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GLOBALLY CONVERGENCE OF NONLINEAR CONJUGATE GRADIENT
METHOD FOR UNCONSTRAINED OPTIMIZATION

B. Sellami1, M. Belloufi1 and Y. Chaib1

Abstract. The conjugate gradient method is a useful and powerful approach for solving large-scale
minimization problems. In this paper, a new nonlinear conjugate gradient method is proposed for large-
scale unconstrained optimization. This method include the already existing two practical nonlinear
conjugate gradient methods, to combine the nice global convergence properties of Fletcher-Reeves
method (abbreviated FR) and the good numerical performances of the Polak–Ribiére–Polyak method
(abbreviated PRP), which produces a descent search direction at every iteration and converges globally
provided that the line search satisfies the Wolfe conditions. Our numerical results show that of the new
method is very efficient for the given test problems. In addition we will study the methods related to
the new nonlinear conjugate gradient method.
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1. Introduction

Consider the unconstrained optimization problem

min f (x) , x ∈ Rn, (1.1)

where f is a smooth function and its gradient is available. Conjugate gradient methods are a class of important
methods for solving (1.1), especially for large scale problems, which have the following form:

xk+1 = xk + αkdk, (1.2)

where xk is the current iterate, αk is a positive scalar and called the step length which is determined by some
line search, and dk is the search direction generated by the rule

dk =

{−gk for k = 1;

−gk + βkdk−1 for k ≥ 2,
(1.3)

where gk = ∇f(xk) is the gradient of f at xk, and βk is a scalar.
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The strong Wolfe conditions, namely,

f(xk + αkdk) − f(xk) ≤ δαkgT
k dk (1.4)∣∣g(xk + αkdk)T dk

∣∣ ≤ −σgT
k dk, (1.5)

where 0 < δ < σ < 1. The scalar βk is chosen so that the method (1.2), (1.3) reduces to the linear conjugate
gradient method in the case when f is convex quadratic and exact line search (g(xk + αkdk)T dk = 0) is used.

For general functions, however, different formula for scalar βk result in distinct nonlinear conjugate gradient
methods (see [7, 10, 12, 15, 18]). The best-known formulas for k are the following Fletcher-Reeves (FR) and
Polak-Ribière-Polyak (PRP):

βFR
k =

‖gk‖2

‖gk−1‖2 , (1.6)

βPRP
k =

gT
k yk−1

‖gk−1‖2 , (1.7)

where ‖.‖ means the Euclidean norm and yk−1 = gk − gk−1. For non-quadratic objective functions, the global
convergence of (FR) method was proved when the exact line search or strong Wolfe line search [2, 9] was used.
However, if the condition (1.5) is satisfied for σ < 1, the above method of (FR) with the strong Wolfe line search
can ensure a descent search direction and converge globally provided only for the case when f is quadratic [9],
see the counter example of Powell [16].

Recently, Dai and Yuan (DY) [7] proposed a nonlinear conjugate gradient method, which has the form (1.2),
(1.3) with

βDY
k =

‖gk‖2

dT
k−1yk−1

· (1.8)

A remarkable property of the DY method is that it provides a descent search direction at every iteration and
converges globally provided that the step size satisfies the Wolfe conditions (see [6]), namely, (1.4) and

σgT
k dk ≤ g(xk + αkdk)T dk · . (1.9)

In [8], Dai and Yuan proposed a family of globally convergent conjugate methods, in which

βk =
‖gk‖2

λ ‖gk−1‖2 + (1 − λ)(dT
k−1yk−1)

, (1.10)

where λ ∈ [0, 1] is a parameter, and proved that the family of methods using line searches that satisfy (1.4) and

σ1g
T
k dk ≤ g(xk + αkdk)T dk ≤ −σ2g

T
k dk, (1.11)

converges globally if the parameters σ1, σ2, and λ are such that

σ1 + σ2 ≤ λ−1, (1.12)

where 0 < δ < σ1 < 1 and σ2 > 0. In addition, Sellami et al. [17] proposed a new family of conjugate gradient
methods, in which

βk =
(1 − λk) ‖gk‖2 + λk(−gT

k dk)
(1 − λk − μk) ‖gk−1‖2 + (λk + μk)(−gT

k−1dk−1)
, (1.13)

where λk ∈ [0, 1] and μk ∈ [0, 1−λ] are parameters, and proved that the new family can ensure a descent search
direction at every iteration and converges globally under line search condition (1.4) and (1.11) where the scalars
σ1 and σ2 satisfy the condition

