minimizer of f if there exist κ ∈ (0, +∞) and neighborhoods U∗ of 0
and U of x̄ such that for every u∗ ∈ U∗ there exists xu∗ ∈ U , with x0 = x̄, satisfying

κ‖x− xu∗‖2 ≤ fu∗(x) − fu∗(xu∗) ∀x ∈ U, (1.1)

where fu∗ := f − u∗. In an earlier paper than [4], Poliquin and Rockafellar [24] first introduced and studied
another kind of stability with respect to tilt perturbations: f is said to give a tilt-stable local minimum at x̄ if
f(x̄) is finite and there exist r, δ, L ∈ (0, +∞) and M : BX∗(0, δ) → BX [x̄, r] with M(0) = x̄ such that

M(u∗) ∈ arg min
x∈BX [x̄,r]

fu∗(x) (1.2)

and
‖M(u∗1) −M(u∗2)‖ ≤ L‖u∗1 − u∗2‖ ∀u∗1, u∗2 ∈ BX∗(0, δ). (1.3)

In this paper, using admissible functions, we introduce and study the following more general stability with
respect to tilt perturbations.

Definition 1.1. Given two admissible functions ϕ, ψ : R+ → R+ and a proper lower semicontinuous function f
on a Banach space X , we say that

(i) f has stable local well-posedness at x̄ ∈ dom(f) with respect to ϕ (in brief, ϕ-SLWP) if there exist δ, r, κ, τ ∈
(0, +∞) such that for every u∗ ∈ BX∗(0, δ) there exists xu∗ ∈ BX [x̄, r], with x0 = x̄, satisfying

ϕ(κ‖x− xu∗‖) ≤ τ(fu∗(x) − fu∗(xu∗)) ∀x ∈ BX [x̄, r], (1.4)

where BX [x̄, r] denote the closed ball of X with center x̄ and radius r;
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(ii) f is said to have a ψ-tilt-stable local minimum at x̄ (in brief, ψ-TSLM) if there exist δ, r, κ, τ ∈ (0, +∞)
and M : BX∗(0, δ) → BX [x̄, r] with M(0) = x̄ such that (1.2) holds and

κ‖M(u∗1) −M(u∗2)‖ ≤ ψ(τ‖u∗1 − u∗2‖) ∀u∗1, u∗2 ∈ BX∗(0, δ). (1.5)

In the special case when ϕ(t) = t2 and ψ(t) = t, the corresponding ϕ-SLWP and ψ-TSLM reduce to the stable
second order local minimizer and tilt-stable local minimum, respectively. Many authors have studied the tilt-
stable local minimum and stable second order local minimizer. In 1998, Poliquin and Rockafellar [24] proved
that if a proper lower semicontinuous function f on R

n is prox-regular and subdifferentially continuous at (x̄, 0)
then f gives a tilt stable minimum at x̄ if and only if the second subdifferential ∂2f(x̄, 0) is positively definite.
In 2008, under the convexity assumption of f , Aragón Artacho and Geoffroy [1] first studied the stable second
order local minimizer of f in terms of the subdifferential mapping ∂f and proved that x̄ ∈ dom(f) is a stable
local second order strong minimizer of f if and only if ∂f is strongly metrically regular at (x̄, 0). In 2013,
under the finite dimension assumption, Drusvyatskiy and Lewis [9] extended Aragón Artacho and Geoffroy’s
result to the prox-regularity and subdifferential continuity case. Recently, these works have been pushed by
Drusvyatskiy, Mordukhovich, Nghia and Outrata (cf . [10, 19–22]). Zheng and Ng [32] further considered the
Hölder tilt stability and the stable Hölder strong local minimizer. This paper will consider the corresponding
issues for ψ-TSLM and ϕ-SLWP.

To study ϕ-SLWP in terms of subdifferential mappings, we adopt the following extension of the metric
regularity.

Definition 1.2. Let ψ : R+ → R+ be an admissible function and let F be a multifunction between Banach
spaces X and Y with (x̄, ȳ) ∈ gph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.
(i) F is said to be metrically ψ-regular at (x̄, ȳ) if there exist r, τ, κ ∈ (0, +∞) such that

ψ(τd(x, F−1(y))) ≤ κd(y, F (x)) ∀(x, y) ∈ BX(x̄, r) ×BY (ȳ, r). (1.6)

(ii) F is said to be strongly metrically ψ-regular at (x̄, ȳ) with respect to ψ if there exist r, τ, κ, δ ∈ (0, +∞)
such that (1.6) holds and F−1(y) ∩BX(x̄, δ) is a singleton for all y ∈ BY (ȳ, r).

In the case when ψ(t) = t, the metric ψ-regularity is just the metric regularity, which is a fundamental notion
in variational analysis and well studied (cf . [4, 7, 14, 18, 26, 29, 30] and the references therein). When ψ(t) = tp

with p ∈ (0, +∞), (1.6) means the so-called Hölder metric regularity of F at (x̄, ȳ) (cf . [12, 32]). In Section 3,
we prove that a proper lower semicontinuous function f on a Banach space has ϕ-SLWP at x̄ if ∂f is strongly
metrically ϕ′-regular at (x̄, 0) and that ∂[co(f + δBX [x̄,r])] is strongly metrically ϕ′-regular at (x̄, 0) for some
r > 0 if f has ϕ-SLWP at x̄. In particular, under the convexity assumption on f , f has ϕ-SLWP at x̄ if and
only if ∂f is strongly metrically ϕ′-regular at (x̄, 0).

On one hand, given any two admissible functions ϕ and ψ, we cannot expect that ϕ-SLWP and ψ-TSLM are
relevant. On the other hand, corresponding to the special case when ϕ(t) = t2 and ψ(t) = t, Drusvyatskiy and
Lewis [9] did prove that the stable second order local minimizer and tilt-stable local minimum are equivalent.
Thus, it is natural to ask whether there exists an exact relationship between ϕ and ψ such that ϕ-SLWP
and ψ-TSLM are equivalent. In Section 4, we find that the equality ψ(t) = (ϕ′)−1(t) is such a relationship. In
particular, under some mild assumption and with the help of some techniques used in [9,20,31,32], we prove that
a proper lower semicontinuous function f on a Banach space has ϕ-SLWP at x̄ if and only if f has (ϕ′)−1-TSLM
at x̄.

Note that every small linear perturbation fu∗ of f has an isolated minimizer around x̄ if f has ϕ-SLWP at x̄.
In Section 5, we consider the stable weak well-posedness for the non-isolated minimizer case and obtain some
interesting results.

In Section 6, in terms of “generalized positive definiteness” of the second subdifferential ∂2f , we provide a
sufficient condition for the subdifferential mapping ∂f to be metrically regular with respect to an admissible
function, which results in a sufficient condition for f to have stable well-posedness in the convexity setting.
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2. Preliminaries

Let X be a Banach space with the topological dual X∗. We denote by BX and BX∗ the closed unit balls of
X and X∗, respectively. For a proper lower semicontinuous function f : X → R∪ {+∞}, we denote by dom(f)
the effective domain of f , that is,

dom(f) := {x ∈ X : f(x) < +∞}.
For x ∈ dom(f) and h ∈ X , let f↑(x, h) denote the generalized directional derivative introduced by Rockafellar
(cf . [6]); that is,

f↑(x, h) := lim
ε↓0

lim sup
u

f→x,t↓0
inf

w∈h+εBX

f(u+ tw) − f(u)
t

,

where the expression u
f→ x means that u → x and f(u) → f(x). Let ∂f(x) denote the Clarke-Rockafellar

subdifferential of f at x, that is,

∂f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f↑(x, h) ∀h ∈ X}.

In the case when f is locally Lipschitzian around x, f↑(x, h) reduces to the Clarke directional derivative

f◦(x, h) := lim sup
u→x,t↓0

f(u+ th) − f(u)
t

∀h ∈ X.

It is well known that if f is convex, then

∂f(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y) − f(x) ∀y ∈ X} ∀x ∈ dom(f).

Recall that the conjugate function f∗ of f is a weak∗-lower semicontinuous convex function on X∗ such that

f∗(u∗) := sup{〈u∗, x〉 − f(x) : x ∈ X} = − inf{fu∗(x) : x ∈ X} ∀u∗ ∈ X∗,

where
fu∗(x) := f(x) − 〈u∗, x〉 ∀x ∈ X. (2.1)

It follows that dom(f∗) 
= ∅ if and only f is bounded below by a continuous linear functional. For x∗ ∈ X∗ and
x ∈ X , it is easy to verify that

f∗(x∗) = 〈x∗, x〉 − f(x) =⇒ x ∈ ∂f∗(x∗).

In the case when f is convex, it is well known (cf . [17], p. 88) that

f = f∗∗ and x∗ ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(x∗).

