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PRIORITY QUEUE WITH BATCH ARRIVAL, BALKING, THRESHOLD
RECOVERY, UNRELIABLE SERVER AND OPTIMAL SERVICE

Madhu Jain
1

Abstract. The threshold policy for the restoration of an unreliable server in a service system with bulk
input and balking is investigated. The arriving customers in the queueing system are classified into two
categories i.e. priority and ordinary customers. The priority customers are assumed to join the system
in groups according to Poisson process. The ordinary customers join the system singly and require
the essential service as well as optional service on demand and only a limited number of customers
can wait in the queue when the server is busy. The service times of both types of customers and life
time as well as repair time of the server are governed by the exponential distribution. When the server
fails during the service of the ordinary customer, the repair is done following a threshold recovery rule
according to which the repair of the failed server is started only when at least q ordinary customers
are accumulated in the system. In case of failure while rendering the service to the priority customers,
the server is immediately sent for the repair. The matrix geometric method (MGM) has been used to
establish the queue size distribution and other performance indices. To validate the suggested MGM
approach, numerical simulation is carried out by taking an illustration.
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1. Introduction

In many congestion situations, a preferential treatment in rendering service is given to some individual
priority class customers. Such priority based service rule can be realized in many real world queueing problems
including the communication congestion scenarios. The priority mechanism is an invaluable scheduling policy
to serve the customers based on pre-specified rule and has been analyzed by many researchers working in the
area of queueing theory. According to the priority rule, the customers of different classes are allowed to receive
different quality of service and are studied in two broad categories (i) preemptive priority and (ii) non-preemptive
priority. In preemptive priority queue, the service of a lower priority customer is interrupted on the arrival of
high priority customer. According to non-preemptive priority rule, if a high priority customer joins the system,
it is served after the completion of ongoing service in case when the server is already busy in servicing a lower
priority customer. In the present investigation, we study a single server queueing system with two-classes of
customers; the class one (i.e. priority) customers have preemptive priority over the class two (i.e. ordinary
priority) customers.
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In recent past, important contributions on preemptive priority queue are due to Avi-Itzhak and Naor [1],
Chang [3], Miller [25], and many others. A two-class single server queueing system with state dependent ar-
rivals and preemptive priority discipline was considered by Bitran and Caldentey [2]. The queueing analysis
of priority queue with two-classes and with K-classes of jobs was presented by Groenevelt et al. [11] and
Derbala [5], respectively. Drekic and Woolford [8] analyzed a two-class single server preemptive priority queue-
ing model with balking for low priority customers. Kamoun [21] analyzed a non-preemptive priority queue-
ing system with correlated Markovian interruptions. Mokaddis et al. [26] studied a queueing system with
single vacation and three classes of customers. Both preemptive (resume and repeated) and non-preemptive
priority queueing models were discussed by Walraevens et al. [34]. Papier et al. [29] suggested an emerging
method to improve the profit and to better serve high priority customers in a queueing system where the
customers can choose between classic and premium services and premium service is priced above the classic
service.

In queueing literature, several research articles can be found in which Markov queueing system with unreliable
server has been studied but a little attention has been paid towards the analysis of priority queues with unreliable
server. The early work on unreliable server with two priority classes was done by White and Christie [35]. They
have used the method of generating function to establish the steady state distribution. Liu et al. [23] suggested
the optimal N-policy for the unreliable server M/G/1 retrial queue with preemptive resume, vacation and
feedback. Jain [14] provided the transient analysis of unreliable server priority queueing model for the machining
systems supported by standbys. Numerical simulation was carried out to facilitate the transient performance
indices by using Runge−Kutta method. Vadivu et al. [32] and Vinayak et al. [33] investigated the multi-server
priority queue with retrial attempts and unreliable server.