σ1 + σ2 ≤ 1 + μkσ1

1 − λk
· (1.14)
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Observing that the formula (1.6) and (1.7) share same denominators and two numerators, we can use combina-
tions of these numerators and denominators to obtain the following new nonlinear conjugate gradient method

β∗
k =

λ ‖gk‖2 + (1 − λ)(gT
k yk−1)

λ ‖gk−1‖2 + (1 − λ) ‖gk−1‖2 · (1.15)

Thus by the above equality in (1.14), we deduce an equivalent form of β∗
k ,

β∗
k =

λ ‖gk‖2 + (1 − λ)(gT
k yk−1)

‖gk−1‖2 , (1.16)

with λ ∈ [0, 1] being a parameter. We see that the above formula for β∗
k is special forms of

β∗
k =

φk

φ′
k−1

, (1.17)

where φk satisfies that
φk = λ ‖gk‖2 + (1 − λ)(gT

k yk−1), (1.18)

and
φ′

k−1 = λ ‖gk−1‖2 + (1 − λ) ‖gk−1‖2 = ‖gk−1‖2
. (1.19)

It is clear that the formula (1.17) is a generalization of the two previous methods are defined by (1.6) and (1.7).
The rest of this paper is organized as follows. Some preliminaries are given in the next section. Section 3 provides
two convergence theorems for the general method (1.2), (1.3) with β∗

k defined by (1.17). Section 4 includes the
main convergence properties of the new nonlinear conjugate gradient method with Wolfe line search, and we
study methods related to the new nonlinear conjugate gradient method (1.17). The preliminary numerical results
are contained in Section 5. Conclusions and discussions are made in the last section.

2. Preliminaries

For convenience, we assume that gk �= 0 for k ≥ 1. We also assume that g0 = 0 for k = 0, which gives us
y0 = g1 − g0 = g1, for otherwise a stationary point has been found. We give the following basic assumption on
the objective function.

Assumption 2.1.

(i) f is bounded below on the level set £ = {x ∈ Rn; f(x) ≤ f(x1)}.
(ii) In some neighborhood N of £, f is differentiable and its gradient g is Lipschitz continuous, namely, there

exists a constant L > 0 such that

‖g(x) − g(x̃)‖ ≤ L ‖x − x̃‖ , for all x, x̃ ∈ N . (2.1)

Some of the results obtained in this paper depend also on the following assumption.

Assumption 2.2. The level set £ = {x ∈ Rn; f(x) ≤ f(x1)} is bounded.
If f satisfies Assumptions 2.1 and 2.2, there exists a positive constant γ such that

‖g(x)‖ ≤ γ, for all x ∈ £. (2.2)

The conclusion of the following lemma, often called the Zoutendijk condition, is used to prove the global
convergence of nonlinear conjugate gradient methods.
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Lemma 2.3. Suppose Assumption 2.1 holds. Let {xk} be generated by (1.2) and dk satisfy gT
k dk < 0. If αk is

determined by the Wolfe line search (1.4), (1.9), then we have

∑
k≥1

(gT
k dk)2

‖dk‖2 < ∞. (2.3)

In the latter section, we need the following lemmas, the first of which is derived from [2], whereas the second is
self-evident and will be used for many times.

Lemma 2.4. Suppose that {ai} and {bi} are positive number sequences. If∑
k≥1

ak = ∞, (2.4)

and there exist two constants c1 and c2 such that for all k ≥ 1,

bk ≤ c1 + c2

k∑
i=1

ai, (2.5)

then we have that ∑
k≥1

ak

bk
= ∞. (2.6)

Lemma 2.5. Consider the following 1-dimensional function,

ρ(t) =
a + bt

c + dt
, t ∈ R1, (2.7)

where a, b, c, and d �= 0 are given real numbers. If

bc − ad > 0, (2.8)

ρ(t) is strictly monotonically increasing for t <
−c

d
and t >

−c

d
. Otherwise, if

bc − ad < 0, (2.9)

ρ(t) is strictly monotonically decreasing for t <
−c

d
and t >

−c

d
.

