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IMPROVEMENTS TO SMOOTH DATA ENVELOPMENT ANALYSIS
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Abstract. Classic data envelopment analysis (DEA) models do not provide unique solutions for
multipliers of extreme efficient units. To overcome this problem, previous works have proposed the
smooth DEA technique. However, multidimensional models with variable returns to scale (BCC) present
deficiencies, as they do not fully ensure the frontier’s convexity. Therefore, the main contribution of
this paper is to correct smooth BCC models, with regard to such property. Moreover, we propose
improvements to smooth DEA models, so that all projections for the evaluated units, and their efficiency
values, are non-negative. Furthermore, based on the corrected and improved smooth model, we propose
a solution to avoid a classic BCC distortion, which may be called efficiency by default. Finally, we
evaluate the operational performance of Brazilian airlines in 2010, to show the applicability of our
model and to illustrate the practical effect of our contributions.

Mathematics Subject Classification. 90B50.

Received March 3rd, 2015. Accepted February 1st, 2016.

1. Introduction

Data envelopment analysis (DEA) is a non-parametric method based on mathematical programming that
measures efficiencies of production units, which are referred to as decision making units (DMUs). There are two
classic DEA models: CCR [10] and BCC [7]. The first assumes constant returns to scale and proportionality
between inputs and outputs, while the BCC model assumes variable returns to scale. For each classic model,
there are two equivalent and dual formulations [13]. One of them, called Multipliers model, provides multipliers
of inputs and outputs for each DMU, which may be interpreted as trade-offs [13] or shadow prices [12].

However, in classic models, there are multiple optimal solutions for multipliers of extreme efficient DMUs,
i.e., DMUs that are “corners” to the frontier formed by efficient DMUs, called efficient frontier. This problem
is of practical importance, since analysts are often interested in multipliers values of the best-evaluated units,
to obtain added insight on the overall efficiency score [14]. It is also critical for certain DEA methods, such as
cross evaluation [17], used to improve discrimination. In fact, as noted in [17], the problem of multiple optimal
solutions for multipliers possibly reduce the usefulness of cross efficiency.

To address such problem, several papers have proposed smooth DEA models [32, 34, 39, 40]. This technique
replaces the original efficient frontier, which is piecewise linear, with a frontier that has derivatives at all points.
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The smooth frontier should be as close as possible to the original and also maintain its basic properties [39].
Besides avoiding multiple optimal solutions, this technique also eliminates Pareto inefficient regions, where
Pareto inefficient units are considered efficient in classic DEA. Such units are adequately considered inefficient
in smooth DEA.

Nevertheless, this paper proves that smooth BCC models in the found literature do not ensure the model’s
essential property of convexity, despite affirming otherwise. Therefore, our main contribution is to correct smooth
BCC models, ensuring the frontier’s convexity. Moreover, we also present improvements to smooth DEA models,
so that all DMUs’ projections, and consequently, their efficiency values, are non-negative. Despite being present
in classic DEA, this characteristic was not ensured in previous smooth models.

Furthermore, we also propose the use of smooth DEA to avoid the following distortion in classic BCC,
hereinafter called efficiency by default, as in [22]: if a DMU has the smallest value for any input or the greatest
value for any output, it is necessarily efficient [1]. A preliminary version of this solution was proposed in [9]
to evaluate team efficiency in a football championship. However, in the present paper, we use the corrected
and improved smooth model proposed herein, to provide a more robust and coherent solution for the BCC
distortion.

Finally, we evaluate the operational performance of Brazilian airlines in 2010, to show the applicability of our
approach. As in [23], this paper considers the airlines’ fleet capacity as input, and passenger and cargo transport
as outputs, using a variable returns to scale approach. However, in this paper, our purpose is to eliminate the
efficiency by default distortion from such approach, thus we apply the smooth BCC model presented herein.
We also apply previous and intermediate smooth models, i.e., models with some of this paper’s contributions,
to illustrate the practical effect of each correction and improvement.

2. Literature review

The problem of multiple optimal solutions for multipliers in classic DEA models could be understood in light
of the Theorem of Complementary Slacks. This theorem shows that multipliers correspond to coefficients of
the hyperplane that is tangent at each point of the efficient frontier [13]. Since the original frontier is piecewise
linear, it has multiple hyperplanes tangent to each of its “corners”, where extreme-efficient DMUs are located.
Hence, there are multiple optimal sets of multipliers for each of these DMUs.

There have been different techniques proposed in the literature to deal with such problem, most of which
provide unsatisfactory solutions [32, 34]. In 1985, the authors of [11] proposed the use of average multipliers
based on the barycentres of the concurring hyper-surfaces. For this, however, one must calculate the equations
for all facets, requiring an intense load of computer work [18]. Moreover, it is not applicable to DMUs at the
start of Pareto inefficient regions or to DMUs that are adjacent to facets of incomplete dimension [33].

