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DIMENSIONAL MODEL REDUCTION FOR FLOW THROUGH FRACTURES
IN POROELASTIC MEDIA
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Abstract. We study the interaction between a poroelastic medium and a fracture filled with fluid.
The flow in the fracture is described by the Brinkman equations for an incompressible fluid and the
poroelastic medium by the quasi-static Biot model. The two models are fully coupled via the kinematic
and dynamic conditions. The Brinkman equations are then averaged over the cross-sections, giving rise
to a reduced flow model on the fracture midline. We derive suitable interface and closure conditions
between the Biot system and the dimensionally reduced Brinkman model that guarantee solvability of
the resulting coupled problem. We design and analyze a numerical discretization scheme based on finite
elements in space and the Backward Euler in time, and perform numerical experiments to compare the
behavior of the reduced model to the full-dimensional formulation and study the response of the model
with respect to its parameters.

Mathematics Subject Classification. 76S05, 76D07, 74F10, 65M60, 65M12.

Received October 21, 2015. Accepted November 7, 2016.

1. Introduction

Computational modeling of flows in fractured oil and gas reservoirs is increasingly attracting the attention
of the scientific community. Naturally occurring fractures may affect significantly the effective flow rates. Fur-
thermore, an increasing fraction of hydrocarbon supply for western countries is coming from shale oil and gas.
Hydraulic fracturing is the main technology for extraction of these natural resources. Efficient exploitation of
trapped hydrocarbons requires careful reservoir management.

The problem of modeling fluid injection, flow and fracture propagation through reservoirs is challenging.
Typical fractures are only 10−100 μm thin and they extend for 10−100m. In the process of creating new
fractures or opening existing ones, the injected flow rate in wells can exceed 10−3 m3/s, namely one liter per
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second, which induces a significant fracture front propagation speed, up to one meter per second. These numbers
outline a complex dynamic scenario, where fluid flow and solid mechanics are tightly coupled.

Models that employ Darcy’s law in the fracture and the reservoir have been developed
in [1, 2, 12, 15, 26, 30, 34, 35], see also extensions to two-phase flow in [17, 25]. More recently, models that ac-
count for faster flow within the fracture have been investigated, including Forchheimer [16], Brinkman [28], and
Reynolds lubrication equations [18, 19, 21]. Attention has also been given to development of partitioned non-
iterative or iterative algorithms. For example, in [8], a non-iterative Nitsche’s coupling approach is developed
for the Stokes–Biot system using the mixed formulation for Darcy flow, while an operator-splitting method for
a coupled Navier–Stokes - Biot model has been developed in [9]. The Biot system can be further split into
elasticity and flow sub-problems using either non-iterative [8] or iterative coupling [32].

Geometrical model reduction techniques for coupled flow through fractures and porous media are commonly
used in the literature [2, 26, 28, 30]. In this approach the fractures are modeled as manifolds of one dimension
less than the reservoir. This is done by averaging of the flow equation along the fracture aperture, in order to
reduce the computational cost of coupling the flow through a reservoir with the one in the fractures, because this
approach avoids fine meshing of the fracture domain, which becomes technically challenging in those cases where
the aperture is small. The main issue of this approach consists in the determination of appropriate interface
conditions between reservoir and fracture, which may depend on the models used in each region.

The objective of this work is to develop a reduced model for coupled flow through fractured reservoirs while
accounting for the deformation of the porous media. As mentioned above, during the hydraulic fracturing process,
fluid flow and rock mechanics are tightly coupled. Our model is based on coupling the Brinkman equations in
the fracture with the Biot system of poroelasticity [6, 45] in the reservoir. Our approach is similar to the one
in [28], where a reduced model for the interaction between porous medium and Brinkman model is developed,
but no poroelastic effects are considered. The resulting reduced Brinkman–Biot model is an alternative to the
lubrication-Biot model studied in [18,19,21]. A notable difference between the two approaches is in the continuity
condition between the poroelastic stress in the reservoir and the fluid stress in the fracture. In particular, the
Brinkman model allows for full continuity between the two stress tensors, see (2.11), while with the lubrication
equation the normal poroelastic stress vector is balanced with the normal vector to the interface scaled by the
fluid pressure in the fracture. Furthermore, the Brinkman model requires an additional interface condition for
the tangential fluid stress. While in [28] zero tangential stress was imposed, here we employ the Beavers–Joseph–
Saffman condition [5,42], which is widely accepted in modeling coupled Stokes–Darcy flows [13,20,27]. We note
that full-dimensional Stokes–Biot models have been studied in [4, 8, 31, 44].

To discretize the problem in time, we employ the Backward Euler method for time discretization, which
results in solving a coupled Brinkman–Biot system at each time step. In this work we treat stationary fractures.
Fracture propagation has been modeled using level set methods [10, 22], phase-field methods [33], or boundary
element methods [41]. Incorporating some of these techniques into the Brinkman–Biot model is a topic of future
research.

