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NECESSARY STOCHASTIC MAXIMUM PRINCIPLE FOR DISSIPATIVE
SYSTEMS ON INFINITE TIME HORIZON *> **

CARLO ORRIERI' AND PETR VEVERKA?Z

Abstract. We develop a stochastic maximum principle for a finite-dimensional stochastic control
problem in infinite horizon under a polynomial growth and joint monotonicity assumption on the
coefficients. The second assumption generalizes the usual one in the sense that it is formulated as a
joint condition for the drift and the diffusion term. The main difficulties concern the construction of the
first and second order adjoint processes by solving backward equations on an unbounded time interval.
The first adjoint process is characterized as a solution to a backward SDE, which is well-posed thanks
to a duality argument. The second one can be defined via another duality relation written in terms of
the Hamiltonian of the system and linearized state equation. Some known models verifying the joint
monotonicity assumption are discussed as well.
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1. INTRODUCTION

The study of the stochastic maximum principle (SMP in short) is a current field of research motivated
by the interest in finding necessary (and sufficient) conditions for optimality for stochastic control problems.
The general idea of the SMP consists in associating to every controlled trajectory an adjoint equation which is
backward in time. Its solution, called a dual process (which is, in fact, a pair of processes), is shown to exist under
some appropriate conditions and plays a role of “generalised Lagrange multipliers”. The SMP is a variational
inequality formulated by means of the state trajectory and the dual process. It is satisfied by any optimal control
and, usually, adding some convexity assumptions, it fully characterizes the optimality. Moreover, if the control
enters the diffusion, the irregularity in time of the noise forces to introduce a second adjoint process which is
strictly related to the Lyapunov equation for the first variation of the state.
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The first general formulation of the SMP is due to Peng [17] for finite dimensional systems. After this
seminal work, there has been a large number of works on this subject, both in finite and infinite dimensions
for different formulation of the control problem. SMP in infinite dimension has been studied e.g. in Tang and
Li [20], Fuhrman, Hu and Tessitore [7], Du and Meng [5], Lii and Zhang [9] whereas some of the results in
finite dimension comprise: Jump control: Tang and Li [21], Qksendal and Sulem [13]; Singular control: Bahlali
and Mezerdi [1], Dufour and Miller [6], @ksendal and Sulem [12]; Impulse control: Wu and Zhang [23]; Delayed
controlled systems: @ksendal, Sulem and Zhang [11]; Near-optimal control: Zhou [25] and many others.

This paper is a natural continuation of [10] on one side and [15] on the other. Our aim is to control the be-
haviour of a dissipative system in an unbounded time interval and to provide necessary conditions for optimality.
If W; is a d-dimensional Brownian motion, the equation for the state can be written in the form

t ¢
X, =z —|—/ b(Xs,us)ds +/ o(Xs, us)dWs,
0 0

P—a.s. for all t € [0, +00) and all € R™. The objective is to minimize a discounted functional

+oo
J(u() = IE/O e " F( Xy, up)dt,

over all admissible controls u(-) with values in a general separable metric space (U,d). Let us remark that
this general assumption on the space of control actions allows us to consider a broad class of controls, such as
bang-bang controls, which are excluded from the classic convexity framework. On the other hand, it necessarily
forces us to formulate the SMP wvia a spike perturbation argument.

The analysis of the problem is based on the well-posedness of the state equation under a joint (or global)
monotonicity assumption. For any x,y € R" and fixed p > 0, there exists ¢, € R such that

(b(a,u) = by, ),z —y) +pllo(z,u) — oy, u)l; < ¢lz —y*, VueUl, (1.1)

where U is the space of control actions. For a detailed exposition of SDEs with this property see [3]. This condition
is a generalization of the usual dissipativity condition which involves only the drift of the equation and allows
us to consider a larger class of concrete examples. Informally, there is a balance between the dissipativity of the
drift and the noise term. If the drift term is dissipative enough, the diffusion term can grow in a polynomial
way, instead of being globally Lipschitz. As a reference for this general assumption, see [3] and [19]. A list of
several important examples satisfying joint monotonicity condition is given further in this paper. However, let
us notice that many interesting equations do not satisfy a global monotonicity assumption (see [4] for a selection
of examples) and the formulation of a version of the SMP for these systems could be a subject of a future work.
In the first step of our analysis we have to deal with a partially-coupled system of the state equation and
the first adjoint equation. The delicate question here consists in giving a precise meaning to the solution of the

following backward SDE
dps = — [DoH(Xy, e, pr. qr) — rpe] dt + qd Wy, (1.2)

where H(z,u,p,q) = (p,b(z,u)) + Tr [¢To(z,u)] — f(x,u) is the Hamiltonian of the system and (X, ) is an
optimal pair.

In general, the behaviour at infinity of BSDEs is not easy to understand and different approaches and
approximations are proposed in several papers. In our setting, we are able to tackle the problem showing that
the adjoint equation preserves, in some sense, the dissipativity of the state. Using a duality argument and the
same technique as in [18] we can show that there exists a solution in some exponentially weighted space. It turns
out that for the analysis of the state and adjoint equations the condition on the discount factor (forming both
the functional and the weight e~ in the definition of exponential weighted space) is given by some formula in
terms of the joint monotonicity constant ¢, € R. Nevertheless, due to the framework of SMP (use of the spike
variation techniques) and, more importantly, due to the form of the polynomial growth assumption one has to
assume implicitly r positive so that the polynomial bound is integrable with the weight.
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As already mentioned, the presence of the control in the diffusion term makes a second adjoint process to
appear. In this case, there exists a formal matrix-valued BSDE which represents the process, but due to the
lack of dissipativity of the equation, it seems to be impossible to obtain an a priori estimate of the solution. To
solve the problem we follow the idea of Fuhrman et al. in [7] and we define the first component of the second
adjoint process P; as a bilinear form defined via the relation

oo
(Pin,v) :=E” / o TCTDIH (X, s, ps, 4s)y ", 9l 7) ds, (1.3)
t
where (y%")s>¢ is the solution of the linearized state equation starting from 1 at time ¢. Note that the second
component Q; does not appear in the definition of the SMP. Proceeding this way it is not necessary to define and
solve the second adjoint equation (i.e. finding the couple (P, @)) but it is sufficient to identify only the process P
via the equality (1.3). Notice that our definition of P is similar to the notion of transposition solution presented
in [9]. Nevertheless, if the diffusion term o is Lipschitz, P can be indeed identified as a unique solution to a
matrix-valued BSDE which, in fact, inherits the monotonicity property from the state equation. The formulation
of the SMP, in this case, follows by similar arguments as in [15] but with an extension to the infinite horizon
setting.

Having in mind the form of the Hamiltonian of the system, the final step (and the main result, Thm. 8.1)
is to derive a necessary condition for optimality. Let us suppose that (X, ) is an optimal pair, then for every
v € U, the following variational inequality has to hold P ® dt—a.e.

d
H(K0,v,p0,00) = (Ko 01 00) + 5 2 (P (07(Ka,0) = o (Kiy ) 07 (Xey0) = o/ (K ) ) < 0.
=1

1
24

J

This variational inequality can be rewritten in terms of so called H-function defined by
H(z,u) := H(z,u,pt,qt) — %Tr (J(Xt,ﬂt)TPta(Xt,ﬂt))
+ %Tr [(o(z,u) — o(Xy, W) Pi(o(x,u) — o(Xy, )],
in the following manner

H (Xt,ﬂt) = rglea[}(H (Xt,v) , P®dt—a.e.

The paper is organized as follows. The second and third sections contain the basic assumptions, the formula-
tion of the discounted problem and a list of motivating examples. In Section 4, we study well posedness of the
state equation. The fifth section concerns with the application of the spike variation technique to our problem.
In the two next Sections 6 and 7, the two adjoint processes are studied. The first adjoint BSDE is solved by
approximation and a duality argument whereas, the construction of the process P is described without any
potential relation to some BSDE. A precise statement of the main theorem (Thm. 8.1) is presented in Section 8
and its proof is given. Finally, in the Appendix we provide some technical proofs and we quote the actual
restriction for the discount factor including the final one used in formulation of the main result.

2. ASSUMPTIONS AND PRELIMINARIES

Let W = {W},..., W}, ., be a standard d-dimensional Brownian motion defined on some complete filtered
probability space (£2,F,(F;),>q.P). The filtration (F;),», is assumed to be the canonical filtration of W
completed by P-null sets. The space of control actions is a general metric space U endowed with its Borel
o-algebra B(U). The class of admissible controls is defined as follows

U:={u(-): Ry x 2 = U :u()is (Ft);5, — progressive}.
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For r € R, p > 1 and a Banach space E, we define
LY (R E) = {v() ‘R x 2 — E:o()is (F);5, — progressive

o0
and IE/ et |l |%dt < oo}. (2.1)
0

We want to study an infinite horizon stochastic control problem in R™ of the form

dXt = b(Xt,Ut)dt+U(Xt,Ut)th, Vit Z 0,
(2.2)
XO =,
where x € R™ and u(-) is an admissible control. The discounted functional to be minimized is given by
+oo
J(u() =E / e F(Xy, ue)dt. (2.3)
0
By |-| we denote the Euclidean norm on R™, ||-|| stands for a Frobenius norm on R”*¢ and, finally, ||-||2 denotes

the Hilbert-Schmidt norm on R"*™. By S™ we denote the set of symmetric matrixes R"*™. y 4 denotes the
characteristic function of a set A.

Hypotheses:

(H1) (U,d) is a separable metric space.

(H2) (Polynomial growth). The vector field b : R” x U — R" is B(R") ® B(U)-measurable and the map
x + b(x,u) is of class C2. Moreover, there exists m > 0 such that

| Dbz, u)]
sup sup

wel sern 1+ [z|2m+T < F00, 6] =0,1,2. (2.4)

(H3) (Polynomial growth). The mapping o : R” x U — R"*4 is measurable with respect to B(R") @ B(U).
Moreover the map = +— o(t,z,u) is C2(R™; R"*4) and there exists m (same as in (H2)) such that

DB
sup sup H xo-(xvu)||2
uelU zeR™ 1+ |1.|m

<400, |8 =0,1,2. (2.5)
(H4) (Joint monotonicity). Let p > 0. Then there exists ¢, € R such that,
(Dab(z, )y, y) + pl| Deo (@, wyll; < elyl*,  zy €R™uel. (2.6)

(H5) (Cost). The function f : R" x U — R is B(R") ® B(U)-measurable and the map x — f(z,u) is of class
C?. Moreover, there exists { > 0 such that

D7 f(z,u)l
sup sup ——————

< +o00, 6l =0,1,2. 2.7
welU zeRr 1+ ‘-T‘l | | ( )
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Remark 2.1.