Let g: R+ → R+ be a convex function. Then the directional derivative

g′+(t) := lim
s→0+

g(t+ s) − g(t)
s

always exists for all t ∈ R+, and g′+ is nondecreasing on R+. It is known (cf . [34], Thm. 2.1.5) that g′+ is
increasing on R+ if and only if g is strictly convex, namely

g(λt1 + (1 − λ)t2) < λg(t1) + (1 − λ)g(t2)

for any λ ∈ (0, 1) and t1, t2 ∈ R+ with t1 
= t2. It is also known that the convex function g is differentiable
on R+ if and only if g′+ is continuous on R+.
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Recall that an admissible function ϕ is a nondecreasing function ϕ : R+ → R+ such that ϕ(0) = 0 and

ϕ(t) → 0 ⇒ t→ 0. (2.2)

If the admissible function ϕ is convex, it is easy from ([34], Thm. 2.1.5) to verify that

0 < ϕ′
+(t1) ≤ ϕ′

+(t2) for all t1, t2 ∈ (0, +∞) with t1 ≤ t2. (2.3)

For convenience, for each α ∈ (0, 1), let

ϕ′
α(t) :=

1
α
ϕ′

+

(
t

1 − α

)
∀t ∈ R+. (2.4)

3. Stable well-posedness

In this section, let ϕ : R+ → R+ be a convex admissible function. The following lemma, established in [28],
is very useful in the proof of the main result in this section.

Lemma 3.1. Let g be a proper lower semicontinuous function on a Banach space X. Let x̄ ∈ argminz∈X g(z),
α ∈ (0, 1) and δ ∈ (0, +∞) be such that

ϕ′
α

(
d(x, arg min

z∈X
g(z))

) ≤ d(0, ∂g(x)) ∀x ∈ BX(x̄, δ) \ arg min
z∈X

g(z)

where ϕ′
α is as in (2.4). Then,

ϕ(d(x, arg min
z∈X

g(z))) ≤ g(x) − g(x̄) ∀x ∈ BX

(
x̄,

δ

1 + α

)
.

Let g : X → R ∪ {+∞} be a proper lower semicontinuous function, u ∈ dom(g) and β > 0. For convenience,
we adopt the following notation:

Mg(u, β) := arg min
z∈B[u,β]

g(z). (3.1)

Applying Lemma 3.1 to g = f + δBX [x̄,r] and ϕ(t) = α
τκ(1−α)ψ(τ(1 − α)t), we have the following lemma.

Lemma 3.2. Let ψ be a convex admissible function and let f be a proper lower semicontinuous function on a
Banach space X. Let x̄ ∈ dom(f) and r > 0 be such that

f(x̄) = min
x∈BX [x̄,r]

f(x).

Suppose that there exist τ, κ, δ ∈ (0, +∞) such that

ψ′
+

(
τd(x,Mf (x̄, r))

) ≤ κd(0, ∂f(x)) ∀x ∈ BX(x̄, δ) \Mf(x̄, r).

Then, for any α ∈ (0, 1),

ψ
(
τ(1 − α)d(x,Mf (x̄, r))

) ≤ τκ(1 − α)
α

(f(x) − f(x̄)) ∀x ∈ BX

(
x̄,

min{δ, r}
1 + α

)
·

With the help of Lemma 3.2, we can prove the following sufficient condition for the stable well-posedness.

Theorem 3.3. Let f be a proper lower semicontinuous function on a Banach space X and let x̄ ∈ dom(f) be
a local minimizer of f . Suppose that ∂f is strongly metrically ϕ′

+-regular at (x̄, 0). Then f has ϕ-SLWP at x̄.
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Proof. By the assumption, there exist r, γ, δ, τ, κ ∈ (0, +∞) such that

min
x∈BX [x̄,r]

f(x) = f(x̄), (3.2)

(∂f)−1(u∗) ∩BX(x̄, γ) = {xu∗} ∀u∗ ∈ BX∗(0, δ) (3.3)

and
ϕ′

+(τd(x, (∂f)−1(u∗))) ≤ κd(u∗, ∂f(x)) ∀(x, u∗) ∈ BX(x̄, δ) ×BX∗(0, δ). (3.4)

Hence x0 = x̄ and

d(x̄, (∂f)−1(u∗)) = d(x̄, (∂f)−1(u∗) ∩BX(x̄, γ)) = ‖x̄− xu∗‖ ∀u∗ ∈ BX∗(0, δ).

Setting x = x̄ in inequality (3.4) and noting that 0 ∈ ∂f(x̄), it follows that

ϕ′
+(τ‖x̄ − xu∗‖) ≤ κd(u∗, ∂f(x̄)) ≤ κ‖u∗‖ ∀u∗ ∈ BX∗(0, δ).

Let

η :=
min{δ, r, γ}

16
and δ1 := min

{
δ, , r, γ,

ϕ′
+(τη)
κ

,
2ϕ(2τη)

9τκη

}
·

Then,
ϕ′

+(τ‖x̄− xu∗‖) ≤ κ‖u∗‖ < ϕ′
+(τη) ∀u∗ ∈ BX∗(0, δ1)

and so
‖xu∗ − x̄‖ < η ≤ γ

16
∀ u∗ ∈ BX∗(0, δ1) (3.5)

(because ϕ′
+ is nondecreasing). This and the definition of η imply that

BX(xu∗ , 6η) ⊂ BX(x̄, 7η) ⊂ BX(x̄, γ) ∩BX(x̄, δ) ∀u∗ ∈ BX∗(0, δ1). (3.6)

Thus, by (3.3), one has
(∂f)−1(u∗) ∩BX(xu∗ , 6η) = {xu∗} ∀u∗ ∈ BX∗(0, δ1),

and so
d(x, (∂f)−1(u∗)) = ‖x− xu∗‖ ∀u∗ ∈ BX∗(0, δ1) and x ∈ BX(xu∗ , 3η).

Noting that ∂fu∗(x) = ∂f(x) − u∗, it follows from (3.4) and (3.6) that

ϕ′
+(τ‖x− xu∗‖) ≤ κd(0, ∂fu∗(x)) ∀u∗ ∈ BX∗(0, δ1) and x ∈ BX(xu∗ , 3η). (3.7)

We claim that
Mfu∗ (xu∗ , 3η) = {xu∗} ∀u∗ ∈ BX∗(0, δ1), (3.8)

where Mfu∗ (xu∗ , 3η) is defined as in (3.1). Assume for the moment that (3.8) holds, it follows from (3.5) and
(3.7) that

Mfu∗ (x̄, η) = {xu∗} ∀u∗ ∈ BX∗(0, δ1) (3.9)

and
ϕ′

+

(
τd
(
x,Mfu∗ (xu∗ , 3η)

)) ≤ κd(0, ∂fu∗(x)) ∀(u∗, x) ∈ BX∗(0, δ1) ×BX(xu∗ , 3η),

respectively. Thus, by Lemma 3.2 (applied to f = fu∗ , x̄ = xu∗ , r = 3η, δ = δ1 and α = 1
2 ), one has

ϕ
(τ

2
‖x− xu∗‖

)
= ϕ

(τ
2
d
(
x,Mfu∗ (xu∗ , 3η)

)) ≤ τκ(fu∗(x) − fu∗(xu∗))
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for all u∗ ∈ BX∗(0, δ1) and x ∈ BX(xu∗ , 2η). Noting (by (3.5)) that xu∗ ∈ BX [x̄, η] ⊂ BX(xu∗ , 2η), it follows
that

ϕ
(τ

2
‖x− xu∗‖

)
≤ τκ(fu∗(x) − fu∗(xu∗)) ∀(x, u∗) ∈ BX [x̄, η] ×BX∗(0, δ1).

This and (3.9) imply that f has ϕ-SLWP at x̄. It remains to show that (3.8) holds. By (3.5), one has
BX [xu∗ , 3η] ⊂ BX(x̄, 4η) for all u∗ ∈ BX∗(0, δ1). Thus, to prove (3.8), we only need to show that

{xu∗} = Mfu∗ (x̄, 4η) ∀u∗ ∈ BX∗(0, δ1). (3.10)

To do this, given a u∗ ∈ BX∗(0, δ1), for each n ∈ N take xn ∈ BX [x̄, 4η] such that

fu∗(xn) < inf
x∈BX [x̄,4η]

fu∗(x) + n−2. (3.11)

It suffices to show that ‖xn−xu∗‖ → 0. By Ekeland’s variational principle and (3.11), there exists un ∈ BX [x̄, 4η]
such that

‖un − xn‖ ≤ n−1 (3.12)

and

fu∗(un) ≤ fu∗(x) + n−1‖x− un‖ ∀x ∈ BX [x̄, 4η]. (3.13)

Thus, ‖un − x̄‖ ≤ 4η < γ
3 . It follows from (3.3) and (3.5) that

d(un, (∂f)−1(u∗)) = ‖un − xu∗‖. (3.14)

We claim that un lies in the open ball BX(x̄, 4η) for all sufficiently large n ∈ N. Granting this, (3.13) implies
that

0 ∈ ∂fu∗(un) + n−1BX∗

for all sufficiently large n. Since ‖un − x̄‖ ≤ 4η < δ, it follows from (3.4) and (3.14) that

ϕ′
+(τ‖un − xu∗‖) ≤ κd(u∗, ∂f(un)) = κd(0, ∂fu∗(un)) ≤ κn−1

for all sufficiently large n. Thus, by (2.3), one has ‖un − xu∗‖ → 0. This, together with (3.12), shows that
‖xn−xu∗‖ → 0. Finally we prove that un lies in the open ball BX(x̄, 4η) for all sufficiently large n ∈ N. Setting
u∗ = 0 in (3.4), one has

ϕ′
+(τd(x, (∂f)−1(0))) ≤ κd(0, ∂f(x)) ∀x ∈ BX(x̄, δ).