The rest of the paper is organized as follows. In Section 2 we introduce the governing equations of the problem.
Without loss of generality, but with considerable simplification of the notation, we present the problem in two
spatial dimensions. In Section 3 we present the topological model reduction technique that enables us to represent
the fracture as a curve embedded into the reservoir. Particular attention is given to the derivation of interface
conditions based on closure assumptions for the pressure and velocity profiles in the fracture cross sections. To
our knowledge, this is the first time this issue is addressed for the case of Brinkman flow coupled with the Biot
model for the reservoir. The variational formulation and its numerical discretization based on finite elements in
space and the Backward Euler in time is presented in Section 4, where the well posedness of the latter is also
discussed. The numerical error of the proposed scheme is analyzed in Section 4.2 following the general approach
in the sequence of works for the Biot system [37–39], extended here to the coupled reservoir/fracture problem.
Numerical results that validate the correct behavior of the mathematical model and of the numerical scheme are
presented in Section 5. In particular, we verify the convergence rate of the spatial discretization error, compare
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the results to the full dimensional model and analyze the model response to variations of the fluid and rock
parameters.

2. Description of the problem

Consider a bounded, two-dimensional domain Ω = Ωp ∪ Ωf . Region Ωp is occupied by a fully-saturated
poroelastic matrix and region Ωf represents a fracture filled with fluid. We assume that Ωf is a non self-
intersecting strip with a constant aperture, which is small with respect to the size of the surrounding poroelastic
media. We denote the two long edges of the fracture with Γ1 and Γ2, see Figure 1. Let Γf = ∂Ωf \ (Γ1 ∪ Γ2) be
the union of the two short edges of the fracture. We allow for none, one, or both of the short edges to be on the
outside boundary ∂Ω, corresponding to the fracture being entirely confined in the poroelastic domain, having
one confined end, or splitting the poroelastic domain in two parts. The dynamics in the poroelastic domain
Ωp is described by the Biot model. The stress tensor of the poroelastic medium is given by σp = σE − αpI,
where σE denotes the elasticity stress tensor, p is the fluid pressure, and the Biot–Willis constant α is the
pressure-storage coupling coefficient. With the assumption that the displacement η = (ηx, ηy) of the skeleton
is connected to stress tensor σE via the linear elastic model, we have σE(η) = 2μD(η) + λtr(D(η))I, where
μ and λ denote the Lamé coefficients for the skeleton. Furthermore, we assume that the domain Ωp does not
change in time and with the hypothesis of infinitesimal deformations, we have D(η) = (∇η + (∇η)T )/2. Then,
the Biot equations read as follows:

−∇ · σp = fp in Ωp × (0, T ], (2.1)

K−1q = −∇p in Ωp × (0, T ], (2.2)
∂

∂t
(s0p+ α∇ · η) + ∇ · q = g in Ωp × (0, T ]. (2.3)

System (2.1)−(2.3) consists of the momentum equation for the balance of total forces (2.1), the Darcy
law (2.2), and the storage equation (2.3) for the fluid mass conservation in the pores of the matrix, where q
is the Darcy velocity. The coefficient s0 > 0 is the storage coefficient and K denotes a symmetric uniformly
positive definite hydraulic conductivity tensor satisfying, for some constants 0 < k0 ≤ k1,

k0ξ
T ξ ≤ ξT Kξ ≤ k1ξ

T ξ, ∀ ξ(x) ∈ R2, ∀x ∈ Ωp. (2.4)

Ωp

n

τ
n2

n1
Ωf

x(s, ξ)

Γ2

Γ1

γ C(s)
δ

τ 1

τ 2

Figure 1. Configuration of the fluid and porous domains, Ωp and Ωf respectively, and of the
curvilinear coordinate system introduced for the definition of the topological model reduction
in the fracture.



1432 M. BUKAČ ET AL.

Let Γp = ΓD
p ∪ ΓN

p = Γ p
p ∪ Γ q

p be two partitions of Γp = ∂Ωp ∩ ∂Ω. We prescribe the following boundary
conditions on Γp,

η = 0 on ΓD
p × (0, T ],

σpnp = sN
p on ΓN

p × (0, T ],

p = pD on Γ p
p × (0, T ],

q · np = 0 on Γ q
p × (0, T ],

where np is the outward unit normal on Γp. In order to guarantee uniqueness of the solution, we assume that
|ΓD

p | > 0 and |Γ p
p | > 0. If Ωp is split by Ωf in two parts, we assume that each part has a piece of ΓD

p and Γ p
p .

We also prescribe the pressure and the displacement fields at the initial time:

p(0) = p0, η(0) = η0 in Ωp.