(a) In [3], the form of (H2) and (H3) is given in a stronger way. For our purposes the above formulation is
sufficient.

(b) It is possible to show that condition (2.6) implies that for any =,y € R™
(b(z,u) = by, u),z —y) +plo(z,u) — oy, w)|3 < cple —yl*, uel. (2.8)
and the two conditions are equivalent for coefficients twice differentiable (in ) which, in fact, is our case.

(¢c) The arbitrariness of p in Hypothesis (H4) has been adopted to guarantee the wellposedness not only of
the state equation (for which only p = 1/2 is needed in the energy estimates), but also the first and
second variation equations, the backward system and to prove estimates of higher moments of the solutions.
Nevertheless, it is worth noting that throughout the paper we don’t really use the hypothesis for all positive
p’s, but only for a finite number of them. Therefore, Hypothesis (H4) can be weakened requiring the
monotonicity condition only for some positive p;’s, i € {1,...,n0}, nop € N fixed.

(d) The joint monotonicity condition (2.8) also implies the so called coercivity condition (see i.e. [19], p. 44).
Indeed, let us fix y = 0, then (2.8) reduces to

(b(z,u) = b(0,u), z) + pllo(z,u) — a(0,u)|3 < ¢plz?, (2.9)
and

lo(,w) = (0, w) 3 > [[lo(z, w2 — [|o(0, )2
= llo(z, w3 + o0, w3 — 2llo(z, u)[2]|o(0, w)]l2

0,u)3
> o e, u) 3 + (0, )3~ eljotar, w3 — 1722
lo(0,u)[13
=1 =)oz w3 + o0, uw)l5 — fz Ve € (0,1).
Then after easy computation we obtain that
(b(w,u),z) +p(1 = &) |lo(z,u)|3 < Kp(1+ [2*), €€ (0,1). (2.10)

Let us note that |b(0,u)| + [0(0,u)| < C due to the polynomial growth (H2) and (H3), hence K, can be
chosen as K, = max{c, + 1/2,C?%/2,1}.
(e) The above Hypotheses (H2)—(H5) can be generalized to the situation of time dependent stochastic coeffi-

cients under natural assumptions without any influence on the main result.

3. MOTIVATIONS AND EXAMPLES

Apart from the classical Lipschitz setting, there are two usual sets of assumptions which assure global existence
and uniqueness of the solution to an SDE. The first one consists in local Lipschitz property of the coefficients
along with the so called coercivity condition

(b(x), ) + %HU(@")II% < K1+ [af?), 3.1)

for all x € R™ and some K € R. The second set comprises some dissipativity assumptions on the drift, still with
Lipschitz diffusion term. The dissipativity is expressed by

(b(z) = by),z —y) < K|z —y/*,

for all x,y € R™ and some K € R.
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Another step further in this direction is the so called global monotonicity assumption, which is formulated
as a joint condition for drift and diffusion

(b(x) = by),z —y) + %IIU(SE) — o) < clz -y, (3.2)

for all z,y € R™. It is important to mention that the joint monotonicity property immediately implies the
dissipativity of the drift but not necessarily global Lipschitzianity of the diffusion part. Moreover, the joint
monotonicity (3.2) also implies the coercivity property (3.1).

It turns out that for the purposes of the SMP it is natural to strengthen the global monotonicity assumption
in the following form: for all fixed p > 0 there exists ¢, € R such that

(b(x) = b(y), @ —y) +pllo(@) — o) < cplw —yf?, (3-3)

for all x,y € R™. This is motivated by the attempt to solve not only the state equation, but also the first
and second variation equations and to derive some appropriate estimates of higher moments of the solutions.
Indeed, due to the application of the It6 formula, coefficients different form 1/2 appear in the computations.
The freedom in choosing p naturally assures that the dissipative behaviour of the system is inherited by these
equations.

Another natural assumption in this framework is the polynomial growth of the coefficients along with their
derivatives. This is fundamental in order to choose the correct discount factor in the definition of the weighted
spaces Lilfr(]R% R™) that we are going to use. Let us also mention that these polynomial bounds allow us to
prove the local Lipschitzianity of the coefficients of the state equation.

To conclude, notice that the freedom in choosing p in the definition of (3.3) implies the existence of a link
between the growth of the diffusion term and the drift (compare (H2) and (H3), see also [3]). For example, to
gain a quadratic growth in the diffusion we have to require the system to be more dissipative. Concretely, one
such an example is

dX, = [X; — X7] dt + X2dW,. (3.4)

A more general framework is presented in [8,19] where the authors do not ask for polynomial growth of the
coefficients and present a weak local version of the global monotonicity assumption along with a weak coercivity
assumption. By weak we mean the presence of stochastic coefficients instead of constant ones in the definitions

of the conditions, see [19] for a detailed exposure.
After this preliminary discussion we also present some concrete models.

(1) Polynomial model: As we have discussed above, a one dimensional model given by the SDE

2m
dX, = [—Xfm“ +) aX]
=1

dt +

m
biXti} dWy; Xo=z €R,
i=1

for some a;, b; € R, is the simplest example we have in mind. Let us notice that we can easily generalize the
model in a way so that these polynomials are upper bounds for some more general (but locally Lipschitz)
functions satisfying the joint monotonicity condition.

(2) Population growth models: A model in R given by the SDE
dXt = CkXth, (Xt) dt + O'Xtth; X() =T > 0,

where h(z) = 1—81n(z), for so called Gompertz growth models (tumor growth models etc.) or h(z) = 1—fx,
for so called logistic growth models (population dynamics models etc.). A detailed discussion of the controlled
logistic model on infinite time horizon can be found [10]. In both cases, a > 0 is the speed of growth and
B > 0 represents some saturation level of the system. It can be shown by Lyapunov techniques that the
solution is positive and an explicit analytic formula can be found by linearizing the two equations. It is
important to mention that our version of SMP covers the case of controlled logistic models (in full generality)
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whereas the controlled Gompertz model can be treated only with uncontrolled diffusion. This fact is due to
the lack of polynomial growth condition needed in (H2) and the second variation equation might not be well
posed. The same argument holds for another generalizations of the two population models with different
choices of diffusion term (cz(1 —In(z)), ov/z(1 — In(z)), oy/z(1 — z) etc.).

(3) Gradient flow model with stochastic perturbation: Let K be a convex open subset of R? and ¢ :
K CR? — R a A-convex function, i.e.

p((1— o) +am) < (1— a)p(ao) + ag(ar) — oo~ Dfar — ol

for every xo, 71 € R? and o € [0,1]. Then we can study a SDE of the form
dXt = —V(p(Xt)dt + O'(Xt)th,

provided that ¢ is of class C'. In fact, A-convexity (with C'-regularity) is equivalent to

(Voly)y— =) — Sly — ol = oly) ~ ¢(z) > (V(a),y — ) + Iy — 2P

which in particular implies that Vi is A-dissipative. If we ask o to be Lipschitz, then (2.8) is satisfied.
Some possible choices of ¢(-) are:
‘2k_21"

b

e Take A = 0 and () = |z|?* convex with the derivative 2k|z

e (Double-well potential) Let d = 1 and consider ¢(z) = (22 — 1)2, which is not convex (41 are minima)
but A-convex.

e Let d = 2 and consider the following dynamics

AX; = —X;dt + X, V2(1 + X2)72dt + odW Y,
dY; = —Y;(1 + X2)~1dt + odW?.

Here the energy has the following form ¢ = 1 + 2, where

22 y?
) Y d 9 = 571 . o\
pi(z.y) = an P2(2,y) 51+ 22)
The difference between this case and the previous one is that here, the energy has not isolated minima
but rather forms a sub-manifold (i.e. the z-axis).

4. STATE EQUATION

In this section we provide the existence and uniqueness theorem for the state equation (2.2). The classical
proof of such theorem under our Hypotheses (H1)—(H4) goes along the lines as in ([3], Sect. 1.2). for a solution
in the space L% ([0, T]; R™) (thus not in exponentially weighted space L?_l_r ([0,T];R™)). Nevertheless, by these
arguments one can not obtain a contraction from L% " ([0, +-00); R™) to itself (not even locally in time). Hence
an another approach has to be chosen. More specifically, we will scale the original equation in a way so that the
classical result from [3] can be applied. We stress that, in this case, the bound for the discount factor depends
on ¢, which can be also negative.

Theorem 4.1. Let Hypotheses (H1)-(H4) hold. Then for every admissible control u(-) there is a unique solution
process (Xi)i>0 to SDE (2.2) with sup,c(o ) E (e X¢|?] < +o0, for each T >0 and for r > 2¢y /5. Moreover,
for all ¢ > 2 and for r > 2cq4—1 it holds

IE/ e "X, %At < Cy|x[*,  for some constant C; = Cy(q) > 0, (4.1)
0
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where cq—1 1s the joint monotonicity constant in (2.6). In addition, for q € [%, 2) and r > 4cq, it holds
IE/ e " X429t < Colz|*,  for some constant Cy = Ca(q) > 0. (4.2)
0

Proof. Without loss of generality we prove the result for uncontrolled case (which can be easily converted to
the controlled one). The idea is to apply the result from [3] to a transformed equation which corresponds to
our original equation. Assume for a moment that we already have a process X satisfying the dynamics given
by (2.2) and define X; = e~ 2'X,. Then X solves

{df(t =X, e 5% (e%tfct) dt + e~ 5t (e%tfct) Aw,, Vit >0, @3)
XO = X. .
Denoting b(t, z) = —La+e 2% (e2'z) and 6(t,z) = e~ 2’0 (e2'x) it is easy to check that b, & also satisfy assump-

tions (H1)—(H4). Differentiability and polynomial growth (H2) and (H3) are evident whereas joint monotonicity
(H4) holds in the following sense

r

(b(t,z) = b(t,y),x —y) +pllo(t2) =Gt WIE < plo—ul®,  G=c¢— 5 (4.4)

Hence, due to [3], Section 1.2 there exists a unique predictable process X solving (4.3) which satisfies
SUPyeo,7] E|X;|? < +o0, for each T > 0. But this means that there actually exists a process X solving (2.2)
with the following integrability property

sup Ele™""[Xy|*] = sup E|X;|? < 400, VT > 0. (4.5)
te[0,7T] t€[0,7]

The last step is proving the desired exponentially weighted integrability. Denote the exit time 7 := inf {t>0:
|X:| > K} for each K > 0 with the usual convention inf{@)} := +oo. It is easy to show that 7 /' 7 = +o0, for
K — 400 as.