In literature on the queueing modeling of unreliable server queues as cited above, the concept of the immediate
repair of the failed server is taken in account. However, if there are a very few customers in the system, the
concept of urgent repair is not much viable due to economic reason. To tackle such situation of the unreliable
server queueing system, the repair process can be delayed according to the threshold recovery policy in which the
repair can be started only when a minimum number of customers say q(<1) or more are present in the system.
The concept of threshold recovery policy was first time introduced by Efrosini and Semenova [9] to analyze
the M/M/1 retrial queueing system with constant retrial rate and un-reliable server. They have proposed that
the repair of the failed server can only be started when the queue length is build up upto a certain level,
i.e. only when q ≥ 1 or more customers are accumulated in the system. Efrosini and Winkler [10] provided
the performance results for M/M/1 retrial queueing system with constant retrial rate, un-reliable server and
threshold recovery policy. Purohit et al. [30] analyzed the threshold recovery policy for the finite queue with
state dependent arrival rates. Jain and Bhagat [16] studied the threshold recovery policy for the finite capacity
and finite population retrial queueing models by incorporating some realistic features namely geometric arrivals,
second optional service, and impatient customers. They also facilitated the cost analysis to determine the optimal
cost of the system. By considering the threshold recovery policy, Yang et al. [37] developed a time-dependent
machine repair model with server vacations. More recently, Jain and Bhagat [18] presented a double orbit model
to study the threshold recovery policy for the unreliable server retrial queue with priority.

There is vast literature on the bulk input queueing models in different frameworks [4]. The batch arrival
priority queueing systems have drawn the attention of a few researchers [13,22]. Metwally and Zaki [24] studied
priority queueing system with bulk arrivals and operating under N-policy and single vacation. A batch input
Markovian priority queueing system with phase service was considered by Zhao et al. [38]. Jain and Bhargava [19]
examined an unreliable server bulk arrival queue having two classes of non-preemptive priority subscribers
and established various performance indices in closed form by using the supplementary variable approach.
Thillaigovindan and Kalyanaraman [31] studied a queueing system in which the customers of type 1 arrive in
batches and the customers of type 2 arrive singly according to Poisson processes. Dimitriou [6, 7] investigated
the concept of priority rule in the retrial queue with negative arrivals and service interruption due to server
breakdown by considering some more noble features namely multiple vacations and state dependent arrivals,
respectively.
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For the analysis of queueing models, matrix geometric method (MGM) has been used to analyze Markov
processes which have a particular (lower or upper) Hassenberg structure [27]. This method can be applied to
the specific type of queueing problems whose coefficient matrix can be decomposed into two parts, the initial
portion and the repetitive portion. Matrix geometric approach was first employed to study the priority queues
by Halfin and Segal [12]. Jain and Agrawal [15] studied the MX/M/1 queueing system with multiple types
of breakdowns by applying matrix geometric approach. Further, Jain and Jain [20] investigated an unreliable
server queue with working vacation by using the matrix geometric method. The matrix geometric approach
to analyze a finite capacity queue with two phase service was used by Padma et al. [28]. Xu and Wang [36]
developed the fluid model for the M/M/c queue with working vacation and vacation interruption and obtained
probability distribution by considering the matrix geometric structure of the Laplace transform of stationary
buffer contents.

There are plenty of applications of queueing model with priority for example ordinary and emergency pa-
tients at hospitals, executive and economy classes of customers for air ticket reservation, priority and ordinary
customers at call centers, etc. In the present investigation we analyze priority queueing model by incorporating
many realistic features namely (i) unreliable server (ii) threshold recovery (iii) optional service (iv) balking (v)
batch input (vi) state dependent rates, etc. The motivation of present work lies in its potential applicability
in cellular radio network operating under new call bounding scheme to deal with two type of traffic i.e. new
and handoff calls. In cellular architecture of wireless communication system, the geographical area is divided
into microcells; each microcell has one base station (BS) which transmits the (i) new calls which are originated
one by one according to Poisson process in that particular cell and (ii) handover calls which enter in group
according to Poisson process in the target cell from the neighboring cell due to mobility of the users. Once the
connection of the users is established, it should be continued till completion of the calls thereby handover calls
are the priority class traffic and has preemptive priority over the new calls. Also to give priority to handover
calls, only a limited number of new calls (say N) are allowed in the buffer whereas there is no limitation of
the handover calls in the system. More specifically in the context of fast moving users, the admission of new
calls in a cell is considered as single arrival but ‘group mobility’ of the users which is commonly noticed due to
movement of mobile users in vehicle e.g. in taxi, bus or train, the handover calls which are the priority calls,
arrive according to the bulk arrival process. The service channel is subject to breakdown while providing the
service of new as well as handover calls. In case of failure of connection due to channel breakdown while rending
service to new calls, it is repaired only if a sufficient (say q) number of new calls are accumulated; however in
case of service of handover calls, it is immediately repaired in order to reestablish the connection of ongoing
call. While channel is busy, the new calls may be discouraged and balk with some probability instead of joining
the queue. When there are many handover calls in the waiting lines, the server (i.e. channel) may switch over
to faster rate to reduce the dropping probability of the handoffs as handover calls are delay sensitive; this can
be done by splitting the existing channel into two channels which is known as sub-rating scheme or allocating
more bandwidth to the channel after a certain threshold load.