3. Algorithm and convergence analysis

Now we can present a new descent conjugate gradient method, namely NDCG method, as follows:

Algorithm 3.1
Step 0: Given x1 ∈ Rn, set d1 = −g1, k = 1. If g1= 0, then stop.
Step 1: Find a αk > 0 satisfying the Wolfe conditions (1.4) and (1.9).
Step 2: Let xk+1 = xk + αkdk and gk+1 = g(xk+1). If gk+1 = 0, then stop.
Step 3: Compute β∗

k+1 by the formula (1.17) and generate dk+1 by (1.3).
Step 4: Set k := k + 1, go to Step 1.
In order to establish the global convergence result for the Algorithm 3.1, we will impose the following basic

lemma.
For simplicity, we define

rk = −gT
k dk

φk
, (3.1)
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and

tk =
‖dk‖2

φ2
k

· (3.2)

Lemma 3.1. For the method (1.2), (1.3) with β∗
k defined by (1.17),

tk = 2
k∑

i=1

ri

φi
−

k∑
i=1

‖gi‖2

φ2
i

, (3.3)

holds for all k ≥ 1.

Proof. For k = 1, we have that d1 = −g1, then by the definition (3.2), we get that

t1 =
‖d1‖2

φ2
1

·

Or equivalently,

t1 = 2
‖d1‖2

φ2
1

− ‖d1‖2

φ2
1

·

By the definition (3.1) of rk, the above relation is equivalent to (3.3) for d1 = −g1, so (3.3) holds. For i ≥ 2, it
follows from (1.3) that

di + gi = β∗
i di−1. (3.4)

Squaring both sides of the above equation, we get that

‖di‖2 = −‖gi‖2 − 2gT
i di + β∗2

i ‖di−1‖2
. (3.5)

Dividing (3.5) by φ2
i and applying (1.17) and (3.2),

ti =
‖di−1‖2

φ′
i−1

2
+ 2

ri

φi
− ‖gi‖2

φ2
i

· (3.6)

Using (1.18), (1.19) and since, d1 = −g1 we get that

‖d1‖2

φ′
1
2

=
‖g1‖2

‖g1‖4 =
‖g1‖2

φ2
1

· (3.7)

Summing the above expression (3.6) over i, we obtain

tk = t1 + 2
k∑

i=2

ri

φi
−

k∑
i=2

‖gi‖2

φ2
i

· (3.8)

Since d1 = −g1 and t1 =
‖g1‖2

φ2
1

, the above relation is equivalent to (3.3). So (3.3) holds for k ≥ 1. �

Theorem 3.2. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the method (1.2),
(1.3) and (1.17), if for all k, dk satisfy gT

k dk < 0 and αk is determined by the Wolfe line search (1.4) and (1.9), if∑
k≥1

r2
k = ∞, (3.9)

we have that
lim

k−→∞
inf ‖gk‖ = 0. (3.10)
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Proof. (1.3) can be re-written as
gT

i di + ‖gi‖2 = β∗
i gT

i di−1. (3.11)

Square (gT
i di + ‖gi‖2) in order to obtain,

−2gT
i di − ‖gi‖2 ≤ (gT

i di)2

‖gi‖2 , (3.12)

dividing (3.12) by φ2
i and applying (3.3)

tk ≤
k∑

i=1

r2
i

‖gi‖2 · (3.13)

We proceed by contradiction. Assuming that

lim
k−→∞

inf ‖gk‖ �= 0. (3.14)

Then there exists a positive constant γ such that

‖gk‖2 ≥ γ, for all k. (3.15)

We can see from (3.13) that,

tk ≤ 1
γ2

k∑
i=1

r2
i . (3.16)

The above relation, (3.9) and Lemma 2.4, yield

∑
i≥1

r2
i

ti
= ∞. (3.17)

Thus, by the definition (3.1) and (3.2), we know that (3.17) contradicts (2.3). This concludes the proof. �

Theorem 3.3. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the method (1.2),
(1.3) and (1.17), if for all k, dk satisfy gT

k dk < 0 and αk is determined by the Wolfe line search (1.4) and (1.9), if

∑
k≥1

‖gk‖2

φ2
k

= ∞, (3.18)

we have that
lim

k−→∞
inf ‖gk‖ = 0. (3.19)

Proof. Noting that
tk ≥ 0 for all k, (3.20)

Squaring the left side of equation (3.12), we get that

(
−2gT

i di − ‖gi‖2
)2

≥ 0.