Proof of estimate (4.1): Let us fix ¢ > 2 and apply the It6 formula to | Xinre|?9. We also denote a, =
5(s, X5)5(s, Xs)T. Then we obtain

E|Xinrg|*? = []*® + 2gE /Ot X{rrezsp | Xs 20D <<XsaB(SaXS)> + %Tr{ds}) ds
+2q(g — 1)E /Ot Xirae o3| X [2O DT {as (X ® X) } ds
< |z* + QQf(q—léq—l]E /Ot X{rr>s} (|Xs‘2q + 1) ds
= 2?7 4+ 2¢K, 1641 (t ATi) + 20Ky 1641 /O t E| X pry |29ds, (4.6)

where we have used the joint monotonicity in the form of (2.8) and coercivity-type estimate (2.10). By Gronwall
lemma it easily follows that

E| im0 < (ol 4 20K 18-1 (¢ A7) ) 200161t < faf2ae?aans (camamg),
The last estimate can be made for r > 2¢c,_;. Consequently, the final estimate reads

E|X, 7 < foPre?Ros (e b)e

)
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and it follows by Fatou. Expressed in terms of the process X we have that for all ¢ > 0 it holds
E [e7 | X% < Jaf21etRomr (e =5)1, (4.7)
Now it is sufficient to integrate both sides of (4.7) on [0, +00).
Proof of estimate (4.2): Fix ¢ > 2 and observe that e Tt \Xt|2q = ¢rtla—1) |Xt\2q. Therefore, applying It6 formula
to e"a=1)| X,|27 gives
- t - - - 1
E er(q_l)(t/\TK)‘Xt/\TK|2qj| = ‘1“2(1 + 2q]E/ X{TKZS}er(q_l)s‘Xs|2(q_1) ((Xs, b(s, Xs)) + §T1" {&s}) ds
0
t
+2q(q — 1)IE/ X{TKZS}eT(q_l)S\XS\2(q_2)Tr {&s (Xs ® )N(s> } ds
0
t
47(g = DE [ X(rezae UK Pids
0

t
< z* + QqKq,léq,llE/O X{TKZS}eT(q_l)S (|XS\2q + 1) ds

+r(¢g—1E /Ot X{TKZS}eT(qfl)SD?s\zqu
< ||+ 2K, 161 (t A Tr) + (qu(q_léq_l +7r(qg— 1)) E
y /t @A R (20,
0
Then, similarly as before, we obtain
]E/Oo e "X |29dt < Colx|??,  for r > 2K, 1c4-1. (4.8)
0

To conclude the proof observe that once we have obtained the estimates (4.8) for ¢ > 2, the case ¢ € [1/2,2)
easily follows by Holder inequality. Note that we have proved even more than stated in the assertion of the
theorem. Nevertheless, such generality is not needed for the purposes of proving the SMP. g

5. SPIKE VARIATION AND VARIATION EQUATIONS

The derivation of the variational inequality needed for the formulation of SMP is based on expanding the
difference of the functional J (u®(-)) — J (u(-)) where @(-) is an optimal control and w®(-) is its appropriate
perturbation. Since the control variable is allowed to enter also the diffusion term, the expansion has to be
carried out up to second order due to the time irregularity of the noise. Therefore, two forward variation
equations appear in our setting: first order variaton process y° being, in fact, a linearization of the state process,
and the second order variation process z° coming from the second order expansion. We also stress that due to
the estimation techniques used in the forthcoming proofs, we often need the polynomial bound of coefficients
to be integrable with the weight, which immediately implies that r has to be a priori positive.

Let € > 0, E. C R4 be a set of measure € of the form E. := [tg,to + €], with ¢y > 0 arbitrary but fixed, and
u(+) an optimal control. Define the spike variation u®(-) of a(-) by the formula

Uy, ift e Ry \ Ee,
uj =
v, ift e Eq,

where v € U is an arbitrary and fixed point.
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Let (X(-),u(-)) be a given optimal pair and (X¢(-),u*(-)) satisfy the following perturbed SDE
dX7 = b(X5, uf)dt + o( X7, uf)dWy,
(5.1)
X5 =mu.

Further, following the notation of Yong and Zhou [24], we denote by d¢; the quantity (X, uf) — @(Xy, ),
for a generic function ¢.
Now, let us begin studying the first variation equation

dy; = Dob(Xy, )yt + Y0, [Dec? (Xy, a)ys + 007 | AW, 52)
Y5 =0, '
and the second variation equation
_ 1 _
dzf = [ Dab(Xs, )35 + dboxs, (1) + 5 D20(Xe, ) (9)*
(5.3)

.= j 1 i (X .
+3, {DxUJ (X, )2 + 0(Daoy )y xm. () + 5 D707 (X ) (9)? | AWV,
z5 =0,
where we have adopted the notation
Te[ D26 (X, )5 (45)7 ]
DIb(Xe, ) (y;)* = 5 ’
Te[D26"(Xe, ) ys (45)7 ]
Tr[D20Y ( Xy, we)ys ()T ]
D207 (X, 1) (y5)? = :

Tr[D3o™ (X, )y; (v7)"]
Theorem 5.1. Let Hypotheses (H1)—(H4) hold. Then there exist r1 € R, ro > 0 such that equations (5.2)

and (5.3) admit a unique solution y° € L?_’_“ (Ry;R™) and 2° € L?_’_m (Ry;R™), respectively for all admissible
controls u(-) € U.

Proof. Note first that (5.2) and (5.3) are linear equations in y° and z°, respectively. The perturbation of
the diffusion in (5.2) belongs to Lilfr(]R%]R”) for every r, and it is independent on y°. Therefore, the joint
monotonicity condition (2.8) holds and the proof follows by similar arguments as the proof of Theorem 4.1, for
1 > 2¢1 /2. Concerning the equation for 2%, we have to choose ry such that D2b(Xy, u:)(y5)?, D207 (Xy, ue) (y5)? €
L;f” (R4;R™). Then existence and uniqueness of a solution follow. O
Remark 5.2. Let us note that, thanks to the linearity of the equation and due to the structure of the forcing
term do7, the solution y° to the equation (5.2) is identically zero for times ¢ < t.

In the rest of this section, we will often benefit from a general estimate of the solution to a linearized SDE
given by the following Lemma.

Lemma 5.3. LetY € Liﬁ_’_r (R;R™) be a solution to the following linear SDE

{dYt = (AYi +a)dt+ X5, (BIY: + 6] ) awy,
YO = Yo,

where yg € R"; A/ BT : Ry x 2 — R™" o, 3/ : Ry x 2 — R, j = 1,...,d, all are (F;)-progressively
measurable processes. Let k > 1, p > 0 and c, € R such that

L (AYL, V) +p X B2 < op|Vi?, P@di—ae.
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el

2. Jo" {e*Qt (]E|Olt‘2k)ﬁ +e "t (IE (25:1 ﬁgz)k>

}dt <400, 1<5<d, and 1> 2c95-1.

Then it holds

2k

> 1
sup o "HE[Y, [ < K E|y02’“+</ e B (BJou[**) dt)
teR, 0

o0 - '
+ / e HE D I8P | |,
0 i=1

(5.4)
where K = K(§), for some appropriate 6 > 0 and r > 2¢op_1.

Proof. The proof will be given for all B/, 37’s bounded. Then the stochastic integral in the proof is a true
(centered) martingale. The proof for the unbounded case follows immediately by standard localization and the
Fatou lemma.

Let 2k, k > 2 and apply the It6 formula to e "*|V;|?* on [0,t]. The case k € [1/2,2) follows easily by the
Holder inequality.

t
E (e—rkt|Yt|2k) — E‘y0|2k —|-2k‘]E/ e_rks‘Ys|2k_2 <AsYs +043,Y3>d8
0
d t ‘ ) )
+ 2k(k — 1)21@/ e R Y PP (BIY, + 8, Ys) ds
j=1 70
FEDE [ R (BIY. 4 6L, BIY, + ) ds
j=1 79
t
—Tk]E/ ekaS|Ys\2kds
0

t d
< Elyo|?* + Qk]E/ e YR (ALY, Vo) + (2 — 1)) |BjYS|2]ds
0 X
Jj=1

<cap-1]Ys|?

t t d
+2kIE/ e’rks|}§\2k’1\as|ds+2k(2k—1)]E/ O Al DY KE
0 0 -
7j=1

t
—rk]E/ e Tks|Y, R ds. (5.5)
0

Now, using Hélder and the weighted Young inequality ab < ap% + ;%, a,b > 0,6 > 0, the remaining terms can
be treated as follows

2k—1

i _2k 2k © ” 1
Qk]E/ efrks‘}/s|2k71|as‘ds < 2k (sup efrkt]E (|Y;5|2k1)2k1> / e 2t (E\at|2k) 25 4t
0 0

teER4

teR,

, 1 oo N 2k
< (2k — 1)55t"s (superktmﬁ’“)mm(/o ez%ﬂatf’“)%dt) . (5.6)
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and similarly

teER4

t d
2k (2k — 1)15:/ e Ry, 262 [ ST 592 | ds < 2(k — 1)(2k — 1)67 2 (sup erktEm?’“)
0 =

4 % k
1 o 4
+2(2k—1)5_k</0 e B (B dt). (5.7)
j=1

The estimate (5.4) easily follows by substituting (5.6) and (5.7) into (5.5), by taking sup;~, on both sides and

2k 2k

finally by choosing § > 0 such that 1 — (2k — 1)§2+-1 — 2(k — 1)(2k — 1)62+—2 > 0 and r > 2co_1. O

Before proceeding, let us recall that by X and X° we mean the solution to (2.2) in the space L?}_T (Ry;R™),
for r > 2¢y /5, corresponding to u(-) and u®(-), respectively. y° and z° are the solutions to (5.2) and (5.3),
respectively.

Proposition 5.4. Suppose Hypotheses (H1)~(H4) hold and r > 2¢, /2. Define & := Xf — Xi, mf =& — i and
;=& —y; —z;, t > 0. Then there exist p1,...,ps > 0 such that for k=1,2,... it holds

(i) supser, e "ME[EPF = O(e"),
(i) supep, e M Ely;|** = O("),
(ili) supser, e PME| 5|2k = O(2F)

) (
)

’
(iv) sup,cg, e PHEl [ = (),
|2k 2k).

(v) Suber, e PME|GE* = ofe

Proof. See Appendix. O

Before giving a preliminary expansion of the cost, we state the following

Lemma 5.5. If g € C?(R";R) then the following equality holds for every x,z € R™

1
gla) = 9(a@) + (Dag(a),z ~ ) + [ (OD2g(0+ (1~ 0)(o — ).~ a) .
0
Proposition 5.6. The following expansion holds for the cost functional
JWe () = J(u() = ]E/ e "Dy f(Xe, ty), y5 + 25 ) dt
0
oo 1 _ _
FE [ ot | DR ) + 07K m) | at + o), (53)
0
where the discount factor r > max;—1 . s5{pi} and p; are the individual discount factors from Proposition 5.4.

