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ON THE LOCAL EXACT CONTROLLABILITY OF MICROPOLAR FLUIDS
WITH FEW CONTROLS

SERGIO GUERRERO' AND PIERRE CORNILLEAU?

Abstract. In this paper, we study the local exact controllability to special trajectories of the microp-
olar fluid systems in dimension d = 2 and d = 3. We show that controllability is possible acting only
on one velocity.
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1. INTRODUCTION

Let d € {2,3} and 2 C R? be a bounded connected open set whose boundary is regular. In this paper,
we focus on the controllability properties of the so-called micropolar fluids (see the monograph [11]). In this
framework, the fluid velocity field y (=y(t,x) € R%) and the angular velocity w (=w(t,z) € R if d = 2 or R? if
d = 3) are driven by the following nonlinear system:

yr — Ay + (y-V)y+ Vp = Piw+1ou inQ,
w—Aw—(d=2)V(V-w)+(y - Viw=Vxy+1pv inQ,
V.y = 0 in Q,

y = 0 on X, (1.1)
w = 0 on X/,
y(0,-) = Yo in £,
w(0,-) = wo in {2,

where @ := (0,7) x 2, X := (0,T) x 912, yo and wy are the velocity and angular velocity at time ¢ = 0 and
Vx : R* — R2473 is the usual curl operator. In this system, we have denoted

(82w, —3144)) ifd= 2,
P1w =
V xXw if d=3.

Moreover, O is a nonempty open subset of {2 called the control domain and u and v stand for control functions
which act over the system during the time 7" > 0. As usual in the context of incompressible fluids, the following
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vector spaces will be used along the paper:
H={wel*2): V-w=0in 2, w-v=0on N} (1.2)

and
V={weHj(2): V-w=0in 2}.

Here, we have denoted v the outward unit normal vector to 2.

The main question we address in this paper is whether system (1.1) is locally exactly controllable to the
trajectories with the sole control v (with u = 0) or with the sole control v (with v = 0).

We will call a trajectory associated to system (1.1) any triplet (7, p, @) satisfying the system without controls,
that is to say:

U — AG+ (GV)G+ VP - Po inQ,
O —Aw—(d—2)V(V-0)+ @FV)o =V x7 inQ,
V.y = 0 inQ,
] = 0 onX, (1.3)
w = 0 onlk,
y(oa ) = ?0 in Qv
(0, ) = W in {2,

for some initial data (7, o). In this paper, we are interested in the case where § = 0 and we assume that there
exists a trajectory (0, P, ) solution of (1.3) such that

T € L*0,T; H*(2)) N HY(0,T; Hy(£2)) and p € L*(0,T; H*(2)) N H*(0,T; H(£2)). (1.4)

Remark 1.1. Observe that for some @y there exists a nontrivial solution (0,0,®) to (1.3) with §, = 0. This
comes from the fact that there exists nonzero solutions of the spectral problem

—2Az = pz in Q,

1.5
% = 0 ondf2, (1.5)
v

when (2 is a ball: indeed, one can choose a radially symmetric function z satisfying (1.5) (which in particular
satisfies that its tangential gradient vanishes on 9£2). Then (0,p,w) = (0,0,e #'Vz) fulfills (1.3) with (7,,wo) =
(0,Vz).

It will be said that system (1.1) is locally exactly controllable to the trajectory (0,p,@) at time T if there
exists § > 0 such that, for any initial data (yo,wo) € V x Ha(£2) satisfying

(w0, wo) — (0,@0) |y« pr1 () < 6,
there exists a control (u,v) and an associated solution (y,w,p) such that
y(T,-) =0 and w(T,-) =w(T) in {2.
We can now state the main results of this paper.

Theorem 1.2. Assume that d = 3 and W satisfies (1.4). Then, (1.1) is locally exactly controllable with control
(0,v) where v € L*(Q).

Theorem 1.3. Assume that d = 2 and @ = 0. Then, (1.1) is locally exactly controllable with control (u,0)
where u € L?(Q).

The local exact controllability to any (sufficiently regular) trajectory (g, p,w) of (1.1) has been obtained in [4]
whenever both controls u and v are active.
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Our main strategy relies on the null controllability of a linearized system around (0,p,w). It is classical that
this null controllability result is equivalent to the observability of the adjoint system. We will consequently
consider the following problem:

—py — Ap+ VT =P+ (d—2) (V) TG + go in Q,
—y— MY~ ([d—2)V(V-9) =V x 9+ in Q,
V.-p =0 in @,
@ =0 on X, (1.6)
P =0 on X,
@(Ta ) = ¥T in Qv
(T, ) = ¥r in 2,

where o1 € H and v € L%(02).

Remark 1.4. Our result in dimension d = 3 deals with the control of (1.1) through the fluid velocity but one
could also be interested in controlling with the sole control u.

However, in the particular case of (y,p,w) = (0,0,0) one can prove that the associated linearized problem
is not null-controllable when (2 is a ball. In fact, this linearized system is not even approximately controllable
since the unique continuation property for the solutions of (1.6) (with go = ¢1 = 0)

p=0in (0,T)xO0O=p=9=0inQ (1.7)

is not satisfied. Indeed, if (¢, m, ) := (0,0,e*'Vz) where z is a radially symmetric solution of (1.5), then
(¢, m, 1) is a solution of (1.6) which does not satisty (1.7).

The rest of the article is structured as follows: in the first part, we develop a strategy to prove two Carleman
estimates adapted to the linear adjoint systems. In the second part, we prove the observability of the linear
adjoint systems and deduce the local controllability of the semilinear systems.

2. CARLEMAN ESTIMATES

2.1. Statement of the Carleman inequalities

We first set some notations. Let {2y be an open set satisfying 2o € O and 1 € C? (ﬁ) be a function such that
n>0in 2, n=20o0n 002, |Vn| > 0in 2\ 2.
The existence of such a function 7 is proved in [6] (see also [8], Lem. 2.1). As usual in the context of Carleman
estimates, we also define the following weight functions
e2MnllLe(2) — gAn(x)

L)m
en(z)
L)m
where A > 1 is a large constant to be fixed later, m is an integer and ¢ : [0,7] — [0, 00) is some C* function

(first introduced in [6]) such that ¢ > 0 in (0,7"), ¢ is constant in [37'/8,5T'/8], reaches a maxima at ¢t = T'/2
and

alt,z) =

§(t,x) =

T 3T
Vt € [0, Z] L l(t) =t, Vte [T

In the sequel, we define a* as the supremum of « in 2 (which is also its value on 02).
We shall now state the two main Carleman estimates of the paper:

Proposition 2.1. Let d =3, m =8 and @ € L™ (O,T; W1’3+5(Q)) NnH! (O,T; L3((Z)) for some 6 > 0. Then,
for any T > 0, there exist C > 0 and sg > 0 such that for every s > sg, the following inequality is satisfied

,T} 0t =T —t. (2.1)



640 S. GUERRERO AND P. CORNILLEAU

for every go € L?(0,T;V) and every g1 € L?(0,T; L*(2)),

82/ e—2sa§2|,¢|2+/ e_23a<p|2§C<3_3/ e—2sa§—3 (|90‘2+‘V90|2)+/ e—2sa‘gl‘2_‘_s4/
Q Q Q Q

Qo

gyl ).
(2.2)
where Qo = (0,T) x O and (¢, ) is any solution of (1.6).

Proposition 2.2. Letd =2 andm > 6. For any T > 0, there exist C > 0 and so > 0 such that for every s > sq,
the following inequality is satisfied for every go € L*(0,T; H?(2)NV) and every g1 € L*(0,T; H?(2) N H (£2)),

8_1/ e_2sa§_1|A(p|2+8_2/ e—2sa£—2|Aw‘2
Q Q
<0572 [ e (o + [Vl + P00
Q

s /Q B (1 + [+ (Vi) + 5 [ emf“’s@l2>, (2.3)

Qo

where (@, ) is any solution of (1.6).
2.2. Proof of Proposition 2.1

Our proof will rely on the Carleman estimate developped in [8] and on classical regularity estimates for the
heat and Stokes systems (see Lems. A.1 and A.2).