To model the flow in the fracture, we use the Brinkman model, which is a valid approximation of the Navier–
Stokes equations for incompressible fluids at low Reynolds numbers in presence of friction due to debris in the
fracture bed,

K−1
f u − μfΔu + ∇pf = ff in Ωf × (0, T ], (2.5)

∇ · u = h in Ωf × (0, T ]. (2.6)

Here u = (ux, uy) is the fluid velocity, pf is the fluid pressure, Kf is a symmetric uniformly positive definite
hydraulic conductivity tensor (sometimes called drag coefficient, see for example [40]), and μf is the Brinkman
viscosity. We assume that there exist constants 0 < kf,0 ≤ kf,1 such that

kf,0ξ
T ξ ≤ ξT Kfξ ≤ kf,1ξ

T ξ, ∀ ξ(x) ∈ R2, ∀x ∈ Ωf . (2.7)

For simplicity of notation, we introduce
σf = μf∇u − pfI.

We note that σf is not a physical stress tensor, but we may call it that, abusing notation. Furthermore,
because we are using ∇u, the coupling conditions below are an approximation. A similar simplification has
been made in [28]. Handling the symmetric gradient would lead to additional problems in derivation of the
closure conditions, which is outside the scope of the paper.

The boundary conditions on Γf = ΓD
f ∪ ΓN

f are

u = uD on ΓD
f × (0, T ],

σfnf = 0 on ΓN
f × (0, T ],

where nf is the outward unit normal vector on ∂Ωf . If an edge from Γf is not on the boundary ∂Ω, a physically
reasonable boundary condition is u = 0, which is motivated by the fact that the aperture is very small and
the flux across a short edge is negligible relative to the flux across the transversal edges. Similar condition
is considered in [2]. Alternatively, one can assign the stress-free outflow condition σfnf = 0. To guarantee
uniqueness of the fluid pressure, we assume that |ΓN

f | > 0. Let τ f be the unit tangential vector on ∂Ωf such
that τ f and nf form a positively oriented coordinate system. To couple the Biot problem (2.1)−(2.3) with the
Brinkman equations (2.5)−(2.6), we prescribe the following coupling conditions on Γi, i = 1, 2.

Mass conservation: the continuity of normal flux yields

u · nf =
(
∂η

∂t
+ q

)
· nf on Γi × (0, T ]. (2.8)
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Beavers–Joseph–Saffman condition: the tangential component of the fluid stress is proportional to the slip
velocity

τ f · σfnf = −cBJS(u − ∂η

∂t
) · τ f on Γi × (0, T ]. (2.9)

Balance of normal components of the stress in the fluid phase

nf · σfnf = −p on Γi × (0, T ]. (2.10)

Conservation of momentum: the sum of contact forces at the fracture-poroelastic medium interface is equal
to zero:

σfnf = σpnf on Γi × (0, T ]. (2.11)

3. Derivation of a dimensionally reduced model for the fracture

We assume that Ωf admits a curvilinear, orthogonal coordinate system (see Fig. 1) defined by the arc length
s ∈ [0, L] and by a transversal coordinate ξ. For any fixed s ∈ [0, L], let the cross-section C(s) be the locus of
points obtained by varying ξ, and let the length of C(s) be δ, i.e., the aperture of Ωf . The orthogonal coordinate
system is then (s, ξ) ∈ [0, L]× δ

2 [−1, 1] with an orthonormal local basis τ ,n. Let γ be the midline of Ωf defined
as the isoline ξ = 0. More precisely we have,

γ = {(s, 0)}, Γ1 =
{(

−δ
2

)}
, Γ2 =

{(
+δ
2

)}
, C =

{
(s, ξ) : ξ ∈ δ

2
[−1, 1]

}
, s ∈ [0, L].

Let us denote with n1 and n2 the outward unit normal vectors to Ωp on Γ1 and Γ2, respectively. According to
the notation above (e.g. Fig. 1) we also have

n1 = n = −nf , τ 1 = τ = −τ f on Γ1; n2 = −n = −nf , τ 2 = −τ = −τ f on Γ2.

Then, we rewrite the coupling conditions (2.8)–(2.11) using the notation of Figure 1:

u · ni =
(
∂ηi

∂t
+ qi

)
· ni on Γi × (0, T ], (3.1)

τ i · σfni = cBJS(u − ∂ηi

∂t
) · τ i on Γi × (0, T ], (3.2)

ni · σfni = −pi on Γi × (0, T ], (3.3)
σfni = σpni on Γi × (0, T ]. (3.4)

In the Cartesian reference frame x, we denote by dτ , dn the differentials in the direction orthogonal and
tangential to C, respectively, which correspond to ds, dξ in the local reference frame (s, ξ). Furthermore, there
exists a bijective mapping between points on γ and Γi. As a result, any function trace on Γi (i = 1, 2) can
be mapped onto Γj (i �= j) and onto γ. For notational convenience, we denote this class of three equivalent
functions as (·)|∗Γi

where |Γi denotes where the trace is defined and |∗ denotes that it can be mapped on γ and Γj .
In this way, in the derivation of the reduced model we will be able to formally combine traces on Γ1, Γ2, and γ.
Furthermore, we only adopt this notation for variables defined on Γi, while it is implicitly assumed that the
variables of the reduced model for the fracture flow are defined on γ.