Proof of Proposition 5.6. Thanks to Lemma 5.5, we have that
T ) = Ia) =B [ e [ ) — ()]
0
= E/ efrt [5f(Xt, ﬂt) -+ <sz(Xt, Uf), §t€>] dt
0

[e) 1
+IE/O e*”/o <9Df,f(9)_(t—|—(1—9)X§,u§)§§,§f>d9dt. (5.9)
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Finally, Proposition 5.4 gives

JE ) = aa) = [ e [5f<)‘ct,ut> (0D, [ (X1, ). )
(D f (K1), 45+ 20) + (Daf (K ), )
+ (0 (D20, + (1= 0)X¢ ) — DEF(X0 ) €. o
b5 D2 (X067, 6) + 5 (D2 (Ko 1), 07)
dt

1 _
+ S (D2 f( Xy, )i, €5 + ¥5)

5

(o]
_ E/ e (D, f(Xyy ),y + 25) dt
0

(o)
1 - _
B [T et |G ORI mif o)+ 07 (K m) | dt 4 o),
0
which completes the proof. O

6. FIRST ADJOINT EQUATION

The first adjoint process naturally arises as a solution to an appropriate BSDE whose driver can be obtained
by differentiating the Hamiltonian function with respect to the state variable x. In some sense, the first adjoint
process is dual to the linearized state equation (5.2) and it can have the interpretation of generalized (in the
sense of time-dependent and stochastic) Lagrange multipliers. In the classical setting for BSDEs, the terminal
condition is given a priori. On the contrary, here the BSDE is solved on infinite time horizon and the behaviour
at infinity is not known. Yet the existence and uniqueness result can be derived for processes being in some
exponentially-weighted L? space.

In our case, the first order adjoint equation on infinite time horizon has the following form

dpr = — [Dxb(Xtaat)Tpt + Dyo(Xy, )" qp — Do f (X, ) — rp| dt + g, AWy, (6.1)

where Do (X, 1) qr = ijl D07 (X, at)qu € R” and (X, 4¢) is an optimal pair.
Let us start the analysis by proving an a priori estimate for the difference of solutions to (6.1). To do so, the

following estimate will be of a particular interest since it allows to transfer the joint monotonicity property to
the BSDE

d d
<D3:0'(Xtaut Gt: Pt) Z xUJ Xtyut qtypt Z QtvDQfU (X¢, @t )pe)
j=1 j=1

d
1 1 1 s
<32 el ZIDU Ko apil? < 5llael? + SIDao (X apel3. (6:2)
j=1 j 1

Lemma 6.1. Let (p',q') and (p?,q?) be two solutions to BSDE (6.1) belonging to the space L?_T(R+;R" X
R™%) for r > 2c¢y /2, corresponding to f = fYand f = f2. Then the following estimate holds true

[ 1 1 © _ _
B[ ot (0= 2012 - 0ot - 2P+ gllat — 1P )t < 38 [T IDL K1) - Do (R w P,
0 0

where § > 0 is sufficiently small.
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Proof. Applying Ito formula to e~"t|p; — p?|? gives
(oo}
b=+ E [ e (rlpt — g2 +llgf - g2I)
0
© — —
= E/ 2e7"" (py — P}, Dub( Xy, )" (py — p7) + Doo (X )" (4 — ) dt
0
© — —
+E / 2e™"" (py —pf. —r(pt — p}) + Duf ' (Xp, @) — Dof (X, ) dt
0
o . _ B 1 _ B
< [ 2 (=8 D0CEL )T 0~ 120 + 51 Dao (im0t~ DR ) at
0
(o) . 1
+ [ T2 (Gl - I - gt -2 ) at
0
oo . 5 1 B - B B
—|—IE/ 2e "t <§p% —pf\z + %|sz1(Xtaut) - Dme(Xtaut)F) de
0
oo 7’,‘ 1
<B [T ooy -2+ ) b - P+ gl - IR at
o0 1 _ _
—HE/ e’”g|sz1(Xt,ﬂt) — D, f2( Xy, u)|*dt,
0
where we have used the estimate (6.2), joint monotonicity assumption (H4) and weighted Young inequality. The

conclusion easily follows. O

Before giving the proof of existence and uniqueness for the first adjoint equation we produce a preliminary
result in finite time horizon T > 0. Let us consider the following equation:

{dpt = — [Dab(Xe, 1) py + Dpo( Xy, )" g — Do f (Xy, 1r) — rpe| At + qidW,

(6.3)
pr = 07

where T' > 0 is arbitrary but fixed.

As far as we know, no results in the literature can be used to solve this equation due to the polynomial
growth of D, o(X;, ;)T in front of ¢;. In order to produce existence of a solution to such equation we exploit
some duality arguments.

Theorem 6.2. Under Hypotheses (H1)—(H5) equation (6.3) admits a unique solution (p,q) which belongs to
€ L%([0,T;R™) xL%([0, T); R™*4), for each T > 0.

Proof. The proof consists in three steps. First, the diffusion term o is approximated so that there exists a solution
for each approximating backward equation by classical results. Second, a duality between these approximate
solutions and a properly perturbed first variation equation is established. The last step consists in constructing
a unique solution to the original equation (on a finite horizon) by some compactness arguments.

Let us define a sequence of Lipschitz-continuous maps oV with o (z) — o(x) as N — oo, for all € R" so
that the joint monotonicity property still holds. An example of such approximation can be given by (see [3])

o(a), if [a] < N,

N
g xXr) =
(@) a((N“)’”), if 7] > N 4 1.

[]

Then, for each NN, the following approximating equation
{dpiv =- [Dxb(Xta ) pY + Do (Xy,u) g — Do f (X, 1) — Tpév] dt + ¢ dW,

(6.4)
py =0,



NECESSARY SMP FOR DISSIPATIVE SYSTEMS ON INFINITE TIME HORIZON 351
admits a unique solution (p{¥,¢f¥) € L%([0,T]; R") x L%([0, T]; R"*?) thanks to Briand et al. ([2], Thm. 4.1).

Now, to establish the duality, consider for all N € N and for all v(-) € L%([0,T];R") and n(-) €
LZ(]0, T); R™*?) the following perturbed first variation equation

{dyiv = (Dmb(Xt,ﬂt)yiV — ’I"yt]v +’}/t) dt + (DmUN(Xt,ﬂt)yiv +’I7t) th, t e (O,T], (6 5)

yo = 0.

Due to Theorem 5.1 we know that the above equation has a unique solution in L%([0,T];R") for each N.
Moreover, using dissipativity it is easy to show that there exists K > 0 not depending on N such that

/ N 2dt<K[ / el dt+]E?/ el dt] (6.6)

Next, by applying the It6 formula to d (y}, pl¥) we establish the duality relation

E/OT <pivm>dt+E/0TTr{QiV (nt)T}dt = —]E/OT (D f (X, 1), yl) dt. (6.7)

Let us define the set A := {y(-) € L%([0, T];R") : Y12 0,73y < 1} If we take n = 0 in (6.7) we get
( / IpY |2dt> < sup
yEA
- 1/2
< sup ( / Dy f( Xy 1) dt) ( / g 2dt>
yeEA

T 1/2
<c (E / Dmf<Xt,at)|2dt> . (6.8)
0

If we repeat the same argument with v = 0, instead of 7, we finally get

g G -\ N
E/o | (Do f (X, 114), >|dt]

Y HL?(OT] Ry T [ ||L 2 ([0,T]Rnxd) = C]E/ | Dy f (X, 1) [*dt.

This way we have obtained a uniform estimate (with respect to V) of the LZ-norm of (pV,¢"V). Hence there
exists a subsequence, denoted by abuse of notation again as (p”, ¢"), which converges weakly in LZ.([0,T]; R™) x
LZ(]0, T); R™*?) to a couple (p, q). Our goal is to verify that (p,q) is the solution to the limit equation

{dpt = — [Dab(Xe, )" pe + Dpo( Xy, te) T g — Do f (Xy, 1) — rpe| At + qedWr,
pPTr = 0.

To do so, we note that due to the linearity of the equation, it is enough to prove that each term of the
approximating equation weakly converges to the corresponding term in the limit equation. Let us start by
studying the term

(Do (Ko, w)Tal0) = (0, Dao™ (X, e)o)
= <qtN’ Dwa(Xtv Ut )v > + <inv DwO'N(Xtvat)U - on'()_(tvat)v> .
As N — oo, the right hand side converges to

<qta Dwa(Xta 'at)'U> = <D3;O'(Xt, at)tha U> )
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thanks to the pointwise convergence of the derivative of 0. Indeed, D, o (z) = D,o(x), if |x| < N, and
the derivative is bounded. Regarding the noise term, let us notice that the map ¢ — fOT q:dWy is linear and
continuous, hence weakly continuous. The other terms are easy to treat.

For the uniqueness part it is enough to use a version of Lemma 6.1 on finite time horizon. Then we have
existence and uniqueness of a solution in finite time horizon and the proof is finished. a

Remark 6.3.

(a) The introduction of the term —ry}¥ in (6.5) is due to the choice of the scalar product used for establishing
duality. If one considers a scalar product in L?~" rather than in L? then the additional term —ry¥ can be
omitted.

(b) An alternative approach to obtain the uniform estimate can be the one following Pardoux [16]. Indeed,
applying the It6 formula gives

T
Elpy|* = Q]E/ [(PY, Dob(X s, us)pY) + (pY, Doo™ (Xs,u)TqY) + (pY, Do f (X5, us))] ds
t

T T
—QTIE/ \pgv\?ds—n«:/ g™ |[2ds,
t t

which, thanks to the joint monotonicity of b, o and weighted Young inequality, produces

T T T
1 1 )
Elpy |> + (2r — e — 201)153/ IpY [?ds + (1 - 5) E/ g [[Pds < EE/ 1D, f(Xs, ) [*ds,
t t t

for all t € [0,T], e > 0 and r > ¢;. Again, we have a uniform estimate (in N) for the left hand side and the
relative compactness argument can be applied as before. Note that this approach gives another restriction
on r than the one used in the proof.

(c) All the results of this section can be made more general when considering general weighted Young inequality
ab < %az + %bz, p > 01in (6.2) rather than the usual Young inequality with p = 1.

Now we are ready for the following

Theorem 6.4. Under Hypotheses (H1)-(H5), there exists v > 0 such that equation (6.1) admits a unique
solution (p,q) which belongs to Li:*T(R+;R”) X L;_’fr(RJF;R"Xd).