More precisely, in order to avoid the pressure we will be led to apply some differential operators (such as V x
or A) to our system so the new variables will not have prescribed boundary values. We will estimate these new
variables thanks to the results of [5, 8], where Carleman inequalities adapted to this situation are established.
Finally, the boundary terms appearing will be absorbed by the left-hand side terms using regularity estimates
for our system.

Throughout the proof, we will use the anisotropic Sobolev space

HY2Y4(3) .= L2(0,T; HY?(00)) n HY*(0,T; L*(012)).
From its definition and standard trace estimates (see [10]), one gets that if f € L2(0,7; H'(£2)) is such that
onf € L*(0,T; H(£2)) then f € HY/2Y/4(%) and
| fllzrrzaracsy S N llp2co,msm (@) + 110 f 20,151 (2))- (2.4)

Here and in the sequel, we use the notation a < b to indicate the existence of a constant C' > 0 depending only
on {2, O and T such that a < Cb.
2.2.1. Estimate of ¥

We first apply the divergence operator to the second equation of (1.6), which gives (since this operator
commutes with the usual Laplacian operator):

For this nonhomogeneous heat equation, we apply the Carleman estimate presented in ([8], Thm. 2.1):

2

5—1/ e 20 (V - )2 < s—1/2 He—sa§—1/4v ) ¢H 1 sl/2 He—sozg—l/SV ) ¢‘
Q

2
H1/2,1/4(Z) Lz(Z)

+/ e*28a|gl|2+s/ e 2|V - )? (2.5)
Q 1

for s > 1, where Q; := (0,7) x 2y and (2, is any non empty open subset such that 29 C 2, and £, C O.
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Moreover, since 1 satisfies the system

{(—@—A)¢=V(V~¢)+wa+gl in Q,
=0 on X,

a classical Carleman estimate for the heat equation (see e.g. [6]) gives us:
82/ e—2sa§2|,¢|2+/ e—2sa‘v,¢|2+s—2/ e—2sa£—2|vv,¢|258—1/ e_2sa§_1‘V(V'¢)|2
Q Q Q Q
+57 [ e (9 x P + )
Q
bt [ ey (26)
Q1

for any s 2 1. Consequently, a combination of (2.5) and (2.6) yields the estimate
82/Qe2sa£2|w|2 +/QGQSQV1/J|2 +82462sa£2|vv¢|2 +871 4625a§1|v(v . 1/))‘2

2 2 —2sa 2
€
12(2) +/Q 1]

L /Q e 2T X o £ s /Q eV P + / e (2.7)

Q1

< 512 He—saf—l/élv ) wH 4512 He_saf_l/sv ) ¢‘

H1/2,1/4(2)

Furthermore, if Qo is any open subset of Q of the form (0,7") x 2, such that 27 C 25 and 25 C O, an
integration by parts easily gives

S/ ef2sa£|v.w‘2 §5871/ ef2sa£71|v(v_w)|2_’_Csflsii/ 672sa§3|w|2

2

for any € > 0 and some C' > 0.
Choosing ¢ sufficiently small, one consequently gets from (2.7),

82/ e—2sa§2|,¢|2+/ e—2sa‘v,¢|2+s—2/ e—2sa§—2|vv,¢|2
Q Q Q

SBI"_/ 6725a|gl|2+871/ 6728a571|v><g0‘2+83/ 672sa§3|w|2 (28)
Q Q

Q2

where Bj stands for the trace terms

2 2

5—1/2 Hefsaffl/élv ) ¢H 112 He*mg*l/sv ] ¢’

H1/2.1/4(%) L2(x)

We shall now prove the following estimate:
By SESQ/ 625a52|1/)|2+6(81/2/ 6728a571/4‘gl‘2+871/2/ 6728a571/4‘v % ()0|2> (29)
Q Q Q

for any £ > 0 and some C' > 0 (which may depend on ¢).
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To do so, let us consider £* = ¢ 5 and define the weight function oo (t) := s~1/4(¢*(t))~V/4e™5>" (). Straight-
forward computations show that

—0i(00) = Alooy) = V(V.(009)) = —op1 + 00V X ¢ + 0091 in Q,
oo =0 on X,
(009)(T,) = 0 in 2
and consequently, thanks to (2.4),

s—1/2 Hefsa€71/4v ) wH2

2 2
HU2/4(5) S ooV Dl 120,551 (2)) + 100l 0,002 (0))-
Since |oj| < s3/4(£*)7/8e75" | one deduces using Lemma A.1 (a) that for s > 1,
o0l 2207 m2(0)) + 100131 (07220 02)) S /Q ((00)*[91? + 03|V x @f* + 591 1?)
<C (81/2/ 672sa£71/2‘gl|2 _’_871/2/ 672sa£71/2‘v % QO|2>
Q Q
+€S2/ e—2so¢g2‘w‘2.
Q

The estimate of the second term of Bj is simpler, so we omit its proof. This concludes the proof of (2.9).
Finally, one immediately deduces from the last computations and (2.8) the estimate

10)5 [ e gP s [ e v P s [ eegpy (210)
Q Q 2
where
IW) = 51/2/62825a*(§*)1/2wt|2+52/QeQSQ§2|¢|2+/QG28&V¢|2+32/Qe%a§2|vvw|2'

In order to get an estimate in terms of a local term of ¢ only, our next goal is to get rid of the term
3—1/2/ e~ 2501/2|7 x 2.
Q

2.2.2. Estimate of the global term in V X ¢

To do so, we first apply the curl operator then the gradient operator to the first equation of (1.6). One easily
gets
0 (V(V % ¢) = A(V(V x 9)) = V (VX ¥ x %+ ¥ x [(Ve)5] +V % go) .

We apply again ([8], Thm. 2.1) with different powers of . More precisely, we apply that Carleman estimate to
s73/2¢73/2V(V x ) and we get

5_2/ e 2UT2|V(V x )2 + 5_4/ e 2 VV(V x o)
Q Q

2

<72 He’so‘g’”‘LV(V % (p)H + 57 7/2 He—sagfls/sv(v X go)‘

2
H1/2,1/4(2) L2(2)

—1—8_3/ e—2sa£—3 (3252|Vw\2+ ‘vaP) +S_3/ e—2so¢g—3‘v ><go|2
Q Q
+s*2/ e 2N T2V(V x @) 2. (2.11)

Here, we have used (A.5) and the fact that @ € L>(0,T; W3($2)).
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Using Lemma A.3 for u := V X ¢, one directly deduces from (2.11),

2

J(p) < 577/ He—sa§—7/4v(v % <‘0)H 45T/ He—sag—l?’“vw % w)‘

2
H1/2,1/4(Z) Lz(Z)

+S_3/ e—2$0¢£—3 (82§2‘V/(/)|2+|vv/(/)|2) +S_3/ e—2sa§—3|v XgO‘Q
Q Q

4572 [ e AT x4 [ e ev P (2.12)

1

where
J(ip) = / eV x o + 3*2/ T BUTV(V x @) + 3*4/ e PEAVV(V x ).
Q Q Q
Moreover, an integration by parts gives us in the same way as above

372/ e 22| V(V x 9) < 5574/ e 2THYV(V x )2 +C [ e 2|V x ¢
1 2 Q2

for any € > 0 and some C' > 0 depending on e. This allows us, by an appropriate choice of € > 0, to get
from (2.12)

J(¢) < By +s*3/ e 23 (S22 VY + [VVY)?) +s*3/ e 259 3|V x go? +/ eV x p? (2.13)
Q Q

Q2

where By stands for the trace terms

2 2
—7/2 || \—sas—7/4 —7/2 || \—sas—13/8
i S (U VRPN S St U AL]
We shall now prove the following estimate:
By<c </ 201 x o + I(z/;)) 4 0577/2/ &2 13/1 (Vg0 + |go[?) (2.14)
Q Q

for any € > 0 and some C' > 0 (which may depend on ¢).
To do so, we define the weight function oy (t) := s~ 7/4(¢*(t))~13/8¢=5" () and consider the system satisfied
by o1:
(=0 — A)(019) + 01VT = =0t 9 + 0190 + 01 (V x ¢ + (V¢)'T) in Q,

V- (o1p) =0 in Q,
o1 =0 on X/,
(o1)(T,-) =0 in 2.