The rest of the paper is structured as follows. The model description by stating the requisite assumptions and
notations is given in Section 2. Section 3 provides the steady state equations and mathematical analysis to obtain
the queue size distribution by using matrix geometric approach. The performance measures are established in
terms of probabilities in Section 4. By taking numerical illustrations, the sensitivity analysis is presented in
Section 5. Finally the silent features and further extension of the model developed are outlined in Section 6.

2. Model description

Consider MX/M/1 priority queueing model with server breakdown, balking and optional service. Two types
of customers namely priority and non-priority (i.e. ordinary) customers arrive to seek service by an unreliable
server. The capacity of ordinary customers is finite (N) whereas there is no restriction on the capacity of the
priority customers.
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(i) Input process: The priority customers arrive according to Poisson fashion in batches of maximum size ‘B’.
The probability mass function of batch size X is Ck = Pr(X = k). Let Λ(Λ′) be the mean arrival rate for the
priority customers when the server is busy (broken down). The ordinary priority customers arrive singly in
Poisson fashion with state dependent rate λl. The ordinary customer may balk from the system depending upon
the number of customers present in the system. In case when the server is busy in rendering the optional ser-
vice, the customers join the system with rate λ. The effective arrival rate of the non-priority customers is given by

λl,m =

{
λlbm, 0 ≤ m ≤ N

0, m > N.

(ii) Service pattern: The service time of the priority customer is exponentially distributed with rate μh. If
there is no customer of priority class, the server renders essential service to the ordinary customers according to
exponential distribution. After completing the essential service with probability p, the server may also provide
second phase service with probability p if the ordinary customer demands for it. The time of optional phase
service is exponentially distributed with rate μ0. The service rate of essential service of the ordinary customer
depends upon of the number of ordinary customers present in the system. To cope up with the high load of
ordinary customers when the number of the ordinary customers reaches a threshold level K, the server moves
to faster service rate. The service rate of ordinary customers is given by

μl,m =

{
μl, 0 ≤ m ≤ K

μl′ , K < m ≤ N.

(iii) Server breakdown and repair: The server is unreliable and is subject to breakdown. The life time and
repair time of the server are exponentially distributed. The server may breakdown while rendering service to the
priority customers by rate α and is repaired with rate β. The server may also fail with rate α1 while rendering
the essential service to the non-priority customers; it is repaired with rate β1 by the repairman only when at
least q customers are present in the system, i.e. if there are less than q customers in the system, the repair of
the failed server is delayed and started only when some more customers join the system and the queue length
builds up to the threshold recovery level q. It is assumed that during the optional phase service, the server
cannot breakdown.

3. The analysis

The queueing model is formulated as Markov process with state space {E = (m, n, i) : i = 1, 2, 3; 0 ≤ m ≤ N
and n ≥ 0}. The index m and n represent the number of ordinary and priority customers in the system,
respectively, and i = 1, 2, 3 denote that the server is busy in rendering essential service of priority/ordinary
server, optional service of ordinary server and broken down state, respectively. The steady state probabilities
of the server being busy in rendering essential and optional services are represented by Pm,n,1 and Pm,n,2 ∀
0 ≤ m ≤ N, n ≥ 0. When the server is in broken down state, the steady state probabilities is denoted by Pm,n,3

∀ 0 ≤ m ≤ N, n ≥ 0. Corresponding to threshold recovery and finite capacity (N), we denote the indicator
function as:

um,q =

{
1, q ≤ m ≤ N

0, 0 ≤ m ≤ q − 1
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Figure 1. Transition rate diagram.

and

δm,q =

{
1, m = N

0, 0 ≤ m ≤ N − 1.

