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EXACT TAIL ASYMPTOTICS FOR A TWO-STAGE QUEUE: COMPLETE
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Abstract. In this paper, we are interested in tail asymptotics of stationary distributions for a two-
stage tandem queue with coupled processors, Poisson arrivals, and exponential service times. The model
was motivated by data transfer in cable networks regulated by a reservation procedure, and has been
studied in the literature by several researchers. In the present paper, by using the kernel method, we
obtain exact tail asymptotics for the stationary distributions. What is the more important is that we
give a complete solution of this topic, which means that, given the parameters of the model, exact
tail asymptotics for the stationary distributions of this two-stage queue can be obtained based on our
results.
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1. Introduction

Since the work of Malyshev [11, 12], stationary distributions of the two-dimensional random walks in the
quarter plane have attracted a lot of interest. Two-dimensional random walks are classical queueing models. The
study of these models is useful in both theory and applications. For stable queueing models, we are naturally
interested in their stationary distributions. However, we can only obtain explicit (closed) solutions of a few
components of these stationary distributions. On the other hand, we note that tail asymptotics of stationary
distributions are important in applications. For example, we can get performance bounds and approximations
from tail asymptotic property. Inspired by the above, we study exact tail asymptotics for a two-stage tandem
queue with coupled processors, Poisson arrivals and exponential service times.

There are mainly four alternative methods to study tail asymptotics for stationary distributions. For details,
see Miyazawa [13]. In this paper, we apply the kernel method, developed based on the work of Knuth [10] and
Banderier et al. [2], to obtain tail asymptotics. The original kernel method reads as follows: for a functional
equation

K(x, y)F (x, y) = A(x, y)G(x) + B(x, y), (1.1)

Keywords. Random walk in the quarter plane, stationary distribution, Kernel method, exact tail asymptotics.

1 School of Statistics, Shandong University of Finance and Economics, Jinan, 250014, China.
mathdsh@gmail.com; kltgw80@163.com
2 Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
songyangnuaa@163.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2017

https://doi.org/10.1051/ro/2017034
http://www.rairo-ro.org
http://www.edpsciences.org


1212 H. DAI ET AL.

where F (x, y) and G(x) are unknown functions. In order to study F (x, y), we can find a branch y = y0(x) such
that

K(x, y0(x)) = 0. (1.2)

Then, by (1.1) and (1.2),

G(x) = −B(x, y0(x))/A(x, y0(x)). (1.3)

Therefore,

F (x, y) = −A(x, y)B(x, y0(x))/A(x, y0(x)) + B(x, y)
K(x, y)

through analytic continuation. Noting that there is only one unknown function in R.H.S of (1.1), and thus, we
cannot apply this method to study tail asymptotics for two-dimensional random walks directly, since there are
two unknown functions. More specifically, the analogy to (1.1) is given as follows:

h(x, y)π(x, y) = h1(x, y)π1(x) + h2(x, y)π2(y) + h0(x, y)π0,0, (1.4)

where π(x, y), π1(x) and π2(y) are unknown generating functions for joint and two boundary probabilities,
respectively. Following the idea in the classical kernel method, we find a branch Y = Y0(x) satisfying the kernel
equation h(x, Y0(x)) = 0. However, this time, we can only get a relationship between the two unknown boundary
generating functions, i.e.,

h1(x, Y0(x))π1(x) + h2(x, Y0(x))π2(Y0(x)) + h0(x, Y0(x))π0,0 = 0.

The generalization of the kernel method is necessary to characterize tail asymptotics in stationary probabilities.
Li and Zhao [7] extended the original kernel method systematically to study tail asymptotics for stationary
distributions of a generalized two-demand queueing model, and got exact tail asymptotics for boundary prob-
abilities, joint probabilities and marginal distributions. Since then, many scholars have used this method to
study exact tail asymptotics for stationary distributions. Later, Dai and Zhao [4] used this method to study
exact tail asymptotics for the wireless 3-hop network with stealing. Song, Liu and Dai [17] obtained exact tail
asymptotics for a discrete-time preemptive priority queue via the kernel method. For more details, readers may
refer to Li and Zhao [7, 8], Li, Tavakoli and Zhao [9] and the references therein.

In this paper, we study a two-stage queueing model with coupled processors, Poisson arrivals and exponential
service times. The model was motivated by data transfer in cable networks regulated by a reservation procedure.
For details, see Resing and Örmeci [16]. The model also has other important applications. See Andradóttir,
Ayhan, and Down [1], van Leeuwaarden and Resing [18] and the references therein. Stationary distributions of
this model have been studied by many scholars. In particular, Guillemin and van Leeuwaarden [6] studied tail
asymptotics for the marginal distributions of this model by solving boundary value problems. In this work, we
also focus on exact tail asymptotics for this model. However, compared to [6], we make the following contributions
in the present paper:

(1) We systematically study exact tail asymptotic properties for the stationary distributions of this model.
In [6], exact tail asymptotics for the marginal (only) stationary probabilities was studied. However, exact
tail asymptotics for the marginal stationary distributions cannot directly lead to exact tail asymptotic
properties for the joint stationary distributions and for the boundary stationary probabilities. Therefore,
further efforts are required. Moreover, further tools are also needed. In the present paper, we provide exact
tail asymptotics not only for the marginal distributions, but also for the boundary probabilities and for the
joint distributions.
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(2) Our results in Theorem 6.4 below refine the results in [6]. In the present paper, exact tail asymptotics of
this two-stage queue are presented based on the relationship among the parameters of the model. Based
on these results, impact of the parameters can be clearly revealed. However, in [6], exact tail asymptotic
properties for the marginal distributions are provided based on the relationship among some functions of
the parameters of the model. See Propositions 5 and 6 in [6]. Given the values of the parameters, we can get
exact tail asymptotics from our results straightforwardly. However, it is not straightforward to obtain exact
tail asymptotic properties for the marginal distributions from [6]. Hence our results have some advantages
over the results in [6].

(3) Guillemin and van Leeuwaarden [6] formulated π1(x) and π2(y) in terms of boundary value problems. The
solutions to these boundary value problems yield integral expressions of π1(x) and π2(y), see Propositions 3
and 4 in [6], respectively. Based on these expressions, they obtained exact tail asymptotics for the marginal
distributions. However, there is no need to express the unknown generating function for the purpose of
characterizing tail asymptotics. In the present paper, we apply the kernel method to study tail asymptotics.
The kernel method only requires the information about the dominant singularities of the unknown function,
including the location and detailed asymptotic property at the dominant singularities. Because of this, the
kernel method has a potential advantage over the method used in [6].

The rest of this paper is organized as follows. In Section 2, we describe the two-stage model and present the
fundamental equation which plays an important role in our analysis. Section 3 is devoted to studying the
kernel equation and branch points. In Section 4, we present some preliminaries for exact tail asymptotics. In
Sections 5, 6 and 7, we derive exact tail asymptotics for boundary probabilities, marginal distributions and joint
distributions, respectively. In Section 8, we demonstrate our results by numerical examples.

2. Model and analysis steps

2.1. Two-stage model

The model is of independent interest, and has been studied by many scholars, for example, van Leeuwaarden
and Resing [18], Guillemin and van Leeuwaarden [6], Resing and Örmeci [16], Denteneer and van Leeuwaarden [5]
among others.

We consider a two stage tandem queue, where jobs arrive at queue 1 according to a Poisson rate λ, demand-
ing service at both queues before leaving the system. Each job requires an exponential amount of work with
parameter vj at queue j with v1 + v2 = 1 (w.l.o.g). The global service rate is set to one. The service rate for one
queue is only a fraction (p for queue 1 and 1 − p for queue 2) of the global service rate when the other queue
is non-empty; when one queue is empty, the other queue has full service rate. Therefore, when both queues
are non-empty, the departure rates at queue 1 and 2 are v1p and v2(1 − p), respectively. Let Ni(t) denote the
number of jobs at queue i at time t. Then {N1(t), N2(t)} is a Markov process. This Markov process has a unique
stationary distribution if

λ

v1
+

λ

v2
< 1. (2.1)

The physical meaning of (2.1) can be found in van Leeuwaarden and Resing [18]. In the rest of this paper, we
always assume that the condition (2.1) holds.

Denote the joint stationary distribution by πm,n, i.e., πm,n = limt→∞ P(N1(t) = m, N2(t) = n). On the other
hand, without loss of generality, we assume that max{λ + v1, λ + v2} < 1. Let Q be the infinitesimal generator
of the continuous-time Markov process {N1(t), N2(t)}. Then P = I + Q is the transition probability matrix for
the uniformized discrete-time Markov chain, where I is the identity matrix. The two Markov chains have the
same stationary probability vector πm,n.
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2.2. Analysis steps

In this present paper, we apply the kernel method to study exact tail asymptotics for this tandem queue. In
order to reach our aim, we also need the Tauberian-like theorem. Our analysis follows the following steps:

Step 1. We firstly establish the functional equation (1.4), very often referred to as the fundamental form, which
plays an important role in our analysis.
Step 2. The interlace between two unknown functions π1(x) and π2(y) plays an important role in the asymptotic
analysis of these two functions. Based on the fundamental form, we study the interlace between them, and the
corresponding results are presented in Lemma 3.4.
Step 3. In order to apply the Tauberian-like theorem, we need to locate the dominant singularities of the two
unknown functions π1(x) and π2(y). Based on Lemma 3.4, we mainly carry out this work in Section 4.
Step 4. To apply the Tauberian-like theorem, we also need asymptotic behavior of the functions π1(x) and
π2(y) around its dominant singularities. In Section 5, we carry out the asymptotic analysis of these two unknown
functions.
Step 5. In Sections 5, 6 and 7, according to asymptotic analysis of the unknown functions π1(x) and π2(y), we
use the Tauberian-like theorem to get exact tail asymptotics of the stationary distributions.