Thanks to (2.4), we first get

2

_7 _ _
s71/2 He s 13/8Y(V x <P)HH1/2,1/4(E) S H<71<P||2L2(0,T;H3(9)) + ||01¢H§11(0,T;H1(Q))-

Then, we apply Lemma A.2 (b) with hy := —ol¢ + 0190 and h:= o1 (V x ¢ + (Vi) @). One obtains:
||01§0H%2(0,T;H3(Q)) + HUl'L/}”%{l(O,T;Hl(Q))
S HUi@H%?(o,T;V) + ||0190H%2(0,T;V) + \|01VV1/)H%2(0,T;L2(Q)) + ||011/)H%11(0,T;L2(Q))’

where we have used Lemma A.4 in order to estimate the second term in the definition of h.
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For s large enough, we consequently find

2
—7/2 || ,—sa¢s—13/8 < —2sa 2
s He f V(V * gZJ)HH1/2,1/4(Z‘) =° (/Qe |v x <,0| M I(¢)>

+ 087/2/Cge2sa£13/4 (|go|2 + ‘V§]0|2) )

This concludes the proof of (2.14).
Using (2.14), we now infer from (2.13) that, for any € > 0 there exists C' > 0 such that

Ie) < el) +C [ 0T x o
Q2
+C (8_3/ e 2T (S VP 4+ VYY) + 5_3/ e 253 (|gol* + Vgo|2)) . (2.15)
Q Q
Combining (2.10) and (2.15) and choosing an appropriate value of € > 0, one can now conclude that
1)+ 70) §57° [ 2067 (o + [V x o) + [ e gn
Q Q
+/ e 2V x |2 +53/ e 23|y (2.16)
2 Q2

for s large enough.

2.2.3. Estimate of the local term in V X ¢

Using the second equation of (1.6), one first has
et < [ et ol = [ e ) (e 9= (T ) ),

where 173 : £2 — [0, +00[ is some non-negative regular function supported in O such that 7o = 1 on {25. Similarly
as above, integrations by parts now show that

/ 672506|v X @‘2 S / n2ei2sa(v X @t) . T/J + C/ 6728a|v X Qngl‘
2 Q Qo

+C (/QO e—2sa|'(/1| (|V(V X 80)‘ + |VV(V X <,0)|) +82/

Qo

202y so|¢|)

</ nze—%“(wsot>-w+sJ<so>+C<s4 [emenr [ e—2m|gl|2)
Q Q Q

for some C' > 0 which may depend on e. Moreover, applying the curl operator to the first equation of (S’) and
using (A.5) and Young’s inequality, one has

/anem(v X r) = —/Qngezm (A(V X 0) +V XV x §+V x (V)T +V x go) -

<c ( [ e VT x o) 457 [ et (e + VW))
Q Q

+C<S4/ ef2sa£74|vgo‘2_’_s4/ e2sa£4|w|2>
Q Qo

for some C' > 0 which may depend on ¢.
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Finally, we have proved that for any ¢ > 0 there exists C' > 0 such that

/ 672SQ‘VX (p‘2 <5(I(¢)+J(¢))+C<s4/ ef2sa§74|vgo‘2+/ 6725a|91|2+34/ 62504541/}2).
Q Q Qo

2
Using now (2.16), the Proof of Proposition 2.1 is complete. |
2.3. Proof of Proposition 2.2
We apply the Laplacian operator to the first equation of (1.6). Since

A’]TZV‘QO,

we get:
—(Ap): — A(Ap) = PLAY + Ago — V(V - go) in Q.

We now apply ([5], Thm. 1) to Ay and obtain

0Ap

2
0291 4 42 / 2562|021 [Vigo?)
87/ Q

8_3/6_23af_3|V(Ag0)‘2+8_1/e_ZSaf_l‘AgOP 58_3/8_2sa§_3
Q Q x

+s*1/ ezso‘glAgoz—ksz/QezmngwF (2.17)

for s large enough.
We now apply the Laplacian operator to the second equation of (1.6). We get:

—(AY) — A(AY) =V x Ap + Agy in Q.

We then apply ([5], Thm. 1) to A, which gives:

—4 725a£74v Aw 2+ -2 72504572 Aw?
s /Q V(AP + 5 /Q Ay

—4 —2sa ¢—4
St [ e
X

_1_872/ 672sa£72|Aw‘2 _'_83/626250453A%02. (2.18)
1

9 2
o I R S PR A
v Q

Combining (2.17) and (2.18), we find
8_3/ e_2sa£_3|V(Ag0)‘2—|—S_l/ e_2saf_1|A(p|2+8_4/ e_2m£_4|V(A¢)|2+s_2/ 6_2305_2‘A¢|2
Q Q Q Q
g 871/ 6728a571|ﬂ<p|2 +872/ 6725a572|A’l/1‘2 +Bg +B4
1 Q1

+s‘2/Qe‘2m§_2(902+Vgo|2)+8_3A?e_2sa£_3(|91|2+|V912)7 (2.19)

where
a 2
B3 = 8_3/ e—2sa£—3 —A(p
¥ 31/
and
) 2
B4 = 8_4/ e—2so¢£—4 _Aw )
¥ 31/
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Before estimating the local and boundary terms, let us apply the classical Carleman estimate for the Laplace
operator with homogeneous Dirichlet boundary conditions:

8_2/ e—2$0¢§—2|vv90‘2+82/ e—2sa§2|90‘2§82/ 6_28052‘4,0|2+8_1/ e—2$0¢§—1|A<p|2’
Q Q Q

Q1

Combining with (2.19), we deduce:
873/ 672506573‘V(Ag0)|2+872/ 672sa£72‘vv4p|2+874/ 672506574‘V(A’l/))‘2+872/ 6728a572|A’l/1‘2
Q Q Q Q

-I-S_l/ e—2sa£—1|A<p|2 SSQ/ e—2sa§2|90‘2+s—1/ e—2sa£—1|A‘p|2+s—2/ e—2so¢§—2‘Aw|2
Q Q1

Q1 Q1

+B3+B4+5_2/ e‘mﬁ‘z(\go\QJr\Vgo|2)+8_3/ e 2 (g1 P + [V ).
Q Q

(2.20)
Let us now estimate the local and boundary terms in the right-hand side of (2.20).
2.3.1. Estimate of the local terms in (2.20)
In this paragraph, we estimate the second and third terms in the right-hand side of (2.20).
Regarding the term in v, we apply the curl operator to the equation satisfied by ¢. This gives:
A = —=(Vx @)y — AV xp) =V x g in Q1. (2.21)

Let m1 be a positive function satisfying
m € CCZ(QQ), ’171(1') =1 Vx € (2.

Using (2.21), we get the following splitting:
5_2/ e T2 AY)? < 3_2/Q171e_23°‘§_2(A1/))(—(V Xl — ANV Xp) =V xgo):=1I +1s+ Is.
1
Estimate of I;. We integrate by parts with respect to ¢ to get
I =52 /Q m (e ), AV x o+ 572 /Q me 22 APV x =111 + I .
For the first term, using Young’s inequality, we get
Bal S570 [ e M AV gl < es? [ oo AP 4 [ ey o,

2 Q Q2

For the second term, we integrate by parts in & and we obtain:

[11,2

,S 872/ |v(672sa§72)|‘th”v X <,0| + 3*2/ e*2sa£72‘v¢t‘|v X ‘P|

Q2

+s_2/ e BTV || V(V x )]

S 871/ 672sa§71|th”v X ()0| + 572/ e*QSOtg*z‘V’(/]tHV(V X @)‘

2 Q2

<est /C2 e 20|y, 4 O / e E2(V(V x @) 2 + |V x ]?).