The super efficiency model [2] provides a unique set of multipliers for all DMUs. However, there are multiple
efficient frontiers, depending on the DMU being studied, and their efficiency values are not limited to the
interval [0,1].

Restricted to extreme efficient points, Cooper et al. [14] propose a two-step procedure to select a unique
solution and also avoid null multipliers in CCR models. First, they select the multipliers set associated with the
hyperplanes supported by the maximum number of extreme efficient units, i.e., associated with the facets of
highest dimension for each unit, using mixed integer linear programming (MILP). Then, from the multipliers
set selected in the first step, they choose the one that maximizes the minimum relative multiplier, using another
MILP problem.

Other papers [17,26,42] proposed partial solutions to this problem of multiple optimal sets of multipliers, to
enable the application of cross evaluation models. Moreover, inspired by Cross Evaluation and Game Theory,
Liang et al. [27] proposed the DEA game cross efficiency model, which may be regarded as a generalized
benevolent approach.

Rosen et al. [36] affirm that it is impossible to avoid the multiplicity of optimal solutions, because it is intrinsic
to the frontier’s piecewise linear nature. This is why smooth DEA [32, 34, 39, 40] replaces the original frontier
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with a continuously differentiable frontier. The new frontier should contain all efficient DMUs from classic DEA,
be as close as possible to the original frontier, and maintain essential properties of classic DEA. These properties
are monotonicity of outputs with respect to inputs, limited efficiency values (in the interval [0,1]), allocation of
different weights by each DMU, and, for smooth BCC, convexity [32].

Smooth DEA was found to eliminate other classic problems, such as Pareto inefficient regions and non-
complete dimension facets, studied in [24]. In [21], the authors employed this technique, not only for its aforemen-
tioned benefits, but also to eliminate the need of calculating all facets’ equations in Zero Sum Gains DEA [20,28].
According to the authors, there is no efficient algorithm for this problem, of high complexity.

Besides identifying corrections and improvements to Smooth BCC models, this paper proposes the use of
such models to correct the BCC distortion detected in [1], called efficiency by default, as in [22]. Other papers
have proposed advanced DEA techniques to eliminate different BCC problems. The authors of [43], for example,
studied negative efficiencies in cross evaluation with BCC input oriented models and also propose a solution to
this problem.

In a different context, certain authors (see, e.g., [4,5,25,29–31,37]) proposed continuously differentiable DEA
frontiers to redistribute resources among the DMUs. Their results may be considered a smoothed variant of
Zero Sum Gains DEA.

3. Theoretical overview

Smooth DEA models are a Quadratic Problem (QP) that approximates smooth and classic frontiers, consid-
ering their arc lengths, with the adequate restrictions. Since the original frontier is piecewise linear and that a
straight line has the minimum arc length between two fixed points, the objective function minimizes the smooth
frontier’s arc length (or its n-dimensional generalization). Actually, we minimize the square of the arc length
(or its n-dimensional generalization) because it is simpler to calculate and leads to the same result.

Model (3.1) shows a smooth BCC problem with 2 inputs (x, y) and 1 output (Z). In (3.1), xeff , yeff are the
input values for extreme efficient DMUs, Zeff are their output values, and xmax, ymax are the greatest inputs of
all DMUs.

The frontier is described by a polynomial equation, such as Z = F (x, y) = a+ bx+ cy +dx2 + exy + fy2 + . . .

Min

⎧⎨
⎩

xmax∫
xmin

ymax∫
ymin

[
1 +

(
∂F

∂x

)2

+
(

∂F

∂y

)2
]

dydx

⎫⎬
⎭

subject to
F (xeff , yeff) = Zeff ∀ extreme efficient DMU
∂F

∂x
(xmax, ymax) � 0

∂F

∂y
(xmax, ymax) � 0

∂2F

∂x2 � 0, ∀x, y

∂2F

∂y2 � 0, ∀x, y. (3.1)

The objective function minimizes the square of the three-dimensional generalization of the arc length. The
first constraint ensures that the smooth frontier contains the same efficient DMUs from classic DEA. The
following couple of constraints ensure that the output is an increasing function of the inputs. Finally, the last
two constraints supposedly ensure the frontier’s convexity (this will be explained in Sect. 4.1). These last two
restrictions may be very difficult to calculate, and should be replaced with d, f . . . � 0 [40]. These are stronger
constraints, yet considerably easier to calculate.
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Figure 1. Smooth DEA Frontier [40].

The number of decision variables in the frontier-smoothing problem, i.e., the number of polynomial co-
efficients, should be greater than the number of equality constraints, i.e., the number of extreme-efficient
DMUs [39,40].

Figure 1 illustrates the smooth frontier for the DEA model in [40], which evaluates Brazilian Airline Com-
panies using two inputs and one output.