2.3. Fundamental form

In order to apply the kernel method, we first need to establish the fundamental form. Before we present this
equation, we introduce the following notation:

π(x, y) =
∞∑

i=1

∞∑
j=1

πi,jx
i−1yj−1, (2.2)

π1(x) =
∞∑

i=1

πi,0x
i−1, (2.3)

π2(y) =
∞∑

j=1

π0,jy
j−1. (2.4)

Based on the transition probabilities of the uniformized discrete time Markov chain, we get from (1.3.6) in
Fayolle, Iasnogorodski and Malyshev [14] that

− h(x, y)π(x, y) = h1(x, y)π1(x) + h2(x, y)π2(y) + h0(x, y)π0,0, (2.5)

where

(i)

h(x, y) = ã(y)x2 + b̃(y)x + c̃(y) = a(x)y2 + b(x)y + c(x), (2.6)

with a(x) = pv1, b(x) = −[λ + pv1 + (1 − p)v2]x + λx2, c(x) = (1 − p)v2x, and ã(y) = λy, b̃(y) =
(1 − p)v2 −

[
λ + pv1 + (1 − p)v2

]
y, c̃(y) = pv1y

2;
(ii)

h1(x, y) = a1(x)y + b1(x), (2.7)

with a1(x) = v1 and b1(x) = −(λ + v1)x + λx2;
(iii)

h2(x, y) = a2(x)y2 + b2(x)y + c2(x), (2.8)

with a2(x) = 0, b2(x) =
[
λx − (λ + v2)

]
and c2(x) = v2;
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(iv)

h0(x, y) = a0(x)y + b0(x), (2.9)

with a0(x) = 0, and b0(x) = λx − λ.

3. Kernel equation and their branch points

In this section, we consider the kernel equation

h(x, y) = 0. (3.1)

Specifically, we provide detailed properties of the branch points, and also the branches. We will obtain these
properties by using elementary mathematics.

Let

D1(x) = b2(x) − 4a(x)c(x) (3.2)

be the discriminant of the equation (3.1). Therefore, for each x, two solutions to (3.1) are given by

Y±(x) =
−b(x) ±√D1(x)

2a(x)
, (3.3)

unless D1(x) = 0, for which x is called a branch point of Y .
Symmetrically, let D2(y) = b̃2(y) − 4ã(y)c̃(y). For each fixed y, two solutions to (3.1) are given by

X±(y) =
−b̃(y) ±√D2(y)

2ã(y)
(3.4)

unless D2(y) = 0, for which y is called a branch point of X . We have the following properties on these branch
points.

Lemma 3.1.

(i) D1(x) has four zeros satisfying

x1 = 0 < x2 < 1 < x3 <
λ + pv1 + (1 − p)v2

λ
< x4.

Furthermore, D1(x) > 0 in
(−∞, x1

) ∪ (x2, x3

) ∪ (x4, ∞) and D1(x) < 0 in (x1, x2) ∪ (x3, x4).
(ii) D2(y) has three zeros satisfying

0 < y1 <
(1 − p)v2

λ + pv1 + (1 − p)v2
< y2 < 1 < y3.

Moreover, D2(y) > 0 in (−∞, y1) ∪ (y2, y3), and D2(y) < 0 in (y1, y2) ∪ (y3, ∞).

Proof. We only prove part (i) of this lemma. The other part can be proved in the same way. In fact, from (2.6)
and (3.2), we have

D1(x) = x

{ [
λx − [λ + pv1 + (1 − p)v2

]]2
x − 4p(1 − p)v1v2

}
.

Set
F (x) =

[
λx − (λ + pv1 + (1 − p)v2

)]2
x − 4p(1 − p)v1v2.
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We can get

F (0) = F

(
λ + pv1 + (1 − p)v2

λ

)
= −4p(1 − p)v1v2, F (1) =

[
pv1 − (1 − p)v2

]2 ≥ 0. (3.5)

Then, we can get that D1(x) has four roots x1, x2, x3 and x4 satisfying¡¡

0 = x1 < x2 < 1 < x3 <
λ + pv1 + (1 − p)v2

λ
< x4. �

From the complex analysis point of view, the kernel equation defines a two-valued function Y (x) (similarly,
X(y)). To ensure the continuity of the function, or to avoid the situation in which the function moves from one
branch to the other, when x varies, we consider the following cut planes:

•
C̃x = C \ ([x3, x4] ∪ [x1, x2]

)
and C̃y = C \ ([y1, y2] ∪ [y3,∞)

)
;

•
Ĉx = C \ [x3, x4] and Ĉy = C \ [y3,∞),

where C denotes the complex plane.
In the cut plane C̃y, define the two branches X0(y) and X1(y) of X(y) by

X0(y) = X−(y), and X1(y) = X+(y) if |X−(y)| ≤ |X+(y)|,
and

X0(y) = X+(y), and X1(y) = X−(y) if |X−(y)| > |X+(y)|.
The two branches Y0(x) and Y1(x) of Y (x) can be similarly defined.

Remark 3.2.

(1) The functions Yi(x), i = 0, 1, are meromorphic in the cut plane C̃x.
(2) The functions Xi(y), i = 0, 1, are meromorphic in the cut plane C̃y.

Asymptotic properties for the functions π1(x) and π2(y) are a key for characterizing exact tail asymptotics for
the stationary distributions. At the end of this section, we list some properties of the functions π1(x) and π2(y),
which play an important role in our analysis.

Before we state these properties, we define the following notation:

Γa = {x ∈ C : |x| = a}, Da = {x : |x| < a}, and B = {(x, y) : h(x, y) = 0}.
Following Lemma 2.2.1 and Theorem 3.2.3 in Fayolle, Iasnogorodski and Malyshev [14], we have the following

lemma.

Lemma 3.3.

(1) π1(x) is a meromorphic function in the complex cut plane Ĉx. Similarly, π2(y) is a meromorphic function
in the complex cut plane Ĉy.

(2) There exists an ε > 0 such that the functions π1(x) and π2(y) can be analytically continued up to the circle
Γ1+ε in their respective complex plane. Moreover, they satisfy the following equation in D2

1+ε ∩ B:

h1(x, y)π1(x) + h2(x, y)π2(y) + h0(x, y)π0,0 = 0. (3.6)
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Under the stability condition (2.1), we can easily verify that the conditions in Lemma 2.2.1 and Theorem 3.2.3
in [14] hold. We naturally conclude the Lemma 3.3.

From the above discussion, we can get that the dominant singularity xdom of π1(x) is in (1, x3]. In the sequel,
when we apply the Tauberian-like theorem for getting exact tail asymptotics for the stationary probabilities,
we need to standardize the radius of convergence of the function of interest to the unit. For convenience, we
introduce the following notation. Assume that Φ(z) is analytic at 0 with R > 0 the radius of convergence, and
let zdom > 0 be the dominant singularity of Φ(z). For 0 < φ < π

2 and ε > 0, we define the region Δ(φ, ε, zdom)
by

Δ(φ, ε, zdom) =
{

z ∈ Cz :
∣∣ z

zdom

∣∣ ≤ 1 + ε, z/zdom �= 1, |Arg
(

z

zdom
− 1
)
| > φ

}
. (3.7)

In the sequel, without otherwise stated, the limit of an analytic function Φ(z) is always taken in Δ(φ, ε, zdom).
By Li and Zhao [7, 8], we have the following technical lemma.

Lemma 3.4.

(1) π1(X0(y)) is meromorphic in the cut complex plane C̃y. If X0(y3) is not a pole of π1(x), then the dominant
singularity ydom of π1(X0(y)) is y3. Furthermore, there exist ε > 0 and 0 < φ < π

2 such that

lim
y→y3

π1(X0(y)) = π1(X0(y3)) and lim
y→y3

π′
1(X0(y)) = π′

1(X0(y3)).

Similarly, π2(Y0(x)) is meromorphic in the cut complex plane C̃x. If Y0(x3) is not a pole of π2(y), then the
dominant singularity xdom of π2(Y0(x)) is x3. Furthermore, there exist ε > 0 and 0 < φ < π

2 such that

lim
x→x3

π2(Y0(x)) = π2(Y0(x3)) and lim
x→x3

π′
2(Y0(x)) = π′

2(Y0(x3)).

(2) In the cut plane C̃x,

π1(x) =
−h2

[
x, Y0(x)

]
π2

[
Y0(x)

]− h0

[
x, Y0(x)

]
π0,0

h1

[
x, Y0(x)

] (3.8)

except at zero of h1

(
x, Y0(x)

)
, or at a pole of π1(x) or π2

(
Y0(x)

)
.

Similarly, in the cut plane C̃y,

π2(y) =
−h1

[
X0(y), y

]
π1

[
X0(y)

]− h0

[
X0(y), y

]
π0,0

h2

(
X0(y), y

) (3.9)

except at zero of h2

(
X0(y), y

)
, or at a pole of π2(y) or π1

(
X0(y)

)
.

4. Preliminaries for exact asymptotics

In this work, our goal is to find exact tail asymptotics for stationary distributions. Following the Tauberian-
like theorem (see, for example, Bender [3] and Flajolet and Sedgewick [15]), we first need to locate the dominant
singularities of the two unknown functions π1(x) and π2(y), and then study detailed properties of these two
functions around these dominant singularities.

In this section, we carry out the first task. It follows from Lemma 3.4 that there are only two possible types
of dominant singularities of π1(x): a pole or a branch point. When the dominant singularity is a pole, it is a
zero of h1(x, y) or h2(x, y). This is stated in the following lemma.
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Lemma 4.1. Let x∗ be a pole of π1(x) with the smallest modulus between 1 and x3. Then either x∗ is a zero of
h1

[
x, Y0(x)

]
or Y0(x∗) is a zero of h2

[
X0(y), y

]
. In the latter case, |Y0(x∗)| > 1. Similar results hold for a pole

of π2(y) with the smallest modulus in |y| < y3.

By Li and Zhao [7, 8], one can get Lemma 4.1 directly. Here we omit the proof.
For our model, the only possible pole of π1(x) in (1, x3] is detailed in the following lemma.