Letting δ0 := 1
2 min{δ, r, γ} and noting (by (3.2) and (3.3)) that

{x̄} = (∂f)−1(0) ∩BX(x̄, 2δ0) = Mf(x̄, δ0),

it follows that

ϕ′
+(τd(x,Mf (x̄, δ0))) ≤ κd(0, ∂f(x)) ∀x ∈ BX(x̄, δ0).

Thus, by Lemma 3.2 (applied to α = 1
2 ),

ϕ
(τ

2
‖x− x̄‖

)
≤ τκ(f(x) − f(x̄)) ∀x ∈ BX

(
x̄,

2δ0
3

)
· (3.15)



1404 X.Y. ZHENG AND J. ZHU

By the definition of η, one has un ∈ BX [x̄, 4η] ⊂ BX(x̄, 2δ0
3 ). Given a u∗ ∈ BX∗(0, δ1), it follows from (3.15),

(3.13) and the choice of δ1 that

ϕ
(τ

2
‖un − x̄‖

)
≤ τκ(f(un) − f(x̄))

= τκ(fu∗(un) − fu∗(x̄) + 〈u∗, un − x̄〉)

≤ τκ

(
1
n
‖un − x̄‖ + ‖u∗‖‖un − x̄‖

)
≤ τκ(n−1 + δ1)‖un − x̄‖

≤ τκ

(
1
n

+
2ϕ(2τη)

9τκη

)
4η

and so

lim sup
n→+∞

ϕ
(τ

2
‖un − x̄‖

)
≤ 8ϕ(2τη)

9
< ϕ (2τη) .

Noting that ϕ is nondecreasing, it follows that ‖un − x̄‖ < 4η for all sufficiently large n. The proof is
complete. �

Even in the special case when ϕ(t) = t2, the converse of Theorem 3.3 is not necessarily true (see [9], Ex. 3.4).
This and Theorem 3.3 make the following necessity result meaningful.

Let g be a proper lower semicontinuous function on a Banach space X such that −∞ < inf
x∈X

g(x), and let

cog denote the convex envelope of g, that is, epi(cog) = co(epi(g)). Then, cog is a proper lower semicontinuous
convex function,

g∗∗ = cog and g∗ = (cog)∗

where g∗ and g∗∗ denote respectively the conjugate function and twice conjugate function of g (cf . [34],
Thm. 2.3.1 and [34], Thm. 2.3.4).

Theorem 3.4. Let ϕ be a strictly convex differentiable admissible function and f be a proper lower semicon-
tinuous function on a Banach space X. Suppose that f has ϕ-SLWP at x̄ ∈ dom(f). Then there exists r > 0
such that ∂[co(f + δBX [x̄,r])] is strongly metrically ϕ′-regular at (x̄, 0).

We postpone the proof of Theorem 3.4 at the end of Section 4. The following corollary is immediate from
Theorems 3.3 and 3.4.

Corollary 3.5. Let ϕ be a strictly convex differentiable admissible function and f be a proper lower semicon-
tinuous convex function on a Banach space X. Then f has ϕ-SLWP at x̄ ∈ dom(f) if and only if ∂f is strongly
metrically ϕ′-regular at (x̄, 0).

In the case when ϕ(t) = t2, Corollary 3.5 was established by Aragón Artacho and Geoffroy [1]. In the Asplund
space case, Mordukhovich and Nghia [20] proved that ∂f is strongly metrically regular at (x̄, 0) if and only if
there exist a neighborhood U∗ of 0, a neighborhood U of x̄ and a single-valued function ϑ : U∗ → U such that
gphϑ = gph(∂f)−1 ∩ (U∗ × U) and

τ‖x− u‖2 ≤ fu∗(x) − fu∗(u) ∀x ∈ U and (u∗, u) ∈ gph(∂f)−1 ∩ (U∗ × U),

where τ is a positive constant.
We conclude the section with a necessary condition for ϕ-SLWP, which is related to the following well-known

optimality condition:
f(x̄) = min

x∈BX(x̄,r)
f(x) =⇒ 0 ∈ ∂f(x̄).
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Proposition 3.6. Let ϕ be an admissible function and let f be a proper lower semicontinuous function on a
Banach space X. Suppose that f has ϕ-SLWP at x̄ ∈ dom(f). Then,

0 ∈ int(∂f(BX(x̄, ε))) ∀ε ∈ (0, +∞).

Proof. Since f has ϕ-SLWP at x̄, there exist r, δ, τ, κ ∈ (0, +∞) such that for every u∗ ∈ BX∗(0, δ) there exists
xu∗ ∈ BX [x̄, r], with x0 = x̄, satisfying (1.4). Hence

xu∗ ∈ argmin
z∈BX [x̄,r]

fu∗(z) ∀u∗ ∈ BX∗(0, δ) (3.16)

and

ϕ(κ‖x̄− xu∗‖) ≤ τ(fu∗(x̄) − fu∗(xu∗))
= τ(f(x̄) − f(xu∗) − 〈u∗, x̄− xu∗〉)

= τ

(
min

z∈BX [x̄,r]
f(z) − f(xu∗) − 〈u∗, x̄− xu∗〉

)
≤ −τ〈u∗, x̄− xu∗〉 ≤ τr‖u∗‖

for all u∗ ∈ BX∗(0, δ). Hence lim
u∗→0

ϕ(κ‖x̄− xu∗‖) = 0. This and (2.2) imply that

lim
u∗→0

κ‖x̄− xu∗‖ = 0. (3.17)

Thus, for any ε > 0 there exists γ ∈ (0, δ) such that ‖x̄ − xu∗‖ < min{ε, r} for all u∗ ∈ BX∗(0, γ). It follows
from (3.16) that xu∗ is a local minimizer of fu∗ for each u∗ ∈ BX∗(0, γ). Hence

0 ∈ ∂fu∗(xu∗) = ∂f(xu∗) − u∗ ⊂ ∂f(BX(x̄, ε)) − u∗ ∀u∗ ∈ B(0, γ),

which implies BX∗(0, γ) ⊂ ∂f(BX(x̄, ε)). The proof is complete. �

Remark 3.7. From (3.17), xu∗ in Definition 1.1(i) can be taken in the open ball BX(x̄, r) (taking a smaller δ
if necessary). Thus, from the concerned definitions, it is clear that x̄ is a stable second order local minimizer of
f (i.e. uniform second order growth condition) if and only if f has ϕ-SLWP at x̄ with ϕ(t) = t2.

4. Tilt-stability with respect to an admissible function

In this section, we will provide some necessary conditions and characterizations for the tilt-stable minimum
with respect to an admissible function. First, we provide two lemmas which play important roles in the proofs
of the main results in this section. For a continuous function ω : R+ → R+ with ω(0) = 0, recall (cf . [15])
that a proper lower semicontinuous extended real-valued function g on a Banach space E is C1,ω smooth on
D ⊂ dom(g) if g is Fréchet differentiable on D and

‖�g(x1) − �g(x2)‖ ≤ ω(‖x1 − x2‖) ∀x1, x2 ∈ D.

Lemma 4.1. Let ω : R+ → R+ be an increasing continuous function with ω(0) = 0, E be a Banach space and
let g : E → R ∪ {+∞} be a proper lower semicontinuous function. Let ū ∈ E and δ > 0 be such that g is C1,ω

smooth on BE
(
ū, δ + ω−1(2ω(δ))

) ⊂ dom(g). Then

g∗(x∗) ≥ 〈x∗, u〉 − g(u) +
∫ ‖x∗−�g(u)‖

0

ω−1(s)ds (4.1)

for all (u, x∗) ∈ BE(ū, δ) × BE∗(�g(ū), ω(δ)).