Analogously, Model (3.2) shows a smooth BCC problem with 1 input (X) and 2 outputs (z, w). zeff , weff

are the output values for extreme efficient DMUs, Xeff are their input values, and zmin, wmin are the smallest
outputs of all DMUs.

The frontier is described by a polynomial equation, such as X = H(z, w) = a+bz+cw+dw2+ezw+fz2+ . . .

Min

⎧⎨
⎩

zmax∫
zmin

wmax∫
wmin

[
1 +

(
∂H

∂z

)2

+
(

∂H

∂w

)2
]

dwdz

⎫⎬
⎭

subject to
H (xeff , yeff) = Xeff ∀ extreme efficient DMU
∂H

∂z
(zmin, wmin) � 0

∂H

∂w
(zmin, wmin) � 0

∂2H

∂z2 � 0, ∀z, w

∂2H

∂w2 � 0, ∀z, w. (3.2)

In (3.2), the objective function and restrictions have the same purpose as in (3.1). The second derivatives are
now positive because the input is a function of the outputs. We may use the theorem of the inverse function to
prove that this constraint ensures a concave up frontier [32]. These last two constraints, which supposedly ensure
the frontier’s convexity (see Sect. 4.1), may also be substituted with d, f . . . � 0, to enable calculations [40].
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4. Proposed corrections and improvements

In this section, we propose corrections and improvements to smooth DEA BCC models. First, we ensure the
property of convexity, then positive projections for any data set. Thence, we propose a solution to avoid the
efficiency by default BCC distortion. Finally, we present the smooth DEA formulation with the innovations
described herein.

4.1. Convexity correction

By definition, smooth DEA models should maintain basic properties from classic DEA. Particularly, in the
variable returns to scale model, the frontier’s convexity is essential. However, for models with three or more
variables, this property may not be entirely present.

First, we must highlight that we are using the term convexity to indicate that the frontier’s concave is totally
up or down, as in the other works that study smooth DEA, e.g., [32, 39].

We may use the following theorems from [19] to ensure the smooth BCC frontier’s convexity, in the case of
multiple inputs and a single output.

Let f :U ⊂ Rn −→ R be a function in the class C2 defined in a convex subgroup that is open in U . f is a
concave down function in U if and only if the hessian matrix D2f(p) is negative-semidefinite for every p ∈ U .

Let A be a symmetrical matrix n × n. A is negative-semidefinite if and only if all of its principal minors of
odd order are less or equal to zero and all of its principal minors of even order are greater or equal to zero.

A minor matrix of order k is the determinant of a square submatrix k× k formed by deleting n− k rows and
n− k columns from A. The principal minor of order k is a minor of order k formed by deleting the same n− k
rows and columns.

In the case with one input x and one output z = F (x), the Hessian matrix is [d
2F

dx2 ]. To guarantee convexity
in this case, we only need to guarantee d2F

dx2 � 0. This restriction is already present in the smooth model, thus
the two dimensional model has already fully ensured convexity.

In the case with two inputs (x, y) and one output z = F (x, y), the Hessian matrix is:⎡
⎣ ∂2F

∂x2
∂2F
∂x∂y

∂2F
∂x∂y

∂2F
∂y2

⎤
⎦ .

According to the aforementioned theorems, to ensure convexity in this second case, we must first guarantee
that the principal minors of order 1 are less or equal to zero: ∂2F

∂x2 � 0 and ∂2F
∂y2 � 0. This is also present in the

traditional smooth models. However, we must also guarantee that the principal minors of order 2 are greater or
equal to zero, as in (4.1).

∂2F

∂x2

∂2F

∂y2 −
(

∂2F

∂x∂y

)2

� 0. (4.1)

Smooth models in the found literature, with one output and more than one input, do not include equation (4.1)
– or its generalization – among their restrictions. This explains why these frontiers may not be entirely convex.

Nevertheless, equation (4.1) may not be linear. Therefore, to guarantee convexity, we could eliminate all
crossed terms from the polynomial equation that describes the frontier, i.e., all crossed terms will be null. With
this solution, we have ∂2F

∂x∂y = 0, thus equation (4.1) will always hold, because ∂2F
∂x2 � 0 and ∂2F

∂y2 � 0, in view of
restrictions already present in the smooth model, as shown in (3.1).

This condition is simpler, yet stricter than (4.1). This simplification is similar to the solution proposed in [15],
to ensure partial convexities, which was previously mentioned. Hence, for the case with 1 output and 2 inputs,
the smooth frontier will be described as Z = F (x, y) = a + bx + cy + dx2 + ey2 + fx3 + gy3 + . . .

Eliminating all crossed terms also guarantees convexity with a single output and multiple inputs. This is true
because the Hessian matrix will be diagonal, as shown below, for the case with n outputs (x1, x2, . . . , xn) and
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Figure 2. Illustrations of negative and non-negative projections.

one output z = F (x1, x2, . . . , xn).