Proof. Following Peng and Shi [18], Theorem 4, define for all ¥ € N
Qof = sz(Xtvﬂt)X[O,k] (t)a t€ Ry,

which converges to D, f(X, ) as k — oo. We define the solution to the following approximate equation on
infinite time horizon

dpf = — [Dub( Xy, ) pf + Doo (X, )T qf — o — rpf] dt + qfdWs, (6.9)

as a process solving the following BSDE on a finite time horizon

{dpf = — [Dub(Xy, ) TP} + Dpo(Xp, )T gl — @F — rpf] dt + ¢fdWV, (6.10)

pi =0,
and which is identically zero for ¢t € (k,00). Such solution exists for each k& due to Theorem 6.2. Using the
a priori estimate given in Lemma 6.1, it is easy to see that there exists r such that the sequence of solutions

(pF, qF) forms a Cauchy sequence in L;_T(RJ,_;RH) X L?_T(R+;R"Xd) and that the limiting processes (p¢, gt)
solves (6.1). Uniqueness is straightforward due to Lemma 6.1. O
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7. SECOND ADJOINT

The second adjoint equation has the following form

—dP(t) = | D.b(Xy,1)T P, + PoD b( Xy, 1)

+ ZD (X, i) VI PD,o? (Xy, )

Jj=1

d
+Z (D ol (X4, uy) Q{—’_Q{Dzo_j(xtaﬂt))

j=

=

d
dt =Y " Qlawy. (7.1)

j=1

+ D2H (Xy, U, pr, q) — re Py

For a detailed discussion of the role of this equation see e.g. [24].
We can see that the term ijl D,o9 (X, u)T PiDyo? (Xy, ) destroys the dissipative behaviour of the dy-
namics in the sense that, in general

d
<Z Doo? (Xy, )T PrDyo? (X4, iy), Pt> £ ol P23 (7.2)
2

Jj=1

Nontheless, see Remark 7.2 for one particular case. The lack of dissipativity prevents us from finding an a priori
estimate of the solution. Hence the argument we adopted to solve the first adjoint is no longer helpful. The
only information that can be useful to study the process P; comes from the first variation equation (5.2). It can
be shown that P is dual (in some sense explained later) to the process Y,F defined as V¥ = y5(yf)”. It is not
difficult to verify that Y,® is a symmetric and positive (semi)definite matrix process. By using It6 formula it can
be also shown that it is a solution to the following (matrix-valued) SDE

dYF = | D.b( Xy, 1) YE + YEDb( Xy, 1) T
d . .
+ ZDQ;O'J (Xt, ’ljt)i/tsDwO'J (Xt, ﬂt)T + F(t) dt
j=1
+ ) [Da0? (Xy,w) Y + Y7 Dypo? (X )" + A7 (1)) WY,
j=1
YOE = 07 (7 3)
where
d o o . d o o .
= Z(SO'J (Xt,ﬂt) (50"7 (Xt,l_l,t)) + ZDIU] (Xt,ﬂt)yf (50’J (Xt,ﬂt))
j=1 j=1
d . — . —
—|—Z§O’J (Xt,at)(yf)TDxaj(Xt,at)T, (74)
j=1
and
d A d o .
=3 40(t) =3 [607 (Ko w) ()" + i (607 (X)) "] (7.5)
i=1 j=1
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We also have the following

Proposition 7.1. Under Hypotheses (H1)-(H5), there exists r € R such that equation (7.3) has a unique
solution Y € L;_T(RJF;R"X") and the following holds

B[ erveiii< ke |
0 0

o0 d oo
L 2dt + KSR / o] Al 3dt, (76)
0

Jj=1
for some K > 0.

Proof. See Appendix. O

The crucial point here is that Proposition 7.1 holds true if and only if Y;® is the solution to equation (7.3), i.e.
for I and A given by (7.4) and (7.5). For general (nonsymmetric) forcing terms I" and A7 € L?_’fr(RJr;R”X”)
the corresponding process Y; can not be decomposed anymore as y;y! for some process y;. Due to this fact, it
is not possible to apply a classical duality argument (as in [22] or [24]) to extract some information for P and
the corresponding BSDE.

Remark 7.2. Note that in the case of o Lipschitz (thus D, o bounded) it is quite easy to derive the dissipativity
of P in sense of (7.2). This particular case can be treated in the same way as in the section on first adjoint
equation.

7.1. Construction of P,

Here we propose a different way to construct the process P, following ideas of Fuhrman et al. [7]. More
precisely, we will show that there exists » > 0 and a well defined matrix-valued process P such that the
following duality relation holds

o] d o
E/ ef’“t Tr [DiH(Xt,’L_Lt,pt,qt)}/;E] dt = Z]E/ ei’rt<Pt50’j (Xt,’L_Lt), 5Uj(Xt,ﬂt)>dt + 0(5). (77)
0 =1 0

Once we have this relation, it is easy to prove the stochastic maximum principle using usual arguments. The
strategy to do so will be the following.

Dual identity satisfied by P: For ¢t > 0 and an arbitrary vector v € R", let us consider the following SDE

tyy (78)

{dy?"’ = Dub(Xy, gyt ds + N0 Doo? (X, )yt dWE, s > t,
Y =7

By repeating the arguments by Yong and Zhou ([24], Chap. 3), the SDE for the product y." (yZV)T is of the
form (with the notation A; = D, b(Xy, u¢) and B} = D07 (X, 1g))

d
d (yi’” (yi’”)T) = | Ayt ()" oy (ue) " AT+ Bl (yi)" (BY) | ds
j=1

d
+ |0 Iy (i) i (i) (BT | awd. (7.9)
j=1
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Suppose for a moment that we are able to find a solution to equation (7.1) in L;_’fr (Ry;8™) x (Lilfr (Ry;8™))4
for some r > 0. Noting that (Pyyb" yt7) = Tr{ Py (y,")T} and using equation (7.9), it follows by the It6
formula that for all [¢t,T] we have P-almost surely

™" (P, ) =BT [T Py "y, )]

T
=Rk [e*TT (PTyéin,y;’"’)] +E / e " <D§H(s)y§”7,y§’7> ds, (7.10)
¢

where we have used the notation D2 H (t) := D2 H (X, Uy, pt, g¢) for the forcing term in the equation for P. Since
the processes P(-) and y.t’"(y.t"y)T are assumed to be in some appropriate exponentially-weighted spaces, there
has to be a sequence of times (7},),>1 with T,, /" +00 as n — 400 such that P-almost surely

lim B [e™ (Pr, y2", y27)] = 0. (7.11)

n—-+oo

Passing to the limit along the above sequence (T},)n>1 produces the following formal relation

(Pin,~) = B / e T (D2H (s)yl", yt) ds, (7.12)

t

which can be used to define the process P;. Our aim is to show that the right hand side of (7.12) actually defines
a continuous bilinear form that can be used to prove (7.7) without any reference to the second adjoint BSDE.

Existence of P: The following estimates on (y%"),>; are crucial to prove continuity of the bilinear form.

Proposition 7.3. Let n € R™ and assume that Hypotheses (H1)-(H4) hold. Then there is a unique solution
(yhM)s>t € L?_T(R+;R”) to equation (7.8) for some r. Moreover, there exists a constant C > 0 such that for
t>0and s>t
sup E7* [e " |yb7|*] < Oln|*, P — a.s. (7.13)
s>t

and for all h >0,0<t<t+4+hands>t+h
e_rs]E|y§+h’" - yﬁ’"\‘L < Ch. (7.14)

Proof. Let us choose r > 2¢; /5. The existence follows immediately by Theorem 5.1 and the proof of (7.13) it is
a easy consequence of Lemma 5.3 with the additional requirement r > 2max{c; /2, c3}. To prove the continuity
property (7.14) let us denote z; = yt+t™7 — 417 then, for s >t + h, we have by the It6 formula

S
e TE|z [t = e THHNE|y — yffh\él — TE/ e |z, | dr
t+h

—HE/ T2 [2 (Dab(X s t1r) 20, 21) T
t+h
d s )
+ZE/ e " (Do (X7, Ur)2r, 20) dT
o S

S

d
+ZE/ e "2 2 (Do (X7, i) 2, 27) di.
j:1 t+h

Using the same estimate of Lemma 5.3 we end up with

¢ E[yst — yi|t < KeTTUNE] — g |4, (7.15)

t+h
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which we can control in the following form

4

t+h t+h

d
Eln — yffh|4 =E Db( X, iy )yL"dr + Z/ Dyod (X, a, )yt dWw?
j=1"1

4dr.

t+h B d t+h o
< CE / |Dob(Xr, )yl Y+ / |Doo? (X, r )"
t =1t
Now, using Holder inequality and again Lemma 5.3 for the first term we obtain

t+h B t+h B 1 t+h 1
E / DX 1, )yl < (E / &Te (DK )| e (E / oo |yt )
t t t
1

1 1
< h( sup (e ""E[yL"|®) ) ’ ( sup (e "TE[|D.b(X;, 1, )|[?) ) ’
TE[t,t+h] TE[t,t+h]

< Ch. (7.16)
The D,o term can be treated in the same way and the conclusion follows. O

Proposition 7.4. Let Hypotheses (H1)—(H5) hold and v, n € R™. Then there exist r > 0 and a progressive
process (Py)i>0 with values in 8™ such that for all t > 0 it holds

(Pin,~y) = Ef‘/ e " (D2ZH (s)yl ", yb ) ds, P — a.s. (7.17)
t

Moreover, sup,s E||P||* < co and for e \, 0 we have that
E[((Pi+e — Pr)v,m)| — 0. (7.18)

Proof. For v and n € R fixed, let us define (P;7y,n) by the formula given in the statement. To do so we have
chosen an arbitrary version of the conditional expectation. To construct the process P; we have to prove that
the map (v,n) — (Pyy,n) is a continuous bilinear form. Note that

‘Eft/ e (57 (DiH(s)yﬁ’”,yﬁ’"’)ds’

t

<EF / e~ DD2 H (s) |yl ||yt ds
t

L 1

<c / i (e‘“s—m[«:ff«\DiH(s)lp)l/p (e IRy 21) (e IR 21 ds
t

) 1/p
< Clnlly] ( / e—“s-”EﬂDiH@)Pds) , (7.19)
t

where we used conditional Hélder inequality with p € (1,2),q¢ = % > 2 and estimate (7.13). r > 0 can be

chosen such that ftoo e "E7t|D2H(s)|Pds < oo. This can be seen from the definition of the Hamiltonian, the
estimates on first adjoint processes and the polynomial growth of the coefficients. Further, there exists a set IV
such that P(N) =0 and for w ¢ N,

[(Br(@)n, )] < Clnllyl.