2



ON THE LOCAL EXACT CONTROLLABILITY OF MICROPOLAR FLUIDS WITH FEW CONTROLS 647

Consequently, this first term is estimated as follows:

|Il‘ S € <8_2/ e—2sa£—2|Aw‘2 +S_4/ e—2sa§—4|th2)
Q Q
+ Csz/ e 252 (|IV x 92 + |V(V x ©)|?). (2.22)
2
Estimate of I,. We integrate by parts with respect to . We obtain

L) < s / e 2061 | Al Ag| + 57 / e 262V x Ay||Ag]
N N (2.23)
S€<5_2/ e—2sa§—2‘A¢|2+8—4/ e—2sa£—4|vA,¢|2) —|—O/ 8_28a|A(p|2.
Q Q Q

Estimate of Is. Using Young’s inequality, we get
|IS‘ < 6872/ 6728a572|A’l/1‘2 +C$72/ 6728a572|v % 90‘2’
Q Q
Putting this last inequality together with (2.22)—(2.23), we obtain
32/@ 672sa£72|Aw‘2 <eg (32/62628a£2|Aw2 +54/Q(328a§4(v'(/]t2 + Vsz))
1

+C (52/ eV x o +|V(V x ¢)?) + 5—2/ 6_2”5_2Vgo|2) - (2:24)
Q

2

Using now the relation

Vi =~V A~ V(V x ) — Vg1 in Q,

the term 3_4/ e~ 22¢=4 V) |? is bounded by the left-hand side of (2.20). This allows to deduce
Q

873/ 6728a573|V(A(,0)‘2+872/ e*25°‘§*2|VVgo\2+s*4/ 672sa§74|v(Aw)|2
Q Q Q
+S_2/ e—2sa§—2‘A¢|2+8—1/ e_2saf_1|A(p|2+8_4/ e—2sa£—4|th|2+s2/ e—2a£2‘<p|2
Q Q Q Q

<8 / 22 (V(V % )2 + |V x ol? + [of?) + Bs + Ba

2

+s—2/Qe‘2mf‘2(902+Vgo|2)+s‘34e‘23“§‘3(lgll2+|V912)~ (2.25)

Estimate of the local term in . Let 23 be an open set such that 25 C O and 25 C 25. After several
integrations by parts, we get

82/ 672sa§2‘v(v % ()0)|2 SESiS/ 6728a573|VAg0‘2+C87/ 672sa£7|v4p|2
2 Q

3

S e <S3/ ef2sa§73‘vA<p|2 _'_871/ e2sa£1A@2)
Q Q

+C’315/Q e*2so‘§l5|cp\2. (2.26)
(@]
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Putting this together with (2.25), we deduce:
32/Q€_2a§2<,0|2+S_1/Q€_2saf_1A@2+5_2/Q€_2sa§_2A¢|2+3_4/Qe_2saf_4|th|2

B
Qo

s / e 203 (|gy[2 1 [Vigy ).
Q

672504515“0‘2_’_872/ ef2sa£72(‘go‘2+‘vgo|2)
Q

Let us now prove that the term

JO — S—l/Qe—2so<*(§*)—l|P1w2

is estimated by the left-hand side of (2.27). For this, we use the equation satisfied by :
Jo = 571/ e () THPIY) - (—pr — Ap+ VI —go) == Ji + Ja+ J3 + Ju.
Q
Observe that J3 = 0 since ¥» = 0 on Y. For the first term, we integrate by parts in time:
J1 _ 871/ 672505* (f*)il(let) . (p—|—871 / (efzsa* (g*)il)/(Pﬂ/)) P
Q Q
Jo+2 (54/ e 254 Wy |2 + 82/ €2a§290|2> ;
Q Q
for m > 2 and s 2 1. For the second and fourth terms, we have
1
Jo+ i < 7Jo+2 (3—1/ ™M Apl? + 3‘1/ e‘QS“f‘llgoF) :
4 Q Q
Consequently, coming back to (2.27), we obtain
82/ e—2()¢§2‘<p|2 4 8_1/ e—2sa§—1|A<p|2 4 8_2/ e—2so¢§—2|Aw‘2
Q Q Q

—|—8_1/ e—2sa*(§*)—1|P1,¢|2+8—4/ e—2sa£—4|th|2 ,SBS_'_BAL
Q Q

+815/ 672504515“0‘2_’_871/ 672504571(‘90‘2_’_‘vgo|2)_’_872/ 972sa§72(|91|2+|v91‘2)~
Qo Q Q

2.3.2. Further estimates on ¢ and
Let 6o (t) := s—3/271/me=sa" () (¢*(¢))=3/2=2/m Then,

(QD*,’/T*)(t,.’E) = QO(T - t)(@aﬂ—)(T - tax)

satisfies system (A.3) with
h(t,z) := 0o(T — t)(P1Y)(T — t, x)

and
hy (t,x) := 0y(T — t)o(T — t,x) + 0o (T — t)go(T — t, ).

Using Lemma A.2 (c), we have

||<P*||2L2(0,T;H4(Q))nH1(o,T;H?(Q)) S ||h||2L2(o,T;H2(Q))nH1(0,T;L2(rz)) + ”hVH%'Z(O,T;H?(Q))'

(2.27)

(2.28)
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Regarding the first term, one has

P11 207,12 (o) 0,752 (2)) S 100N 200 7,3 29y + 106 P17 2y + 100 Predel| T2 ) -
Regarding the second term, we deduce

||hVH%2(0,T;H2(Q)) S ||964‘PH%2(Q) + ”90A90”2L2(Q)’

Consequently, we infer

H‘p*H%2(O,T;H4(Q))OH1(O,T;H2(Q)) S HQO'L/}”QL?(O,T;H?’(Q)) + H‘%Pﬂ/)H%%Q) + ||90P1wt||2L2(Q)

+ 1054011720y + 1100 Ag0]I32)- (2.29)
Let 0y (t) := s 2~ 1/me=sa"(t) (¢*(¢))=2-1/m_The function
Y (t,x) = 01(T — t)(T — t,x)

satisfies system (A.1) with
h(t,z) = 01(T —t)(V x p)(T —t,x)

and
ho(t,z) :== 01(T — )Y(T — t,x) + 61 (T — t)g1 (T — t,z).

Using Lemma A.1 (b), we have
H7/1*||2L2(0,T;H4(Q)) < HhH%2(O,T;H2(Q))mHl(O,T;LQ(Q)) + Hh0||2L2(O,T;H2(Q))’
Regarding the first term, one has
HhH%2(0,T;H2(Q))nH1(o,T;Lz(rz)) S H01§0H%2(0,T;H3(Q)) + 161V x <PH%2(Q) + 161V x ‘ptH%P(Q)’
Regarding the second term, we deduce
Hh0H%2(O,T;H2(Q)) S ||9347/’||2L2(Q) + H01A91H%2(Q)'

Consequently, we infer
||¢*H%2(0,T;H4(Q)) S ||9190||2L2(0,T;H3(Q)) + 107V x 90||2L2(Q) + 1161V x 90t||2L2(Q) + H9/1A1/)H%2(Q) + ||91A91||2L2(Q)’
Putting this together with (2.29), we deduce

||90*||2L2(0,T;H4(Q))nH1(0,T;H2(Q)) + ”w*H%2(O,T;H4(Q))OH1(O,T;H2(Q))

S H90¢||2L2(0,T;H3(9)) + ||96P1¢H%2(Q) + ||90P1¢t||2L2(Q) + H%A%@H%z(@) + HQOAQOH%Z’(Q) (2.30)

10121120 7113 2y + 101V X @l 720y + 101V X @172y + 10140172 () + 1014911720
We now estimate the terms in the right-hand side of (2.30) concerning ¢ and v with the help of (2.28).