Lemma 4.2. If a solution to h1

[
x, Y0(x)

]
= 0 in (1, x3] exists, then it is

λ + v1 + v2 −
√

(λ + v1 + v2)2 − 4v1v2

2λ
·

Proof. It follows from (2.7) that

h1

[
x, Y0(x)

]
h1

[
x, Y1(x)

]
= v2

1Y0(x)Y1(x) + [Y0(x) + Y1(x)][λx2 − (λ + v1)x]v1 + [λx2 − (λ + v1)x]2. (4.1)

On the other hand, we get that

Y0(x)Y1(x) =
c(x)
a(x)

, and Y0(x) + Y1(x) = − b(x)
a(x)

· (4.2)

Therefore, by (4.1) and (4.2)

h1

[
x, Y0(x)

]
h1

[
x, Y1(x)

]
= (1 − p)x

[
v1v2 + x

(
λ + v2 − λx

)[
λx − (λ + v1)

]]
. (4.3)

Set
Q(x) = v1v2 + x

(
λ + v2 − λx

)[
λx − (λ + v1)

]
.

Then,

Q(x) = v1v2 − (λ + v1)(λ + v2)x + λ(2λ + v1 + v2)x2 − λ2x3

= (x − 1)
[
− λ2x2 +

[
λ2 + λ(v1 + v2)

]
x − v1v2

]
. (4.4)

So, we get that h1

[
x, Y0(x)

]
h1

[
x, Y1(x)

]
= 0 has four roots

x̃0 = 0, x̃4 =
λ + v1 + v2 +

√
(λ + v1 + v2)2 − 4v1v2

2λ
,

x̃2 = 1, x̃3 =
λ + v1 + v2 −

√
(λ + v1 + v2)2 − 4v1v2

2λ
·

Since λ
v1

+ λ
v2

< 1, one can easily confirm that x̃4 > x̃3 > 1.
Next, we study the relationship between x̃3 and x3. We will prove

x̃4 >
λ + pv1 + (1 − p)v2

λ
> x3 ≥ x̃3. (4.5)

From (4.4), we have that Q(x) > 0 for x ∈ (x̃3, x̃4) and Q(x) < 0 for x ∈ (x̃4, ∞). Hence, in order to prove (4.5),
we only need to show that

Q

(
λ + pv1 + (1 − p)v2

λ

)
> 0. (4.6)

Indeed,

Q

(
λ + pv1 + (1 − p)v2

λ

)
= λ

[
(1 − p)v1 + pv2

]
+ p(1 − p)

[
v1 − v2

]2
> 0. (4.7)
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By (4.7), we get that
λ + pv1 + (1 − p)v2

λ
< x̃4.

On the other hand, since D1(x) = 0 at x3, we get Y0(x3) = Y1(x3). So we have Q(x3) ≥ 0. Hence x̃3 ≤ x3. We
complete the proof of this lemma. �

Remark 4.3. It follows from the proof of Lemma 4.2 that if x̃3 is a solution to h1[x, Y0(x)] = 0 between (1, x3],
then the solution is unique.

Now, we study the existence of the zero of h1

[
x, Y0(x)

]
. In order to do this, we first present a technical lemma.

Lemma 4.4. x̃3 is a solution to h1[x, Y0(x)] = 0 between (1, x3] if and only if

g(x̃3) ≥ 0, (4.8)

where

g(x) =
[
λ(1 − 2p) − pv1 + (1 − p)v2

]
x + λ

(
2p − 1

)
x2.

Proof. Noting that

b(x) = λx2 − [λ + pv1 + (1 − p)v2

]
x,

we have that for any x ∈ [0, λ+pv1+(1−p)v2
λ ],

b(x) ≤ 0. (4.9)

Since D1(x) ≥ 0 for any x ∈ (x2, x3], we have

Y0(x) =
−b(x) −√D1(x)

2pv1
(4.10)

for any x ∈ (1, x3]. Then

2ph1

[
x, Y0(x)

]
= 2pv1Y0(x) + 2pλx2 − 2p(λ + v1)x

= g(x) −
√

D1(x). (4.11)

We first prove the necessity. In fact, if x̃3 is the zero of h1[x, Y0(x)], then we get g(x̃3) ≥ 0, since x̃3 ≤ x3 and
D1(x) ≥ 0 in (1, x3].

Next, we prove the sufficiency. To prove that x̃3 is a solution of h1[x, Y0(x)] = 0 between (1, x3], from (4.11),
we only need to prove

g(x̃3) =
√

D1(x̃3). (4.12)

Since g(x̃3) ≥ 0, (4.12) is equivalent to

g2(x̃3) = D1(x̃3). (4.13)

By some calculations, one can get that (4.13) is equivalent to

Q(x̃3) = 0. (4.14)

By the proof of Lemma 4.2, (4.14) holds. We complete the proof. �
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The next lemma states the condition under which h1

[
x, Y0(x)

]
= 0 has a solution between (1, x3].

Lemma 4.5.

(i) If p > 1
2 , then x̃3 is a solution to h1[x, Y0(x)] = 0 between (1, x3] if and only if

p ≤ max

{
1
2
,
1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]}
·

Furthermore, if v2 > v1 and p = 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then x3 is the solution to h1[x, Y0(x)] = 0.

(ii) If p = 1
2 , then x̃3 is a solution to h1[x, Y0(x)] = 0 between (1, x3] if and only if v1 ≤ v2. Furthermore, if

v2 = v1, then x3 is the solution to h1[x, Y0(x)] = 0.
(iii) If p < 1

2 , then x̃3 is a solution to h1[x, Y0(x)] = 0 between (1, x3] if and only if

p ≤ min

{
1
2
,
1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]}
·

Furthermore, if v2 < v1 and p = 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then x3 is the solution to h1[x, Y0(x)] = 0.

Proof. We first prove case (i). Since p > 1
2 and x̃3 > 1, (4.8) is equivalent to

x̃3 ≥ x̂, (4.15)

where

x̂ =
λ(2p − 1) + pv1 − (1 − p)v2

λ(2p − 1)
·

By some calculations, one can easily get that (4.15) is equivalent to

p ≤ max

{
1
2
,
1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]}
.

Furthermore, if v2 > v1 and p = 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then x̃3 = x̂. Since g(x̂) = g(x̃3) = 0, then we get

D1(x̂) = D1(x̃3) = 0. So x3 = x̃3.

Next, we prove case (ii). If p = 1
2 , then g(x) = 1

2 (v2 − v1)x. So (4.8) is equivalent to v2 ≥ v1.

On the other hand, if v2 = v1, then we get g(x) = 0 for all x. So the solution is x3.
Finally, by using the same method as for the proof of case (i), we can prove that case (iii) holds. The proof

of this lemma is complete. �

Similar to Lemma 4.2, we have the following.

Lemma 4.6. If a solution to h2

[
X0(y), y

]
= 0 between (1, y3] exists, then it is given by

v2

2λv1

[
−(λ + v2 − v1

)
+
√(

λ + v2 − v1

)2 + 4λv1

]
.
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Proof. It follows from (2.8) that

h2

[
X0(y), y

]
h2

[
X1(y), y

]
= λpv1y

3 + p(λ + v2)(v2 − v1)py2 + pv2

[
v1 − 2v2 − λ

]
y + pv2

2

= p(x − 1)
[
λv1y

2 + (λv2 + v2
2 − v1v2)y − v2

2

]
.

So the solutions to h2

[
X0(y), y

]
h2

[
X1(y), y

]
= 0 are

ỹ1 = 1,

ỹ2 =
v2

2λv1

[
− (λ + v2 − v1

)
+
√(

λ + v2 − v1

)2 + 4λv1

]
,

ỹ3 =
v2

2λv1

[
− (λ + v2 − v1

)−√(λ + v2 − v1

)2 + 4λv1

]
.

Set
F̂ (y) = λv1y

2 + (λv2 + v2
2 − v1v2)y − v2

2 .

It follows from (2.1) that F̂ (1) = λ(v1 + v2) − v1v2 < 0. So, we get

ỹ2 > 1. (4.16)

Using the same method as for the proof of Lemma 4.2, we can prove

ỹ ≤ y3. (4.17)

By (4.16) and (4.17), the lemma holds. �

Similar to Lemma 4.5, we have the following lemma.

Lemma 4.7. h2

[
X0(y), y

]
= 0 has a solution between (1, y3] if and only if λ < pv1.

Proof: We first prove the necessity. Since

b̃(y) = (1 − p)v2 −
[
λ + pv1 + (1 − p)v2

]
y,

we get

b̃(y) < 0 for y > 1 >
(1 − p)v2

λ + pv1 + (1 − p)v2
·

Therefore, for y ∈ (1, y3],

X0(y) =
−b̃(y) −√D2(y)

2ã(y)
. (4.18)

It follows from (2.8) and (4.18) that, for any y ∈ (1, y3],

2h2

[
X0(y), y

]
=
[
pv1 − λ − (1 + p)v2

]
y + (1 + p)v2 −

√
D2(y). (4.19)

Set
G(y) =

[
pv1 − λ − (1 + p)v2

]
y + (1 + p)v2.
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We assume pv1 ≤ λ. Then

(1 + p)v2

λ + (1 + p)v2 − pv1
≤ 1.

So, for any y ∈ (1, y3],

G(y) < 0. (4.20)

Noting that
√

D2(y) ≥ 0 for all y ∈ (1, y3], we get that equation (4.20) contradicts to the fact that there is
a solution to h1[x0(y), y] = 0 between (1, y3]. So pv1 > λ.

Next, we prove the sufficiency. In fact, from (4.19), we get that

2h2

[
X0(1), 1

]
= 2(pv1 − λ) > 0, (4.21)

and

2h2

[
X0(y3), y3

]
= G(y3).

If G(y3) ≤ 0, then it follows from (4.21) that the lemma holds.
Next, we assume G(y3) > 0. If there exists at least one point y0 between (1, y3) such that h2[X0(y0), y0] ≤ 0,

then, from (4.21), we can get that the lemma naturally holds. Next we assume that h2[X0(y), y] > 0 for all
y ∈ (1, y3). It follows from (2.8) and (4.18) that

h2

[
X1(y), y

]− h2

[
X0(y), y

]
= λy

[
X1(y) − X0(y)

]
=
√

D2(y) > 0,

since D2(y) > 0 for all y ∈ (1, y3). Therefore,

h2

[
X1(y), y

]
h2

[
X0(y), y

]
> 0. (4.22)

The equation (4.22) contradicts to the proof of Lemma 4.6. So the lemma holds. �
In order to study the detailed analytic properties of the functions π1(x) and π2(y), we need some technical

results for the functions Xi(y), i = 0, 1.