Hence, we have
4(gT

i di)2 + ‖gi‖4 + 4(gT
i di) ‖gi‖2 ≥ 0. (3.21)
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Summing this expression over i and dividing (3.21) by (φ2
i ‖gi‖2), we obtain

4
k∑

i=1

(gT
i di)2

φ2
i ‖gi‖2 ≥ −4

k∑
i=1

(gT
i di)
φ2

i

−
k∑

i=1

‖gi‖2

φ2
i

· (3.22)

On the other hand, we can get from (3.3), (3.20) and the definition of rk

−2
k∑

i=1

gT
i di

φ2
i

≥
k∑

i=1

‖gi‖2

φ2
i

·

Direct calculation show that,

−4
k∑

i=1

gT
i di

φ2
i

−
k∑

i=1

‖gi‖2

φ2
i

≥
k∑

i=1

‖gi‖2

φ2
i

· (3.23)

The above relation (3.22) and (3.23) imply that

4
k∑

i=1

(gT
i di)2

φ2
i ‖gi‖2 ≥

k∑
i=1

‖gi‖2

φ2
i

·

Thus if (3.18) holds, we also have that ∑
k≥1

(gT
k dk)2

φ2
k ‖gk‖2 = ∞. (3.24)

Because (3.13) still holds, it follows from (3.24), the definition of rk and Lemma 2.4, that

∑
k≥1

(gT
k dk)2

‖gk‖2 ‖dk‖2 = ∞. (3.25)

The above relation and Lemma 2.3 clearly give (3.10). This completes our proof. �

Thus we have proved two convergence theorems for the general method (1.2), (1.3) with β∗
k defined by (1.17).

It should also be noted that the sufficient descent condition, namely

gT
k dk ≤ −c ‖gk‖2 , (3.26)

where c is a positive constant, is not invoked in Theorems 3.2 and 3.3. The sufficient descent condition (3.26)
was often used or implied in the previous analysis of conjugate gradient methods (see [1, 11]). This condition
has been relaxed to the descent condition (gT

k dk < 0) in the convergence analysis [7] of the FR method and the
convergence analysis [5] of any conjugate gradient method.

4. Global convergence

In this section, we establish some global convergence of the new nonlinear conjugate gradient method under
certain line searches conditions and the methods related to this method are uniformly discussed.

We consider the method (1.2), (1.3) with φk satisfying

φk = λ ‖gk‖2 + (1 − λ)(gT
k yk−1). (4.1)

Where λ ∈ [0, 1]. (4.1) and (1.3) show that

gT
k dk = −‖gk‖2 + β∗

kgT
k dk−1

= −‖gk‖2 +
λ ‖gk‖2 + (1 − λ)(gT

k yk−1)
‖gk−1‖2 gT

k dk−1. (4.2)
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By the definition of yk, we obtain that[
gT

k dk + ‖gk‖2
]
‖gk−1‖2 =

[
λ ‖gk‖2 + (1 − λ)(gT

k gk − gT
k gk−1)

]
gT

k dk−1.

Which implies that

gT
k dk ‖gk−1‖2 = ‖gk‖2

gT
k dk−1 − (1 − λ) ‖gk‖2

gT
k−1dk−1 − ‖gk‖2 ‖gk−1‖2

.

The above relation imply that

gT
k dk = −‖gk−1‖2 − gT

k dk−1 + (1 − λ)gT
k−1dk−1

‖gk−1‖2 ‖gk‖2 . (4.3)

Thus by using (4.2) and (4.3) we obtain

β∗
kgT

k dk−1 − ‖gk‖2 = −‖gk−1‖2 − gT
k dk−1 + (1 − λ)gT

k−1dk−1

‖gk−1‖2 ‖gk‖2
.

The above relation imply that

β∗
k =

gT
k dk−1 + (1 − λ)(−gT

k−1dk−1)
gT

k dk−1

‖gk‖2

‖gk−1‖2 · (4.4)

The above form for β∗
k and relation (1.17), we obtain that

φk =
gT

k dk−1 + (1 − λ)(−gT
k−1dk−1)

gT
k dk−1

‖gk‖2
. (4.5)

By this relation, we can show an important property of φk under Wolfe line searches and hence obtain the global
convergence of the new nonlinear conjugate gradient method (4.4) under some assumptions.

Theorem 4.1. Suppose that x1 is a starting point for which Assumptions 2.1 and 2.2 hold. Consider the
method (1.2), (1.3), (1.17) and (4.1), if gT

k dk < 0 for all k and αk is computed by the Wolfe line search (1.4),
(1.9), then

φk

‖gk‖2 ≤ (σ + λ − 1)σ−1. (4.6)

Further, the method converges in the sense that

lim
k−→∞

inf ‖gk‖ = 0. (4.7)

Proof. Since (1.9), we have that
g(xk + αkdk)T dk ≥ σgT

k dk. (4.8)

By direct calculations show that

1 +
(1 − λ)(−gT

k−1dk−1)
gT

k dk−1
≤ 1 +

(1 − λ)(−gT
k−1dk−1)