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2F
∂x1

2
∂2F

∂x1∂x2
. . . ∂2F

∂x1∂xn

∂2F
∂x2∂x1

∂2F
∂x2

2 . . . ∂2F
∂x2∂xn

...
...

. . .
...

∂2F
∂xn∂x1

∂2F
∂xn∂x2

. . . ∂2F
∂xn

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2F
∂x1

2 0 . . . 0

0 ∂2F
∂x2

2 . . . 0

...
...

. . .
...

0 0 . . . ∂2F
∂xn

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

According to [19], a diagonal matrix is negative-semidefinite if, and only if all of its elements from the main
diagonal are less or equal to zero. This means that the constraint ∂2F

∂x2
1
, ∂2F

∂x2
2
, . . . , ∂2F

∂x2
n

� 0, already present in
smooth models, is necessary and now sufficient to guarantee convexity.

For cases where a single input X is a function of two outputs z and w, similar demonstrations prove that
restriction (4.2) is also necessary to guarantee convexity of the smooth frontier.

∂2H

∂z2

∂2H

∂w2 −
(

∂2H

∂z∂w

)2

� 0. (4.2)

Since this equation may not be linear either, we may also eliminate all crossed terms from the polynomial
equation that describes the frontier, and prove that this ensures its convexity, regardless of the number of
outputs zj .

4.2. Improvement for positive projections

Another relevant characteristic in classic DEA is that DMU targets do not present negative inputs. Con-
sequently, this should be a concern for smooth models, even though it was not ensured in previous papers.
Therefore, in this section, we develop a solution that improves smooth DEA models, by securely avoiding this
situation.

Figure 2 illustrates a problematic situation in Figure 2a and an adequate situation in Figure 2b. In Figure 2a,
the target for DMU A has positive outputs, but negative inputs. This means that the model requires inefficient
DMU A to aim at an impractical target, to become efficient. In Figure 2b, the problem was solved and DMU
A has now a valid target.
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This concern is only present with input orientation, when we reduce inputs from inefficient DMUs until they
reach the efficient frontier. With output orientation, we increase outputs from inefficient DMUs until they reach
the frontier. Since all outputs are originally positive, they will always be positive.

To avoid projections with negative inputs, we must impose restrictions to ensure that all inputs in the frontier
are equal or greater than zero for every output value, as follows.

For the case with n inputs xi(i = 1, . . . , n) and a single output z, the equation that describes the frontier is
zg = F (x1, x2, . . . , xn) = a+

∑
k akxci1k

1 xci2k
2 . . . xcink

n ∀ciik, where
∑n

i=1 ciik � g and g is the polynomial degree.
This may be rewritten as in (4.3).

z = F (x1, x2, . . . , xn) = a + f (x1, x2, . . . , xn) (4.3)

where f(x1, x2, . . . , xn) has no term independent of xi, meaning that f(x1, x2, . . . , xn) = 0 if xi = 0,
∀i = 1, . . . , n.

Since f(x1, x2, . . . , xn) = F (x1, x2, . . . , xn) − a, therefore ∂f
∂xi = ∂F

∂xi . Since ∂F
∂xi � 0 which is a restriction

present in the model, ∂f
∂xi � 0. Therefore, (4.4) always holds

f (x1A, x2A, . . . , xnA) � f (x1B , x2B, . . . , xnB) ⇔ xiA � xiB ∀i = 1, . . . , n. (4.4)

Using (4.3) and (4.4), we may conclude that f (x1, x2, . . . , xn) � 0 ⇔ xi � 0 ∀i = 1, . . . , n. Hence we may
impose (4.5) to guarantee that every projection has non negative inputs (xi � 0 ∀i = 1, . . . , n).

z = F (x1, x2, . . . , xn) = a + f (x1, x2, . . . , xn) � a. (4.5)

To ensure (4.5), we may simply impose the strongest restriction, when z = zmin, i.e., zmin � a.
For the case where a single input X is a function of multiple outputs zj, i.e. X = H (z1, z2, . . . , zm), similar

demonstrations show that restriction (4.6) ensures positive projections for every DMU

H (z1min, z2min, . . . , zm min) � 0. (4.6)

4.3. Solution to avoid efficiency by default

According to Ali [1], DMU0 is necessarily efficient if it is the unique DMU with xi0 = mink=1...nxik or if
it is the unique DMU with yj0 = maxk=1...nyjk, where n is the number of DMUs, xik is DMU k’s value for
input i, and yjk is DMU k’s value for output j. According to [22], herein we refer to this distortion as efficiency
by default, based on the Free Disposal Hull (FDH) approach [16]. This problem affects not only evaluation for
falsely efficient DMUs, but also for all DMUs that are on or projected onto the facets that include efficient by
default units.