Also denote gn = min(n, B), C0 = 1.
For different system states, the steady state Chapman−Kolmogorov equations are constructed by considering

the appropriate transition rates (see Fig. 1) as follows:

(λl,0 + Λ + α1)P0,0,1 = (1 − p)μl,1P1,0,1 + μhP0,1,1 + μ0P0,0,2 (3.1)

{(1 − δm,M )λl,m + Λ + α1 + μl,m}Pm,0,1 = μl,m+1(1 − p)Pm+1,0,1 + μhPm,1,1

+μ0Pm,0,2 + μm,qβ1Pm,0,3 + λl,m−1Pm−1,0,1, 1 ≤ m ≤ N
(3.2)

(λ + μ0)P0,0,2 = pμl,1P1,0,1 (3.3)

{(1 − δm,N)λ + μ0}Pm,0,2 = pμl,m+1Pm+1,0,1 + λPm−1,0,2, 1 ≤ m ≤ N (3.4)

(λl,0 + Λ′)P0,0,3 = αP0,0,1 (3.5)

{(1 − δm,N )λl,m + Λ′ + um,qβ1}Pm,0,3 =α1Pm,0,1 + λl,m−1Pm−1,0,3, 1 ≤ m ≤ N (3.6)
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(λl,0 + Λ + μh + α)P0,n,1 = μhP0,n+1,1 + βP0,n,3 + Λ

gn∑
k=1

CkP0,n−k,1, n ≥ 1 (3.7)

{(1 − δm,N )λl,m + Λ + μh + α}Pm,n,1 = μhPm,n+1,1 + βPm,n,3

+Λ

gn∑
k=1

CkPm,n−k,1 + λl,m−1Pm−1,n,1, n ≥ 1, 1 ≤ m ≤ N
(3.8)

{λl,0 + Λ′ + β}P0,n,3 =αP0,n,1 + Λ′
gn∑

k=1

CkP0,n−k,3, gn = min(n, B), n ≥ 1 (3.9)

{(1 − δm,N)λl,m + Λ′ + β}Pm,n,3 =αPm,n,1 +
gn∑

k=1

CkΛ′Pm,n−k,3 + λl,m−1Pm−1,n,3,

gn = min(n, B), 1 ≤ m ≤ N

(3.10)

The probabilities associated with different states are determined by using the matrix geometric method
proposed by Neuts [28]. For the analysis purpose, we consider an irreducible generator matrix Q in terms of
coefficients of equations (3.1)−(3.10). The generator matrix Q in a block-partitioned form is as follows:

Q=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0 M 0 0 0 . . . . . . 0 0 0 0 0 . . .
M1 D M 0 0 . . . . . . 0 0 0 0 0 . . .
M2 M1 D M 0 . . . . . . 0 0 0 0 0 . . .
M3 M2 M1 D M . . . . . . 0 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MB MB−1 MB−2 MB−3 . . . . . . . . . M1 D M 0 0 . . .
0 MB MB−1 MB−2 MB−3 . . . . . . M2 M1 D M 0 . . .
0 0 MB MB−1 MB−2 . . . . . . M3 M2 M1 D M . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where D0, D, M, Mk (k = 1, 2, . . . , B) are the square matrices of order 3(N + 1) and given by

D0 =

⎡
⎣ A1 S2 S3

μ0I −(λ + μ0)I 0
S1 0 A0

⎤
⎦, D =

⎡
⎣ A3 0 αI

0 0 0
βI 0 A2

⎤
⎦, M =

⎡
⎣μhI 0 0

0 0 0
0 0 0

⎤
⎦

Mk =

⎡
⎣Lk 0 0

0 0 0
0 0 Fk

⎤
⎦, �Lk = CkΛI, Fk = CkΛ′I
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S1 =
[
0 0
0 β1IN+1−q

]

S2 =

⎡
⎢⎢⎢⎣

0 pμl,1 0 . . . 0
0 0 pμl,2 . . . 0
0 0 0 . . . 0
0 0 0 . . . pμl,N

0 0 0 . . . 0

⎤
⎥⎥⎥⎦

S3 =

⎡
⎢⎢⎢⎣

0 0 0 . . . 0
0 α1 0 . . . 0
0 0 α1 . . . 0
0 0 0 . . . 0
0 0 0 . . . α1

⎤
⎥⎥⎥⎦

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(λl,0 + Λ′) λl,0 . . . 0 0 . . . 0
0 −(λl,0 + Λ′) . . . . . . . . . . . . . . .
0 0 . . . λl,q−2 0 . . . . . .