For the derivation of the reduced model, we will exploit the following property of integrals along the curve C,

f

(
+δ
2

)
− f

(
−δ
2

)
=
∫
C

∂f(s, ξ)
∂ξ

dξ =
∫
C

∂f(x)
∂n

dn. (3.5)
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To derive a reduced model, we project the Brinkman equations in the fracture on the local orthogonal system,
and then we average the resulting equations over the corresponding C−curves in Ωf . We start by projecting the
mass conservation equation (2.6) in Ωf on the local orthogonal reference system:

∇ · u =
∂u

∂n
· n +

∂u

∂τ
· τ = h.

Integrating the latter equation over the corresponding curve C, we get

(u · n)
(

+δ
2

)
− (u · n)

(
−δ
2

)
+

∂

∂s

∫
C

u(s, ξ) · τdξ =
∫
C
hdξ.

Recalling that u

(
+δ
2

)
· n = −u · n2|∗Γ2

and that −u

(
−δ
2

)
· n = −u · n1|∗Γ1

and employing the kinematic

coupling condition (3.1) we obtain a one-dimensional mass conservation equation on γ:

δ

(
∂Uτ

∂τ
−H

)
=
(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

+
(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

on γ, (3.6)

where we have defined mean values as follows,

Uτ =
1
δ

∫
C

u · τdn and H =
1
δ

∫
C
hdn. (3.7)

Let R be the orthonormal matrix mapping the canonical basis [e1, e2] onto the local basis [n, τ ]

R =
[

nT

τT

]
=
[

nT

0

]
+
[

0
τT

]
.

To project equation (2.5) on the local orthogonal system, we apply matrix R to (2.5)

RK−1
f RTRu − μfRΔu +R∇pf = Rff . (3.8)

For two vectors a and b ∈ R2 we define M(a, b) = aT K−1
f b. Using this notation and relation

Δu =
∂2u

∂n2
+
∂2u

∂τ 2
,

we split equation (3.8) as follows

M(n,n)u · n +M(n, τ )u · τ − μf

(
∂2u

∂n2
+
∂2u

∂τ 2

)
· n +

∂pf

∂n
= ff · n, (3.9)

M(τ ,n)u · n +M(τ , τ )u · τ − μf

(
∂2u

∂n2
+
∂2u

∂τ 2

)
· τ +

∂pf

∂τ
= f f · τ . (3.10)

Integrating equations (3.9) and (3.10) over s-curves C we get

δM(n,n)Un + δM(n, τ )Uτ − μf

(
∂u

∂n
· n
∣∣∣∣∗
Γ2

− ∂u

∂n
· n
∣∣∣∣∗
Γ1

)
− δμf

∂2Un

∂τ 2
+ pf |∗Γ2

− pf |∗Γ1
= δF f

n , (3.11)

δM(τ ,n)Un + δM(τ , τ )Uτ − μf

(
∂u

∂n
· τ
∣∣∣∣∗
Γ2

− ∂u

∂n
· τ
∣∣∣∣∗
Γ1

)
− δμf

∂2Uτ

∂τ 2
+ δ

∂P

∂τ
= δF f

τ , (3.12)
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where
Un =

1
δ

∫
C

u · ndn, P =
1
δ

∫
C
pfdn, and F f

r =
1
δ

∫
C

f f · rdn, r ∈ {n, τ}.

Since the definition of σf implies that μf
∂u

∂n
·n− pf = n ·σfn, employing condition (3.3), equation (3.11) can

be seen as a one-dimensional law for the flow through the fracture,

δ

(
M(n,n)Un +M(n, τ )Uτ − μf

∂2Un

∂τ 2
− F f

n

)
= p1

∣∣∗
Γ1

− p2

∣∣∗
Γ2
. (3.13)

Equation (3.12) gives a one-dimensional momentum balance law on γ

δ

(
M(τ ,n)Un +M(τ , τ )Uτ − μf

∂2Uτ

∂τ 2
+
∂P

∂τ
− F f

τ

)
= μf

(
∂u

∂n
· τ
∣∣∣∣∗
Γ2

− ∂u

∂n
· τ
∣∣∣∣∗
Γ1

)
. (3.14)

Finally, we average the boundary conditions on the external boundaries of the fracture. Without loss of gen-
erality, we consider a Dirichlet boundary condition at s = 0 and a Neumann boundary condition at s = L. In
particular, letting γD = γ ∩ ΓD

f = (0, 0) and γN = γ ∩ ΓN
f = (L, 0), we have

Un = UD
n =

1
|ΓD

f |

∫
Γ D

f

uD · n dn, Uτ = UD
τ =

1
|ΓD

f |

∫
Γ D

f

uD · τ dn on γD, (3.15)