e First, we observe that from the definitions of 6y and 6, the term \|91¢\|%2(07T;H3(m) is absorbed by the
left-hand side of (2.30).

e Next, since
|96| g 8—1/2—1/me—sa (£>s<)—1/2—1/m7

the terms HO(’)leH%Q(Q) and ||96A<p\|%2(@) are absorbed by the fourth and second terms in the left-hand side
of estimate (2.28), respectively. Moreover, using that

|9/1| g 8—1—1/me—sa* (5*)—17

the terms ||0]V x <p||2Lg(Q) and ||9’1Aw||2L2(Q) are absorbed by the second and third terms in the left-hand
side of estimate (2.28) respectively, provided that s is large enough.
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e Then, observe that

| iae <2 (I sy + 1oAelia) (231)

so |01V x 9015”%2(@) is absorbed by the left-hand sides of (2.28) and (2.30).
e Similarly, we have

| ot <2 (10310 + 101801 (2:82)

Moreover, using the equation of ¢, we get that
8_2 / e—2sa* (5*)_2|¢t|2
Q
is estimated by the left-hand side of (2.28). Integrating by parts in space, we have that

8—3—2/m/ e—2so<*(§*)—3—4/m|th|255—2/ e—2so¢*(§*)—2|¢t‘2+/ 98‘A¢t‘2’
Q Q Q

so that, from (2.32), we can absorb the term ||90P1¢t||2L2(Q) by the left-hand sides of (2.28) and (2.30).
e Finally, from an interpolation argument, we find that

T
H90¢H%2(0,T;H8~(9)) :5_3_2/m/0 I (5*)_3_4/7"”7#”%13(9)

T
< 01120, rurrs gy + C5~2 2™ / o250 (¢r) 2 lm 2,

for some C' > 0 (which might depend on & > 0).

We conclude that
82/ e—2a§2|90‘2+s—1/ e_2mf_1\Acp\2+s_2/ e—2sa£—2|Aw‘2
Q Q Q

—|—8_1/ e_2sa*(£*)_1‘P1’¢|2+8_4/ e—2sa§—4|th‘2
Q Q
+ H‘p*H%'A’(O,T;H4(Q))OH1(O,T;H2(Q)) + Hw*”QLQ(O,T;H‘*(Q))nHl(O,T;HQ(Q))

SBS+B4+815/ 6728a515‘§0|2+871/ ef2sa§71(|go|2+|vgo‘2+‘v290‘2)
Qo Q

+s7? /Q e 2 (|g1|* + [V + [V ). (2.33)

2.8.8. Estimate of the boundary terms in (2.33)

We first establish a useful trace lemma.

Lemma 2.3. There exists C > 0 such that
L5
0N 01/

3/2 1/2
< Cllull 32 o) lull 1% )

for all u € H?(02).
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Proof. Let k € C?(£2) be a function satisfying

6—H:1 and k=1 on 0f2.
ov

Integrating by parts, we have

2
/ (Vi - Vu)Au = / ul” _ / V(Vk - Vu) - Vu.
0 90 | OV a
Using now
HVUH%P(Q) S HuHL2(9)||u”H2(Q)
along with Cauchy—Schwarz inequality, the proof is complete. O

Using Lemma 2.3, we find that

dAp|?

.3 —2sa™ f¢ex\—3
Bs:=s /Ze (€") %

T
< ellbopll 720,71 (2)) +055_3+6/m/0 o (5*)_3“2/7””@@{2(9)

and
2

OAY
ov

By = 8_4/ e—2sa* (5*)—4
X

T
< 810120, puprs 2y + Cos™0/™ / o250 (gr) A M2,

Using that m > 6, these two terms are absorbed by the left-hand side of (2.33).
This ends the Proof of Proposition 2.2. O

3. PROOF OF THEOREMS 1.2 AND 1.3

3.1. Observability inequality and controllability of a linear problem
In this paragraph we prove the null controllability of the following linear system:
Ly+Vp=Pw+ fo+B—-dlou, V-y=0inQ,
Mw+ (y- Vo=V xy+(d—2)1ov+ fi in Q,

y=w=0 on X, (3.1)
¥(0,-) =50, w(0,") =wo in {2,
for suitable fo and fi, yo € V and wg € H?(§2) N H(£2). Here, we have denoted
Ly:=y:— Ay and Mw:=w;— Aw— (d—2)V(V -w). (3.2)

Before proving this result we need to prove a new Carleman estimate with weight functions only vanishing
at t =T. Let
2Mnllee — gAn() e (@)
plt,x) = ——=—— (t2)==—, (3.3)
£(t)8 £(t)3

where £ is the C°°([0, T]) function given by

_ UT/2) for t € [0,T/2),
4= {é(t) for t € [T/2,T).
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3.1.1. Three-dimensional case

We will prove the following result:

Proposition 3.1. Under the same assumptions of Proposition 2.1, there exists C > 0 such that the solutions
of (1.6) satisfy

[ e+ [ e+ [ e0.)P + [ o
Q Q n Q
<o e (b + Faol) + [ P [ e tp). @
Q Q Qo
Proof. To prove estimate (3.4) we start by observing that, since § =« in (T7'/2,T) x 2 and § < «,
/ e—2sﬁ72‘w‘2 +/ e—2sﬁ|@‘2 < / e—2sa§2‘w‘2 +/ e—2so¢|@‘2
(T/2,T)x 2 (T/2,T)x 2 Q Q
<05 [ (P + 9al) + [ el st [ eegdup)
Q Q Qo

<C <5‘3/ e 20y (|gof* + [V gol?) +/ e_QSﬁ\g1\2+54/ e 2 4¢2) (3.5)
Q Q Qo

Here, we have also used the Carleman inequality (2.2) and the fact that
e—2so¢g4 S 6_235’}/4.

In order to perform an estimate on (7'/2,T) x 2, we introduce o2 € C([0,T1]) satisfying o2(t) = 1 for t € [0,T/2]
and o9(t) = 0 for ¢ € [3T/4,T)]. Then, o2(p, 7, 1) satisfies

(029 — Ao3¢) + V(o3m) = ¥ x (030) + (V(02)) 7T + 000 — b i Q.
—(029)¢ — Ao2¢)) = V(V - (02¢)) = V x (029) + 0291 — 053¢ in Q,
V- (o2) =0 in @,

o2p =0 on X,

oatp =0 on X,

(020)(T,-) =0 in £,

(o20)(T,) =0 in 0,

(see (1.6)). For this system, we have (see ([11]))

/awzf/aﬂw+/mm»V+/hw»Wsc</ u%ﬁﬂmﬁ+/ <¢F+w%)
Q Q n n (0,3T/4)x 2 (T/2,3T/4)x 2

Observing now that e=2*# > C in (0,37/4) x 2, e=25* > C in (T/2,3T/4) x 2 and using again the Carleman
inequality (2.2), we deduce in particular

Joo e [ e [P + [ .
(0,T/2)x 2 (O,T/2)><Q
§C<53/ e 27573 (|go|* + [V go|?) +/ 6725'6\91\”84/ e 20 4w2)
Q Q Qo

Combining this with (3.5), we deduce the desired inequality (3.4). O
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Remark 3.2. If we denote

B(t) :=min B(t,x), F(t) :=min~(t ),
e e

then, we deduce from (3.4):
lve ™ 1122 (q) + lle™ el Zaq) + 1000, )72 + 1900, )72
< C(le™ 32 gollF2 () + lle™ P aullF2(q) + e ¢l 72(q0))-  (3.6)