Lemma 4.8. Under the condition that pv1 ≥ λ, we have that

(1) if pv1 < (1 − p)v2, then 0 < X0(y) ≤ 1 for y ∈ (1, (1−p)v2
pv1

]
, and X1(y) ≥ 1 for y ∈ (1, (1−p)v2

pv1

]
;

(2) if pv1 ≥ (1 − p)v2, then X0(y) ≥ 1 for all y ∈ [1, y3].

Under the condition that pv1 < λ, we have that

X0(y) ≤ 1 for y ∈ (1, (1−p)v2
pv1

]
; X1(y) ≥ 1 for y ∈ (1, (1−p)v2

pv1

]
.

Proof. Noting

D2

(
(1 − p)v2

pv1

)
=
[
(1 − p)v2

pv1

]2 [
λ − (1 − p)v2

]2 ≥ 0,

we get from Lemma 3.1 that

y3 ≥ (1 − p)v2

pv1
≥ y2. (4.23)

For y ∈ (y2, y3], we have

X0(y) = − (1 − p)v2 −
[
λ + pv1 + (1 − p)v2

]
y +

√
D2(y)

2λy
(4.24)

One can easily get that for y ∈ (1, y3], X0(y) > 0.
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In order to prove the lemma, we need to determine the relationship between X0(y) and 1. By some calculations,
we get that it is equivalent to determine the relationship between F̃ (y) and 1, where

F̃ (y) = (1 − p)v2 +
[
λ − pv1 − (1 − p)v2

]
y.

In fact, we have that

X0(y) ≤ 1 ⇐⇒ (1 − p)v2 +
[
λ − pv1 − (1 − p)v2

]
y +

√
D2(y) ≥ 0, (4.25)

and

X0(y) ≥ 1 ⇐⇒ (1 − p)v2 +
[
λ − pv1 − (1 − p)v2

]
y +

√
D2(y) ≤ 0. (4.26)

From the condition in (2.1), we can get λ − pv1 − (1 − p)v2 < 0. Thus, we get

F̃ (y) ≥ 0 for y ≤ (1 − p)v2

pv1 + (1 − p)v2 − λ
· (4.27)

Next, we prove the first part of this lemma. We assume pv1 ≥ λ. In this case, we get that

(1 − p)v2

pv1 + (1 − p)v2 − λ
≤ 1. (4.28)

By (4.27) and (4.28), we get F̃ (y) ≤ 0 for all y > 1. Therefore, R.H.S of (4.25) and (4.26) are equivalent to

pv1y
2 − [pv1 + (1 − p)v2

]
y + (1 − p)v2 ≤ 0, (4.29)

and

pv1y
2 − [pv1 + (1 − p)v2

]
y + (1 − p)v2 ≥ 0,

respectively. By some calculations and (4.29), we get that (4.25) and (4.26) are equivalent to

min
{

1,
(1 − p)v2

pv1

}
≤ y ≤ max

{
1,

(1 − p)v2

pv1

}
,

and

min
{

1,
(1 − p)v2

pv1

}
≥ y, or y ≥ max

{
1,

(1 − p)v2

pv1

}
, (4.30)

respectively. From the above arguments, we get that

X0(y) ≤ 1 for y ∈
(

1,
(1 − p)v2

pv1

]
, if pv1 < (1 − p)v2,

and

X0(y) ≥ 1 for y ∈ (1, y3], if (1 − p)v2 ≤ pv1.

Next, we consider the second part of this lemma. We assume pv1 < λ. Under this condition, we get

(1 − p)v2

pv1 + (1 − p)v2 − λ
> 1. (4.31)
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On the other hand, from (2.1), we get

(1 − p)v2 > λ. (4.32)

Therefore, we have pv1 < (1 − p)v2. By (4.31) and (4.32), we get that

1 <
(1 − p)v2

pv1 + (1 − p)v2 − λ
<

(1 − p)v2

pv1
· (4.33)

It follows from (4.27) and (4.33) that

F̃ (y) ≥ 0 for y ∈
(

1,
(1 − p)v2

pv1 + (1 − p)v2 − λ

]
, (4.34)

and

F̃ (y) ≤ 0 for y ∈
(

(1 − p)v2

pv1 + (1 − p)v2 − λ
, y3

)
·

It follows from (4.34) that (4.25) holds for y ∈ (1, (1−p)v2
pv1+(1−p)v2−λ ].

For y ∈ ( (1−p)v2
pv1+(1−p)v2−λ , (1−p)v2

pv1
], by using the same method as in the case pv1 ≥ λ, we can prove that (4.25)

holds. From the above arguments, we can get that for any y ∈ (1, (1−p)v2
pv1

], X0(y) ≤ 1. It follows from (4.30)

that for any y ∈ [ (1−p)v2
pv1

, y3], X0(y) ≥ 1.

By using the same method as for the proof of results of X0(y), we can prove that the results for X1(y) also
hold. �

Remark 4.9. From the proof of Lemma 4.8, we get that (1−p)v2
pv1

is one of branch points if and only if λ =

(1 − p)v2. Furthermore, if it happens, then pv1 > λ. Therefore, pv1 > (1 − p)v2. So y2 = (1−p)v2
pv1

< 1.

Next, we study some properties of Y0(x) and Y1(x).

Lemma 4.10.

(i) If λ < pv1, then 0 < Y0(x) ≤ 1, and Y1(x) ≥ 1 for x ∈ (1, pv1
λ ].

(ii) If λ ≥ pv1, then Y0(x) ≥ 1 for x ∈ (1, x3].

Proof: First, we note that

D1

(pv1

λ

)
=

p2v2
1

λ2

[
λ − (1 − p)v2

]2
λ

≥ 0. (4.35)

Therefore, by Lemma 3.1 and equation (4.35), we get

pv1

λ
≤ x3. (4.36)

It follows from (4.10) that for any x ∈ (1, x3]

Y0(x) =
−b(x) −√D1(x)

2pv1
· (4.37)

By (4.37), one can easily get

Y0(x) > 0.
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In order to prove Y0(x) ≤ 1, we only need to show that for all x ∈ (1, x3][
λ + pv1 + (1 − p)v2

]
x − λx2 − 2pv1 ≤

√
D1(x). (4.38)

Set

Q̃(x) =
[
λ + pv1 + (1 − p)v2

]
x − λx2 − 2pv1.

We have that for all x ∈ [q1, q2],

Q̃(x) ≥ 0, (4.39)

where

q1 =

[
λ + pv1 + (1 − p)v2

]−√[λ + pv1 + (1 − p)v2

]2 − 8λpv1

2λ
,

and

q2 =

[
λ + pv1 + (1 − p)v2

]
+
√[

λ + pv1 + (1 − p)v2

]2 − 8λpv1

2λ
·

Next, we prove part (i) of this lemma. Based on the relationship between pv1 and (1−p)v2, we split the proof
into two parts, i.e., pv1 ≥ (1 − p)v2 and pv1 < (1 − p)v2, respectively.

Part 1. We assume pv1 ≥ (1 − p)v2. In this case, we get

q1 ≥ 1. (4.40)

In order to prove the lemma, we need to consider the relationship between (1 − p)v2 and λ. We first assume
that (1 − p)v2 ≥ λ. Then one can easily get

q2 ≥ pv1

λ
· (4.41)

It follows from (4.40) and (4.41) that for x ∈ (1, q1],

Q̃(x) ≤ 0, (4.42)

and for x ∈ [q1,
pv1
λ ],

Q̃(x) ≥ 0. (4.43)

By Lemma 3.1 and equation (4.42), we get that (4.38) holds for x ∈ (1, q1].
For x ∈ [q1,

pv1
λ ], in order to prove (4.38), we only need to prove

Q̃2(x) ≤ D1(x). (4.44)

One can easily get that (4.44) is equivalent to

(λ + pv1)x − λx2 − pv1 ≥ 0. (4.45)

Hence, (4.45) is equivalent to

1 ≤ x ≤ pv1

λ
· (4.46)

From the above arguments, we get that the lemma holds under the assumption (1 − p)v2 ≥ λ.
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Next, we assume (1− p)v2 < λ. In this case, we first assume pv1 > (1− p)v2 +λ. Then q2 > pv1
λ . So, by using

the same method as above, we can prove that the lemma holds.
Below, we assume pv1 ≤ (1 − p)v2 + λ. Then one can easily get that

q2 <
pv1

λ
· (4.47)

By (4.39), (4.40) and (4.47), we get that

Q̃(x) ≤ 0, for x ∈ (1, q1] ∪ [q2, y3]. (4.48)

By (4.48), we get that (4.38) holds for x ∈ (1, q1] ∪ [q2, y3].
On the other hand, it follows from (4.39) that if x ∈ [q1, q2], then Q̃(x) ≥ 0. Hence, we can use a similar

method to that for the case (1 − p)v2 > λ to prove the lemma.

Part 2. We assume pv1 < (1 − p)v2. Since (1 − p)v2 > pv1 > λ, one can easily get that

q2 ≥ pv1

λ
, (4.49)

and

q1 < 1. (4.50)

By (4.23), (4.49) and (4.50), for x ∈ (1, pv1
λ ], we have

Q̃(x) ≥ 0. (4.51)

Then, by using the same method as in the case (1 − p)v2 > λ, the lemma holds.
Next, we prove case (ii) of this lemma. It follows from (2.1) that λ < (1 − p)v2. Therefore,

(1 − p)v2 > pv1. (4.52)

It follows from (4.40) and (4.52) that

q1 ≤ 1 ≤ q2. (4.53)

On the other hand, we have

D2(q2) = pv1

{
λ + pv1 − 3(1 − p)v2 −

√
(λ + pv1 + (1 − p)v2)2 − 8λpv1

}
.

Since (1 − p)v2 > pv1 and (1 − p)v2 > λ,

D1(q2) < 0. (4.54)

It follows from Lemma 3.1 and (4.54) that

x3 < q2. (4.55)

By (4.23), (4.53) and (4.55), we get that for all x ∈ (1, x3],

Q̃(x) ≥ 0. (4.56)

In order to prove Y0(x) ≥ 1, it is sufficient to prove

(λ + pv1 + (1 − p)v2)x − λx2 − 2pv1 ≥
√

D1(x). (4.57)
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One can easily get that (4.57) is equivalent to

(λ + pv1)x − λx2 − pv1 ≤ 0. (4.58)

(4.58) is equivalent to

x ≤ pv1

λ
or x ≥ 1, (4.59)

since pv1
λ < 1. By (4.53), (4.55), (4.57) and (4.59), the lemma holds in this case.