μf
∂Un

∂s
= 0, μf

∂Uτ

∂s
− P = 0 on γN . (3.16)

3.1. Interface conditions for problem closure

In order to couple the Biot system with the reduced model for flow in the fracture, described by equa-
tions (3.6), (3.13) and (3.14), additional interface conditions are necessary. More precisely, the goal is to derive
interface conditions using the averaged quantities P , Un, Uτ . This issue has already been studied for example
in [28,30], and it will be addressed here for a more advanced mathematical model. More precisely, we formulate
hypotheses on the cross sectional profiles of pressure, and normal and tangential components of the velocity
in Ωf . Then, we use the mappings identified by (·)|∗Γi

to combine traces of the Biot variables on Γi with the
average values P , Un, Uτ , in order to obtain suitable interface conditions that couple equations on Ωp with the
reduced fracture model. To close the system, we need to prescribe the interface conditions for the shear stress
τ i · σpni and the conditions for the fluid pressure and Darcy velocity in Ωp.

The basis for the derivation of new interface conditions for the Biot problem in terms of the variables of the
reduced model is the following set of equations, obtained by rearranging (3.1), (3.3) and (3.4):

p1 = −n1 · σfn1 = pf − μf
∂(u · n)
∂n

on Γ1, (3.17)

p2 = −n2 · σfn2 = pf − μf
∂(u · n)
∂n

on Γ2, (3.18)(
∂η1

∂t
· n1 + q1 · n1

)
= u · n on Γ1, (3.19)

−
(
∂η2

∂t
· n2 + q2 · n2

)
= u · n on Γ2, (3.20)

τ 1 · σpn1 = τ 1 · σfn1 = μf
∂(u · τ )
∂n

on Γ1, (3.21)

τ 2 · σpn2 = τ 2 · σfn2 = μf
∂(u · τ )
∂n

on Γ2. (3.22)



1436 M. BUKAČ ET AL.

We also have

p1 = −n1 · σfn1 = −n1 · σpn1 on Γ1, (3.23)
p2 = −n2 · σfn2 = −n2 · σpn2 on Γ2. (3.24)

Closure assumptions will be used to relate the fluid velocity u and pressure pf to the averaged values Un, Uτ

and P . Note that (3.23)–(3.24) are normal stress interface conditions that are expressed in terms of the variables
on Ωp and do not require closure assumptions. In the following we consider four cases of closure assumptions
that allow us to derive Robin-type conditions interface for the fluid pressure and the normal component of
the Darcy velocity, as well as interface conditions for the tangential stress in Ωp. We note that the normal
interface conditions depend on the closure assumption for the fracture pressure pf and normal velocity u · n,
while the tangential interface conditions depend on the closure assumption for the fracture tangential velocity
u · τ . The new interface conditions will be used in the weak formulation to couple the Biot equations with the
averaged model for the flow in fracture.

3.1.1. Cases P0 − Un0 and Uτ0: constant pf , u · n, u · τ with respect to ξ along C.

In this case we have pf (s, ξ) = P , u · n(s, ξ) = Un, and u · τ (s, ξ) = Uτ for any ξ ∈ [−1, 1]. As a result we
have

p1|∗Γ1
= p2|∗Γ2

= P, u · n|∗Γ1
= u · n|∗Γ2

= Un, u · τ |∗Γ1
= u · τ |∗Γ2

= Uτ , (3.25)

where we have used (3.17)–(3.18) in the first set of equalities, and (3.19)–(3.22) imply(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= u · n1|∗Γ1
= Un, (3.26)

−
(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= −u · n2|∗Γ2
= Un, (3.27)

τ 1 · σpn1|∗Γ1
= 0, (3.28)

τ 2 · σpn2|∗Γ2
= 0. (3.29)

3.1.2. Cases P0 − Un1 and Uτ1: constant pf and linear u · n, u · τ with respect to ξ along C.

Again we have pf (s, ξ) = P . With the hypothesis of linear u · n(·, ξ) we have, using (3.19)–(3.20),

∂(u · n)
∂n

=
u · n

∣∣∗
Γ2

− u · n
∣∣∗
Γ1

δ
= −

(
∂η1

∂t
· n1 + q1 · n1

) ∣∣∣∗Γ1
+
(

∂η2
∂t · n2 + q2 · n2

)∣∣∣∗
Γ2

δ
, (3.30)

Un =
u · n

∣∣∗
Γ1

+ u · n
∣∣∗
Γ2

2
=

(
∂η1

∂t
· n1 + q1 · n1

) ∣∣∗
Γ1

−
(
∂η2

∂t
· n2 + q2 · n2

)∣∣∗
Γ2

2
. (3.31)

Similarly, with u · τ (·, ξ) linear, we have

∂(u · τ )
∂n

=
u · τ |∗Γ2

− u · τ |∗Γ1

δ
, (3.32)

Uτ =
u · τ |∗Γ1

+ u · τ |∗Γ2

2
.