If we set Pi(w) = 0 for w € N, by now we have constructed an adapted process P; which satisfies equation (7.17).
The symmetry of the process P is obtained easily by symmetry of D2H(s).
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To construct a progressive modification of P, it is sufficient to prove that the map (w,t) — Pi(w) is F ®
B(R4) \ B(R™*™)-measurable (i.e. it is a jointly measurable process). Here, B(R™*") stands for a Borel o-field
induced by the norm || - [|2 on R™*™. If we prove that P is an (F;)-adapted and jointly measurable process then
there is an (F;)-progressive version of P. For a recent and elegant proof of this fact see [14]. Concerning joint
measurability of P, its proof is given in [7]. In that paper, in fact, even the existence of a progressive version in
infinite dimensional setting is provided without any reference to the classical result newly proved in [14].

To show that (7.18) holds, let us write

(Prye — P)n,v) = (EF++e — E) / e " (D2H (s)yl", yh) ds

t
t+e
B [ e (DR (), ) s
t
+ BT / ¢TI ((D2H )yl =, gty — (D2H(s)yb", ylb")) ds
t+e

(o)
+ BTt / (e—r(s—t—s) —e‘r(s‘”) (DIH(s)yg",ye™) ds.
t+e

The first summand on the right hand side goes to zero in L'(2) as ¢ \, 0 thanks to the Lévy downward
martingale convergence theorem (note that we have UC filtration (F;)¢>0), the second one and the last one
tend to zero in L!(§2) by dominated convergence theorem. Regarding the third term the result easily follows by
using (7.14). Indeed we can rewrite it as follows

oo
ETt+e / efr(sft%) <D§H(s) (ygﬁm _ yi”) ’y§+e,v> ds
t+e

(oo}
+ BT / e "I DI H (s)yb "yt — ) ds = I + I (7.20)
t+e
Using Holder inequality with p € (1,2),q = p%l > 2, the first addendum I; can be estimate by
t4e > —rsF 2 p ; _rs F. t4e t,n|2 2L
L <e (e E t+E‘DmH(s)|p) (e E t+s‘ys M _ys,n| q) q
t+e

1
(e TSEF e yte|29) 2 g, (7.21)

Repeating the same estimate for the second addendum I, using Lemma 5.3 and (7.14) we get the required
result. O

Remark 7.5. If F,G are random variables in L?(§2) measurable with respect to JF; then it is true that
oo
(P,F,G) = E” / e_r(s_t)<DiH(s)y§’F, yﬁ’G>ds, P—as.
t

The proof follows by applying similar procedure as in Peng and Shi ([18], Thm. 13).

Proposition 7.6. Let (y;),~, be a solution to the first variation equation (5.2). Then there exists r > 0 such
that the following relations hold true.

(1) eir(tOJrs)E <(Pto+€ - Pto) yfo—l-ea yfo+e> = 0(€)a

(i) e " TIR(Pyys yes Yipre)

d oo
:ZIE/ o7 (607 (X, 1), 607 (X 1)) ds + ofc).
j=1 70
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Proof.

(i) From Proposition 5.4(ii) we know that there exists r such that

(e—r(to+s)E|€1/2 c ‘21@)1/2’“ <

yt0+6 k Z 17 (722)

and by the Markov inequality, for every § > 0 we have that
P (|25, o] > Co11) < erltots,

If we denote (25 . the event {5*1/2yf0+€ € Beg-1/a}, where Bgg—1/s is the centred ball with radius 6~/4, then

it holds
P(2§,) < erlotels, (7.23)

Now we rewrite (i) in the following form
eir(tOJrE)E <(Pto+6 - Pto) 571/2yt€0+5’ 571/2yt€0+5>
_ e—r(to+e)]E (<(Pto+s _ Pto) 6—1/2y;-0+67€—1/2y§0+€> 1935)
+ e—?"(to—i-e)E (<(Pto+€ - Pto) 5_1/2yt€0+67 6_1/2y1‘5€o+€> 196,5)
=: A] + A5.

The first term can be easily treated by the Holder inequality, Proposition 7.4 and estimates (7.22), (7.23),
respectively. Hence, the estimate reads

€ —r(to+e) _ 2 1/2
A7 < (e El|Pyy+e — Pyl

1/4 1/4
. (e—r(to+6)E‘€—1/2ytso+€|8) (e—r(to+s)P (Q§’€)>

< oY/, (7.24)

Regarding the second term, we have that

|A§| < eir(tDJrs)]E sSup | <(Pto+€ - Pto) xax> 196,5 |‘| '

IEB05—1/4

Since Bgg-1/4 is compact, there exist Ns open balls B, s which cover it. Moreover, for all © € Bss5-1/4 we can
choose i such that | — a;| < 4. Then

(Pro+e — Pog) o x) = (Prote — Poo) Tis i) — (Prote — Poo) (2 — 1), (2 — 23))
+2((Prore — Pry) z, (x — 24))
= ((Prgte = Pro) @i, 1) + | Priotre — Pro llocd?
+ 2[|Prote — P lloo] (6, (7.25)

where, for a generic matrix T' € R™*", we have used ||T'||o := sup{|(Tz,y)| : x,y € R™, |z| <1, |y| < 1}. Taking
supremum and expectation we obtain

N5
451 < D BN(Pryee — Pro) )| +C (8% +6%4). (7.26)

i=1
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If we let € — 0 and use (7.18) it follows that
lim sup|A5| < C (52 + 53/4) :
e—0

hence |A5| 4+ |A5| — 0, when ¢ — 0 and the proof of (i) is finished.

(i) Let us rewrite e "R (P, ye | yf ) in the following form

. T

Thanks to the It6 formula and equation (7.3), we obtain

d (eirsifss) =e [_TYE + Dxb()_(sa as)Yss + YegDﬂfb(XS7 aS)T

+ZD o7 (X, 1)V Daord (X ,)" + T(s) | ds
+ Z e " [Dwaj (Xs, us)Ys + YSEDxO'j (Xsa as)T + Aj(s)} dWsj’ (7.27)
j=1

where we have used the notation Y¢ = y5 (y2)" and I'(s), A7 (s) are as in (7.4), (7.5). Now, by taking conditional
expectation with respect to F;, and rewriting the equation in integral form from ¢y to s (recall Rem. 5.2) it
follows that

E]—'to (efrsy;s) _ ]E]:to / e 7T |:—TY.,_€ + Dxb(XT’ ’L_LT)Y.,_E —+ YTEDzb(XT, ’L_LT)T:| dr

to

d s
+3 EFo / [Dzaj (Xr 7)Y Dyo? (X7, 00,) " + F(T)} dr.

to

Hence, taking into account the definition of I' in (7.4), multiplying by P,,, setting s = ¢y + ¢ and taking
expectation, we arrive at

e~ (ot R <pt0 ytsﬁg’ yt50+5>

to+e
_ / TR [T Py (—1YE + Dub(Xr. )Y + YEDLH(K,0,)7) )] dr

to+e
e R [T {Pyy (Dao? (Xr,0,)YE D, (X, 0,)T) Y] dr

o e "E TT {Pto (50 (Xr,iir) (5Uj(XT»aT))T) }] ar
o~ "TE Tr {Pto (D ol (X7, 1, )ys (607 (XT’“T))T) H dr

to+e
e ""E TI" {Pto (60 (XT, UT)(yf—)TDij (XT’ aT)T) }] dr.

Y
Y
S
DY)
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We will show that using the estimate for y¢ in the form of (7.22), the only term which is not of order o(¢) is
the third one. Therefore, the final equality will read

to+e o o
e T FIR (P e v ) = ZE / e (Pydod (Xp,0r), 007 (X, ir) YT+ 0(2). (7.28)
For sake of completeness, let us estimate one of the terms.

to+e
> / TR [T { Py, (Dao? (X, 5r) VDo) (X, 3,)7) )] dr

tot+e o o
= Z / e ""E <Pt0 Do’ (X;,0r)ys, Dyo? (X;, ﬂT)yi> dr

IA

to+e R
/ e R [|| Py |2 Dao? (X, ) Plyz )] dr
to

IN

to+e
3 BRI R (TP () R ()

d
d
and the order of o(e) now follows by Proposition 7.4, the polynomial growth of D,o(:) and estimate (7.22),

respectively. The remaining terms can be treated in the similar way.
To finalize the proof of (7.28), it remains to be shown that

Zn«:/tw e (P = Poy) 60 (X 8,), 607 (X ) YT = ofc). (7.29)

But this is easily obtained by repeating the same arguments as in the proof of (i). The proof of the Proposition
is now concluded. O

8. NECESSARY STOCHASTIC MAXIMUM PRINCIPLE

For our main result we need to recall the notion of the Hamiltonian of the system. Given the control prob-
lem (2.2)—(2.3), let us define H : R® x U x R" x R"*¢ — R as

H(xz,u,p,q) = (p,b(x,u)) + Tr [qTU(ac,u)] — f(z,u). (8.1)

Theorem 8.1. Assume (H1)—(H5) hold and let (X,u) be an optimal pair. Then there exists a pair (p,q) €
L;_T(RJF;R”) X L;_T(RJ,_;RnXd) and a progressively measurable process (Py)i>o with values in 8™ such that
the following variational inequality holds, dP ® dt—a.e.

d
_ _ 1 R -
H(Xt,0,pe,q1) — H(Xy, U, e, qe) + 3 > <Pt (07 (X1, 0) — 07 (X, ) , 07 (X, v) — O-J(Xtvat)> <0,
J=1

for every v € U. The pair of processes (p,q) is the unique solution to the first adjoint equation (6.1). The
definition of the process Py is given in Proposition 7.4 and the process satisfies sup;s E||P;||3 < co. Here, the
discount factor r can be chosen such that all the previous Theorems hold.

Remark 8.2. Such discount factor r can be always found, i.e. by taking the maximal r so that all the preceding
results hold.
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Before proving the theorem it is useful to rewrite the variation of cost functional in a suitable form, as the

following proposition suggests.

Proposition 8.3. The following expansion holds

0o d
J(w () = J (u() = /O = gl 607 (X)) — (pe, 6b(X, W) + 6f (Xp, ) | dt
Jj=1

1
— §E/ e "' Tr [D2H(Xtautapt>(h)yt (v;) ] dt + o(e),
0

where H(Xy, s, pi, q) is the Hamiltonian of the system computed along the optimal trajectory.
Proof. See Appendix.

Now we are in position to end the proof of the SMP.