. . . . . . . . . −(λl,q−1 + Λ′) λl,q−1 . . . . . .

. . . . . . . . . 0 −(λl,q + Λ′ + β1) . . . 0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . λl,N−1

0 0 0 0 0 . . . −(λl,N + Λ′ + β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A1 =

⎡
⎢⎢⎢⎢⎢⎣

−(λl,0 + Λ) λl,0 0 . . . 0
(1 − p)λl,1 −(λl,1 + Λ + α1 + μl,1) λl,1 . . . 0

0 (1 − p)λl,2 −(λl,2 + Λ + α1 + μl,2) . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . λl,N−1

0 0 0 (1 − p)λl,N −(λl,N + Λ + α1 + μl,N )

⎤
⎥⎥⎥⎥⎥⎦

A2 =

⎡
⎢⎢⎢⎢⎢⎣

−(λl,0 + Λ′ + β) λl,0 0 . . . 0
0 −(λl,1 + Λ′ + β) λl,1 . . . 0
0 0 −(λl,2 + Λ′ + β) . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . λl,N−1

0 0 0 . . . −(λl,N + Λ′ + β)

⎤
⎥⎥⎥⎥⎥⎦

A3 =

⎡
⎢⎢⎢⎢⎢⎣

−(λl,0 + Λ + α + μh) λl,0 0 . . . 0
0 −(λl,1 + Λ + α + μh) λl,1 . . . 0
0 0 −(λl,2 + Λ + α + μh) . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . λl,N−1

0 0 0 . . . −(λl,N + Λ + α + μh)..

⎤
⎥⎥⎥⎥⎥⎦

The stability condition can be easily established by following the Theorem 3.1.1 of Neuts [27]. If the CTMC is
ergodic i.e. irreducible and positive recurrent, then the queueing system will be stable. For the vector process
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of priority queueing system, the generator matrix Q is given by

Q = M + D +
∑B

k=1
Mk (3.11)

Let πππ be the steady state probability vector associated with matrix Q, then the invariant probability vector πππ
exists if and only if πππ

∑B
k=1 Mke < πππMe where e is a column unit vector of suitable dimension.

The matrix equation for the probability vector can be written as πππ Q= 0, and πππe=1.
To solve equation (3.11) with transition rate matrix Q, let us partition probability vector πππ as

πππ =[P0,P1,P2, . . . , Pj ,. . . ] where P0 = [P001, P101,. . . , PN01, P002, P102,. . . , PN02, P003, P103,. . . , PN03];
Pn = [P0,n,1, P1,n,1,. . . , PN,n,1, P0,n,3, P1,n,3,. . . , PN,n,3]; n ≥ 1
To compute the state probabilities, we use the matrix geometric approach. For this purpose, we need to evaluate
the rate matrix R that is the minimal non-negative solution of the matrix equation

M + RD +
∑B

k=1
MkRk+1 = 0. (3.12)

Now, we obtain a general equation for R as follows:

Rn+1 = −
[
M +

∑B

k=1

MkRk+1
n

]
D−1. (3.13)

After evaluating R, we can evaluate the invariant probability vector recursively by using the relation

Pn+1 = P1Rn, n ≥ 0 (3.14)

or
Pn = P0Rn, n ≥ 0. (3.15)

To obtain the boundary probability vectors [P0,P1], we define the matrix (cf. Thm. 1.5.1 of Neuts [27])

Q(R) =
[

D0 M∑B
k=1MkRk−1 D +

∑B
k=1MkRk

]
.