Adding and subtracting equations (3.17) and (3.18) gives, using (3.30),

p2|∗Γ2
− p1|∗Γ1

= 0, (3.33)

p2|∗Γ2
+ p1|∗Γ1

= 2P +
2μf

δ

((
∂η1

∂t
· n1 + q1 · n1

) ∣∣∣∣∗Γ1
+
(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

)
. (3.34)
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Now, combining (3.31) and (3.34), we get(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= Un +
δ

4μf
(p2|∗Γ2

+ p1|∗Γ1
− 2P ),(

∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= −Un +
δ

4μf
(p2|∗Γ2

+ p1|∗Γ1
− 2P ),

which can be rewritten as

δp1|∗Γ1
− 4μf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= δP − 4μfUn + δ(P − p2|∗Γ2
), (3.35)

δp2|∗Γ2
− 4μf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= δP + 4μfUn + δ(P − p1|∗Γ1
). (3.36)

Due to (3.33), the above equations can be further simplified as

− 2μf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= −2μfUn + δ(P − p2|∗Γ2
), (3.37)

− 2μf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= 2μfUn + δ(P − p1|∗Γ1
). (3.38)

To derive the conditions on the tangential stress, we first note that conditions (3.2) and (3.4) yield

(u · τ )|∗Γ1
=

1
cBJS

(τ 1 · σpn1)|∗Γ1
+
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

(3.39)

(u · τ )|∗Γ2
= − 1

cBJS
(τ 2 · σpn2)|∗Γ2

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

. (3.40)

Now, starting from (3.21)–(3.22) and using (3.32) and (3.39)−(3.40), we obtain

τ 1 · σpn1|∗Γ1
= −μf

δ

(
τ 2 · σpn2|∗Γ2

cBJS
+
∂η2

∂t
· τ 2

∣∣∗
Γ2

+
τ 1 · σpn1|∗Γ1

cBJS
+
∂η1

∂t
· τ 1

∣∣∗
Γ1

)
,

τ 2 · σpn2|∗Γ2
= −μf

δ

(
τ 2 · σpn2|∗Γ2

cBJS
+
∂η2

∂t
· τ 2

∣∣∗
Γ2

+
τ 1 · σpn1|∗Γ1

cBJS
+
∂η1

∂t
· τ 1

∣∣∗
Γ1

)
.

Solving the system we get(
δ

μf
+

2
cBJS

)
(τ 1 · σpn1)|∗Γ1

= −∂η2

∂t
· τ 2

∣∣∗
Γ2

− ∂η1

∂t
· τ 1

∣∣∗
Γ1
, (3.41)(

δ

μf
+

2
cBJS

)
(τ 2 · σpn2)|∗Γ2

= −∂η2

∂t
· τ 2

∣∣∗
Γ2

− ∂η1

∂t
· τ 1

∣∣∗
Γ1
. (3.42)

3.1.3. Cases P1 − Un1 and Uτ1: linear pf , u · n, u · τ with respect to ξ along C.

For linear pressure along C, we have

P =
pf |∗Γ1

+ pf |∗Γ2

2
·

The derivation of the interface conditions is similar to the case of constant pf and linear u · n, u · τ , with
the exception that (3.33) does not hold, so the conditions (3.35)–(3.36) cannot be simplified. Therefore the
conditions in this case are (3.35)–(3.36) and (3.41)–(3.42).
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3.1.4. Cases P0 − Un2 and Uτ2: constant pf and quadratic u · n, u · τ with respect to ξ along C.

A quadratic u · n along C can be written as

(u · n)(ξ) = aξ2 + bξ + c,

where to determine a, b, and c for any s ∈ [0, L], we have to solve the following system of equations:

(u · n)
(
−δ
2

)
= a

δ2

4
− b

δ

2
+ c = u · n|∗Γ1

,

(u · n)
(

+δ
2

)
= a

δ2

4
+ b

δ

2
+ c = u · n|∗Γ2

,

Un =
1
δ

∫
C
(aξ2 + bξ + c)dξ.

The solution is given by

a = 3
u · n|∗Γ1

+ u · n|∗Γ2
− 2Un

δ2
,

b =
u · n|∗Γ2

− u · n|∗Γ1

δ
,

c =
6Un − u · n|∗Γ1

− u · n|∗Γ2

4
·

In a similar way we can find coefficients for u · τ . Now we can write

∂(u · n)
∂n

∣∣∣∣∗
Γ1

= −2a
δ

2
+ b = −2

u · n|∗Γ2
+ 2(u · n)|∗Γ1

− 3Un

δ
,

∂(u · n)
∂n

∣∣∣∣∗
Γ2

= 2a
δ

2
+ b = 2

u · n|∗Γ1
+ 2(u · n)|∗Γ2

− 3Un

δ
·

Adding and subtracting equations (3.17) and (3.18) gives

p2|∗Γ2
− p1|∗Γ1

= −6μf

u · n|∗Γ2
+ u · n|∗Γ1

− 2Un

δ
,

p2|∗Γ2
+ p1|∗Γ1

= 2P + 2μf

u · n|∗Γ1
− u · n|∗Γ2

δ
·

Solving this system to obtain Robin boundary conditions, we have(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= u · n|∗Γ1
= Un +