Proof of Theorem 8.1. The difficult step of the proof is to show that the following holds

[ee) d o0
]E/ ™" (D2H (s)yS, yS) ds = Z]E/ e (Pl (X, 3,), 007 (X, ) )ds + ofe).
0 = Jo

Indeed, if relation (7.7) holds true then by using Proposition 8.3 we get

0<J(w () = J(al)

s d
:]E/ o | =3, 607 (X, 1)) — (pes 0B( X, @) + 0 (X s) | di
0 =

d 00
- % ZE/ e*”<Ps<saﬂ‘(Xs,as),5aﬂ‘ (Xs,as)>ds +o(e),
j=1 70

(8.3)

(8.4)

thanks to the optimality of @(-). Now the final variational inequality follows by standard arguments, i.e. by

using the definition of o7, 6b, 6 f, noting that E. = [to,to + €] and by sending ¢ \, 0.

Let us focus on the proof of (7.7). Recalling Remark 5.2, we can rewrite the left hand side of (7.7) in the

following form

o0
E / o7 (D2H (s)y5, o) ds
0

to+e
—E / " (D2H(s)ye, yf) ds + E / o7 (D2 H (s)y5, o) ds

to to+e

e toteys, . toteys L.
=B [ e (D2 s o),
to+e

to+e

where we have used Proposition 5.4 to estimate the first integral and the identity y = ys ’ytf’“, for s > tg+e.

Taking into account Remark 7.5, we finally deduce the following decomposition
oo
E/ e " (DR H (s)ys, y5) ds = e TR (P yoyp Lot e) + 0(e)
0

= e_r(t0+E)E< (Pto+€ - Pto) yfoJrE’ y§0+6>

+e r(tote) ]E<Ptoyto+s’yto+e> +0( )
Finally, by Proposition 7.6, the proof of the Theorem is now concluded.
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APPENDIX A.
A.1. Proof of Proposition 5.4

Proof. In the following we are going to linearize the equations satisfied by £°(-),n°(-) and ¢°(-) in order to use
the estimate obtained in Lemma 5.3.

(i) It is easy to see that the equation for £%() can be rewritten in the form

d
dg§ = [Gy(t)& + Sbyxe. (1)]dt + > [GL(1)&F + dof X, (£)] W7,
j=1

where

1 1
Go(t) = / Dub(X, + 065, u5)d0, U () = / Do’ (X, + 065, u)do.
0 0

Thanks to Hypothesis (H4) we can apply Lemma 5.3 and obtain (the constant K > 0 varies from line to line)

oo R L 2k
sup e~ ME|gE P < K| / e~ (Bldboxs, (1)) * ai]
0

teR,
n sz: [/OOO et (]E|6UfXE€ (t)|2’“>% dt] ’

X 5 1 92k
< K{/ ezt (]E|b(Xt,u§) — b(Xt,ﬂt)|2k) % dt}
E

a L
+EY [/ e Tt (IE|ag' (X ul) — ol (X, at)Fk) ' dt] *
j=1

= €

< K[e?* + &%) < KeF, (A1)

thanks to the polynomial growth of the coeflicients and the boundedness of the integration interval E.. Indeed,
remember that it is easy to control all the moments of X up to a fixed time. In this case the discount factor p;
can be chosen equal to the initial one p; = 7.

(ii) Using again the global monotonicity assumption and Lemma 5.3, the estimate for y° follows in the same
way.

111 FOT z- we Starl by eSllmallng llS norm in l}le Space L/n_-k R+, R’I’L 5 fOI a geIleIlC [ RS R. USlIlg lhe same
teChIllque as 1 LeIIlIIla 5.37 we ()btalll

o o 1 _ ﬁ 2k
sup o B < K[ [ e (Ewbtm(m5Dib<xt,at><yf>2|2’f) dt]
0

teER4

1

d 1
o0 . 1 o % k
+K§j[/ o (Elé(Dwi)xEE(t)yf +—D§oJ<Xt,ut><y§>“’€) ar) .
j=1 0 2
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The first term (with 6b;) can be treated as before, thanks to the boundedness of E.. Let us discuss the second
one. It holds

w"“

/ e~ T (BID2B(Xy ) (5)?2) T dt
0

1 1
7TaktE‘D2 (Xtaut)| k) ik ( 7Takt]E|yt€|8k) & qt

\

1

F S o _ L
< <Superakt]E|yt€|8k> / e~ at (]E|Dib(Xt,ﬂt)‘4k) ik qt
t>0 0

1
ik [0 1
S K (supe—rakt]E|y§|8k> / (]E|1 + ‘X |2m+1‘4k) ik dt
0

>0
o] L
o [T et (gl e ) ¥ dt]
0

i oo
K <sup erakt]E|y§|8k> |:/
>0 0
1 1
% o o %
<K (supe_m’“t]E|yf|8k> [/ e~ 4 tdt + (/ e_Tt]E|Xt4k(2m+1)dt> ] ,
>0 0 0

where we used the polynomial growth of D2b and Jensen inequality, assuming that fooo e~ “i'tdt < oo, hence
ra. > 0. Moreover, if we choose o > max (4, 8k(2m + 1)) = 8k(2m + 1), we have that

IN

o] _ L
| e DR ) ) F a < ke, (A2
0

where K = K(r,k,m) depends on the choice of the initial discount factor, the order of integration and the

polynomial growth of the coefficients of the state. Let us briefly sketch also the computations for the last
addendum

/Ooo e—rat (E‘D2 (Xt ut)( )2|2k)% dt

1
2E [0 ra . 1
< (swpermyi )T [T e 10k (K n) ) F ar
t>0 0
1

2k 0 L
S K <Superakt]E|yt€|8k> / (]E|]. + ‘X |m|4k) 2k
0

t>0

If a > 4km, following the same strategy as above we end up with
oo
/ e " (E|DZo7 (Xy, ) (y5)? ) * Fdt < Ke2. (A.3)
0

Summing up all the estimates and using Lemma 5.3, we easily get the required result, for some p3 big enough.
In this case it is sufficient to choose ps > ar > 8k(2m + 1)r.

(iv) Following Yong and Zhou [24], it is easy to see that

d
A = [Dub(Xs, o) + AS] dt+Z{ 207 (X, )15 + BZ"E} awy,
Jj=1
where
AS = Sbyxp. (1) + [Gy(t) — Dub( Xy, u0)] €5

B}* = (Gi(t) — Dio(X,, at>) &
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Let us consider A¢(-) first.

o] 1 1
/ e TH(EIAf M) T At < K " (Eldbexe. (£)[*F)F dt
0
1
+K/ T (B [Go() — Dab(Kew))] € [*) T at
ﬁ oo 1
< et (sper i) " [T e EIG0- DKL w1 ) ¥
t>0 0

L
ik

< Ke 1 Kel/? / ¢~ (E|Gy(t) — Dub(Xy @) *) ™ dt,
0

due to the previous result with a > 2, and Ho6 inequality. Regarding the last term we have
1
Gp(t) — Db(Xy, 1)) = / [Dxb(Xt + 0, uf) — Dzb(Xt,ﬂt))]dH
0
1
_ / [D.b(X, + 065 uf) — Dob(X, + 065, ;)] A0
0

1
4 / [Db(X, + 065, 1) — Dub(Xo, )] do.
0
Hence, using the Taylor expansion with Lagrange rest, there exists Z (depending on ¢ and w) such that

/ e~ T G(t) — Dub(Xe, )| par oyt
0

1

Ak
g/ o ( /DbXt—H%t,ut) D.b(X: + 665, ) da‘ ) at
E.

1

+/ ( /D2 )0 (t de‘ )Edt

1
8k oo EN
< Ke+ (Sup em’“]E|§fSk> / o™ %1 (E|D2b(Z, ) [*F) *F dt
0

>0
< K(e+€'?),

thanks to the estimate obtained in point (i) and the polynomial growth of D2?b (here we have to require
a > 32k(2m + 1)). Then

o o 1 © o ;
/ e T (E|Af|PF)* dt < K5+K51/2/ e T (E|Gy(t) — Dub( Xy, ue)| ™) *
0 0
< Ke.

For Bg ©, proceeding in a similar way we obtain
o . oo L
/ o7 (E|GI (1) — Do’ (Ko, a)| ™) dt < Ke.
0

To conclude, we apply Lemma 5.3 to get

[e’s) n 2k d Jo%e) )
sup efraktEmtst <K </ ef%t (]E|A§‘2k) 2k dt) + KZ </ oot (]E|Bi’€
0 . 0
Jj=1

teER4

=

) dt>k

<K (e% —l—e%) = 0(e?").
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In this case ps can be chosen as py > ra > 32k(2m + 1)r.

(v) Let us denote d¢=(t) = d(n°(t) — &(¢)),

AGF = (Dab(Xe, )i + A7) At + 2y (Daor? (K, ui)GE + BY) Wy,

¢(0)=0
where
A5 1= 6Dabixi, (06 + 5 [Golt) — DI, )] (67
+ 50D, ((E) + 5 D2b(Xe u) () — (w57,
B = 6D,00xp. (0 + %[G‘ (t) — D2o(Xy,u5)] (&)
+§5Diam<><st> L D20 (K, un) (6 — (47)2),
and

Gy(t) =2 [y OD2b(0X, + (1 — 0) X7, uf)do,
ég t):=2 [y 0D20(0X; + (1 — 0) X, uf)do.
First, let us consider the A°(-) term. Applying the Holder inequality gives

/oO —ray (]E|Ae|2k)%
/ [(E16D.boxe. (06:)* + 5 (BI[Gu(0) — DX (). 05))(6)*) ™

L
2

(BISDZbyxe. (0(E) )™ + 5 (EID3B(Keu (67 — (7 IP) ™ a

1
2
1
4k L
<K (SuperaktEft€|4k> / (IEMD bt|4k) ik
K

t>0

oo ~ 1
B (supe-m’ftEsﬂS’f) | (BiG0) - D2 ) )
0

t>0

w"“

+ K (supe raktE£s|8k>
t>0

/ £ (B|6D2 |41c)%c

=

= oo
+ K (sup e—raktEnﬂSk) (bupe rakt]E|£t + yt 8k> /
0

t>0

(E\D b( Xy, up)[*F) *F dt.