The normalization condition is given by:

(P0 + P1(I − R)−1)e =1. (3.16)

4. Performance indices

By knowing the measures of performance of the queueing system, the designers/organizers can get insight
about the optimal strategy to improve the concerned system by reducing the average queue length, average delay,
etc. By controlling the suitable parameters, decision makers can also come up with some strategy to reduce the
balking behavior of the customers. The steady state probabilities determined by MGM can be further used to
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establish various performance indices as follows:

(I) Average queue length

(a) Expected number of priority customers in the system is

�L1 = ΣN
m=0Σ

∞
n=0n(Pm,n,1 + Pm,n,3) (4.1)

(b) Expected number of ordinary priority customers in the system is

�L2 = ΣN
m=0Σ

∞
n=0m(Pm,n,1 + Pm,n,3) + ΣN

i=0mPm,0,2 (4.2)

(c) Expected number of customers in the system when the server is in breakdown state, is

�Ld = Σ∞
n=0Σ

N
n=0(m + n)Pm,n,3 (4.3)

(d) Expected number of customers in the system is

�L = L1 + L2 (4.4)

(II) Expected waiting time

(a) The carried load which is the effective arrival rate, is evaluated by using

λeff = ΣN−1
m=0Σ∞

n=0(λl,m + ΛE{X})Pm,n,1 + ΣN−1
m=0λPm,0,2 + ΣN−1

m=0Σ∞
n=0(λl,m + Λ′E{X})Pm,n,3

+ ΣN−1
m=0E{X}Λ′PN,n,3 (4.5)

(b) Expected waiting time can be determined by using Little’s formula given by

W =
L

λeff
· (4.6)

(III) Throughput and expected delay

(a) The system throughput is determined by

TP = ΣN
m = 1μl,mPm,0,1 + ΣN

m = 0Σ
∞
n=1μhPm,n,1 + ΣN

m = 0μ0Pm,0,2 (4.7)

(b) The mean delay is obtained by using

DL =
L

TP
· (4.8)

(VI) Reliability indices

(a) The availability of the server is determined by

A = ΣN
m=0Pm,0,1 + ΣN

m=0Σ
∞
n=0Pm,n,1 + ΣN

m=0Pm,0,2. (4.9)



426 M. JAIN

(b) The failure frequency of the server is obtained as:

Ff = ΣN
m=0α1Pm,0,1 + ΣN

m=0Σ
∞
n=1αPm,n,1. (4.10)

(V) Long run probabilities and cost function

(a) The long run probability that the server is in broken down state is

PD = Σ∞
n=0Σ

N
m=0Pm,n,3· (4.11)

(b) The long run probability of the server being busy is

PB = ΣN
m=1Pm,0,1 + ΣN

m=0Σ
∞
n=1Pm,n,1 + ΣN

m=0Pm,0,2. (4.12)

(c) To frame the cost function, we consider the following cost factors corresponding to different activities:

Cb: Cost per unit time when the server is busy;
Ch: Holding cost per unit time of the customers present in the system;
Cr: Repair cost incurred per unit time for a broken down server;
Cd: Cost incurred per unit time on the server when in broken down state but the repair is started not yet as
threshold level of the number of ordinary customers is not reached

The total cost per unit time incurred on the system is formulated as function of threshold recovery parameter
as:

TC(q) = CbPB(t) + ChL + Crβ + CdPD(t). (4.13)

5. Illustration and sensitivity analysis

The priority queueing models with unreliable server have enormous applications in day to day as well industrial
set up. The prediction of throughput and delay seems to be of enormous utility for the system engineers and
designers to determine the buffer capacity for the ordinary customers. To correlate the applicability of our
model, we cite the example of two types of traffic in the cellular radio network due to origination of new calls
who arrive singly and bulk arrivals of priority calls due to group mobility of the mobile users due to movement
of some vehicle from the coverage area of base station of the neighboring cell to the targeted cell. The problem
of reducing the dropping of calls in cellular radio system can be easily tackled by implementation of priority in
the allocation of channel to handover calls over the new calls. In order to minimize the capacity wastage while
keeping the number of new calls below a given tolerance level by bounding scheme, the provision of limited
buffer for new calls is realistic assumption. The concept of facilitating the optional additional services to the
new calls when no handover calls (i.e. priority class customers) are present in the system seems to noble concept
in earning more profit to the service providers. Moreover, the additional feature of the threshold recovery of the
broken down channel after accumulation of sufficient workload of new calls enhances the system capacity by
reducing the idle time of the channel in case of low traffic of new calls. The priority queueing model developed
has its vital utility in cellular radio network in order to provide managerial insights to the system designers
and decision makers to reduce the dropping of handoffs and improve the throughput, Moreover, the concept of
threshold recovery enhances the practical applicability of our model. That is because it happens in daily life
activities due to the fact that the repairman is called upon or visited when jobs of failed units are accumulated
so as to save the time and money.