To avoid this distortion, we propose a solution based on [39], which dealt with unfeasibility of the smoothing
QP. In this paper, we relax the equality constraints associated with efficient by default DMUs. Instead of
having F (xeff , yeff) = Zeff for every BCC efficient DMU, as shown in (3.1), we replace those associated with
efficient by default units, by F (xeff , yeff) � Zeff ∀ efficient by default DMU. This is shown in the smooth model
formulation (4.8).

In other words, efficient by default DMUs will certainly be in the smooth production possibility region, but
the new smooth frontier may or may not contain them. If the smooth frontier does contain any of them, they
are considered truly efficient, whereas units that are not in the smooth frontier are considered inefficient, or
falsely efficient.

It is important to point out that the efficiency by default distortion is only present in the BCC model, and
not in the CCR model. In other words, a CCR efficient DMU may never be considered efficient by default.
Therefore, if a certain DMU has the smallest of one of the inputs or the greatest of one of the outputs, yet it is
CCR efficient, we should not relax its equality constraint in the smooth model.



164 L.C. BRANDÃO AND J.C.C.B. SOARES DE MELLO

Moreover, in equation (4.7) we propose a comparative index, similar to the index proposed by Banker and
Thrall [6], which compares CCR and BCC efficiencies. Equation (4.7) compares smooth and traditional effi-
ciencies for each DMU. %EfficiencyBCC is the DMU’s efficiency in classic BCC and %EfficiencySmooth is the
DMU’s efficiency in the smooth model proposed in (4.7).

Comparative Index =
%EfficiencyBCC − %EfficiencySmooth

%EfficiencyBCC

. (4.7)

Equation (4.7) calculates how much of the efficiency in classic BCC is due to efficiency by default. Therefore, the
greater the index, the less efficient the DMU really is. Since the BCC distortion affects other DMUs, including
inefficient units, it is possible to use equation (4.7) for all DMUs.

We should mention that the index calculated in (4.7) is not entirely consequence of the efficiency by default
distortion. Efficiency values for inefficient DMUs in previous smooth models differ from those in classic DEA,
even though such models make no attempt in correcting efficiencies by default. However, because these differences
are relatively small, we may consider that the index in (4.7) is reasonably sufficient to measure the degree of
efficiency by default in classic BCC.

4.4. Smooth model formulation

In (4.8), we present the smooth model formulation, for cases with multiple inputs xi, i = 1, . . . , n, and a
single output Z = F (x1, . . . , xn), taking into account the contributions from the present work. In (4.8), xi eff

(i = 1, . . . , n) are the values for input i of extreme efficient DMUs, Zeff are their output values, and xi max

(i = 1, . . . , n) are the greatest values for input i of all DMUs.

Min

⎧⎨
⎩

x1 max∫
x1 min

. . .

xn max∫
xn min

n∑
i=1

(
∂F

∂xi

)2

dxn . . .dx1

⎫⎬
⎭

subject to

F (x1 eff , . . . , xn eff) � Zeff ∀ efficient by default DMU
F (x1 eff , . . . , xn eff) = Zeff ∀ other BCC efficient DMU
∂F

∂xi
(x1 max, . . . , xn max) � 0 ∀i = 1, . . . , n

c1, . . . , cnd1, . . . , dn, . . . � 0; a � zmin. (4.8)

The frontier is described by a polynomial equation with no crossed terms, such as Z = F (x1, . . . , xn) =
a + b1x1 + . . . + bnxn + c1x

2
1 + . . . + cnx2

n + . . ., so that the constraint c1, c2, . . . , d1, d2, . . . � 0 in model (4.8)
may completely ensure convexity.

The first constraint ensures that efficient by default DMUs belong to the production possibility region, but
allows the smooth frontier to contain them or not. The second constraint ensures that the smooth frontier
contains the other BCC efficient DMUs. The following couple of constraints ensure that output is an increasing
function of inputs, as well as the frontier’s convexity. Finally, the last constraint ensures positive targets for all
DMUs.

In (4.9), we present the smooth model formulation, for cases with multiple outputs zj, j = 1, . . . , n, and a
single input X = H (z1, . . . , zm), taking into account the contributions from the present work. In (4.9), zj eff

(j = 1, . . . , m) are the values for output j of extreme efficient DMUs, Xeff are their input values, and zj min
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(j = 1, . . . , m) are the smallest values for output j of all DMUs.