If o > 4 the first and the third term con be easily controlled. For the last addendum we use the same technique
as in (iii) to get the boundedness of the integral for o > 8k(2m + 1), hence

oo 1 oo . _
/ e~ (EJAS|%) T dt < K {63/2 +e/ o~ H (]E|Gb( )~ D b(Xt,ut)\‘““) dt + &2 +e3/2]
0 0
Finally, we can rewrite E|Gy(t) — D2b(t, Z(t), us(t))]** in the following form

Gi(t) — D2b(Xyul) = 2 / OD2b(0X, + (1 — 0)XE,u5)d0 — D2b(X,, )
0

1
= 2/ 9[1)55(9)@ + (1 —0)XE,uf) — D2b(Xy,us)|db. (A.4)
0
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If o > 8Kk(2m + 1), by the continuity of the map = + D2b(x,u) and dominated convergence theorem it follows
that

1

=] 1 ik
/ et (/ 9[D§b(9)‘(t +(1-0)X:,uf) — Dib()_(t,uf)}dH) dt — 0,
0 0
as € — 0. Then
0o o s )
/ e” 2 (BJAS 1K) 2R dt < K[e2 + &% +%2] + o(e) = oe).
0
For B¢(t) we proceed in the same way to obtain
> rt . 1
/ e 2k (]E|BJ’5(t)\2k) Fdt = o(g?).
0
Using Lemma 5.3, the desired result follows for ps > ra > 8k(2m + 1)r. O

A.2. Proof of Proposition 7.1

Proof. Since Y = yi (y5)T, the existence and uniqueness of a solution follow from the existence and uniqueness
of the process 3° (see Thm. 5.1), with the restriction r > 2¢; /5.

Let us now denote A; := D,b(Xy, @), BZ := D,09(Xy, 1) and note that a symmetric (positive) definite
matrix Y,° can be decomposed as Y7 = Z?zl %cicZT, where ; > 0 for all ¢ and (¢;); is an orthonormal basis
of R". Clearly, each ~; and ¢; depend both on ¢ and € but we omit this notation in the proof.

Having in mind the above, one arrives at

(YY) = Te A ()"} = Z% Tr { AseicTescT} = vaTr{cZ T AgescT)
= zn:ﬁ (Aiciy i) Tr {CiCiT} = Z%Q (Aicis i),
— :
<mwwwm%=ﬂEMwmo”} Zﬁﬂ@m<wn>T}
—Z% Tee) < Z\ T (viei) el
= Z;\(Bf)T(%'Ci)\z = ;%‘z\(Bf)TCi\z,
and

|BIvEI3 = T { Blve (v (B)T} = Zﬁﬂ&%wQ<W>}

i=1

= Z% { L (B])"'Blcic] } = En:%z ((B])" Ble, i)

i=1
= Z’yzﬂBiCiFv
i=1
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where we have used the basic properties of the Trace. Using these estimates we are able to prove the following
dissipativity condition
d d
(AYE + YA YE) + ) (BIYE(BDT.YE) + ) _IIBIYS + YB3
Jj=1 Jj=1
n

n d
SQZ%Q (Arei, i) —1—227 |(BY) cz|2—|—222%\3 cil?
i=1

j=1i=1 Jj=11i=1

> IBleil?

Jj=1

Do | o
B9

—22% (Arciy i) +

< 2c3/9 Zﬁ\@\z = 2¢3,5||YI3.
i=1

Now, applying the It6 formula to e~"!||Y,f||3 we obtain, for every 7' > 0 and § > 0

T

T d
B e VEIE] 0B [ e vl =28 [ e N A +vEAT) + 3 (VBB | at
0 0
Jj=1

T d T
+2]E/ e "t <Yf,n>dt+Z1E/ e " B]YF + YEB] + Al||3dt
0 - 0
7j=1
T T
<2eqB [ e YE e+ 0B [ oY e
0 0

T d T .
e / e 2de+ / e A 2dt.
0 = Jo
Hence
T
(r — 255 — O)E / eV e < <E / *”||n||2dt+§j / oA 2dt,
0

and the estimate follows for r > 2c3/, by sending T — —|—oo. The final estimate holds for
7 > 2max{cy/2,C3/2} O

A.3. Proof of Proposition 8.3

Tt

Proof. If we compute the Itd differential of the processes e~ (yf, p;), where p; is the solution to the finite

horizon equation (6.3), we obtain

d
Ao (i p) ) = (e ) pi) + e (g dpi) + S ad, Do (X0, @)y + 807 (i, ) dt
j=1

[ —re " (yf pe) + e (Dab( Xy, te)ys, pe) — e (5, Dab(Xe, ) T yf)
d —
Ze yt ) D g (Xtaut) qj> + e—T‘t <y;§€7 sz(Xta’L_Lt)> + Te_rt <y§7pt>
Jj=1

d
—|—Z QtaDwa Xt,ut)yt +50’ (Xt,ut)> dt+Mtth,

Jj=1
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where the stochastic term is a local martingale with zero mean value (which can be proved by standard local-
ization argument). Hence, by taking expectation we have for all T' > 0

T
e*’“TlE<y%,pT>—IE/ e " ys, Dy f( Xy, ) Z]E/ e " gl 007 (Xy, ) dt,
0

thanks to the fact that y§ = 0. Since (p¢)i>0 € L?_l_r(R_s_;R") then there exists a sequence of times (77,),>1
with T,, /" 400 as n — 400 such that along this sequence E [efrT"an] — 0. Hence, for all n € N we have that

n

T’L . —
E ey, . p1,) — ]E/ e " (yi, Do f (Xy, 0r)) Z]E/ e " (q], 607 (X, wy)) dt.
0

Thanks to the growth assumptions on o, f and to the regularity of y§ and ¢;, we can send T, to infinity to end
with

E / o (yE, Do f(Xy, 0)) dt = ZIE / o (gl 607 (X, 1)) dt. (A5)
0
Repeating the same argument for e ™" (25, p;) we get

Ao e, pi) ) = {d(e2),p) + e (e dp)

d
+ (], D20 (Xy,11r) 25 + 007 (Xo, tiy)ys + DQUJ(yt) ) dt

j=1
=|—re t<ztapt> <D b(Xt,Ut)Zt,PQ <5b(Xt>Ut) Dt)
1 _ _
+ 5677% (D2b( X1, 1) (y5)? pe) — 7" (25, Dab( Xy, )T y5)

e " (2, Do’ (Xy, ) ql) + 7" (2, Do f(Xe, )

|
o,
i M&
I

d
+re” " (2, pr) +Z (g, Do’ (Xy, t0y) )
j=1

d
+ ) {a], 607 (Xo, i )ys + 2D203(yt) ) [dt + NedWy,

j=1

where the stochastic term is a local martingale with zero mean value (which can be proved by same argument
as before). Hence, taking expectation we obtain for all ' > 0

T T

_ _ 1 _

—]Ei/ ot (zf,Dxf(Xt,at»dt:IE/ e (FD(Xy ) + 5 D2b(Xe, 1) () )
0 0

d T
%Z / "(D3o? (X ) (y7)?, ae) At + o(e).
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The term o(e) comes from the following estimate
0 _ .
B e 6D.00 (5 i ) e < OB [ e+ )
0
o = 12 (o ety g2 2
<o [ @l xR (BeiaR)

C\1/2
< C sup (Eethny\AL)lM/ (Ee*”|q§|2> d¢

teE. e

A 1/2
< Ce (/ ]Ee_rtqudt) ,
E.

and the last integral goes to zero as £ goes to zero, since ]Efooo e_”\qf\zdt < 00. Applying the same strategy
as before we can choose a sequence (T,),>1 with T, / 400 as n — 400 such that along this sequence
E [ “Tapy. ] — 0. This way we end up with

oo _ o0 _ 1 _
—]Ei/ et <z§,Dxf(Xt,at)>dt:IE/ et <5b(Xt,at)+§D§b(Xt,at)(y§)2,pt>dt
0 0
1 3 - e " (D207 (X dt A6
t3 E o’ (X, ue) (y5)?, qr) At + o(e). (A.6)

If we substitute relations (A.5) and (A.6) into equation (5.8), we obtain

00 d
J(UE()) — J(a()) = / Z qt,50' Xt,ut)> — <pt,5b(Xt,ﬂt)> + (Sf(Xt,ﬂt) dt

d
+ ]E =Y (Dio? (KXo w0)(45)%, ar) — (D3b(Xe, we) (45), pe)

Jj=1

+ (D2 (X, Te)ye, ye) |t + o(e),

and recalling the definition of the Hamiltonian H(z, u, p,q) = (p,b(z,u)) + Tr [¢To(z,u)] — f(z,u) we have the
desired result. 0

A.4. Conditions on the discount factor r

Here we summarize some restrictions on the discount factor used throughout the computations in the paper.
For the purposes of the SMP it is not necessary to find precise values of the discount factor, in general r has to
be positive and big enough. Nevertheless, it can be useful to exhibit some sufficient conditions.

Starting from the well posedness of the state equation, we have to require r > 2¢;/, in order to find a
unique solution in the space L?_l_r(].&_; R"™). Regarding the first variation equation we have no other restriction.
On the contrary, to assure that D2b(Xy, u:)(y5)?, D207 (X, 1) (y5)? € L?_T(R+;R") in the equation for 2°,
a sufficient condition is r > 2max{0, ¢ /2, Ca(2m+1)—1, C2m—1, €3}, Where c3 comes from estimate (4.1) applied
to the process y°. Further restrictions come from the proof of Proposition 5.4. Here it follows that one can
choose p1, p2 > 2¢1/2; p3, ps > 8k(2m + 1)r with additional restrictions 7 > 2 max{cop(2m+1)—1, C8k—1, C2km—1}
and pg > 32k(2m + 1)r for r > 2 max{csp(2m+1)—1, Cakm—1}. These conditions are derived from the polynomial
growth assumptions and from the use of the Holder inequality.
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The choice of the discount factor r for the first adjoint equation (see Thm. 6.4) depends on the a priori
estimate given by Lemma 6.1 as well as the integrability of the forcing term D, f(X, %¢). Therefore, due to the
polynomial growth, it is easy to see that it is sufficient to consider r > 2max{0, ¢ /2, ¢;—1}.

For the existence and uniqueness of (y%"), we choose r > 2¢; 2. Regarding the estimates (7.13) and (7.14),
it is sufficient to choose r > 2max{c; s, c3}. Now, for the existence of the process P, it is sufficient to take
r > 2max{0, ¢, C3(2m+1)—1, C3m—1, 311} (for p = %,q = 3 in (7.19)). Regarding Proposition 7.6, we have to
add some restrictions originating from Lemma 5.3 throughout the proof. More precisely, it is sufficient to require
r > 2max{cr, cam—1,C3}.

To conclude, the statement of the SMP holds true if the discount factor is chosen in a way such that
all the previous results can be applied. Hence, it is sufficient to choose k¥ = 1 and r such that: r >

2max{0, c1/2, 3,5, C7,C1—1, C31—1, C2m—15 C3m—15 C4m—1C2(2m+1)— 15 C3(2m+1)—1» C4(2m+1)—1 -
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