δ

6μf
(2p1|∗Γ1

+ p2|∗Γ2
− 3P ),

−
(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= u · n|∗Γ2
= Un +

δ

6μf
(−p1|∗Γ1

− 2p2|∗Γ2
+ 3P ),

which can be rewritten as

2δp1|∗Γ1
− 6μf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= 2δP − 6μfUn + δ(P − p2|∗Γ2
), (3.43)

2δp2|∗Γ2
− 6μf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= 2δP + 6μfUn + δ(P − p1|∗Γ1
). (3.44)
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To derive the conditions on the tangential stress, we note that

∂(u · τ )
∂n

∣∣∣∣∗
Γ1

= −2
u · τ |∗Γ2

+ 2(u · τ )|∗Γ1
− 3Uτ

δ
,

∂(u · τ )
∂n

∣∣∣∣∗
Γ2

= 2
u · τ |∗Γ1

+ 2(u · τ )|∗Γ2
− 3Uτ

δ
,

which, combined with (3.21)–(3.22), and using conditions (3.2) and (3.4), imply

τ 1 · σpn1|∗Γ1
= −2μf

δ

(
−∂η2

∂t
· τ 2

∣∣∗
Γ2

− 1
cBJS

(τ 2 · σpn2)|∗Γ2
+ 2

1
cBJS

(τ 1 · σpn1)|∗Γ1
+ 2

∂η1

∂t
· τ 1

∣∣∗
Γ1

− 3Uτ

)
,

τ 2 · σpn2|∗Γ2
=

2μf

δ

(
∂η1

∂t
· τ 1

∣∣∗
Γ1

+
1

cBJS
(τ 1 · σpn1)|∗Γ1

− 2
∂η2

∂t
· τ 2

∣∣∗
Γ2

− 2
1

cBJS
(τ 2 · σpn2)|∗Γ2

− 3Uτ

)
.

Solving for τ 1 · σpn1|∗Γ1
and τ 2 · σpn2|∗Γ2

we get

(
δ

2μf
+

4
cBJS

+
6μf

c2BJSδ

)
(τ 1 · σpn1)|∗Γ1

=
∂η2

∂t
· τ 2

∣∣∗
Γ2

−
(

2 +
6μf

cBJSδ

)
∂η1

∂t
· τ 1

∣∣∗
Γ1

+ 3
(

1 +
2μf

cBJSδ

)
Uτ ,

(3.45)(
δ

2μf
+

4
cBJS

+
6μf

c2BJSδ

)
(τ 2 · σpn2)|∗Γ2

=
∂η1

∂t
· τ 1

∣∣∗
Γ1

−
(

2 +
6μf

cBJSδ

)
∂η2

∂t
· τ 2

∣∣∗
Γ2

− 3
(

1 +
2μf

δcBJS

)
Uτ .

(3.46)

3.2. Unified formulation of the closure conditions

In this section we present a parametrized unified formulation for the interface conditions derived in the
previous sections. Since the normal and tangential closure assumptions can be made independently of each
other, we use two different parameters to describe them. In the cases above, the Robin boundary conditions
for the pressure in the Biot system (3.37)–(3.38), (3.35)–(3.36), and (3.43)–(3.44), can be written in a general
form as

δθnp1|∗Γ1
− 2μf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= δθnP − 2μfUn + δ(1 − θn)(P − p2|∗Γ2
), (3.47)

δθnp2|∗Γ2
− 2μf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= δθnP + 2μfUn + δ(1 − θn)(P − p1|∗Γ1
), (3.48)

where for θn = 0 we have the P0 − Un1 case (3.37)–(3.38), for θn = 1
2 we have the P1 − Un1 case (3.35)–

(3.36), and for θn = 2
3 we have the P0 − Un2 case (3.43)–(3.44). In addition, θn = 0 also gives the P0 − Un0

case (3.26)–(3.27) under the constraint p1|∗Γ1
= p2|∗Γ2

= P .
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In a similar way, we write the general conditions for the tangential components of the normal stress (3.28)–
(3.29), (3.41)–(3.42), and (3.45)–(3.46) as(

δ(1 − θτ )2

μf
+

2θτ
2

cBJS
+

6θτ(2θτ − 1)μf

c2BJSδ

)
(τ 1 · σpn1)|∗Γ1

=
((

−1 − 6μf

cBJSδ

)
θτ

2 +
6μfθτ (1 − θτ )

cBJSδ

)
∂η1

∂t
· τ 1

∣∣∗
Γ1

+ θτ (5θτ − 3)
∂η2

∂t
· τ 2

∣∣∗
Γ2

+ 3θτ (2θτ − 1)
(

1 +
2μf

cBJSδ

)
Uτ , (3.49)