Min

⎧⎨
⎩

z1 max∫
z1 min

. . .

zm max∫
zm min

m∑
j=1

(
∂H

∂zj

)2

dzm . . . dz1

⎫⎬
⎭

subject to

H (z1 eff , . . . , zm eff) � Xeff ∀ DMU efficient by default
H (z1 eff , . . . , zm eff) = Xeff ∀ other BCC efficient DMU
∂H

∂zj
(z1 min, . . . , zm min) � 0 ∀j = 1, . . . , m

c1, . . . , cm, d1, . . . , dm, . . . � 0
H (z1 min, . . . , zm min) � 0. (4.9)

Model (4.9) is very similar to model (4.8), though the second derivatives are positive in (4.9) because the input
is a function of the outputs, as in (3.2). The frontier is now described by a polynomial equation with no crossed
terms, such as X = H (z1, . . . , zm) = a + b1z1 + . . . + bmzm + c1z

2
1 + . . . + cmz2

m + . . ., so that the constraint
c1, . . . , cn, d1, . . . , dn, . . . � in model (4.9) may completely guarantee convexity.

5. Case study

In this section, we present an application of the model proposed herein, using the 2010 data studied in [23],
which evaluates the operational performance of Brazilian airlines. Based on [44], Gomes et al. [23] evaluated how
airlines use their resources to provide their services. For that, the authors consider the airlines’ fleet capacities
as input, as done in [15, 35, 38]. As outputs, the authors consider both passenger and cargo transport, i.e.,
the number of passengers carried, multiplied by the total distance travelled, as well as the total cargo tonnage
transported, multiplied by the total distance travelled, for each airline.

Table 1 shows the 2010 input and output data from [23]. To avoid misinterpretation, we should highlight
that Total LA refers to a single airline called Total Linhas Aéreas (Total Airlines, in Portuguese).

As in [23], this paper uses DEA BCC, because there is no presumption of proportionality between inputs
and outputs. However, herein we consider output orientation, so that inefficient airlines improve passenger and
cargo transport, instead of reducing fleet capacity. Moreover, we normalize data to avoid possible errors.

In this paper, our target is to correct the efficiency by default BCC distortion, thus we use the Smooth BCC
model proposed in Section 4. However, before this, we present results for previous smooth BCC models, to
illustrate the importance of corrections and improvements proposed herein.

First, Table 2 presents the normalized data, classic BCC efficiency with output orientation, derived from
SIAD [3], and results for the smooth BCC model shown in (3.2), calculated with Excel’s Solver. Here, x
represents input Fleet Capacity, z represents the passenger output and w represents the cargo output. αz and
αw are the targets for each output, where x = H(αz, αw). Finally, the smooth output oriented efficiency is
Eff out = 1

α , in accordance to classical DEA efficiencies [41].
This model does not correct the efficiency by default distortion. In fact, we could observe from Table 2 that

all four traditional BCC efficient DMUs remained efficient in the smooth model. The primary objective for such
smooth model would therefore be the calculation of unique sets of multipliers, e.g., for a subsequent application
of cross efficiency.

The polynomial that describes the frontier was found to be approximately X = H (z, w) = 0.0004+0.5763z+
0.2765w− 0.0256wz + 0.1723w2. Despite not adding the restriction for positive projection shown in (4.6), there
were no negative targets in the input oriented model (as noted in Sect. 4.2, only input oriented models may
present negative projections).
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Table 1. Fleet Capacity and passenger and cargo transport data for Brazilian airlines in 2010.

Airlines Fleet capacity Pass km Ton km
Abaeté 11 1 933 487 160 613
Avianca 789 1 856 243 438 171 287 586

Azul 1041 4 306 850 206 357 499 774
Gol 9190 31 402 871 742 2 917 360 340

Meta 27 20 088 021 1 787 191
NHT 40 10 424 543 873 769
Noar 10 5 004 498 1 425 654

Pantanal 205 242 945 923 20 822 599
Passaredo 215 428 592 915 37 400 674

Puma 59 86 803 465 45 216 390
Rico 182 633 899 51 766 818
Sete 29 16 794 473 1 618 528
Sol 7 2 244 622 185 609

TAM 15 114 51 712 453 009 5 010 977 416
Team 17 3 084 331 237 686

Total LA 542 61 991 710 52 739 563
Trip 824 1 547 564 238 136 878 579

Webjet 1322 4 130 647 241 360 627 713

Table 2. Normalized data, classic BCC efficiencies, and results from smooth model (3.2).

DMUs
Original Normalized Data Eff BCC Results for Smooth BCC (3.2)

x: Fleet z: Pass km w: Ton km Output αz: target z αw: target w Eff Output
Abaeté 0.00073 0.00004 0.00003 10% 0.0004 0.0003 10%
Avianca 0.05220 0.03590 0.03418 61% 0.0611 0.0582 59%

Azul 0.06888 0.08328 0.07134 100% 0.0833 0.0713 100%
Gol 0.60805 0.60726 0.58219 99% 0.6541 0.6271 93%

Meta 0.00179 0.00039 0.00036 24% 0.0016 0.0015 24%
NHT 0.00265 0.00020 0.00017 7% 0.0027 0.0024 7%
Noar 0.00066 0.00010 0.00028 58% 0.0002 0.0005 58%