1406 X.Y. ZHENG AND J. ZHU

Proof. Let δ0 := δ + ω−1(2ω(δ)). Then

‖�g(x1) − �g(x2)‖ ≤ ω(‖x1 − x2‖) ∀x1, x2 ∈ BE(ū, δ0)

(because g is C1,ω smooth on BE(ū, δ0)). Hence,

g(v) − g(u) − 〈�g(u), v − u〉 =
∫ 1

0

〈�g(u+ t(v − u)) − �g(u), v − u〉dt

≤
∫ 1

0

ω(t‖v − u‖)‖v − u‖dt

=
∫ ‖v−u‖

0

ω(t)dt

for all u, v ∈ BE(ū, δ0). Let (u, x∗) ∈ BE(ū, δ) ×BE∗(�g(ū), ω(δ)). Then,

g∗(x∗) ≥ sup
v∈BE(ū,δ0)

{〈x∗, v〉 − g(v)}

≥ sup
v∈BE(ū,δ0)

{
〈x∗, v〉 − g(u) − 〈�g(u), v − u〉 −

∫ ‖v−u‖

0

ω(t)dt

}

= 〈x∗, u〉 − g(u) + sup
v∈BE(ū,δ0)

{
〈x∗ − �g(u), v − u〉 −

∫ ‖v−u‖

0

ω(t)dt

}
.

Thus, to prove (4.1), it suffices to show that

β : = sup
v∈BE(ū,δ0)

{
〈x∗ − �g(u), v − u〉 −

∫ ‖v−u‖

0

ω(t)dt

}

≥
∫ ‖x∗−�g(u)‖

0

ω−1(t)dt. (4.2)

To do this, take a sequence {zn} in E such that each ‖zn‖ = 1 and

〈x∗ − �g(u), zn〉 → ‖x∗ − �g(u)‖. (4.3)

For each n ∈ N, let
vn := u+ ω−1(‖x∗ − �g(u)‖)zn.

Then

‖vn − ū‖ ≤ ‖u− ū‖ + ω−1(‖x∗ − �g(u)‖)
< δ + ω−1(‖x∗ − �g(ū)‖ + ‖�g(ū) − �g(u)‖)
≤ δ + ω−1 (ω(δ) + ω(‖ū− u‖))
≤ δ + ω−1(2ω(δ)) = δ0.

This and the definition of β imply that

β ≥ 〈x∗ − �g(u), vn − u〉 −
∫ ‖vn−u‖

0

ω(t)dt

= ω−1(‖x∗ − �g(u)‖)〈x∗ − �g(u), zn〉 −
∫ ω−1(‖x∗−�g(u)‖)

0

ω(t)dt.
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It follows from (4.3) that

β ≥ ω−1(‖x∗ − �g(u)‖) · ‖x∗ − �g(u)‖ −
∫ ω−1(‖x∗−�g(u)‖)

0

ω(t)dt

=
∫ ω−1(‖x∗−�g(u)‖)

0

tdω(t)

=
∫ ‖x∗−�g(u)‖

0

ω−1(s)ds

(the first equality holds because of integration by parts), which verifies (4.2). The proof is complete. �

From ([34], Thm. 3.5.12), one has the following result: if g is convex and C1,ω smooth, then there exists a
convex admissible function ω1 such that

g∗(x∗) ≥ g∗(�g(u)) + 〈x∗ − �g(u), u〉 + ω1(‖x∗ − �g(u)‖),
which implies

g∗(x∗) ≥ 〈x∗, u〉 − g(u) + ω1(‖x∗ − �g(u)‖).
In contrast, without the convexity assumption on g, Lemma 4.1 provides a quantitative and calculable formula
between g and g∗.

Let Z be a Banach space and recall that a set-valued mapping F : Z ⇒ Z∗ is lower semicontinuous at
z0 ∈ dom(F ) := {z ∈ Z : F (z) 
= ∅} if for any open set V with V ∩ F (z0) 
= ∅ there exists a neighborhood U
of z0 such that V ∩ F (z) 
= ∅ for all z ∈ U . Let ω: R+ → R+ be such that

lim
t→0+

ω(t) = ω(0) = 0.

It is routine to verify that the lower semicontinuity of F at z0 is implied by the following ω-Lipschitz continuity
(Lω): there exists δ > 0 such that

F (z1) ⊂ F (z2) + ω(‖z1 − z2‖)BZ∗ ∀z1, z2 ∈ BZ(z0, δ). (Lω)

For (z0, z∗0) ∈ gph(F ) := {(z, z∗) : z ∈ Z and z∗ ∈ F (z)}, as an extension of the Aubin property, we consider
the following property: there exists γ > 0 such that

F (z1) ∩BZ∗(z∗0 , γ) ⊂ F (z2) + ω(‖z2 − z1‖)BZ∗ ∀z1, z2 ∈ BZ(z0, δ). (4.4)

Clearly, (Lω) implies (4.4), but the converse implication is not necessarily true. Indeed, (4.4) does not necessarily
imply the lower semicontinuity of F at z0. For example, let Z = R and F (0) = {0, 2} and F (t) = {ω(|t|)} := {|t|}
for all t ∈ R \ {0}. Then, F (z1) ∩ BR(0, 1) = {|z1|} and F (z2) + ω(|z1 − z2|)BR = |z2| + |z1 − z2|BR for all
z1, z2 ∈ BR(0, 1); hence

F (z1) ∩BR(0, 1) ⊂ F (z2) + ω(|z1 − z2|)BR ∀z1, z2 ∈ BR(0, 1).

On the other hand, since BR(2, 1) ∩ F (0) = {2} and BR(2, 1) ∩ F (z) = ∅ for all z ∈ BR(0, 1) \ {0}, F is not
semicontinuous at 0.

Recall that a set-valued mapping F is monotone if

0 ≤ 〈z∗1 − z∗2 , z1 − z2〉 ∀(z1, z∗1), (z2, z∗2) ∈ gph(F ).

Kenderov [16] proved the following interesting result on the single-valuedness of a monotone mapping.

Result K. Let F be a monotone mapping from a Banach space Z to Z∗ and suppose that F is lower semicon-
tinuous at z0 with F (z0) 
= ∅. Then, F (z0) is a singleton.

Since (4.4) does not imply the lower semicontinuity of F at z0, the following lemma provides a supplement
of Result K.
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Lemma 4.2. Let ω: R+ → R+ be a function such that lim
t→0+

ω(t) = ω(0) = 0 and let F be a monotone mapping

from a Banach space Z to Z∗ with (z0, z∗0) ∈ gph(F ). Suppose that there exist γ, δ ∈ (0, +∞) such that (4.4)
holds. Let γ′ := sup{t ≥ 0 : [0, t] ⊂ ω−1[0, γ)} and δ′ := min{δ, γ′}. Then, F (z) is a singleton for all
z ∈ BZ(z0, δ′).

Proof. Let z ∈ BZ(z0, δ′). Then, ‖z − z0‖ < δ′ ≤ γ′ and so ω(‖z − z0‖) < γ. This and (4.4) imply that
z∗0 ∈ F (z) +ω(‖z − z0‖)BZ∗ . Hence there exists v∗z ∈ F (z) such that ‖v∗z − z∗0‖ ≤ ω(‖z− z0‖) < γ. It suffices to
show that F (z) \ {v∗z} = ∅. To do this, suppose to the contrary that there exists z∗ ∈ F (z) such that v∗z 
= z∗.
Then, there exists h ∈ Z with ‖h‖ = 1 such that

〈v∗z − z∗, h〉 < 0. (4.5)

Since ‖z − z0‖ < δ, there exists a sequence {εn} ⊂ (0, +∞) converging to 0 such that {z + εnh} ⊂ BZ(z0, δ).
It follows from (4.4) that

v∗z ∈ F (z) ∩B(z∗0 , γ) ⊂ F (z + εnh) + ω(εn)BZ∗ ∀n ∈ N.

Hence, for any n ∈ N there exists z∗n ∈ F (z+ εnh) such that ‖z∗n− v∗z‖ ≤ ω(εn) → 0. On the other hand, by the
monotonicity of F ,

0 ≤ 〈z∗n − z∗, εnh〉 = εn〈z∗n − z∗, h〉 = εn(〈z∗n − v∗z , h〉 + 〈v∗z − z∗, h〉) ∀n ∈ N.

Therefore,
〈v∗z − z∗, h〉 ≥ −〈z∗n − v∗z , h〉 ≥ −‖z∗n − v∗z‖ ≥ −ω(εn) → 0,

contradicting (4.5). The proof is complete. �

The following proposition provides a necessary condition for the tilt-stability of a proper lower semicontinuous
function f in terms of the C1,ω smoothness of the concerned conjugate function.