Now by keeping the applicability in cellular radio network, we perform numerical simulation by assuming the
following two functions for the joining probability of the ordinary calls:

(a) Fractional Balking Function (FBF):

bm =
1

m + 1
, 0 ≤ m ≤ N (5.1)



PRIORITY QUEUE WITH BATCH ARRIVAL, BALKING, THRESHOLD RECOVERY, UNRELIABLE SERVER 427

Table 1. Performance measures by varying different parameters.

L TP W DL

N (µl, µh, µ0) EBF FBF EBF FBF EBF FBF EBF FBF

7 1,3,2 5.98 5.83 7.52 5.01 18.02 12.49 0.70 0.89

2,3,2 5.78 5.75 9.57 6.73 17.13 12.27 0.61 0.77

3,4,3 4.65 4.62 10.25 8.12 15.73 11.79 0.51 0.66

3,5,3 4.25 4.54 11.13 9.32 15.35 10.25 0.42 0.55

3,5,4 4.12 4.27 13.46 11.13 14.42 10.15 0.37 0.42

3,5,5 3.94 3.62 16.43 12.52 13.26 9.42 0.35 0.30

9 1,3,2 7.52 7.89 7.77 5.12 20.33 16.01 0.79 1.56

2,3,2 7.31 7.66 10.46 7.71 19.60 17.13 0.69 0.91

3,4,3 7.30 7.39 12.83 11.18 18.72 15.38 0.61 0.85

3,5,3 6.08 6.15 13.77 12.07 16.27 14.99 0.52 0.59

3,5,4 5.61 5.72 15.16 14.03 16.62 12.34 0.48 0.52

3,5,5 5.35 5.27 17.09 14.84 14.19 10.25 0.38 0.44

(b) Exponential Balking Function (EBF):

bm = e−σm, (σ > 0). (5.2)

For computing the numerical results, the coding of the computer program is done in software MATLAB. For
the illustration purpose, the default system parameters are fixed as follows; N = 11, B = 5, K = 6, H = 7,
p = 0.3, Λ = 0.3, Λ′ = 0.15, λh = 0.02, λl = λ = 0.01, α = α1 = 2, β = β1 = 3, q = 2, σ = 0.001, μh = 8,
μl = 9, μ′

l = 13.5, Cb = 2 0U, Ch = 15 U, Cr = 25 U, Cb = 10 U. By varying the values of q from 1 to N = 11,
we compute the TC(q) and obtain the minimum total cost TC = 224.94 U at q = 2. For computation of various
performance indices given in equations (4.1)−(4.7), we take q = 2 and obtain L = 2.21, TP = 12.05, W = 2.0.

By knowing the measures of performance of the queueing system, the designers/organizers can get insight
about the optimal strategy to improve the concerned system by reducing the average queue length, average
delay, etc. By controlling the suitable parameters, decision makers can also come up with some solution to
reduce the balking behavior of the customers.

In order to facilitate the sensitivity analysis we display the numerical results in Table 1 and Figures 2−8 by
varying different parameters. Tables 1 summarizes the results for different values of N with default parameters
chosen as q = 2, p = 0.3, Λ = 0.3, Λ′ = 0.15, λh = 0.02, λl = λ = 0.01, α = α1 = 2, β = β1 = 3, q = 2,
σ = 0.001, μh = 8, μl = 9, μ′

l = 13.5, B = 5, K = 6, H = 7, N = 11. The numerical results are computed by
considering the exponential balking function (EBF) and the fractional balking function (FBF) separately for
each case. From Table 1, it is observed that the system queue length (L), waiting time (W ) and delay (DL) of
the customers in the system are decreasing function of the service rates, while throughput (TP ) of the system
tends to increase on increasing the service rates. This is a quite common phenomenon seen in day-to-day life,
where the better service enhances the throughput TP of the system and decrement in the waiting time or delay.
The numerical results obtained for the FBF case are lesser than the EBF corresponding to L, TP and W , while
a reverse effect is seen with the delay (DL).