From the above arguments, we proved that the lemma holds for Y0.
Using similar arguments, we can prove the results for Y1(x). �

Remark 4.11. From the proof of Lemma 4.10, x3 = pv1
λ if and only if λ = (1 − p)v2.

It follows from Lemma 4.1 that the zero of h2

[
X0

(
Y0(x)

)
, Y0(x)

]
is important in the study of asymptotics.

Next lemma studies it.

Lemma 4.12. h2[X0

(
Y0(x)

)
, Y0(x)] = 0 has no solution between (1, x3] with Y0(x) > 1.

Proof. By (4.9), we get that for x ∈ (1, x3], 0 < Y0(x) ≤ Y1(x). We assume that the lemma would not hold,
i.e., there were a solution x̃ between (1, x3] with

Y0(x̃) > 1. (4.60)

Let ỹ = Y0(x̃). Then x̃ = X0(ỹ), or x̃ = X1(ỹ). Since

h2

[
X0

(
ỹ
)
, ỹ
]

= 0, (4.61)

we get from Lemma 4.7 that

λ < pv1, (4.62)

and

ỹ =
v2

2λv1

[
−(λ + v2 − v1

)
+
√(

λ + v2 − v1

)2 + 4λv1

]
. (4.63)

Now, we assume x̃ = X1(ỹ). Let x∗ = X0(ỹ). It follows from (4.61) that

x∗ =
λ + v2

λ
− v2

λỹ
· (4.64)

On the other hand, we have that

x̃ + x∗ = X1(ỹ) + X0(y∗) = − ã(ỹ)
b̃(ỹ)

=
λ + pv1 + (1 − p)v2

λ
− (1 − p)v2

λỹ
· (4.65)

By (4.64) and (4.65),

x̃ =
λ + pv1 + (1 − p)v2

λ
− (1 − p)v2

λỹ
− X0(ỹ)

=
p

λ

[
v1 − v2 +

v2

ỹ

]
· (4.66)
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Therefore,

x̃ =
p

λ

[
λ + v2 − v1 +

√
(λ + v2 − v1)2 + 4λv1

2
+ v1 − v2

]
. (4.67)

Since λ(v1 + v2) < v1v2, we get that

x̃ = X1(ỹ) <
pv1

λ
· (4.68)

Similarly, if x̃ = X0(ỹ), then we can also get

x̃ <
pv1

λ
, (4.69)

since 0 < X0(y) ≤ X1(y) for y ∈ (1, y3]. It follows from (4.62), (4.68), (4.69) and Lemma 4.10 that

Y0(x̃) < 1, (4.70)

which contradicts to (4.60). Therefore the lemma holds. �

Remark 4.13. In this section, we mainly located the dominant singularities of the two unknown functions
π1(x) and π2(y). However, this is not easy. In fact, in order to reach our aim, we first found all possible
candidates for the dominant singularities. Next, we studied the relation during these candidates based on the
model parameters p, λ, v1 and v2. Then, we studied the existence and uniqueness of the dominant singularities.
Finally, we determined the locations of these dominant singularities based on the model parameters p, λ, v1

and v2.

5. Tail asymptotics for boundary probabilities

In this section, we provide exact tail asymptotic properties in boundary probabilities. The characterization
is based on the asymptotic analysis in Section 4 and the Tauberian-like theorem in Flajolet and Sedgewick [15].

Since π1(x) and π2(y) are symmetric, properties for π2(y) can be easily obtained by the counterpart properties
for π1(x). Therefore, tail asymptotics for the boundary probabilities π0,n can be directly obtained by symmetry.
Hence, in this section, we only study tail asymptotics for the boundary probabilities πn,0.

If h1

[
x, Y0(x)

]
has a zero in (1, x3], then such a zero is unique. Recall from Lemma 4.2 that the unique

solution x∗ is given by

x∗ =
λ + v1 + v2 −

√
(λ + v1 + v2)2 − 4v1v2

2λ

or x∗ = x3. If h1

[
x, Y0(x)

]
does not have a zero in (1, x3], then, for convenience, let x∗ > x3.

In order to locate the dominant singularity, we need to study the relationship between x∗ and x3.

Lemma 5.1.

(i) If p < 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then x∗ < x3.

(ii) If p > 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then x3 < x∗.

(ii) If p = 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then x3 = x∗.
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Proof. We first prove the first part of this lemma. We split the proof into three parts. We first assume v2 > v1.
In such case, we get

1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
>

1
2
· (5.1)

Then it follows from Lemma 4.5 that x∗ is the solution to h1

[
x, Y0(x)] = 0 and

x∗ < x3. (5.2)

Next, we assume v1 > v2. Then

1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
<

1
2
·

It follows from Lemma 4.5 that x∗ is the solution to h1

[
x, Y0(x)] = 0 and

x∗ < x3. (5.3)

Finally, we assume v1 = v2. Then

1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
=

1
2
·

So p < 1
2 . It follows from Lemma 4.5 that x∗ is the solution to h1

[
x, Y0(x)] = 0 and

x∗ < x3. (5.4)

By (5.1), (5.3) and (5.4), case (i) holds.
Using the same method as for the proof of case (i), we can prove that cases (ii) and (iii) hold. We complete

the proof. �

The following lemma shows the asymptotic behavior of π1(x) at the dominant singularity.

Lemma 5.2. For the function π1(x), one and only one of the following three types of asymptotics is true.

(i) If p < 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then

lim
x→x∗

(
1 − x

x∗

)
π1(x) = C1(x∗), (5.5)

where

C1(x) =

{
h2

[
x, Y0(x)

]
π2

[
Y0(x)

]
+ h0

[
x, Y0(x)

]
π0,0

}
h1

[
x, Y1(x)

]
p

λ2(1 − p)x2(x − 1)(x̃4 − x)
.

(ii) If p > 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then

lim
x→x3

√
1 − x

x3
π′

1(x) = C2(x3),

where

C2(x3) =
∂H(x, y)

∂y
|(x3,Y0(x3))

q(x3)
2
√

x3

with q(x) being given by (5.12) below.
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(iii) If p = 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then

lim
x→x3

√
1 − x

x3
π1(x) = C3(x3), (5.6)

where

C3(x3) =
[
h2

[
x3, Y0(x3)

]
π2

[
Y0(x3)

]
+ h0

[
x3, Y0(x3)

]
π0,0

]√−X ′′
1

[
Y0(x3)

]
v1

√
2

·

Proof. First, it follows from (3.8) that

π1(x) = −h2

[
x, Y0(x)

]
π2

[
Y0(x)

]
+ h0

[
x, Y0(x)

]
π0,0p

h1

[
x, Y0(x)

] · (5.7)

Below, we prove these three cases separately. We first look at case (i).

Case (i). It follows from Lemma 5.1 that

x∗ < x3. (5.8)

From Lemma 4.1, we get that x∗ is a pole of π1(x). By (4.3) and (4.4), we get

h1

[
x, Y0(x)

]
h1

[
x, Y1(x)

]
= λ2(1 − p)x(x − 1)(x − x̃3)(x − x̃4). (5.9)

By (3.8), (5.7) and (5.9), we get

π1(x) = −
{
h2

[
x, Y0(x)

]
π2

[
Y0(x)

]
+ h0

[
x, Y0(x)

]
π0,0

}
h1

[
x, Y1(x)

]
h1

[
x, Y0(x)

]
h1

[
x, Y1(x)

] · (5.10)

It follows from (5.7), (5.9) and (5.10) that

lim
x→x∗

(1 − x

x∗
)π1(x) = C1(x∗).

Case (ii). It follows from Lemma 5.1 that x3 < x∗. In order to simplify the discussion, we set

H(x, y) =
h2(x, y)π2(y) + h0(x, y)π0,0

−h1(x, y)
·

Then, by (3.8), we get that

π′
1(x) =

∂H(x, y)
∂x

+
∂H(x, y)

∂y

∂Y0(x)
∂x

·

On the other hand, it follows from Lemma 3.1 that

D1(x) = λ2x(x − x2)(x3 − x)(x4 − x).

So, it follows from (4.10) that for all x ∈ (1, x3],

Y0(x) =
−b(x)
2pv1

− λ

√
x(x − x2)(x4 − x)

√
(x3 − x)

2pv1

= p(x) + q(x)
√

(x3 − x), (5.11)
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where

q(x) = −λ
√

x(x − x2)(x4 − x)
2pv1

(5.12)

and
p(x) =

−b(x)
2pv1

·

Therefore, by (5.11), we get that

∂Y0(x)
∂x

= p′(x) + q′(x)
√

(x3 − x) +
q(x)

2
√

(x3 − x)
·

It is obvious that p′(x) and q′(x) are continuous at x3. Therefore,

lim
x→x3

√
1 − x

x3

∂Y0(x)
∂x

=
q(x3)
2
√

x3
· (5.13)

Since ∂H(x,y)
∂y is continuous at the point (x3, Y0(x3)), we get that

lim
x→x3

∂H(x, y)
∂y

=
∂H(x, y)

∂y
|(x3,Y0(x3)).

Finally, one can easily get

lim
x→x3

√
1 − x

x3

∂H(x, y)
∂x

= 0. (5.14)

By (5.13) and (5.14), we get that

lim
x→x3

√
1 − x

x3
π′

1(x) =
∂H(x, y)

∂y
|(x3,Y0(x3))

q(x3)
2
√

x3
·

We notice that C2(x3) = ∂H(x,y)
∂y |(x3,Y0(x3))

q(x3)
2
√

x3
cannot be zero, since x3 is a branch point of Y0(x).