Now, we are ready to solve the null controllability problem for the linear system (3.1). For simplicity, we
introduce the following weight functions:

polt,) == P py(t,2) = BTy (1 2) 7Y pa(t, @) = POy (1,2) 72, ps(t) = P OF()Y/2,
The null controllability of system (3.1) will be established in some weighted spaces which we present now:
By = {(y.p,v.w) € By : po(Ly + Vp —V xw) € L*(Q), pr(Mw + (y- V)& = V x y — Lov) € L*(@Q)}  (3.7)
where
Eo = {(y.p,v,w) : (p3)**y € L*(0, T H*(2) N L>(0,T; V), (po)**w € L*(0, T3 H*(92)), p2v € L*(Q)}.
Of course, F1 and Ey are Banach spaces for the norms
(Y, p, v, W)l = (”(93)3/4:9“%2(0,T;H2(Q))OLOC(O,T;V) + ”(p0)3/4w||2L2(0,T;H2(Q)) + HP2U||2L2(Q))1/2

and

|(y,p,U,W)||E1 = (H(y,p,v,w)||2Eo + HPO(Ly + Vp -V x w)H%“’(Q)
+lp1(Mw + (y- V)@ = V x y = Lov)|[72g) ">

Then, we have the following result:

Proposition 3.3. Let us assume that @ € L°°(0,T; W13T9(2)) N HY(0,T; L3(£2)) for some § > 0, yo € V,
wo € H2(2) N HYD), pofo € L*(Q) and p1fi € L*(Q). Then, there exists a control v € L*(Q) such that,
if (y,w) is (together with some p) the associated solution to (3.1), one has (y,p,v,w) € Ey. In particular,
y(T) =w(T) =0 in 0.

Proof. Let us introduce the space
Po={(p,m1) €C3(@Q):V-9=0inQ, p=9¢=0o0n %,
(L*¢+Vr -V x— (V)Tw)=0on X, V- (L*p+ V7 -V x ¢ — (V¥)TD) =0 in Q}

and consider the bilinear form

o~

ao((8,7,9), (¢, m,9)) = /Q<po)‘2<M*zZ— V X 3) - (M*p —V x ) + /o<pz)‘2w g

(p3) 2L G+ VE -V x 1 — (V) @) - (Lo + Vi — V x ¢ — (V)T D)

_l_
S

+ / (p3) 2V(L* G+ VT -V x ¢ — (V) D) : V(L*¢o+ VI — V x ¢ — (V) D). (3.8)

Q
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Here, L* and M* denote the formal adjoint operators of L and M respectively:
L'¢:=—p; — Ap and M*:= - — Ay — (d —2)V(V - ).

From the Carleman inequality (3.6), this bilinear form is an inner product in Py. We consider the Hilbert
space resulting of the completion of Py with a(-,-) and we call it P.
We introduce now the linear form by : P — R:

bo(p, ) 1=/@f0‘90+/62f1‘1/J+/990(0,$)'yo($)+/rz¢(0»$)'wo(x)~

Then, in virtue of the Carleman inequality (3.6) this linear form is continuous. Consequently, from the Lax—

-~

Milgram’s lemma there exists a unique solution (@, 7, ) € P of

ao((Z.7.9), (p.m.9)) = bole,mw)  ¥(p,m, 1) € P. (3.9)
Let us now define the following quantities:

= (p3) 2[(L*@ + VA - V x ¢ — (V)TD) — A(L*G+ V7 - V x § — (V) o),
= (po) 2(M*$) — V x )

&) w)

and

Then, from (3.8) we readily have

~ o~

lpsyllL2(vry + [lpo&llL2(q) + P20l L2(q) = ao((P, T, ¥), (P, 7, ¢)) < +oo0.

We consider now the weak solution (g, p, @) of system (3.1) with v := ? and its adjoint system

L*¢+Vr =V x9y+ (V) TT + go in Q,

M*$ =V x g +gi in Q,

V-p=0 in Q,
=0 on X, (3.10)

=0 on X,

o(T,")=0 in £2,

W(T,) =0 in 0.

We multiply the equation of § by ¢, the equation of @ by ¢ and we integrate by parts. We obtain

/Qﬂ'goJr/Q@‘gl:/QfO‘W‘F/Q(ﬁ-Hlo@)'1/J+/Qy0'<9|t=o+/ﬁwo~1/Jt=o»

for all go, g1 € L?(Q). That is to say, (¢, p,©) is also the solution by transposition of (3.1) with v = .

Then, from (3.9), it is not difficult to see that (y,p,©o) = (¥,p,w). Moreover, one can perform regularity
estimates for our system in order to prove that the weak solution of (3.1) with v = ¥ satisfies (¢,p, v, @) € Fj.
For all the details, one can see for instance the proof of Proposition 4.3 in [2]. g
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3.1.2. Two-dimensional case

In this case, we can prove the following result:

Proposition 3.4. Let d =2, m = 8 and T > 0. Then, under the same assumptions of Proposition 2.2 there
exists C' > 0 such that the solutions of (1.6) satisfy

lle=#" (7*)_1/2<P||2L2(0,T;H2(n)) +[le™*%" (V) T2z ) + 1000, )20y + 190, )220

~

<C (He_sﬁa_lgoH%'A’(O,T;HQ(Q)) + He_sﬁW_lglH%?(O,T;m(n)) + ||e_35715/2¢\|%2(620)) , (3.11)

where we have denoted

B*(t) :==max B(t,x), ~*(t):=max~(t,z),
e re

and the other weights were defined at the beginning of Section 3.1.

The proof follows from the Carleman estimate stated in Proposition 2.2.

Remark 3.5. Let us define
L;I = —8t - PL ] A,

where Py, @ L*(£2) — H is the Leray projector (recall that the space H is defined in (1.2)). If, in addition
to the assumptions stated in Proposition 2.2, one assumes that d:go, ;g1 € L*(Q), then, using the classical
regularization effect for the Stokes equation and for the heat equation, one can deduce from (3.11) the following
Carleman inequality

le™*F" (7*)_1/2<P||2L2(0,T;H2(n)) + [le™*#” (7*)_1¢||2L2(0,T;H2(Q)) + [l (0, ')||2L2(n) + [l%(0, ')||2L2(n)
< € (1L 0 3aq) + 1M P57 ) By + ™7 6 B ) - (312)

Now, we are ready to solve the null controllability problem for the linear system (3.1). For simplicity, we
introduce the following weight functions:

W(t) == e O ()12, (1) i= ¥ Oy (1), o(t,2) = 0Dy (1,2) 1/, () 1= ePOF(1).  (3.13)
The null controllability of system (3.1) will be established in some weighted spaces which we present now:
Fy = {(y,p,u,w) € Fy : o(Ly + Vp — Prw — 1ou) € L*(Q), si(Mw — V x y) € L*(Q),2u € L*(Q)} (3.14)

where
Fo = {(y,p,u,w) : (c0)>*y € L2(0,T; H*(2)) N L=(0,T; V), (c1)%*w € L*(0,T; H*(2) N HE (2))}.
As in the three-dimensional case, these spaces are Banach spaces for the corresponding natural norms.

Then, we have the following result:

Proposition 3.6. Let yo € V, wy € HY(92), sofo € L*(Q) and s1f1 € L?(Q). Then, there exists a control
u € L?(Q) such that, if (y,w) is (together with some p) the associated solution to (3.1), one has (y,p,u,w) € Fi.
In particular, y(T,-) = w(T,-) =0 in £2.