Figures 2 and 3 depict the throughput (TP ) of the system by varying service rate μh of the priority cus-
tomers corresponding to different values of N and K, respectively. As N and K increase, there is increment in
throughput as can be noticed from Figures 2 and 3, respectively. It is seen from the graphs, that for the lower
value of service rate, the system throughput has slight variation, but thereafter it increases remarkably. Also,
there is a significant increment in the values of TP in case of FBF as compared to EBF.
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Figure 2. Effect of μh on TP by varying N .

Figure 3. Effect of μh on TP by varying K.

Figures 4 and 5 show the pattern for the queue length L for different values of N and K. The discrete
(continuous) lines correspond to FBF (EBF) case. As expected, L reveals the increasing trend for the increasing
values of Λ in both figures. It is also observed that the system queue length increases (decreases) by increasing
the parameter N(K) for both exponential and fractional balking functions.

The queue length for different values of N by varying λl, α and β are depicted in Figures 6−8, respectively. It
is seen from Figure 6 that the queue length (L) increases for the increasing values of arrival rate (λl) of ordinary



PRIORITY QUEUE WITH BATCH ARRIVAL, BALKING, THRESHOLD RECOVERY, UNRELIABLE SERVER 429

Figure 4. Average queue length (L) vs. Λ by varying N .

Figure 5. Average queue length (L) vs. Λ by varying K.

customers. The system queue length seems to increase sharply with respect to parameter N for the exponential
balking function whereas it reveals almost constant value in case of fractional balking function.

Figures 7 and 8 depict the trends of the queue length for different values of N by varying α and β respectively.
There is almost linear pattern of queue length (L) for increasing values of failure rate (α) of the server. On the
contrary, a gradual decreasing trend in the queue length is noticed for the increasing value of the repair rate
(β); the effect seems to more prominent for the higher value of N .

From the numerical results summarized in the form of table and graphs, we overall conclude that the failure
rates as well as repair rates have significant impact on the queue length and TP of the system. The effects of
the parameters N as well as K are quite noticeable for different system indices. As expected, an increment in
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Figure 6. Effect of λl on L for different value of N .

Figure 7. Effect of α on L for different value of N .

the service rate of priority customers results in buildup of the throughput to the reasonably good extent. The
numerical results show the lower values of various system characteristics for exponential balking function as
compared to fractional balking function.

The determination of optimal threshold recovery parameters by minimizing the total cost incurred on different
activities can provide an insight to the system organizer to start of the repair of broken down server. For the
cited applicability in cellular radio network, the service provider can handle the breakdown of channel and its
repair based on the optimal threshold workload of new calls in the network. It is worth noting that delayed
repair may prove economical in terms of both time and efforts. Based on above numerical simulation, we infer
that the optimal threshold parameters and other system characteristics can be used to optimize the system
capacity by enhancing the throughput. As far as managerial implication is concerned, the proposed model can
be easily and effectively applied in the design and dimensioning of cellular radio networks, in particular when
there is high group mobility of the users.
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Figure 8. Effect of β on L for different value of N .

6. Conclusion

The priority queueing model with batch arrivals is of a considerable interest in particular when the priority
is given to the batch arrivals. Due to incorporation of balking behavior, the optional service to the ordinary
customers, unreliable server and threshold recovery, our model depicts many real time congestion situations.
Such scenarios are commonly seen in computer systems and communication networks where our model can be
easily implemented to improve the grade of service. In case of wireless communication system operating under
cellular architecture, there may be two types of traffic i.e. new and handoff attempts. The handoff calls are
of busty type due to group mobility of the users due to the movement of vehicles. The new originating calls
may arrive singly and can wait in buffer of limited size in case when the channel is busy. The channel may
be unreliable and subject to breakdown and repair. The numerical results and sensitivity analysis facilitated
provide insight how the system can be made more efficient by controlling the sensitive parameters. The bulk
service as well as server vacation are some important concepts which can be further incorporated in the model
studied but the analysis will become more tedious.
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