Case (iii). It follows from Lemma 5.1 that x∗ = x3. So h1

[
x∗, Y0(x∗)

]
= 0 and D1(x∗) = 0. Therefore, we have

that h1

[
x, Y0(x)

]
= h1

[
x, Y0(x)

]− h1

[
x∗, Y0(x∗)

]
. By (3.8), we get that√

(1 − x

x∗
)π1(x) =

[
h2

[
x, Y0(x)

]
π2

[
Y0(x)

]
+ h0

[
x, Y0(x)

]
π0,0

]
√

x∗

√
x∗ − x

h1

[
x∗, Y0(x∗)

]− h1

[
x, Y0(x)

] ·
Let ỹ = Y0(x3). It is obvious that when x is sufficiently close to x3, we have X1

[
Y0(x)

]
= x. Since X1(y) is

analytic at ỹ and X ′
1(ỹ) = 0, by the Taylor expansion, we get that

X1(y) = X1(ỹ) + X ′′
1 (ỹ)(y − ỹ)2 + o(|y − ỹ|2)

= x3 + X ′′(ỹ)
[
y − Y0(x3)

]2 + o(|y − ỹ|2). (5.15)

Taking y = Y0(x) in the equation (5.15), where x is sufficiently close to x3, we get that

x = x3 + X ′′(ỹ)
[
Y0(x) − Y0(x3)

]2 + o(|y − ỹ|2). (5.16)

On the other hand, since X1(y) is concave, we get X ′′
1 (ỹ) < 0. It follows from (5.16) that

lim
x→x3

Y0(x3) − Y0(x)√
x3 − x

=
√

2√
−X ′′

1

[
Y0(x3)

] , (5.17)
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and

lim
x→x3

Y0(x) = Y0(x3). (5.18)

Moreover, it follows from the expression of h1(x, y) that

h1

[
x3, Y0(x3)

]− h1

[
x, Y0(x)

]
=
[
b(x3) − b(x)

]
+ v1

[
Y0(x3) − Y0(x)

]
. (5.19)

Finally, we have that

lim
x→x∗

[h1

[
x3, Y0(x3)

]− h1

[
x, Y0(x)

]
√

x3 − x
=

v1

√
2√

−X ′′
1

[
Y0(x3)

] · (5.20)

By (5.15), (5.19) and (5.20), we get that

lim
x→x3

√(
1 − x

x3

)
π1(x) = C3(x3). (5.21)

�

From Lemma 5.2 and the Tauberian-like theorem, we get the following exact tail asymptotics for the boundary
probabilities πn,0.

Theorem 5.3. We have the following tail asymptotic properties for the boundary probabilities πn,0 for large n.
In all cases, Ci(x), i = 1, 2, 3, are given in Lemma 5.2.

(i) If p < 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then

πn,0 ∼ C1(x∗)
(

1
x∗

)n−1

· (5.22)

(ii) If p > 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then

πn,0 ∼ C2(x3)√
π

n− 3
2

(
1
x3

)n−1

· (5.23)

(iii) If p = 1
2

[
1 + v2−v1

λ+
√

(λ+1)2−4v1v2

]
, then

πn,0 ∼ C3(x3)√
π

n− 1
2

(
1
x3

)n−1

· (5.24)

6. Tail asymptotics for marginal distributions

In the preceding section, we have seen the asymptotic behavior of the boundary probabilities πn,0. In this
section, we use these results to study tail asymptotics for the marginal distribution π

(1)
n , where

π(1)
n =

∑
j=1

πn,j .
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It follows from the fundamental form (2.5) that

π(x, 1) =
h1(x, 1)π1(x) + h2(x, 1)π2(1) + h0(x, 1)π0,0

−h(x, 1)
· (6.1)

By (2.6) and (3.4), we get that

π(x, 1) =
h1(x, 1)π1(x) + h2(x, 1)π2(1) + h0(x, 1)π0,0

−λ
[
x − X0(1)

][
x − X1(1)

] · (6.2)

On the other hand, from the definitions of X0 and X1, we have that

(i) if pv1 > λ, then

X0(1) = 1, and X1(1) =
pv1

λ
; (6.3)

(ii) if pv1 ≤ λ, then

X0(1) =
pv1

λ
, and X1(1) = 1. (6.4)

Hence, if pv1 ≤ λ, then it follows from (6.2) and (6.4) that π
(1)
n has the same tail asymptotics as πn,0. The only

difference is the expression for the coefficient, which can be obtained from straightforward calculations.
Next, we consider the case pv1 > λ. Before we state our theorem, we need the following lemmas.

Lemma 6.1.

(i)

λ + 1 −√(λ + 1)2 − 4v1v2

2v1
> v2, (6.5)

and

v2 − λ

v2
> v2. (6.6)

(ii) If v2 > v1, then

(λ + 1) −√(λ + 1)2 − 4v1v2

2v1
>

1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
, (6.7)

v2 − λ

v2
>

1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
, (6.8)

and

1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
> v2. (6.9)

(iii) If v2 < v1, then

1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
< v2. (6.10)
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Proof. We first prove (6.5). We note that (6.5) is equivalent to

λ + 1 −
√

(λ + 1)2 − 4v1v2 > 2v1v2,

i.e.,

(λ + 1 − 2v1v2)2 > (λ + 1)2 − 4v1v2. (6.11)

By some calculations, we get that (6.11) is equivalent to

λ < v1v2. (6.12)

It follows from (2.1) that (6.12) holds.
In order to prove (6.6), we only need to prove

v2 − v2
2 > λ. (6.13)

Since v1 + v2 = 1, (6.13) is equivalent to

v1v2 > λ. (6.14)

It follows from (2.1) that (6.14) holds.
Next, we prove (6.7). By using v1 + v2 = 1, one can get that (6.7) is equivalent to

v2

√
(λ + 1)2 − 4v1v2 − (1 + v1)λ > v2

2 − v1v2. (6.15)

In order to prove (6.15), we set

f(λ) = v2

√
(λ + 1)2 − 4v1v2 − (1 + v1)λ.

Noting that 0 < λ < v1v2, we get that

f(0) = v2

√
1 − 4v1v2 = v2(v2 − v1), (6.16)

and

f(v1v2) = v2
2 − v1v2, (6.17)

since v2 > v1.
On the other hand, we have that

f ′(λ) =
v2√

1 − 4v1v2
(λ+1)2

− (1 + v1),

and

f ′(v1v2) =
(v1v2 + 1)v2

1 − v1v2
− (1 + v1). (6.18)

Next, we prove

(v1v2 + 1)v2

1 − v1v2
< (1 + v1). (6.19)
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Indeed, (6.19) is equivalent to

v2 + 2v1v2 < v1 + 1. (6.20)

Since v1 + v2 = 1, (6.20) is equivalent to v2 < 1. So, f ′(v1v2) < 0. On the other hand, we have

f ′(0) =
v2

v2 − v1
− (1 + v1),

since v2 > v1. One can easily get

f ′(0) > 0. (6.21)

By (6.18), (6.21) and the fact that f ′(λ) is decreasing in λ, we get that f ′(λ) ≥ 0 for λ ∈ (0, λ0] and f ′(λ) ≤ 0
for λ ∈ (λ0, v1v2) with λ0 ∈ (0, v1v2). Therefore, f(λ) is increasing on (0, λ0] and decreasing on (λ0, v1v2). So,
by (6.16) and (6.17), we get that (6.7) holds.

Next, we prove (6.8). In order to simplify the discussion, we set

g(λ) =
v2 − λ

v2
and G(λ) =

1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
·

Therefore, we have that

g(0) = 1 and g(v1v2) =
v2 − v1v2

v2
= v2, (6.22)

and

G(0) = 1 and g(v1v2) = v2. (6.23)

Since G(λ) and g(λ) have at most two intersection points, we get from (6.22) and (6.23) that (6.8) holds.
Next, we show (6.10). Note that (6.10) is equivalent to

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

< v2 − v1. (6.24)

Since v2 < v1, (6.24) is equivalent to

λ +
√

(λ + 1)2 − 4v1v2 < 1 − λ. (6.25)

By some calculations, one can get that (6.25) is equivalent to

λ < v1v2. (6.26)

It follows from (2.1) that (6.26) holds.
By using a similar proof for (6.10), we can prove that (6.9) holds. We complete the proof. �

To locate the dominant singularity, the next lemma states the relationship among x∗, x3 and pv1
λ .

Lemma 6.2. Suppose that pv1
λ > 1.

(i) If p = v2−λ
v2

, then
pv1

λ
= x3 < x∗.
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(ii) If p �= v2−λ
v2

, then
pv1

λ
< min{x3, x∗}.

Proof. In order to prove this lemma, we first note the following fact:

pv1

λ
<

λ + 1 −√(λ + 1)2 − 4v1v2

2λ
⇐⇒ p <

(λ + 1) −√(λ + 1)2 − 4v1v2

2v1
· (6.27)

In order to simplify the discussion, set

x̂ =
1
2

[
1 +

v2 − v1

λ +
√

(λ + 1)2 − 4v1v2

]
.

We split the proof of this lemma into three parts based on the relationship between p and 1
2 .

Case (i). p > 1
2 . Under this assumption, we further split the proof into three parts based on the relationship

between v1 and v2.

(1) v2 < v1. In this case, we get 1
2 > x̂. Then, it follows from Lemma 4.5 and (4.36) that

x∗ > x3, (6.28)

and

pv1

λ
≤ x3, (6.29)

where the equality holds if and only if p = v2−λ
v2

. By (6.28) and (6.29), the lemma holds in this case.
(2) v2 > v1. In this case, we get x̂ > 1

2 . We first assume p ≤ x̂. It follows from Lemma 4.5 that

x∗ ≤ x3. (6.30)

By (6.8), we get that p �= v2−λ
v2

. It follows from Remark 4.11 that pv1
λ < x3. So, in order to prove the lemma,

we only need to show

pv1

λ
< x∗. (6.31)

By (6.7) and (6.27), (6.31) holds. By (6.30) and (6.31), the lemma holds in this case.
Next, we assume p > x̂. It follows from Lemma 4.5 that

x∗ > x3. (6.32)

If p = v2−λ
λ , then it follows from Remark 4.11 that

pv1

λ
= x3. (6.33)

So, we have x∗ > pv1
λ = x3. If p �= v2−λ

λ , then it follows from (6.32) and Remark 4.11 that

pv1

λ
< min{x3, x∗}. (6.34)

Therefore, by (6.32), (6.33) and (6.34), the lemma holds in this case.
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(3) v2 = v1. We have x̂ = 1
2 . So it follows from Lemma 4.5 that

x∗ > x3. (6.35)

On the other hand, in such a case, we have

p �= v2 − λ

v2
· (6.36)

Indeed, if (6.36) would not hold, then we get

2λ = v2. (6.37)

It follows from (2.1) and (6.37) that v1 > 2λ. It contradicts to the assumption v1 = v2. It follows from
Remark 4.11 and (6.36) that

pv1

λ
< x3. (6.38)

It follows from (6.35) and (6.38) that the lemma holds.