Pantanal 0.01356 0.00470 0.00416 30% 0.0160 0.0141 29%
Passaredo 0.01423 0.00829 0.00746 50% 0.0167 0.0150 50%

Puma 0.00390 0.00168 0.00902 100% 0.0017 0.0090 100%
Rico 0.01204 0.00001 0.01033 60% 0.0000 0.0409 25%
Sete 0.00192 0.00032 0.00032 19% 0.0018 0.0017 19%
Sol 0.00046 0.00004 0.00004 100% 0.0000 0.0000 100%

TAM 1.00000 1.00000 1.00000 100% 1.0000 1.0000 100%
Team 0.00112 0.00006 0.00005 7% 0.0009 0.0007 7%

Total LA 0.03586 0.00120 0.01052 26% 0.0112 0.0987 11%
Trip 0.05452 0.02993 0.02732 47% 0.0647 0.0590 46%

Webjet 0.08747 0.07988 0.07197 80% 0.1039 0.0936 77%

However, this frontier is not entirely convex (in this case, concave), because the condition from equation (4.2)

is not followed. In other words, ∂2H
∂z2

∂2H
∂w2 �

(
∂2H
∂z∂w

)2

for the frontier derived from model (3.2). Consequently,
although outputs increase with inputs, these increments are not always increasing (or constant), as they should
be. This problem only happens with regard to output z, as shown in Table 3. This table presents output z in
increasing order and ∂H/∂z for each DMU. DMUs with greater output z, though with a smaller increment
∂H/∂z, compared to the previous DMU, are in bold.
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Table 3. Increments with regard to output z, evidencing lack of convexity in model (3.2).

DMU z: Pass.km ∂H/∂z
Rico 0.00001 0.5761

Abaeté 0.00004 0.5763
Sol 0.00004 0.5763

Team 0.00006 0.5763
Noar 0.00010 0.5763
NHT 0.00020 0.5763
Sete 0.00032 0.5763
Meta 0.00039 0.5763

Total LA 0.00120 0.5761
Puma 0.00168 0.5761

Pantanal 0.00470 0.5762
Passaredo 0.00829 0.5761

Trip 0.02993 0.5756
Avianca 0.03590 0.5755
Webjet 0.07988 0.5745

Azul 0.08328 0.5745
Gol 0.60726 0.5614

TAM 1.00000 0.5508

Table 4. Efficiency values for smooth models that eliminate efficiencies by default.

DMU
Results for Smooth Model A Results for Smooth Model B
Eff Output Eff Input Eff Output Eff Input

Abaeté 2% –143% 3% –51%
Avianca 60% 61% 59% 59%

Azul 100% 100% 100% 100%
Gol Impossible 53% 87% 87%

Meta 12% –40% 15% –4%
NHT 5% –34% 6% –9%
Noar 10% –136% 15% –37%

Pantanal 29% 23% 28% 26%
Passaredo 49% 45% 48% 47%

Puma 100% 100% 100% 100%
Rico 36% 31% 32% 30%
Sete 10% –40% 12% –6%
Sol 3% –224% 4% –80%

TAM Impossible 25% 89% 89%
Team 2% –91% 3% –32%

Total LA 15% 12% 13% 12%
Trip 47% 47% 47% 46%

Webjet 76% 77% 77% 77%

Such problem becomes much more evident when we use smooth models to avoid efficiencies by default, without
introducing corrections and improvements proposed herein. Table 4 shows results for two smooth models that
eliminate efficiencies by default, i.e., that relax the equality constraint for DMUs Sol, with the smallest input
value, and TAM, with the greatest value for both outputs. For illustrative purposes, we also present input
oriented efficiency results, where Eff in = H(z,w)

x , in accordance to classical DEA efficiencies [41].
Despite eliminating efficiencies by default, as proposed in Section 4.3, model A does not present the convexity

correction proposed in Section 4.1 or the positive projections improvement proposed in Section 4.2. In addition
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Table 5. Classic BCC efficiencies and results from smooth model (4.9).

DMU
Eff BCC Results for Smooth BCC (4.9)

Output αz: target z αw: target w Eff Output X: target x Eff Input

Abaeté 10% 0.0009 0.0008 4% 0.00001 2%

Avianca 61% 0.0608 0.0579 59% 0.03082 59%

Azul 100% 0.0833 0.0713 100% 0.06888 100%

Gol 99% 0.7060 0.6768 86% 0.52301 86%

Meta 24% 0.0021 0.0020 18% 0.00031 17%

NHT 7% 0.0032 0.0028 6% 0.00015 6%

Noar 58% 0.0004 0.0013 22% 0.00013 20%

Pantanal 30% 0.0162 0.0144 29% 0.00391 29%

Passaredo 50% 0.0169 0.0152 49% 0.00696 49%

Puma 100% 0.0017 0.0090 100% 0.00390 100%

Rico 60% 0.0000 0.0361 29% 0.00344 29%

Sete 19% 0.0022 0.0022 15% 0.00027 14%

Sol 100% 0.0006 0.0005 7% 0.00002 4%

TAM 100% 1.1428 1.1428 88% 0.87506 88%

Team 7% 0.0014 0.0011 4% 0.00003 3%

Total LA 26% 0.0103 0.0907 12% 0.00415 12%

Trip 47% 0.0645 0.0588 46% 0.02530 46%

Webjet 80% 0.1039 0.0936 77% 0.06724 77%

to the negative efficiencies with input orientation, it is impossible to calculate two output oriented efficiencies
for this model, because there is no α value, where x = H(αz, αw) in such cases. This is consequence of the
frontier’s lack of convexity.