σgT
k−1dk−1

· (4.9)

Dividing (4.5) by ‖gk‖2 and applying (4.9) implies the truth of (4.6). Therefore, by (2.2) and (4.9) that

∑
k≥1

‖gk‖2

φ2
k

≥ σ2

(σ + λ − 1)2 ‖gk‖2 ≥ σ2

(σ + λ − 1)2γ2
= ∞. (4.10)

Thus (3.10) follows from Theorem 3.3. �
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In the following, we can show that, for any λ ∈ (0, 1], the method (1.2), (1.3), (1.17) and (4.1) ensures the
descent property of each search direction and converges globally under line search condition (1.4) and (1.11)
where the scalars σ1 and σ2 satisfy certain condition. For this purpose, we define

rk = − gT
k dk

‖gk‖2 , (4.11)

and

lk =
gT

k+1dk

gT
k dk

, (4.12)

it is obvious that dk is a descent direction if and only if rk > 0. For The above relation, (4.3) and (4.12), we
can write

rk = 1 + (lk−1 + λ − 1)rk−1. (4.13)

Theorem 4.2. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the method (1.2),
(1.3), (1.17) and (4.1), where λ ∈ (0, 1] and αk satisfies the line search conditions (1.4) and (1.11). If gT

k gk−1 = 0
for k ≥ 1, and if the scalars σ1 and σ2 in (1.11) with σ1, σ2 > 0 and σ1 < 1, is such that

σ1 + σ2 ≤ λ, (4.14)

then we have for all k ≥ 1
0 < r̄k < (1 − σ1)−1. (4.15)

Further, the method converges in the sense that (3.10) is true.

Proof. The right hand side of (4.13) is a function of λ, lk−1 and rk−1, which is denoted as
h(λ, lk−1, r̄k−1). We prove (4.15) by induction. Noting that d1 = −g1 and hence r̄1 = 1, we see that (4.15) is

true for k = 1. We now suppose that (4.15) holds for k − 1, namely,

0 < r̄k−1 < (1 − σ1)−1. (4.16)

It follows from (1.11)
−σ2 ≤ lk−1 ≤ σ1. (4.17)

Then by Lemma 2.5, the fact that λ ∈ (0, 1], we get that

r̄k ≤ h(λ, σ1, r̄k−1) < h(λ, σ1, (1 − σ1)−1) (4.18)

= 1 +
σ1

1 − σ1
− 1 − λ

1 − σ1

=
λ

1 − σ1

≤ (1 − σ1)−1.

On the other hand, by Lemma 2.5 and relation (4.14), we also have that

r̄k ≥ h(λ,−σ2, r̄k−1) > h(λ,−σ2, (1 − σ1)−1) = [−(σ1 + σ2) + λ](1 − σ1)−1 ≥ 0. (4.19)

Thus (4.15) is true for k, by induction, (4.15) holds for k ≥ 1.
To show the truth of (3.10), by Theorem 3.2, it suffices to prove that

max {rk−1, rk} ≥ c1, (4.20)



1110 B. SELLAMI ET AL.

for all k ≥ 2 and some constant c1 > 0. In fact, if

r̄k−1 ≤ 1, (4.21)

by Lemma 2.5, the fact that λ ∈ (0, 1] , we can get that

r̄k ≥ h(λ,−σ2, 1) Δ= c2. (4.22)

Since c2 ∈ (0, 1) , we then obtain
max {r̄k−1, r̄k} ≥ c2, (4.23)

for all k ≥ 2. By the definition (3.1) of rk and relation (4.1), we have that

rk =
r̄k

1 + (1 − λ)ηk
·

Where ηk = −gT
k gk−1

‖gk‖2 .

Since gT
k gk−1 = 0. Hence, we have

rk = r̄k (4.24)

which, with (4.23) and (4.24), implies that (4.20) holds with c1 = c2.
Now, if

rk−1 > 1,

by Lemma 2.5, the fact that λ ∈ (0, 1], we can get that

rk ≥ h(λ,−σ2, 1) Δ= c2.

Since c2 ∈ (0, 1), we then obtain
max {rk−1, rk} > 1 > c2.

We complete the same steps the proof in the previous case (the case rk−1 ≤ 1), we get the same result in
which (4.20) holds with c1 = c2. This completes our proof. �

Thus we have some general convergence results are established for the new nonlinear conjugate gradient
method (4.4). It is easy to see from (4.4) that the new nonlinear conjugate gradient method include the two
nonlinear conjugate gradient methods mentioned above. For the case when λ ≡ 1, in Theorem 4.2, we again
obtain the convergence result of the FR method in [9]. Letting λ ≡ 0, in Theorem 4.2, we again obtain the
convergence result of the PRP method in [15].