Proof. Let us introduce the space

By ={(p,m ) €C*(Q): V-9 =0inQ, p=¢=00n %,
L*'¢o+Vr—Pi¢p=00on X, V- (L*¢+Vr —Pi¢) =0in Q
(L*¢+ V7 — P14)(0,-) =01in 2, M*) — V x ¢ =0 on X,
(M* —V x ¢)(0,-) =0in 2}
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and consider the bilinear form

a1 (8,7, 9), (0,7, 1)) /M* [(63) MM =V x @)] - M*[(5) " (M = V x )]

+ / (@) 26 o+ / Lil(ss) (L3 + V7 — Pud)] - Lyl(ss) " (L0 + Vi — Pry)].
Qo Q

(3.15)

From the Carleman inequality (3.12), this bilinear form is an inner product in By. We consider the Hilbert

space resulting of the completion of By with a;(-,-) and we call it Bvo.
We introduce now the linear form b; : By — R:

by (10,7, ) ::/Qfo~go+/Qf1-wdxdt+/ngo<o,~)~yo+/nw(0 ) wo

Then, in virtue of the Carleman inequality (3.12) this linear form is continuous. Consequently, from the Lax—

Milgram’s lemma there exists a unique solution (@, 7, w) € By of
ar1((@, 7, 9), (¢, ™)) = bi(p, m,¢)  V(p,m,¢) € Bo.
Let us now define the following quantities:

= Ly[(s) " HL*G + V7 — Pio),
= M*[(s3) " H(M*9 — V x §)]

£) )

and

Then, from (3.8) and (3.16), we readily have

191 22(0) + 1@l 22(@) + 2@l 2o S llsofollzz(@) + Istfillz2@) + llwoll2(2) + [lwoll2(02)-
We consider now the weak solution (Y., pw,ww) of system (3.1) with u := 4. We will show that

(3)" T M@ = wy, in Q,

w=0 in X,
@\tzo =0 in Q,
and
() 'Luy = Yuw, V-5=0 in @,
7=0 in X,
Yjt=0 =0 in (2.

From (3.16) and (3.17)—(3.19), we find

/@M*[(%)*I(MW—VX )] —/ a'thr/ - Lil(s) (L o+ Vi — Piy)
Q Qo Q

(3.16)

(3.21)

(3.22)

:/(Lyw-i-pr—P1ww—ll@ﬁ)-cp—l—/(Mww—nyw)t/)-i-/<p(0,~)~yo+/1/1(0 wo
Q Q n 0
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Integrating by parts, one consequently gets

et ore - - |

u-p+ / 7 Lyl(s3) M (L ¢ + Vi — Pya)]
Qo Q

:/yw'(L*<P+V7T—P1¢)—|—/ww(M*w—wa).
Q

Q
/@92+/§g3:/ww¢2+/yw@5
Q Q Q Q

for all go € L*(Q) and all g3 € L*(Q), where (P2, ®3) is the solution of

Therefore, (7, ) satisfies

M*[(s3)"'Pa] = go in Q,

Lil(ss) 03] = g3 in Q,
V. by =0 in Q. (3.23)

Py =0, P33 =0 on X,

()1 P2)(T,) =0,  ((s3)"'®3)(T,:) =0 in (2.
This weak formulation means exactly that (y,) satisfies (3.21)—(3.22).

Let us prove now that
(s0)**yw € L2(H?) N L®(H"Y), (s1)**wy, € L*(H*) N L (H?). (3.24)
e Let us first prove that, up to some weight functions, y,, and w,, are in L?(Q). Indeed, let us define
(", p",w") 1= 02(t) (Yu, Pus W),
where
02(t) := (T — t)%8¢3(1).
Then, (y*,p*,w*) satisfies
Ly* + Vp* = Piw* + 0s(1otu + fo) + (02)'yw, V- -y*=0inQ,

Mw* =V xy* +02f1 + (62) wu in @,
(3.25)
y*=0, w*=0 on X,
y*(0,-) = 02(0)yo, w*(0,-) = 602(0)wy in (2.
We use now that (y*, p*,w*) is also the solution by transposition of (3.25):
Lot [o = [ otirton o+ [ v+ [ @m-o+ [ @
Q Q Q Q Q Q
(3.26)
+ [ 6200000, + [ 8200000,
o) o)
for all hg, h1 € L*(Q), where (p, 7, ) is the solution of
Lo+ Vm =P+ hy in Q,
M*tp =V X o+ hy in @,
V-p=0 in Q,
p=0 on X, (3.27)
=0 on X,
QO(Tv ) =0 in “Qa
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For this system, we have
(e, ¥)lIxz S 1Rollz2(@) + [[hllz2(q), (3.28)

where we have used the space Xy := L2(0,T; H*(£2)) N L>°(0,T; H'(£2)) (endowed with its natural norm).
Observe that, from the definition of  and ¢; (0 < j < 3) (see (3.13)), we have

| [ ethrton o+ [ oot [ aa0m-ot0.)+ [ g0 )
S (lsofollz2@) + i fillzz@) + llsotill L2(@o) + I (o, wollL2(2)) [ (@, ¥)l x,- (3:29)

Finally, using (3.21)—(3.22), we find

/Q (62) v 0+ /Q (62) ) = /Q (62)'(s5) " LuG - o + /Q (62)(s5) " M@
- / L ((62)'(s3) 1) -5+ / M (62 (55) )5 — / ((62)'(55))(0) (90 - 9(0,) + woth(0, ). (3.30)
Q Q 0

Using (3.20) and the fact that |[(62)(c3) ™ [[wr.(0,r) S 1, we obtain

‘/62(92)'% '<P+/Q(92)'ww¢’ S (Isofollz2q) + st fillzz(@) + [ (o, wollL2(2)) (@, )| x, -

Coming back to (3.26) and using (3.28), we deduce that (y*,w*) € L*(Q) and
1" w )22 (@) S llsofollz2@) + s fillz2@) + [[(wo, wollL2(e2)- (3.31)
e Let us finally prove (3.24). To do so, we define
¥, P,0) = 05(1) (Y, Pws W),

where
03(t) := (T — 1)3(t).

Then, (¥, p,w) satisfies

Ly+Vp=Pw+03(1ou+ fo)+ (65)yw, V-y=0inQ,

Mo =V xy+03f1+ (03) ww in @,
N _ (3.32)
7=0, =0 on X,
y(0,-) = 05(0)yo, w(0,-) = O5(0)wo in £2.
Using that [(03)"| < 02, (3.20) and (3.31), we deduce that (y,&) € X5 and
1@, @)llx, < lofollLz@) + lls1fill2(@) + | (Mo, woll 1 (e)-
This concludes the proof of Proposition 3.6. d

3.2. Local controllability of the semilinear problem

In this section we only prove Theorem 1.2 since the proof of Theorem 1.3 is analog and can be derived from
what follows.



ON THE LOCAL EXACT CONTROLLABILITY OF MICROPOLAR FLUIDS WITH FEW CONTROLS 659

Our proof relies on the arguments presented in [7]. The result of null controllability for the linear system (3.1)
given by Proposition 3.3 will allow us to apply an inverse mapping theorem, which we present now:

Theorem 3.7. Let Dy and Dy be two Banach spaces and let A : Dy — Doy satisfy A € CY(Dy; D). Assume
that 1 € D1, A(z1) = 22 and that A'(x1) : Dy — Dy is surjective. Then, there exists 6 > 0 such that, for every
a2’ € Dy satisfying ||z’ — x2||p, < §, there exists a solution of the equation

A(x)=2a', x € D.

We apply this theorem for the spaces D; = E; (recall that Ej is defined in (3.7)), Dy = poL*(Q) x p1 L*(Q) x
V x (H?(£2) N H}(£2)) and the operator

Ay, p,u,w) = (Ly+(y-V)y+Vp -V xw, Mw+ (y- V)@ + (y - V)w = V x y — Lov,y(0,-),w(0,-))

for (y,p,u,w) € Dj.
In order to apply Theorem 3.7, it remains to check that the operator A is of class C'(Dy; D3). Indeed, notice
that all the terms in A are linear, except for (y - V)y and (y - V)w. We will prove that the bilinear operators

(" ph ot ), (12, 0%, w?) — (v V)2, (v V)w?)
are continuous from Dy x D to poL?(Q) x p1L?(Q). Using the definition of E; and the fact that
(p0)? < (p1)"/? < (p3)¥* and  (po)'/? < (p1)"? < (po)*/*,
we obtain (since H!(§2) — L5(£2))
oy - )y llez@) + lor(yt - V)l z2(q)
S 1 02)* *y e 0.1 (2)) (\|(PS)3/4VZ/2||L2(0,T;H1(n)) + H(pO)SMVWQHL"’(O,T;Hl(Q)))
St et ut, o)l 162, p? u?, )b, -
Moreover A’(0,0,0,0) : D; — D5 is given by
A'(0,0,0,0)(y, p,u,w) = (Ly + Vp =V X w, Mw + (y - V)w — V x y — Lov, y(0,-),w(0,-)), Y(y,p,u,w) € Dy,

so this functional is surjective in view of the null controllability result for the linear system (3.1) given by
Proposition 3.3.