Model B presents the convexity correction proposed in Section 4.1, i.e., eliminates all crossed terms from the
frontier’s polynomial, but does not include restriction (4.6). Thus, it is possible to calculate all output oriented
efficiency values, and they are all in the interval [0,1]. Furthermore, the problem shown in Table 3, which
is consequence of the frontier’s lack of convexity, does not occur. However when considering input orientation,
certain efficiency values are negative, as shown in Table 4, i.e., those DMUs have negative input oriented targets.
Although our case study is based on output orientation, the DEA frontier should not present negative input
values, in the dataset interval.

Therefore, Table 5 presents results for the smooth model proposed in this paper, in (4.9). We present both
output and input orientation, to show that all efficiency values are positive, even with input orientation.

The polynomial that describes the frontier was found to be approximately X = H (z, w) = −0.00002 +
0.54122z + 0.33385w. This frontier is entirely convex (in this case, concave), so it does not present the problem
shown in Table 3.

Moreover, the efficiency by default distortion, highlighted in [23], is corrected in model (4.9), since Sol (small-
est airline) is only 7% efficient and TAM (largest airline) is 88% efficient. Hence, the comparative index (4.7)
is 93% for Sol and 12% for TAM, which shows how much of classic BCC efficiency is consequence of the classic
model’s distortion. In other words, despite having 4 efficient DMUs in classic BCC, only Azul (medium-sized)
and Puma (small) are truly efficient.

Other DMUs also benefit from the efficiency by default distortion of classic BCC, despite not being efficient,
because entire frontier segments are closer to the DMUs, due to such distortion. Thus, we may calculate the
comparative index (4.7) for other DMUs, such as Noar and Abaeté, whose input and output values are very
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similar to Sol ’s. In fact, Noar ’s comparative index is 62%, the second greatest, followed by Abaeté, with 59%.
Similarly, input and output values for Gol are close to TAM ’s, and Gol ’s comparative index is 13%.

Comparing Tables 2 and 5, we may observe that the efficiency results from model (3.2) are much closer to
classic BCC than those from model (4.9). This is expected, since the model’s target is no longer plain proximity
with the original frontier, but also the correction of one of its distortions, therefore diverging from the classic
model.

As a result, the smooth model proposed in this paper allows a more exact interpretation of the airlines’
evaluation, because it eliminates the efficiency by default distortion, still maintaining essential properties from
classic DEA.

6. Conclusions

The Smooth DEA technique solves classic DEA problems, particularly multiple optimal solutions for multipli-
ers and Pareto inefficient regions, maintaining basic DEA properties. Although convexity is essential in the BCC
approach, this property was not ensured in previous smooth BCC models. Therefore, the main contribution of
this paper was to correct smooth BCC models, and ensure the frontier’s convexity.

This paper also proposed improvements to smooth DEA models, so that all DMUs’ projections are non-
negative, as in classic DEA. Consequently, our improved model also ensures non-negative efficiency values, for
any orientation. With the corrections and improvements proposed in this paper, smooth models become more
robust and coherent.

Moreover, this paper addresses the BCC distortion called efficiency by default [22], in which DMUs that have
the smallest of any input or the greatest of any output are necessarily efficient [1]. Based on the corrected and
improved smooth BCC model proposed herein, we present a solution for the efficiency by default distortion,
thus allowing for more precise evaluations.

Finally, we use the smooth model proposed in this paper to evaluate operational performance of Brazilian
airline companies in 2010. We also apply smooth models from the literature, as well as intermediate smooth
models, i.e., models with some of the proposed improvements and corrections, to illustrate the practical effect
of each contribution.

We verified that the frontier from our smooth model was entirely convex, whereas the frontiers from previous
smooth models were not. We also observed that previous smooth models should not be used to eliminate the
efficiency by default distortion, because they provide unrealistic results. Thus, compared to classic BCC and to
previous smooth models, our model was the only one that avoided the BCC distortion.

Future works may develop smooth models for the multiple input and output case, with the improvements
proposed herein. Other studies may also simplify smooth models by transforming the Quadratic Problem shown
herein into a Linear Problem. Preliminary results for this simplification are presented in [8].
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