Proposition 4.3. Let ω : R+ → R+ be a function such that lim
t→0+

ω(t) = ω(0) = 0. Let f be a proper lower

semicontinuous function on a Banach space X and x̄ be a minimizer of f . Suppose that there exist r, δ, γ ∈
(0,+∞) and a set-valued mapping M : BX∗(0, δ) ⇒ BX [x̄, r] with x̄ ∈M(0) such that

M(u∗) ⊂ arg min
z∈BX [x̄,r]

fu∗(z) ∀u∗ ∈ BX∗(0, δ) (4.6)

and
M(x∗) ∩BX(x̄, γ) ⊂M(u∗) + ω(‖x∗ − u∗‖)BX ∀x∗, u∗ ∈ BX∗(0, δ). (4.7)

Then, there exists δ′ > 0 such that the conjugate function (f + δBX [x̄,r])∗ is C1,ω smooth on BX∗(0, δ′) and

{�(f + δBX [x̄,r])∗(u∗)} = M(u∗) ∀u∗ ∈ BX∗(0, δ′). (4.8)

Proof. Let u∗ ∈ BX∗(0, δ) and u ∈M(u∗). Then, by (4.6), one has

(f + δBX [x̄,r])∗(u∗) = 〈u∗, u〉 − f(u),

which implies that u ∈ ∂(f + δBX [x̄,r])∗(u∗). Hence M(u∗) ⊂ ∂(f + δBX [x̄,r])∗(u∗). Note that the subdifferential
mapping ∂(f+δBX [x̄,r])∗ is monotone (because the conjugate function (f+δBX [x̄,r])∗ is always convex). Therefore,
M is also monotone. Thus, by (4.7) and Lemma 4.2, there exists δ′ ∈ (0, δ) such that M is single-valued
on BX∗(0, δ′). It follows from (4.7) and the continuity of ω that M is a norm-norm continuous selection of
∂(f + δBX [x̄,r])∗ on BX∗(0, δ′). This and ([23], Prop. 2.8) imply that the convex function (f + δBX [x̄,r])∗ is
Fréchet differentiable on BX∗(0, δ′) and

�(f + δBX [x̄,r])∗(u∗) = M(u∗) ∀u∗ ∈ BX∗(0, δ′).

The proof is complete. �
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From Proposition 4.3 and Definition 1.1(ii), we have the following corollary.

Corollary 4.4. Let ψ be an admissible function such that lim
t→0+

ψ(t) = ψ(0). Let f be a proper lower semi-

continuous function on a Banach space X and x̄ be a minimizer of f . Then, the following statements are
equivalent:

(i) f has weak ψ-TSLM at x̄, namely there exist r, γ, κ, δ, τ ∈ (0, +∞) such that

argmin
z∈BX [x̄,r]

fx∗(z) ∩BX(x̄, γ) ⊂ arg min
z∈BX [x̄,r]

fu∗(z) + κψ(τ‖x∗ − u∗‖)BX

for all x∗, u∗ ∈ BX∗(0, δ).
(ii) There exist δ, r, γ, κ, τ ∈ (0,+∞) and a set-valued mapping M : BX∗(0, δ) ⇒ BX [x̄, r] with x̄ ∈M(0) such

that (4.6) holds and

M(x∗) ∩BX(x̄, γ) ⊂M(u∗) + κψ(τ‖x∗ − u∗‖)BX ∀x∗, u∗ ∈ BX∗(0, δ).

(iii) f has ψ-TSLM at x̄.

In the special case when ϕ(t) = t2 and ψ(t) = t, recall that Drusvyatskiy and Lewis [9] proved that a
proper lower semicontinuous function f has ϕ-SLWP at x̄ if and only if f has ψ-TSLM at x̄. In the case when
ϕ(t) = t

1+p
p and ψ(t) = tp with p > 0, it was proved in a recent paper [32] that f has ϕ-SLWP at x̄ if and

only if f has ψ-TSLM at x̄. For two general admissible functions ϕ and ψ, it is interesting to determine a
relationship between ϕ and ψ which makes the corresponding ϕ-SLWP and ψ-TSLM equivalent. This motivates
us to make the following conjecture: if ϕ is a differentiable and strictly convex admissible function and ψ is the
inverse function (ϕ′)−1 of ϕ′ then f has ϕ-SLWP at x̄ if and only if f has ψ-TSLM at x̄. With the help of
Lemma 4.1 and refining the proof of ([32], Thm. 5.1), we can establish the following result which proves the
above conjecture.

Theorem 4.5. Let ϕ: R+ → R+ be a differentiable and strictly convex admissible function with ϕ′(0) = 0. Let
f be a proper lower semicontinuous function on a Banach space X. Then, f has ϕ-SLWP at x̄ ∈ dom(f) if and
only if f has (ϕ′)−1-TSLM at x̄.

Proof. First suppose that f has (ϕ′)−1-TSLM at x̄. Then there exist δ, r, κ, τ ∈ (0,+∞) and M : BX∗(0, δ) →
BX [x̄, r] with M(0) = x̄ such that

M(u∗) ∈ argmin
z∈BX [x̄,r]

fu∗(z) ∀u∗ ∈ BX∗(0, δ) (4.9)

and
κ‖M(x∗) −M(u∗)‖ ≤ (ϕ′)−1(τ‖x∗ − u∗‖) ∀x∗, u∗ ∈ BX∗(0, δ). (4.10)

Let ω(t) := 1
κ (ϕ′)−1(τt) for all t ∈ R+. Then, since ϕ is a differentiable and strictly convex admissi-

ble function with ϕ′(0) = 0, ω is a continuous increasing function such that ω(0) = 0. Hence, by (4.9),
(4.10) and Proposition 4.3, there exists δ′ > 0 such that (f + δBX [x̄,r])∗ is C1,ω smooth on BX∗(0, δ′) and
�(f + δBX [x̄,r])∗(u∗) = M(u∗) for all u∗ ∈ BX∗(0, δ′); hence BX∗(0, δ′) ⊂ dom((f + δBX [x̄,r])∗). Take δ1 > 0
such that

δ1 + ω−1(2ω(δ1)) < δ′ and r0 := ω(δ1) < r. (4.11)

Then, by Lemma 4.1 (applied to E = X∗ and g = (f + δBX [x̄,r])∗), one has

(f + δBX [x̄,r])∗∗(x) ≥ 〈x, u∗〉 − (f + δBX [x̄,r])∗(u∗) +
∫ ‖x−M(u∗)‖

0

ω−1(s)ds

= 〈x, u∗〉 − (f + δBX [x̄,r])∗(u∗) +
1
τ

∫ ‖x−M(u∗)‖

0

ϕ′(κs)ds

= 〈x, u∗〉 − (f + δBX [x̄,r])∗(u∗) +
1
κτ
ϕ(κ‖x−M(u∗)‖) (4.12)
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for all (u∗, x) ∈ BX∗(0, δ1) ×BX(x̄, r0). By (4.10), one has

κ‖x̄−M(u∗)‖ = κ‖M(0) −M(u∗)‖ ≤ (ϕ′)−1(τ‖u∗‖) ∀u∗ ∈ BX∗(0, δ),

and so there exists δ0 ∈ (0, min{δ, δ1}) such that ‖x̄−M(u∗)‖ < r0 for all u∗ ∈ BX∗(0, δ0). It follows from (4.9)
and (4.11) that

M(u∗) ∈ arg min
z∈BX (x̄,r0)

fu∗(z) ∀u∗ ∈ BX∗(0, δ0). (4.13)

Since (f + δBX [x̄,r])∗∗(x) ≤ (f + δBX [x̄,r])(x) = f(x) for all x ∈ BX [x̄, r], (4.12) and the choice of δ0 imply that

fu∗(x) + (f + δBX [x̄,r])∗(u∗) ≥ 1
κτ
ϕ(κ‖x−M(u∗)‖) (4.14)

for all x ∈ BX(x̄, r0) and u∗ ∈ BX∗(0, δ0). Noting (by (4.9)) that

(f + δBX [x̄,r])∗(u∗) = 〈u∗,M(u∗)〉 − f(M(u∗)) = −fu∗(M(u∗)) ∀u∗ ∈ BX∗(0, δ0),

it follows that

fu∗(x) − fu∗(M(u∗)) ≥ 1
κτ
ϕ(κ‖x−M(u∗)‖) ∀(x, u∗) ∈ BX(x̄, r0) ×BX∗(0, δ0).

This and (4.13) imply that f has ϕ-SLWP at x̄. This shows that sufficiency part holds.
To prove the necessity part, suppose that f has ϕ-SLWP at x̄, namely there exist δ, r, κ, τ ∈ (0,+∞) such

that for any u∗ ∈ BX∗(0, δ) there exists xu∗ ∈ BX [x̄, r], with x0 = x̄, satisfying

ϕ(κ‖x− xu∗‖) ≤ τ(fu∗(x) − fu∗(xu∗)) ∀x ∈ BX [x̄, r]. (4.15)

Let u∗1, u∗2 ∈ BX∗(0, δ); by (4.15), one has

2ϕ(κ‖xu∗
2
− xu∗

1
‖) ≤ τ(fu∗

1
(xu∗

2
) − fu∗

1
(xu∗

1
) + fu∗

2
(xu∗

1
) − fu∗

2
(xu∗

2
))

= τ〈u∗1 − u∗2, xu∗
1
− xu∗

2
〉

≤ τ‖u∗1 − u∗2‖ · ‖xu∗
1
− xu∗

2
‖. (4.16)

Since ϕ is a differentiable and strictly convex admissible function with ϕ′(0) = 0, ϕ′ is a nonnegative increasing
function on R+. Hence

ϕ(κ‖xu∗
1
− xu∗

2
‖) ≥ ϕ(κ‖xu∗

1
− xu∗

2
‖) − ϕ

(
κ‖xu∗

1
− xu∗

2
‖

2

)

=
∫ 1

0

ϕ′
(
κ‖xu∗

1
− xu∗

2
‖(1 + t)

2

)
κ‖xu∗

1
− xu∗

2
‖

2
dt

≥ ϕ′
(
κ‖xu∗

1
− xu∗

2
‖

2

)
κ‖xu∗

1
− xu∗

2
‖

2
.