In addition, the methods related to the FR method and the DY method in [7, 13] can also be regarded as
special cases of the new method (4.4). For example, to combine the nice global convergence properties of the
FR method and the good numerical performance of the PRP method.

Hu and Storey [13] extended the result in [1] to any method (1.2) and (1.3) with βk satisfying

βk ∈ [
0, βFR

k

]
. (4.25)

Gilbert and Nocedal [11] further extended the result to the case that

βk ∈ [−βFR
k , βFR

k

]
. (4.26)

Dai and Yuan [7] proved that the method (1.2) and (1.3) with βk satisfying

βk ∈
[
σ − 1
1 + σ

βk, βk

]
, (4.27)
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where βk stands for the formula (1.8), and with αk chosen by the Wolfe line search give the convergence relation

(3.10), if the line search conditions are (1.4) and (1.5) with σ ≤ 1
2
. For methods related to the method (4.4).

We have the following result, where sk is given by

sk =
βk

β∗
k

, (4.28)

where β∗
k stands for the formula (1.17). We prove that any method (2.2), (2.3) with the strong Wolfe line search

produces a descent search direction at every iteration and converges globally if the scalar βk is such that

−c ≤ sk ≤ (1 − σ)−1, (4.29)

where c = (1 + σ)�(1 − σ) > 0.

Theorem 4.3. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the method (1.2)
and (1.3), where

βk = τk

gT
k dk−1 + (1 − λ)(−gT

k−1dk−1)
gT

k dk−1

‖gk‖2

‖gk−1‖2 , (4.30)

and where αk is computed by the strong Wolfe line search (1.4) and (1.5) with σ ≤ 1
2
. For any λ ∈ [0, 1], if

τk ∈
[

σ

λ − (1 + σ)
, 1

]
, (4.31)

and βk is such that
sk ∈ [−c, (1 − σ)−1

]
, (4.32)

then if gk �= 0 for all k ≥ 1, we have that

0 < r̄k < (1 − σ)−1 for all k ≥ 1. (4.33)

Further, the method converges in the sense that (3.10) is true.

Proof. From relation (4.30), (4.28) and by direct calculations we can show that

rk = 1 + [(lk−1 + λ − 1)rk−1] τk, (4.34)

and

sk =
(λ + lk−1 − 1)τk

(1 + lk−1)
, (4.35)

where rk and lk are defined by (4.11) and (4.12). Now the right hand side of (4.34) is a function of λ, τk, lk−1

and rk−1, which can be denoted as h(λ, τk, lk−1, r̄k−1). We prove (4.33) by induction. Noting that d1 = −g1 and
hence r̄1 = 1, we see that (4.33) is true for k = 1. We now suppose that (4.33) holds for k − 1, namely,

0 < r̄k−1 < (1 − σ)−1. (4.36)

It follows from (1.5)
|lk−1| ≤ σ. (4.37)



1112 B. SELLAMI ET AL.

Then by Lemma 2.5, and the fact that λ ∈ [0, 1], we get that

r̄k ≤ max
{

h(λ, 1, lk−1, r̄k−1), h(λ, ,
σ

λ − (1 + σ)
, lk−1, r̄k−1)

}
(4.38)

≤ max
{

h(λ, , 1, σ, r̄k−1), h(λ, ,
σ

λ − (1 + σ)
,−σ, r̄k−1)

}

< max
{

h(λ, , 1, σ, (1 − σ)−1), h(λ, ,
σ

λ − (1 + σ)
,−σ, (1 − σ)−1)

}

= 1 +
σ

1 − σ
= (1 − σ)−1, (4.39)

where σ ≤ 1
2

is also used in the equality. For the opposite direction, we can prove that

r̄k > min
{

h(λ, , 1,−σ, (1 − σ)−1), h(λ, ,
σ

λ − (1 + σ)
, σ, (1 − σ)−1)

}
≥ 0. (4.40)

Thus (4.33) is true for k, by induction, (4.33) holds for k ≥ 1.
We now prove (3.10) by contradiction and assuming that

‖g(x)‖ ≥ γ, for some γ > 0 and all k ≥ 1. (4.41)

Since dk + gk = βkdk−1, we have that

‖dk‖2 = β2
k ‖dk−1‖2 − 2gT

k dk − ‖gk‖2
. (4.42)