Case (ii). p = 1
2 . We still split the proof into three cases.

(1) v1 = v2. In this case, it follows from Lemma 4.5 that

x∗ = x3. (6.39)

It follows from Remark 4.11 and (6.36) that

pv1

λ
< x3. (6.40)

By (6.7) and (6.27), we get pv1
λ < x∗. Therefore, by (6.39) and (6.40), in this case, the lemma holds.

(2) v1 < v2. It follows from (6.36) and Remark 4.11 that pv1
λ < x3. On the other hand, by Lemma 4.6, we get

that x∗ < x3. Using a similar method to (6.34), we can show the lemma in this case.
(3) v1 > v2. It follows from Lemma 4.6 that x∗ > x3. By using a similar method in the proof for case (i)−(1),

we can show the lemma in this case.

Case (iii). p < 1
2 . We can use a similar method to the proof for the case p > 1

2 to prove the lemma in this
case. �

The following lemma shows the asymptotic behavior of π(x, 1) at the dominant singularity.

Lemma 6.3. For the function π(x, 1), we have the following asymptotics, as x approaches to a dominant
singularity of π(x, 1). In all cases, Ci(x), i = 1, 2, 3, are given in Lemma 5.2.
Case 1. pv1 ≤ λ:

(i) If p < 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then

lim
x→x∗

(
1 − x

x∗

)
π(x, 1) =

h1(x∗, 1)C1(x∗)
λ
(
x∗ − pv1

λ

)
(1 − x∗)

·

(ii) If p > 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then

lim
x→x3

√(
1 − x

x3

)
π′(x, 1) =

h1(x3, 1)C2(x3)
−λ
(
x3 − pv1

λ

)
(x3 − 1)

·
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(iii) If p = 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then

lim
x→x3

√(
1 − x

x3

)
π(x, 1) =

h1(x3, 1)C3(x3)
λ
(
x3 − pv1

λ

)
(1 − x3)

·

Case 2. pv1 > λ:

(i) If p = v2−λ
v2

, then

lim
x→x3

(1 − x

x3
)π(x, 1) =

h1(x3, 1)π1(x3) + h2(x3, 1)π2(1) + h0(x3, 1)π0,0

λ
[
x3 − 1

]
x3

· (6.41)

(ii) If p �= v2−λ
v2

, then

lim
x→ pv1

λ

(1 − λ

pv1
x)π(x, 1) =

h1(pv1
λ , 1)π1(pv1

λ ) + h2(pv1
λ , 1)π2(pv1

λ ) + h0(pv1
λ , 1)π0,0(

pv1
λ − 1

)
pv1

· (6.42)

Proof.
Case 1-(i). In this case, it follows from Lemma 5.1 that pv1

λ ≤ 1 < x∗ < x3. By (6.4), we get that h(x, 1) is
continuous at x∗. Therefore, by (5.5) and (6.1), we get that

lim
x→x∗

(1 − x

x∗
)π(x, 1) =

h1(x∗, 1)C1(x∗)
−h(x∗, 1)

, (6.43)

since hi(x, 1), i = 0, 1, 2, are continuous at x∗.
Case 1-(ii). It follows from Lemma 5.1 that pv1

λ ≤ 1 < x3 < x∗. In order to simplify the discussion, let
ỹ = Y0(x3). Then, we can get that π2(y) is analytic at ỹ.

By the Taylor expansion, we get that

π2(y) = π2(ỹ) + π′
2(ỹ)

(
y − ỹ

)
+ o(|y − ỹ|). (6.44)

It follows from (5.17) that

Y0(x3) − Y0(x) =
√

2√
−X ′′

1

[
Y0(x3)

] (x3 − x)
1
2 + 0

(
|x3 − x| 12

)
. (6.45)

By (5.17) and (6.45), we get that

π2

[
Y0(x)

]
= π2

[
Y0(x3)

]− π′
2

[
Y0(x3)

] √
2√

−X ′′
1

[
Y0(x3)

] (x3 − x)
1
2 + o

(
|x3 − x| 12

)
.
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On the other hand, we have that

π1(x) − π1(x3) =
−h2

(
x, Y0(x)

)
π2

(
Y0(x)

)− h0

(
x, Y0(x)

)
π0,0

h1

(
x, Y0(x)

) − π1(x3)

=
−h2

[
x, Y0(x)

][
π2

(
Y0(x)

) − π2

(
Y0(x3)

)]
h1

[
x, Y0(x)

]
+

π2

[
Y0(x3)

][
h2

[
x3, Y0(x3)

]− h2

[
x, Y0(x)

]]
h1

[
x, Y0(x)

]
+

π0,0

[
h0

[
x3, Y0(x3)

]− h0

[
x, Y0(x)

]]
h1

[
x, Y0(x)

]
+

h2

[
x3, Y0(x3)

]
π2

[
Y0(x3)

]
h1

[
x, Y0(x)

]
h1

[
x3, Y0(x3)

][h1

[
x, Y0(x)

]− h1

[
x3, Y0(x3)

]]

+
h0

[
x3, Y0(x3)

]
π0,0

h1

[
x, Y0(x)

]
h1

[
x3, Y0(x3)

][h1

[
x, Y0(x)

]− h1

[
x3, Y0(x3)

]]
. (6.46)

Following (2.7)−(2.9) and (4.37),

lim
x→x3

h2

[
x3, Y0(x3)

]− h2

[
x, Y0(x)

]
√

x3 − x
= lim

x→x3

λ
[
x3Y0(x3) − xY0(x)

]
√

x3 − x

+ lim
x→x3

(λ + v2)
[
Y0(x3) − Y0(x)

]
√

x3 − x
· (6.47)

Moreover,

x3Y0(x3) − xY0(x) = x3

[
Y0(x3) − Y0(x)

]
+ [x3 − x]Y0(x). (6.48)

It follows from (5.18), (6.46)−(6.48) that

lim
x→x3

h2

[
x3, Y0(x3)

]− h2

[
x, Y0(x)

]
√

x3 − x
=

(λ + v2 + λx3)
√

2√
−X ′′

1

[
Y0(x3)

] · (6.49)

Furthermore, we have

lim
x→x3

h0

[
x3, Y0(x3)

]− h0

[
x, Y0(x)

]
√

x3 − x
= 0. (6.50)

By Lemma 3.4, (5.17), (5.18), (6.46), (6.49) and (6.50), we get

lim
x→x3

π1(x) = π1(x3). (6.51)

Noting that hi(x, 1), i = 0, 1, 2, are continuous, we get that

lim
x→x3

√
1 − x

x3
π′(x, 1) =

h1(x3, 1)C2(x3)
−λ(x3 − pv1

λ )(x3 − 1)
.

Case 1-(iii). It follows from Lemma 5.1 that pv1
λ ≤ 1 < x∗ = x3. It follows from (5.6) and (6.4) that

lim
x→x3

√
1 − x

x3
π(x, 1) =

h1(x3, 1)C3(x3)
−h(x3, 1)

, (6.52)
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since h(x, 1) and hi(x, 1), i = 0, 1, 2, are continuous at x3.

Case 2-(i). In this case, it follows from Lemma 6.1 that pv1
λ = x3 < x∗. By (6.2) and (6.51), we can get

that (6.41) holds.

Case 2-(ii). In this case, it follows from Lemma 6.1 that pv1
λ < min{x∗, x3}. Then, using the same method as

for the proof of case (i) in Lemma 5.2, we can prove that (6.42) holds. �

The following theorem is a direct consequence of Lemma 6.3 and the Tauberian-like theorem.

Theorem 6.4. We have the following exact tail asymptotics for the marginal distribution π
(1)
n . In all cases,

Ci(x), i = 1, 2, 3, are given in Lemma 5.2.

Case 1. pv1 ≤ λ:

(i) If p < 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then

π(1)
n ∼ h1(x∗, 1)C1(x∗)

λ(x∗ − pv1
λ )(1 − x∗)

(
1
x∗

)n−1

· (6.53)

(ii) If p > 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then

π(1)
n ∼ h1(x3, 1)C2(x3)

−λ(x3 − pv1
λ )(x3 − 1)

√
π

n− 3
2

(
1
x3

)n−1

·

(iii) If p = 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then

π(1)
n ∼ h1(x3, 1)C3(x3)

λ(x3 − pv1
λ )(1 − x3)

√
π

n− 1
2

(
1
x3

)n−1

· (6.54)

Case 2. pv1 > λ:

(i) If p = v2−λ
v2

, then

π(1)
n ∼ h1(x3, 1)π1(x3) + h2(x3, 1)π2(1) + h0(x3, 1)π0,0

λ
[
x3 − 1

]
x3

(
1
x3

)n−1

·

(ii) If p �= v2−λ
v2

, then

π(1)
n ∼ h1(pv1

λ , 1)π1(pv1
λ ) + h2(pv1

λ , 1)π2

(
pv1
λ

)
+ h0(pv1

λ , 1)π0,0(
pv1
λ − 1

)
pv1

(
λ

pv1

)n−1

· (6.55)

7. Tail asymptotics for joint probabilities

In the preceding two sections, we have derived exact asymptotic properties for the boundary probabilities
and for the marginal distributions. In this section, we provide details for exact tail asymptotic characterization
in the joint probabilities πm,n for any fixed n ≥ 1. Parallel results for any fixed m ≥ 1 can be proved.