This and (4.16) imply that ϕ′
(
κ‖xu∗

2
−xu∗

1
‖

2

)
≤ τ

κ‖u∗1 − u∗2‖ for all u∗1, u
∗
2 ∈ BX∗(0, δ), that is,

κ

2
‖xu∗

1
− xu∗

2
‖ ≤ (ϕ′)−1

( τ
κ
‖u∗1 − u∗2‖

) ∀u∗1, u∗2 ∈ BX∗(0, δ).

Noting (by (4.15)) that
arg min
x∈BX [x̄,r]

fu∗(x) = {xu∗} ∀u∗ ∈ BX∗(0, δ),

It follows that f has (ϕ′)−1-TSLM at x̄. The proof is complete. �
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With the help of Theorem 4.5 and Proposition 4.3, we now can prove Theorem 3.4.

Proof of Theorem 3.4. By Theorem 4.5, the ϕ-SLWP assumption means that f has (ϕ′)−1-TSLM at x̄. Hence
there exist δ, r, κ, τ ∈ (0, +∞) and a mapping M : BX∗(0, δ) → BX [x̄, r] with M(0) = x̄ such that

M(u∗) ∈ arg min
x∈BX [x̄,r]

fu∗(x) and κ‖M(u∗) −M(v∗)‖ ≤ (ϕ′)−1(τ‖u∗ − v∗‖)

for all u∗, v∗ ∈ BX∗(0, δ). Let h := co(f + δBX [x̄,r]). Then, h is a proper lower semicontinuous convex function,
h∗ = (f + δBX [x̄,r])∗, and it follows from Proposition 4.3 (applied to ω(t) = 1

κ (ϕ′)−1(τt)) that there exists
δ′ ∈ (0, δ) such that h∗ is smooth on BX∗(0, δ′), �h∗(0) = x0 = x̄ and

‖�h∗(v∗) − �h∗(u∗)‖ ≤ 1
κ

(ϕ′)−1(τ‖v∗ − u∗‖) ∀v∗, u∗ ∈ BX∗(0, δ′). (4.17)

Hence
‖�h∗(u∗) − x̄‖ ≤ 1

κ
(ϕ′)−1(τ‖u∗‖) ∀u∗ ∈ BX∗(0, δ′). (4.18)

Note (by the convexity of h) that u∗ ∈ ∂h(x) if and only if x ∈ ∂h∗(u∗). One has

(∂h)−1(u∗) = {�h∗(u∗)} ∀u∗ ∈ BX∗(0, δ′). (4.19)

Thus, to complete the proof, it suffices to show that there exists κ′ > 0 such that

ϕ′(κ′‖x− �h∗(u∗)‖) ≤ τd(u∗, ∂h(x)) ∀(x, u∗) ∈ BX(x̄,
δ′

2
) ×BX∗

(
0,
δ′

2

)
· (4.20)

Let (x, u∗) ∈ BX(x̄, δ
′
2 ) ×BX∗(0, δ

′
2 ). Then, by (4.17)–(4.19),

‖x− �h∗(u∗)‖ ≤ ‖x− x̄‖ +
1
κ

(ϕ′)−1(τ‖u∗‖) ≤ δ′

2
+

1
κ

(ϕ′)−1

(
τδ′

2

)
,

‖x− �h∗(u∗)‖ = ‖�h∗(x∗) − �h∗(u∗)‖ ≤ 1
κ

(ϕ′)−1(τ‖x∗ − u∗‖) ∀x∗ ∈ ∂h(x) ∩BX∗(0, δ′)

and so
‖x− �h∗(u∗)‖ ≤ 1

κ
(ϕ′)−1(τd(u∗, ∂h(x) ∩BX∗(0, δ′))).

Therefore,

‖x− �h∗(u∗)‖ ≤ 1
κ

min
{

(ϕ′)−1(τd(u∗, ∂h(x) ∩BX∗(0, δ′))),
κδ′

2
+ (ϕ′)−1

(
τδ′

2

)}
. (4.21)

Since d(u∗, ∂h(x) ∩ (X∗ \BX∗(0, δ′))) ≥ d(u∗, X∗ \BX∗(0, δ′)) ≥ δ′
2 ,

d(u∗, ∂h(x)) ≥ min{d(u∗, ∂h(x) ∩BX∗(0, δ′)),
δ′

2
}.

Hence

(ϕ′)−1(τd(u∗, ∂h(x))) ≥ min
{

(ϕ′)−1(τd(u∗, ∂h(x) ∩BX∗(0, δ′))), (ϕ′)−1

(
τδ′

2

)}
.

Letting β :=
κδ′
2 +(ϕ′)−1( τδ′

2 )

(ϕ′)−1( τδ′
2 )

, it follows from (4.21) that

‖x− �h∗(u∗)‖ ≤ β

κ
(ϕ′)−1(τd(u∗, ∂h(x))),

that is,

ϕ′
(
κ

β
‖x− �h∗(u∗)‖

)
≤ τd(u∗, ∂h(x)).

This shows that (4.20) holds with κ′ = κ
β . The proof is complete. �
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5. Stable weak well-posedness

If a proper lower semicontinuous function f has the stable well-posedness at x̄, then there exist r, δ ∈ (0, +∞)
such that arg minx∈BX [x̄,r] fu∗(x) is a singleton for any u∗ ∈ BX∗(0, δ). It is natural to consider the case when
arg minx∈BX [x̄,r] fu∗(x) is not a singleton. This yields the following notion.

Definition 5.1. Let ϕ : R+ → R+ be an admissible function and let f be a proper lower semicontinuous
extended real-valued function on a Banach space X . We say that f has stable weak local well-posedness at x̄ ∈
dom(f) with respect to ϕ (in brief, ϕ-SWLWP) if there exist r, γ, δ, τ, κ ∈ (0,+∞) such that min

x∈BX [x̄,r]
f(x) = f(x̄)

and

ϕ
(
τd
(
x, argmin
z∈BX [x̄,r]

fu∗(z)
)) ≤ κ

(
fu∗(x) − min

z∈BX [x̄,r]
fu∗(z)

)
(5.1)

for all (x, u∗) ∈ BX(x̄, γ) ×BX∗(0, δ).

Given an increasing admissible function ϕ, it is clear that the corresponding well-posedness implies the weak
well-posedness. The following example shows that the converse implication is not true. Let f : R → R be such
that f(t) = 0 for all t ∈ (−∞, 0] and f(t) = ϕ(t) for all t ∈ (0, +∞). Then

argmin
t∈R

f(t) = (−∞, 0] and ϕ

(
d(x, arg min

t∈R

f(t)
)

= f(x) − min
t∈R

f(t) ∀x ∈ R.

Hence, f has the weak well-posedness but does not have the well-posedness because argmint∈R f(t) is not a
singleton. Nevertheless, the following theorem shows that the corresponding stable well-posedness and stable
weak well-posedness are equivalent when f undergoes small tilt perturbations, which was proved by Zheng and
Ng [31] in the case when ϕ(t) = tq.

Theorem 5.2. Let ϕ: R+ → R+ be a differentiable and strictly convex admissible function such that ϕ′(0) = 0.
Let X be a Banach space and f : X → R ∪ {+∞} be a proper lower semicontinuous function. Then, f has
ϕ-SLWP at x̄ ∈ dom(f) if and only if f has ϕ-SWLWP at x̄.