We are now able to apply Theorem 3.7 for ;1 = (0,0,0,0) and zo = (0,0). In particular, this gives the
existence of a positive number § such that, if [|(yo,wo)|| 71 (2)x #2(2) < J, then we can find a control v, such that
the associated solution (y,p,u,w) to (1.1) satisfies y(T") = 0 and w(T) = (T in 2.

This concludes the proof of Theorem 1.2.

APPENDIX A. STANDARD ESTIMATES
We first present some classical energy estimates for the heat equation and for the Stokes system.

Lemma A.1. Let w € L*(0,T; H'(£2)) be the solution of the system

wt—Aw:h-l—ho ZTLQ,
w=0 on X, (A1)
w(0,-) =0 on @Q,

where h, hg € L*(0,T; H=1(£2)) and A is either A or A+ V(V-).
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(a) Let h € L*(Q) and ho = 0. Then,
w € L?(0,T; H*(02)) N HY(0,T; L*(£2))
and there exists some constant C' > 0 independent from h such that
1wl 220,752 (2)) + Wl 1 0,7522(2)) < CllAllL2(q)- (A.2)

(b) Leth € L*(0,T; H*(2))NH(0,T; L*(£2)) and ho € L?(0,T; H*(2)NH{(2)). Then, there exists a constant
C > 0 independent from h and hgy such that

Wl 220,75 54 (2))nE (0,7582(2)) < CUIPlI 2200, 7352 (2))nH (0,1322(02)) + 1holl 20,1 52(02)))-

Proof. We only prove (b) since the proof of (a) is classical (see for instance [9]).
For the proof of (b), we write w = w! + w? where w! (respectively w?) is the solution of (A.1) with h
(respectively hg) as right-hand side. We observe that w; is the solution of (A.1) with right-hand side h; and

Aw? is the solution of (A.1) with right-hand side Ahg. Applying (a), we get the desired result. O

Lemma A.2. Let u € L?(0,T;V) (together with some p) be the solution of the system

uy — Au+Vp=hy +h mn Q,
V-u=0 mn Q,

u=20 on X, (A.3)
u(0,-) =0 on @,

where h, hy € L*(0,T; H1(£2)).
(a) Let h € L*(Q) and hy = 0. Then,
w € L2(0,T; H*(2)) N HY(0,T; L*(2))
and there exists some constant C' > 0 independent from h such that
lull 20, 7;m2(0)) + lullar0,7;0202) < CllhllL2@)-
(b) Let hy € L*(0,T;V) and h € L*(0,T; HY(2)) N H*(0,T; H~1(£2)). Then,
we L20,T; H*(2)) N H*(0,T; H' (1))
and there exists some constant C' > 0 independent from (hy,h) such that
ull 20,7503 (0)) + lullzro,msm (0)) < C (1hv]iLzo,rvy + Bl L2101 (2)nm (0,7:0-1(2))) -
(¢) Let h € HY(0,T;L?(£2)) N L?(0,T; H(£2)) and hy € L*(0,T; H*(2) V) with h(-,0) =0 in 2. Then,
uw€ HY0,T; H*(2)) N L*(0,T; H*(12))
and there exists a constant C > 0 independent of h and hy such that

1wl 1 0,52 (2)) L2 0,15 (2)) < CUIRN E (0,722 ()22 0,132 (2)) + 1BV | 220,75 52 (2)))-
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Proof. Let us first remark that (a), (b) and (c¢) with hy = 0 are contained in ([9], Thm. 6, pp. 100-101).
We now prove (b) with & = 0. Without loss of generality, one may assume that hy € C*°([0,7]; V). In order
to simplify the notations, let us denote
A(u,p) == —Au+ Vp.

Let us multiply the equation in (A.3) by A(u¢, p) € L?(Q), integrate in {2 and integrate by parts. This yields

2 - A 2 /
/Q|Vut\ +2dt/‘ ul Vu - Vhy.

Here, we have used that hy (t,-) and wu(t,-) are elements of V' for almost every ¢ € (0,7). From this identity,
using Young’s inequality and thanks to the fact that (A(u,p))—o = 0 in {2, we have that u € HY0,T;V) and

ull z 0,710 (2)) < Cllhv 220,785 (2)) - (A4)

Now, regarding system (A.3) as a stationary Stokes system with right-hand side in V' (see, for instance, [12],
Prop. 2.2, p. 33), one deduces u € L(0,T; H3(£2)) and concludes the proof of (b).
We finally prove (¢) when h = 0. Using that Au; + AA(u,p) = Ahy in Q, we get

0= —/ (Aug + AA(u, p) — Ahy ) Aug, pe).
17}

Integrating by parts and noting that A(u,p¢)(t,-) € V for almost every t € (0,T), we deduce

/\Aut pt\ +2dt/|VAup /AhVA(ut Dt)-

From this, we directly obtain (c). O

Next, we recall a useful lemma related to the Carleman weights.

Lemma A.3. There exists some positive constants so and C such that, for any u € L*(0,T; H*(£2)) and any

S Z S0,
/67250‘|u\2 <C(82/ e*25a5*2|Vu|2+/ e2sau|2> )
Q Q Qo

Proof. (see also [2], Lem. 3). Let us set v := e %%y and f := Vu € L?(0,T; L*(£2)). Writing u = e*“v, one has
e f=Vu+svVa

so that, after an integration by parts, since V€ = —Va and for some constant C' > 0,
/67250‘572\f|2 :/ 572|V11\2—|—52/ 572\Voz|2v2—5/ 572(Aa)v2—23/ 573|Va\2v2—|—/ £2(0,a)v?
Q Q Q Q Q z
2252 [ (1= 09 TPt - O [ (59102
Q Q

using that d,a > 0 on X, Va = —AVn§ and [Aa| S (A2|Vn|%€ + XE).
Moreover, since |V7| > 0 on the compact set {2\ 2y, one additionally gets that, for some ¢ > 0,

A2 /Q(l — C(s&) H|Vnl2v? — CAs? /Q(sf)lv2 > cs? </Q\QO v? — /D v2>

for a choice of s such that s > T®. This concludes the proof. O
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Finally, we present some bilinear estimate used for the proof of Proposition 2.1.

Lemma A.4. There exists some C > 0 such that, for anyw € L*> (0, T; W3(22)) N H* (0, T; L3(£2)), we have

(a)

(b)

for all w € L*(0,T; H-1(2)),

l@ull 20,751 (2)) < Cll@N Lo 0,m5wr3 ) 1l 20,7351 (02))3

for all uw € L>(0,T; L?(£2)),

@eull 20,151 (2)) < Cll@| m1 0,128 () Ul Lo (0,722 (2)) -

Proof. By duality, the first estimate reduces to prove that

Vu € L*(0,T; Hy(2)), |[@ull 20,13 (2)) S 1@l 0. mmwrs () |6l 20,7513 (2)) - (A.5)

Morover, one has

Vu € L*(0,T; Hy(2)), [@ull 20,7511 (02)) S 1@Vl L20,1:02(02)) + (VD) ull 20,7522 ()
S @ Lo 0,7, () 1l L2 0,7 112 (2))

+ V@ Lo 0,7;23 () 1wl 20,7512 (2))

since H'(§2) — L5(£2). This concludes the proof of (a).
On the other hand, one has by duality L%/°(§2) < H~'(£2) so that

Vu € L0, T; L*(2)), |@eull 201 (2)) S @l p2(0,7;10052)) S @l 220, 75030)) l1ull Lo 0,7522(02))

using Holder inequality. The proof of (b) is complete. O
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