In order to simplify the notation, we set for j ≥ 0

φj(x) =
∞∑

i=1

πi,jx
i−1.
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Using the relevant balance equations of the random walk, we get that

c(x)φ1(x) + b1(x)φ0(x) = a∗
0(x), (7.1)

c(x)φ2(x) + b(x)φ1(x) + a1(x)φ0(x) = a∗
1(x), (7.2)

c(x)φj+1(x) + b(x)φj(x) + a(x)φj−1(x) = a∗
j (x), for j ≥ 2, (7.3)

where

a∗
0(x) = −c2(x)π0,1 − b0(x)π0,0,

a∗
1(x) = −c2(x)π0,2 − b2(x)π0,1 − a0(x)π0,0,

a∗
j (x) = −c2(x)π0,j+1 − b2(x)π0,j − a2(x)π0,j−1.

It follows from (7.3) that

φj+1(x) =
−b(x)φj(x) − a(x)φj−1(x) + a∗

j (x)
(1 − p)v2x

· (7.4)

By (7.4), we get that φj(x) has the same singularities as φ0(x) and

lim
x→x3

φj(x) = φj(x3). (7.5)

Theorem 7.1. We have the following exact tail asymptotics for the joint probabilities πn,j. In all cases, Ci(x),
i = 1, 2, 3, are given in Lemma 5.2.

(i) If p < 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then for j ≥ 1

πn,j ∼ Lj(x∗)
(
x∗
)1−n

, (7.6)

where

Lj(x∗) = −C1(x∗)b1(x∗)
c(x∗)

(
Y1(x∗)

)1−j

.

(ii) If p > 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then for j ≥ 1

πn,j ∼ L̂j(x3)n− 3
2
(
x3

)1−n
, (7.7)

where

L̂j(x3) = −C2(x3)
b1(x3) + (j − 1)h1

[
x3, Y0(x3)

]
c(x3)

√
π

[
Y1(x3)

]1−j
.

(iii) If p = 1
2

[
1 + v2−v1√

(λ+1)2−4v1v2+λ

]
, then for j ≥ 1

πn,j ∼ L̃j(x∗)n− 1
2
(
x∗
)1−n

, (7.8)

where

L̃j(x∗) = −C3(x∗)b(x∗)
c(x∗)

√
π

·
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Proof.
Case (i). In this case, it follows from Lemma 5.2 that

lim
x→x∗

(1 − x

x∗
)π1(x) = lim

x→x∗

(
1 − x

x∗

)
φ0(x) = C1(x∗) = L0(x∗).

By induction and equations (7.1) to (7.3), we get that

lim
x→x∗

(
1 − x

x∗

)
φj(x) = Lj(x∗)

with

c(x∗)L1(x∗) + b1(x∗)L0(x∗) = 0, (7.9)

c(x∗)L2(x∗) + b(x∗)L1(x∗) + a1(x∗)L0(x∗) = 0, (7.10)

c(x∗)Lj+1(x∗) + b(x)Lj(x∗) + a(x∗)Lj−1(x∗) = 0, for j ≥ 2.

Since Lj(x∗) satisfies the second order recursive relation above, it takes the form of

Lj(x∗) = A(x∗)
(

1
Y1(x∗)

)j

+ B(x∗)
(

1
Y0(x∗)

)j

·

We can use equations (7.9) and (7.10) to determine A(x∗) and B(x∗). By some calculations, we can get A(x∗) = 0
and

B(x∗) = −L0(x∗)b1(x∗)
c(x∗)

·

It follows from the Tauberian-like theorem in Flajolet and Sedgewick [15] that (7.6) holds.
Case (ii). In this case, we get x3 > x∗.

We will prove the lemma by induction. If j = 1, then it follows from (7.1) that

φ′
1(x) =

[a∗
0(x)]′ − b′1(x)φ0(x) − φ′

0(x)b1(x)
c(x)

+ c′(x)
a∗
0(x) − b1(x)φ0(x)

c2(x)
·

From the expression of b1(x), c(x) and a∗
0(x), and (7.5), we get that

lim
x→x3

√
1 − x

x3
φ′

1(x) = −C2(x3)b1(x3)
c(x3)

·

Now we assume that for j ≤ k,

lim
x→x3

√
1 − x

x3
φ′

j(x) = L̂j(x3).

It follows from (7.4) that

φ′
k+1(x) =

[a∗
k(x)]′ − b′(x)φk(x) − b(x)φ′

k(x) − a′(x)φk−1(x) − a(x)φ′
k−1(x)

c(x)

+
a∗

k(x) − b(x)φk(x) − a(x)φk−1(x)
c2(x)

c′(x).
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Thus, we get that

lim
x→x3

√
1 − x

x3
φ′

k+1(x) =
−b(x3)L̂k(x3) − a(x3)L̂k−1(x3)

c(x3)
= L̂k+1(x3). (7.11)

By (7.11), we get that

c(x3)L̂1(x3) + L̂0(x3)b1(x3) = 0,

c(x3)L̂2(x3) + L̂1(x3)b(x3) + L̂0(x3)a1(x3) = 0,

c(x3)L̂j+1(x3) + L̂j(x3)b(x3) + L̂j−1(x3)a(x3) = 0, for j ≥ 2.

Using a similar method to the proof for case (i), we can get that (7.7) holds.

Case (iii). In this case, we get x3 = x∗. By Lemma 5.2, we get

lim
x→x3

√
1 − x

x3
π1(x) = C3(x3) = L̃0(x3).

Similar to the proof for case (i), we can get that (7.8) holds. �

Remark 7.2. In Sections 5 and 6, we applied the Tauberian-like theorem to obtain exact tail asymptotics for the
boundary and marginal stationary probabilities. In order to apply the Tauberian-like theorem, we used the kernel
method to locate the dominant singularities of π1(x) and π(x, 1), and study the asymptotic behavior of π1(x)
and π(x, 1) around their dominant singularities, respectively. However, for the joint stationary distributions, this
method is not available. In this section, based on the balance equation, we obtained the asymptotic properties
for the joint stationary distributions by induction.

8. Numerical examples

We shall compare the asymptotic estimates in Theorems 5.3, 6.4 and 7.1 against results by numerical calcula-
tions. Here, all numerical results presented were obtained by using the block rectangle-iterative (BRI) algorithm
introduced by Zhang [19]. On the other hand, since exact tail asymptotics for the marginal stationary distribu-
tions have been demonstrated by numerical examples in [6], we only demonstrate those for the boundary and
joint stationary distributions.

For a first scenario, we take λ = 0.1, v1 = 0.3, v2 = 0.7 and p = 0.2. In this case, x∗ = 2.458619 and
x3 = 5.6589. Hence, we have regime (5.22), (6.53) and (7.6) for queue 1. Since (6.53) has been demonstrated
in [6], we only focus on (5.22) and (7.6). Here we first compare (5.22) against results obtained by numerical
calculations. It follows from (5.22) that as n → ∞

πn+1,0

πn,0
→ 1

x∗
, (8.1)

and

πn,0x
n−1
∗ → C1(x∗). (8.2)

Moreover, (8.2) can be rewritten as the following:

log
(
πn,0x

n
∗
)→ log C1(x∗) + log(x∗). (8.3)

Conversely, we also can get from Zhang [19] that (8.1) and (8.3) imply (5.22). Hence, it suffices to compare (8.1)
and (8.3) against numerical results. These results are plotted in Figures 1 and 2, respectively. Moreover, we
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x *n )
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Figure 2.

find that C1(x∗) = 0.1805936. We see from Figures 1 and 2 that (8.1) and (8.3) converge fast to 1
x∗

and γ,
respectively. On the other hand, Figure 2 also confirms the correctness of C1(x∗).

Here, we should point out that the tail of the curve in Figure 1 comes down since numerical calculations
stop after finite iteration. The numerical experiments also led to the interesting insight that as we increase the
number of iteration, the location where the tail begins to come down moves forward along the horizontal line
1

x∗
. See Figure A below.
Next, we focus on (7.6). Here, we only take j = 5. Instead of (7.6), we demonstrate the following two equations

by numerical results:

lim
n→∞

πn+1,5

πn,5
=

1
x∗

, (8.4)
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and

lim
n→∞ log(πn,5x

n
∗ ) = log L5(x∗) + log x∗. (8.5)

These results are plotted in Figures 3 and 4, respectively.
For a second scenario, we take λ = 0.05, v1 = 0.5, v2 = 0.5 and p = 0.5. From Lemma 5.1, we have x3 = x∗.

Indeed, x∗ = x3 = 7.298438. Hence, we have regime (5.24), (6.54) and (7.8) for queue 1. Instead of (5.24), we
demonstrate the following equations by numerical results:

lim
n→∞

(n + 1)
1
2 πn+1,0

n
1
2 πn,0

=
1
x∗

, (8.6)
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and as n → ∞

log(πn,0x
n
∗ ) ∼ −1

2
log n + log x∗ + log

C3(x∗)√
π

· (8.7)

See Figures 5 and 6, respectively.
Instead of (7.8), we demonstrate the following equations by numerical results. Here, we take j=6.

lim
n→∞

(n + 1)
1
2 πn+1,6

(n)
1
2 πn,6

=
1
x∗

, (8.8)

and as n → ∞

log(πn,6x
n
∗ ) ∼ −1

2
log n + log L̃6(x∗) + log x∗. (8.9)
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See Figures 7 and 8, respectively.
For a third scenario, we take λ = 0.1, v1 = 0.4, v2 = 0.6 and p = 0.8. In this scenario, we have

regime (5.23), (6.55) and (7.7) for queue 1. Here, we get x3 = 3.213828. Instead of (5.23), we demonstrate
the following equations by numerical results:

lim
n→∞

(n + 1)
3
2 πn+1,0

n
3
2 πn,0

=
1
x3

, (8.10)

and as n → ∞

log(πn,0x
n
3 ) ∼ −3

2
log n + log x3 + log

C2(x3)√
π

· (8.11)
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See Figures 9 and 10, respectively.
Analogously, we focus on the following two equations instead of (7.7). Here, we still take j = 6.

lim
n→∞

(n + 1)
3
2 πn+1,6

n
3
2 πn,6

=
1
x3

, (8.12)

and as n → ∞

log(πn,6x
n
3 ) ∼ −3

2
log n + log x3 + log L̂6(x3). (8.13)

These results are plotted in Figures 11 and 12, respectively.
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