Proof. The necessity part is trivial. For the sufficiency part, suppose that f has ϕ-SWLWP at x̄. Then there
exist r, γ, δ, τ, κ ∈ (0,+∞) such that min

x∈BX [x̄,r]
f(x) = f(x̄) and (5.1) holds. Letting

M(u∗) := argmin
z∈BX [x̄,r]

fu∗(z) ∀u∗ ∈ X∗,

it suffices to show that M(u∗) is a singleton for each u∗ ∈ X∗ close to 0. Let γ′ := 1
4 min{r, γ} and δ′ :=

min{δ, ϕ(τγ′)
κr }. Then, by Proposition 4.3, we only need to show that there exists a continuous function ω :

R+ → R+ with ω(0) = 0 such that

M(u∗) ∩BX(x̄, γ′) ⊂ M(v∗) + ω(‖u∗ − v∗‖)BX ∀u∗, v∗ ∈ BX∗(0, δ′). (5.2)

By (5.1), one has

ϕ (τd (x̄,M(u∗))) ≤ κ(fu∗(x̄) − min
z∈BX [x̄,r]

fu∗(z))

= κ

(
min

z∈BX [x̄,r]
f(z) − min

z∈BX [x̄,r]
(f(z) − 〈u∗, z − x̄〉)

)

≤ κ

(
min

z∈BX [x̄,r]
f(z) − min

z∈BX [x̄,r]
(f(z) − ‖u∗‖r)

)
= κ‖u∗‖r < ϕ(τγ′)
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for all u∗ ∈ BX∗(0, δ′). Since a strictly convex admissible function is increasing,

d (x̄,M(u∗)) < γ′ ∀u∗ ∈ BX∗(0, δ′),

namely, for any u∗ ∈ BX∗(0, δ′) there exists xu∗ ∈ M(u∗) such that

‖xu∗ − x̄‖ < γ′. (5.3)

Let u∗, v∗ ∈ BX∗(0, δ′) and u ∈ M(u∗) ∩BX(x̄, γ′), and take a sequence {vn} in M(v∗) such that

lim
n→∞ ‖u− vn‖ = d (u,M(v∗)) . (5.4)

Noting (by (5.3)) that
d (u,M(v∗)) ≤ ‖u− xv∗‖ ≤ ‖u− x̄‖ + ‖x̄− xv∗‖ < 2γ′,

we can assume without loss of generality that ‖u− vn‖ < 2γ′ for all n ∈ N, and so

‖vn − x̄‖ ≤ ‖vn − u‖ + ‖u− x̄‖ < 3γ′ < γ ∀n ∈ N.

Thus, by (5.1), one has

ϕ (τd (u,M(v∗))) ≤ κ(fv∗(u) − min
z∈BX [x̄,r]

fv∗(z))

= κ(fv∗(u) − fv∗(vn))

and
ϕ (τd (vn,M(u∗))) ≤ κ(fu∗(vn) − fu∗(u))

for all n ∈ N. Therefore,

ϕ (τd (u,M(v∗))) ≤ ϕ (τd (u,M(v∗))) + ϕ (τd (vn,M(u∗)))
≤ κ(fv∗(u) − fv∗(vn) + fu∗(vn) − fu∗(u))

= κ〈u∗ − v∗, u− vn〉
≤ κ‖u∗ − v∗‖‖u− vn‖

for all n ∈ N. This and (5.4) imply that

ϕ (τd (u,M(v∗))) ≤ κ‖u∗ − v∗‖d (u,M(v∗)) .

Noting that ϕ(t) ≥ ϕ(t) − ϕ( t2 ) ≥ ϕ′( t2 ) t2 for all t ∈ R+, it follows that

ϕ′
(τ

2
d (u,M(v∗))

)
≤ 2κ

τ
‖u∗ − v∗‖,

that is,

d (u,M(v∗)) ≤ 2
τ

(ϕ′)−1

(
2κ
τ
‖u∗ − v∗‖

)
.

This implies that

u ∈ M(v∗) +
3
τ

(ϕ′)−1

(
2κ
τ
‖u∗ − v∗‖

)
BX .

Hence

M(u∗) ∩BX(x̄, γ′) ⊂ M(v∗) +
3
τ
(ϕ′)−1

(
2κ
τ
‖u∗ − v∗‖

)
BX .

This shows that (5.2) holds with ω(t) = 3
τ (ϕ′)−1(2κt

τ ). The proof is complete. �
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Corollary 5.3. Let ϕ : R+ → R+ be a differentiable and strictly convex admissible function such that ϕ′(0) = 0.
Let X be a Banach space and f : X → R∪{+∞} be a lower semicontinuous function with x̄ ∈ dom(f). Consider
the following statements:

(i) f has ϕ-SLWP at x̄.
(ii) f has ϕ-SWLWP at x̄.
(iii) f has (ϕ′)−1-TSLM at x̄.
(iv) f has weak (ϕ′)−1-TSLM at x̄.
(v) ∂f is strongly metrically ϕ′-regular at (x̄, 0).
(vi) ∂f is metrically ϕ′-regular at (x̄, 0).

Then, (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇐ (v) ⇒ (vi). If, in addition, f is convex, then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔
(v) ⇔ (vi).

Proof. (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇐ (v) are immediate from Theorems 5.2, 4.5 and 3.4 and Corollary 4.4, while
(v) ⇒ (vi) is trivial.

Now suppose that f is convex. Since (i) ⇒ (v) is immediate from Corollary 3.5, it suffices to show (vi) ⇒ (v).
By (vi), take τ, κ, r ∈ (0, +∞) such that

ϕ′(τd(x, (∂f)−1(x∗))) ≤ κd(x∗, ∂f(x)) ∀(x, x∗) ∈ BX(x̄, r) ×BX∗(0, r). (5.5)

Thus, by Lemma 4.2 (applied to F = (∂f)−1), we only need to show that there exist γ, δ ∈ (0, +∞) such that

(∂f)−1(x∗) ∩BX(x̄, γ) ⊂ (∂f)−1(u∗) + ω(‖x∗ − u∗‖)BX ∀x∗, u∗ ∈ BX∗(0, δ),

where ω(t) = 2
τ (ϕ′)−1(κt) for all t ∈ R+. To do this, suppose to the contrary that there exists a sequence

(x∗n, u∗n, xn) −→ (0, 0, x̄) such that

xn ∈ (∂f)−1(x∗n) and xn 
∈ (∂f)−1(u∗n) + ω(‖x∗n − u∗n‖)BX ∀n ∈ N.

It follows from (5.5) that

ϕ′(τd(xn, (∂f)−1(u∗n))) ≤ κd(u∗n, ∂f(xn)) ≤ κ‖u∗n − x∗n‖,

and so d(xn, (∂f)−1(u∗n)) ≤ 1
τ (ϕ′)−1(κ‖u∗n − x∗n‖) for all sufficiently large n. This and the definition of ω imply

that xn ∈ (∂f)−1(u∗n)+ω(‖u∗n−x∗n‖)BX for all sufficiently large n, a contradiction. The proof is complete. �

6. Second order condition

In this section, in the finite dimension setting, we provide a sufficient condition for stable well-posedness in
terms of the second subdifferential. Throughout this section, f is a proper lower semicontinuous function on R

n;
let ∂f denote Mordukhovich’s limiting subdifferential of f and Ñ(∂f, ·) denote Mordukhovich’s limiting normal
cone of ∂f (see [18] for its detail). For (x, v) ∈ gph(∂f), adopting Mordukhovich’s construction, the second
subdifferential ∂2f(x, v) of f at (x, v) is defined as

∂2f(x, v)(h) = {z ∈ R
n : (z,−h) ∈ Ñ(gph(∂f), (x, v))} ∀h ∈ R

n

(see [22], Def. 2.2). For a convex admissible function ψ, let

ηψ(x, v)(h) := ψ′
+(d(x, (∂f)−1(v − h)))

for all (x, v, h) ∈ gph(∂f) × R
n.
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Proposition 6.1. Let ψ be a convex admissible function and let (x̄, 0) ∈ gph(∂f). Suppose that gph(∂f) is
closed and that there exist κ, r ∈ (0, +∞) such that

κ‖h‖2ηψ(x, v)(h) ≤ 〈z, h〉 (6.1)

for all (x, v, h) ∈ (gph(∂f) × R
n) ∩ (B(x̄, r) × B(0, r) × B(0, r)) and z ∈ ∂2f(x, v)(h). Then ∂f is metrically

ψ-regular at (x̄, 0).

Proof. First we show that there exist κ1, τ1, r1 ∈ (0, +∞) such that

ψ(κ1d(x, (∂f)−1(v)) ≤ τ1d(v, ∂f(x)) (6.2)

for all (x, v) ∈ B(x̄, r1) × (∂f(B(x̄, r1)) ∩ B(0, r1)). To do this, suppose to the contrary that there exists a
sequence {(ui, xi, vi)} ⊂ R

n × R
n × R

n such that (ui, xi, vi) → (x̄, x̄, 0),

vi ∈ ∂f(ui) and ψ

(
1
i
d(xi, (∂f)−1(vi))

)
> id(vi, ∂f(xi)) ∀i ∈ N.

Thus,
0 < d(xi, (∂f)−1(vi)) ≤ ‖xi − ui‖ → 0, (6.3)

and there exists yi ∈ ∂f(xi) such that

‖vi − yi‖ < 1
i
ψ

(
1
i
d(xi, (∂f)−1(vi))

)
≤ 1
i
ψ

(
1
i
‖xi − ui‖

)
→ 0. (6.4)

Define
gi(u, v) := ‖v − vi‖ + δgph(∂f)(u, v) ∀(u, v) ∈ R

n × R
n.