Dividing both sides of (4.42) by
(
gT

k dk

)2 and using (4.11) and (4.29), we obtain

‖dk‖2(
gT

k dk

)2 =
β2

k ‖dk−1‖2(
gT

k dk

)2 +
2

r̄k ‖gk‖2 − 1
r̄2
k ‖gk‖2

=
(skβ∗

k)2 ‖dk−1‖2(
gT

k dk

)2 +
1

‖gk‖2

[
1 −

(
1 − 1

r̄k

)2
]
· (4.43)

In addition, by the definition (4.11) of r̄k, the relations (1.3) and (4.29), we get

r̄k ‖gk‖2 = −gT
k dk = ‖gk‖2 − skβ∗

kgT
k dk−1, (4.44)

the above relation and the definition (4.12) imply that

skβ∗
k =

(1 − r̄k)
lk−1(gT

k−1dk−1)
‖gk‖2

. (4.45)

Relation (4.43) and (4.45), we obtain

‖dk‖2(
gT

k dk

)2 =
(1 − r̄k)2 ‖dk−1‖2

r̄2
kl2k−1(g

T
k−1dk−1)2

+
1

‖gk‖2

[
1 −

(
1 − 1

r̄k

)2
]
· (4.46)

Denote
mk =

1 − r̄k

r̄klk−1
, (4.47)
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where lk−1 �= 0. Now we prove that

|mk| ≤ 1, for all k ≥ 2. (4.48)

the right hand side of (4.47) is a function of lk−1 and rk, which can be denoted as h(lk−1, r̄k). We can get by
(4.33), (4.37) and Lemma 2.5 that

mk ≤ max {h(σ, r̄k), h(−σ, r̄k)}
< max

{
h(σ, (1 − σ)−1), h(−σ, (1 − σ)−1)

}
= 1. (4.49)

Thus we have that

mk ≥ min {h(−σ, r̄k), h(σ, r̄k)}
> min

{
h(−σ, (1 − σ)−1), h(σ, (1 − σ)−1)

}
= −1. (4.50)

Therefore (4.48) holds for all k ≥ 2.
By (4.48) and (4.46), we obtain

‖dk‖2(
gT

k dk

)2 ≤ ‖dk−1‖2

(gT
k−1dk−1)2

+
1

‖gk‖2 · (4.51)

Because ‖d1‖2
�

(
gT
1 d1

)2 = 1� ‖g1‖2
, (4.51) shows that

‖dk‖2(
gT

k dk

)2 ≤
k∑

i=1

1
‖gi‖2 , (4.52)

for all k. Then we get from this and (4.41) that

‖dk‖2(
gT

k dk

)2 ≥ γ

k
, (4.53)

which implies that ∑
k≥1

(
gT

k dk

)2

‖dk‖2 = +∞. (4.54)

This contradicts the Zoutendijk condition (2.3). Therefore (3.10) holds. �

5. Numerical results

In this section, we report some numerical results obtained with the new proposed conjugated gradient method.
The code is written in Fortran and compiler settings on the PC machine (AMD, 1.61 GHZ, 960M memory) with
Windows operation system. There are a number of 68 unconstrained test problems in generalized or extended
from CUTE [4] and [3] collection with dimensions ranging from 2 to 8000. We adopt the performance profiles
by Delan and Moré [14] to compare the performance between the following four conjugate gradient algorithms:

PRPSW : The PRP method with the strong Wolfe conditions, where δ = 10−4 and σ = 0.1.
PRPSW

+ : The PRP method with nonnegative values of βk = max
{
0, βPRP

k

}
and the strong Wolfe conditions,

where δ = 10−4 and σ = 0.1.
NDCGSW : Algorithm 3.1 with the Wolfe conditions (1.4) and (1.11), where the scalars σ1 and σ2 satisfy the

condition (4.14), in addition, δ = 10−4, σ1 = σ2 = σ = 0.1, λ = 0.5.
NDCGW : Algorithm 3.1 with the standard Wolfe conditions, where δ = 10−4, σ = 0.1, λ = 0.5.
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Figure 1. Performance files based on Iterations.

During our experiments, the strategy for the initial step length is to assume that the first-order change in the
function at iterate xk will be the same as that obtained at the previous step [13]. In other words, we choose the
initial guess α0 satisfying:

α0 = αk−1
Ψk−1

Ψk
∀k > 1,

where Ψk = gT
k dk, when k = 1, we choose α0 =

1
‖g(x1)‖ . In the case when an uphill search direction does occur,

we restart the algorithm by setting dk = −gk, but this case never occurs for NDCGSW and NDCGW . We stop
the iteration if the inequality ‖gk‖∞ ≤ 10−5, where ‖.‖∞ is the maximum absolute component of a vector.
Figures 1–3 give performance profiles of the four methods for the number of iterations, function and gradient
evaluations, and the CPU time, respectively.