Then, gi is lower semicontinuous, and

gi(xi, yi) < inf
(u,v)∈Rn×Rn

gi(u, v) +
1
i
ψ

(
1
i
d(xi, (∂f)−1(vi))

)
.

For any j ∈ N, letting

‖(u, v)‖j := ‖u‖ +
1
j
‖v‖ ∀(u, v) ∈ R

n × R
n,

it follows from the Ekeland variational principle that there exists (xij , yij) ∈ gph(∂f) such that

‖(xij , yij) − (xi, yi)‖j < 1
i
d(xi, (∂f)−1(vi)), (6.5)

‖yij − vi‖ = gi(xij , yij) ≤ gi(xi, yi) = ‖yi − vi‖ (6.6)

and

gi(xij , yij) ≤ gi(u, v) +
ψ
(

1
i d(xi, (∂f)−1(vi))

)
d(xi, (∂f)−1(vi))

‖(u, v) − (xij , yij)‖j (6.7)

for all (u, v) ∈ R
n × R

n. Clearly, (6.5) and (6.6) imply that {(xij , yij}j∈N is a bounded sequence in R
n ×

R
n. Without loss of generality, we can assume that (xij , yij) → (x̄i, v̄i) ∈ gph(∂f) as j → ∞ (passing to a

subsequence if necessary). It follows from (6.5)—(6.7) that

‖x̄i − xi‖ ≤ 1
i
d(xi, (∂f)−1(vi)), ‖v̄i − vi‖ ≤ ‖yi − vi‖
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and

‖v̄i − vi‖ ≤ ‖v − vi‖ + δgph(∂f)(u, v) +
ψ
(

1
i d(xi, (∂f)−1(vi))

)
d(xi, (∂f)−1(vi))

‖u− x̄i‖ (6.8)

for all (u, v) ∈ R
n × R

n. Hence, by (6.3), (6.4) and (xi, vi) → (x̄, 0), one has

0 < d(xi, (∂f)−1(vi))) ≤ i

i− 1
d(x̄i, (∂f)−1(vi)) (6.9)

and
v̄i 
= vi and (x̄i, v̄i) → (x̄, 0).

It follows from (6.9) and the convexity of ψ that

0 <
ψ
(

1
i d(xi, (∂f)−1(vi))

)
1
i d(xi, (∂f)−1(vi))

≤ ψ
(

1
i−1d(x̄i, (∂f)−1(vi))

)
1
i−1d(x̄i, (∂f)−1(vi))

≤ ψ′
+(d(x̄i, (∂f)−1(vi)))

for all i > 1. This and (6.8) imply that

‖v̄i − vi‖ ≤ ‖v − vi‖ + δgph(∂f)(u, v) +
1
i
ψ′

+

(
d(x̄i, (∂f)−1(vi))

)‖u− x̄i‖

for all (u, v) ∈ R
n × R

n. Hence,

(0, 0) ∈ {0} × ∂‖ · −vi‖(v̄i) + ∂δgph(∂f)(x̄i, v̄i) +
1
i
ψ′

+

(
d(x̄i, (∂f)−1(vi))

)
BRn × {0}

⊂ {0} × { v̄i − vi
‖v̄i − vi‖

}
+ Ñ(gph(∂f), (x̄i, v̄i)) +

1
i
ψ′

+

(
d(x̄i, (∂f)−1(vi))

)
BRn × {0},

and so there exists x∗i ∈ BRn such that

1
i
ψ′

+

(
d(x̄i, (∂f)−1(vi))

)
x∗i ∈ ∂2f(x̄i, v̄i)

(
v̄i − vi
‖v̄i − vi‖

)
·

Let hi := v̄i − vi. Then, vi = v̄i − hi,

zi :=
1
i
‖hi‖ηψ(x̄i, v̄i)(hi)x∗i =

1
i
‖hi‖ψ′

+

(
d(x̄i, (∂f)−1(v̄i − hi))

)
x∗i ∈ ∂2f(x̄i, v̄i)(hi)

and so
〈zi, hi〉 =

1
i
‖hi‖ηψ(x̄i, v̄i)(hi)〈x∗i , hi〉 ≤

1
i
‖hi‖2ηψ(x̄i, v̄i)(hi).

Noting that 0 < ψ′
+

(
d(x̄i, (∂f)−1(v̄i − hi)), it follows from (6.1) that κ ≤ 1

i for all sufficiently large i, a
contradiction. Therefore, there exist κ1, τ1, r1 ∈ (0, +∞) such that (6.2) holds for all (u, v) ∈ B(x̄, r1) ×
(∂f(B(x̄, r1))∩B(0, r1)). Let r2 ∈ (0, r1). We claim that there exists δ ∈ (0, r2) such thatB(0, δ) ⊂ ∂f(B[x̄, r2]).
Granting this, one has

B(x̄, δ) ×B(0, δ) ⊂ B(x̄, r1) × (∂f(B(x̄, r1) ∩B(0, r1)).

This and (6.2) imply that ∂f is metrically ψ-regular at (x̄, 0). It remains to show that there exists δ ∈ (0, r2)
such that B(0, δ) ⊂ ∂f(B[x̄, r2]). Indeed, if this is not the case, there exists a sequence {yk} converging to 0
such that each yk 
∈ ∂f(B[x̄, r2]). Noting that ∂f(B[x̄, r2]) is closed (thanks to the compactness of B[x̄, r2] and
the closedness of gph(∂f)), there exists wk ∈ ∂f(B[x̄, r2]) such that

0 < ‖yk − wk‖ = d(yk, ∂f(B[x̄, r2])) ≤ ‖yk‖ → 0, (6.10)
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and so wk → 0. It follow from (6.2) that

ψ(κ1d(x̄, (∂f)−1(wk))) ≤ τ1d(wk, ∂f(x̄)) ≤ τ1‖wk‖ → 0.

Hence, κ1d(x̄, (∂f)−1(wk)) → 0 and so there exists ak ∈ (∂f)−1(wk) such that ak → x̄. On the other hand, the
equality of (6.10) means

〈yk − wk, y − wk〉 ≤ 1
2
‖y − wk‖2 ∀y ∈ ∂f(B[x̄, r2]).

Hence
〈(0, yk − wk), (x, y) − (ak, wk)〉 ≤ 1

2
‖(x, y) − (ak, wk)‖2

for all (x, y) ∈ gph(∂f) ∩ (B[x̄, r2] × R
n). Since (ak, wk) is an interior point of B[x̄, r2] × R

n for all k large
enough, (0, yk − wk) ∈ Ñ(gph(∂f), (ak, wk)), namely 0 ∈ ∂2f(ak, wk)(wk − yk). It follows from (6.1) that

κ‖yk − wk‖2ηψ(ak, wk)(wk − yk) ≤ 〈0, yk − wk〉 = 0.

By the first inequality of (6.10), one has

0 = ηψ(ak, wk)(wk − yk) = ψ′
+(d(ak, (∂f)−1(yk))).

This and (2.3) imply that d(ak, (∂f)−1(yk)) = 0, and so yk ∈ ∂f(ak). This contradicts that ak → x̄ and
yk 
∈ ∂f(B[x̄, r2]). The proof is complete. �

Note that ∂f is closed if f is convex or continuous. The following corollary is immediate from Proposition 6.1
and Corollary 5.3.

Corollary 6.2. Let ψ be a convex admissible function and let f be a proper lower semicontinuous convex
function on R

n. Let x̄ be a minimizer of f and suppose that there exist κ, r ∈ (0, +∞) such that (6.1) holds for
all (x, v, h) ∈ (gph(∂f) × R

n) ∩ (B(x̄, r) × B(0, r) × B(0, r)) and z ∈ ∂2f(x, v)(h). Then, f has ϕ-SLWP at x̄

with ϕ(t) :=
t∫
0

ψ(t)dt.

In the special case when ψ(t) = t, ηψ(x, v)(h) ≡ 1, and so (6.1) means the positive definiteness of ∂2f(x, v).
It is worth mentioning that under the assumption that f is prox-regular and subdifferentially continuous at
(x̄, 0), the positive definiteness of ∂2f(x̄, 0) is equivalent to that x̄ is a stable second order local minimizer
of f (cf . [10, 20, 22, 24]). In the finite dimension setting, we note that the positive definiteness of ∂2f(x̄, 0) is
equivalent to the positive definiteness of ∂2f(x, v) for all (x, v) ∈ gph(∂f) close to (x̄, 0). We conclude with the
following questions:

(1) Under some assumption similar to the prox-regularity and subdifferential continuity, does “generalized
positive definiteness” in the sense of (6.1) imply that ∂f is strongly metrically ψ-regular at (x̄, 0)?

(2) If f is a proper lower semicontinuous convex function, is (6.1) a necessary condition for f to have ϕ-SLWP

at x̄ with ϕ(t) =
t∫
0

ψ(t)?
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