From the above three figures, we can see that all the methods are efficient. The new method (NDCG) performs
better than the PRPSW and PRPSW

+ methods, for the given test problems. These preliminary results obtained
are encouraging.

6. Conclusions and discussions

In this paper, we have proposed a new nonlinear conjugate gradient method, and studied the global conver-
gence of this method. The new method include the two already known simple and practical conjugate gradient
methods. First, we can see that, the descent property of the search direction plays an important role in estab-
lishing some general convergence results of the method in the form (1.17) with weak Wolfe line search (1.4)
and (1.9) even in the absence of the sufficient descent condition (3.27), namely, Theorems 3.2, 3.3, 4.1. Next,
from Theorem 4.2, we proved that the new method can ensure a descent search direction at every iteration
and converges globally under line search conditions (1.4) and (1.11) where the scalars σ1 and σ2 satisfy the
condition (4.14). From Theorem (4.3), we have carefully studied methods related to the method (4.4). Denote
sk to be the size of βk with respect to β∗

k. If τk and sk belongs to some interval, namely, (4.31) and (4.32)
respectively, the corresponding methods are shown to produce a descent search direction at every iteration
and converge globally provided that the line search satisfies the strong Wolfe conditions (1.4) and (1.5) with

σ ≤ 1
2
. In summary, our computational results show that this new descent nonlinear conjugate gradient method,
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Figure 2. Performance files based on function and gradient evaluations.

Figure 3. Performance files based on CPU time.

namely NDCG method not only converges globally, but also performs better than the original PRP method.
The results, we hope, can stimulate more study on the theory and implementations on the conjugate gradient
methods with the Wolfe line search. For future research, we should investigate to find the practical performance
of the method (4.4).

Acknowledgements. We would like to thank to Professor Paul Armand (Université de Limoges, France), who has always
been generous with his time and advice.
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Appendix

The following table lists the names of the 68 test problems.

Problem n Problem n Problem n Problem n

ARWHEAD 100 BD1 100 BDEXP 100 BEALE 12

500 500 500 52

1000 1000 1000 102

BIGGSB1 6 BROWNAL 10 BROYDN7D 10 COSINE 96

50 50 50 456

102 100 100 906

CRAGGLVY 500 DENSCHNB 2 DENSCHNF 2 DIXMAANA 15

1000 3 3 90

5000 7 7 300

DIXMAANB 15 DIXMAANC 15 DIXMAANE 15 DIXMAANF 15

90 90 90 90

300 300 300 300

DIXMAANG 15 DIXMAANI 15 DIXMAANJ 15 DIXMAANK 15

90 90 90 90

300 300 300 300

DIXMAANL 15 DIXON3DQ 500 DQDRTIC 10 DQRTIC 10

90 1000 50 50

300 5000 100 100

EDENSCH 36 EG2 10 ENGVAL1 2 FLETCHCR 10

1000 25 50 50

2000 50 100 100

FREUROTH 2 GHUMPS 14 GROSEN 60 GPSC1 924

10 506 180 3444

50 650 612 7564

HIEBERT 2 HIMMELBLAU 2 LIARWHD 500 MARATOS 2

5 24 1000 6

10 45 5000 8

NONCVXU2 10 NONDIA 500 NONDQUAR 100 PENALTY1 4

20 1000 500 10

30 5000 1000 50

PENALTY 4 POWELL 60 POWELLBS 2 POWELLSG 500

10 80 4 1000

50 100 8 5000

POWER 10 PPQ2 30 PSC1 4 QF1 30

20 50 25 50

30 75 50 75

QF2 2 QP1 2 QP2 4 QUARTC 100

4 4 25 500

6 6 100 1000

RAYDAN1 20 RAYDAN2 20 ROSEN 2 SINQUAD 5

50 50 4 50

100 100 6 100

SQ1 28 SQ2 28 SROSENBR 500 TRIDIA 30

100 100 1000 50

499 499 5000 100

WHITEHOLST 12 WOODS 4 TRIDIAG1 10 TRIDIAG2 10

31 100 20 20

68 1000 30 30

EXTRIGON 2 GTRIDIAGI 14 DIAG2 4 CLIFF 2

5 506 6 4

10 650 8 6
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