(
δ(1 − θτ )2

μf
+

2θτ
2

cBJS
+

6θτ(2θτ − 1)μf

c2BJSδ

)
(τ 2 · σpn2)|∗Γ2

=
((

−1 − 6μf

cBJSδ

)
θτ

2 +
6μfθτ (1 − θτ )

cBJSδ

)
∂η2

∂t
· τ 2

∣∣∗
Γ2

+ θτ (5θτ − 3)
∂η1

∂t
· τ 1

∣∣∗
Γ1

− 3θτ (2θτ − 1)
(

1 +
2μf

δcBJS

)
Uτ , (3.50)

where θτ = 0 gives the Uτ0 case (3.28)–(3.29), θτ = 1
2 gives the Uτ1 case (3.41)–(3.42), and θτ = 2

3 gives the
Uτ2 case (3.45)–(3.46). The relation between the parameters θn, θτ and the approximation of the variables
pf , u · n, u · τ inside the fracture is summarized in Table 1. We note that normal conditions part of the table
is consistent with Table 1 in [28].

Using a simple calculation, which consists of inverting a 2 × 2 linear system, we can rewrite (3.49)–(3.50) as
follows:

(τ 1 · σpn1)|∗Γ1
= (Cτθτ (5θτ − 3) − Cη)

∂η1

∂t
· τ 1

∣∣∣∣∗Γ1
+ Cτθτ (5θτ − 3)

∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

+ CηUτ , (3.51)

(τ 2 · σpn2)|∗Γ2
= (Cτθτ (5θτ − 3) − Cη)

∂η2

∂t
· τ 2

∣∣∣∣∗Γ2
+ Cτθτ (5θτ − 3)

∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− CηUτ , (3.52)

where

Cτ =
(
δ(1 − θτ )2

μf
+

2θτ
2

cBJS
+

6θτ (2θτ − 1)μf

c2BJSδ

)−1

, (3.53)

Cη =

⎧⎪⎪⎨⎪⎪⎩
6μfcBJS

cBJSδ + 6μf
, θτ =

2
3
,

0, θτ ∈
{

1
2
, 0
}
.

(3.54)

Note that Cη is non-zero only when θτ = 2
3 . It is also helpful to analyze the asymptotic behavior of these

constants when the parameters of the problem cBJS and δ vanish (we implicitly assume here that the fluid
viscosity in the fracture μf is a strictly positive parameter). Let us denote as O(x) any quantity that scales as
Cx when x→ 0, C being a generic constant. Then, it is straightforward to show that

Cτ = O(c2BJS , δ), Cη = O(cBJS). (3.55)
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Table 1. Relation between the values of the parameters θn, θτ and the approximation of the
variables pf , u ·n, u · τ inside the fracture. C denotes constant approximation of the variables
across the interface aperture, L stands for linear approximation and Q for quadratic.

θn pf u · n θτ u · τ
0 C L 0 C

1/2 L L 1/2 L
2/3 C Q 2/3 Q

From (3.53) and (3.54) it is easy to see that for θτ = 2/3,

Cτ =
3cBJSδ

2cBJSδ + 4μf
Cη, (3.56)

Cη ≤ cBJS , (3.57)

which will be utilized later in the stability analysis.
Recalling that ∂

∂s = ∂
∂τ and using equations (3.47)−(3.48), we can write the mass conservation equation in

the model for the fracture (3.6) as:

δ

(
∂Uτ

∂s
−H

)
=

δ

2μf
p1|∗Γ1

+
δ

2μf
p2|∗Γ2

− δ

μf
P on γ. (3.58)

Furthermore, the right hand side in equation (3.14) depends on the velocity profile. Employing conditions (3.21)–
(3.22) and (3.51)–(3.52), we obtain

δ

(
M(τ ,n)Un +M(τ , τ )Uτ − μf

∂2Uτ

∂s2
+
∂P

∂s
+

2
δ
CηUτ − F f

τ

)
= Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
· (3.59)

Remark 3.1. We note that the parameter θn in (3.47)–(3.48) can be interpreted as a quadrature weight and
therefore any θn ∈ [0, 1] results in a physically meaningful interface condition of Robin type. This feature is
similar to the model in [28] and in the earlier work [30]. This is not however the case in (3.51)–(3.52), which
are meaningful only for θτ = 0, 1

2 ,
2
3 .

To summarize, in this section we derived a reduced model for the flow in the fracture based on four different
profile assumptions. The assumptions were used together with the coupling conditions (3.1)–(3.4), giving rise
to equations (3.47)–(3.48), (3.51)–(3.52), (3.58) and (3.59). We note that when θτ = 0, the Beavers–Joseph–
Saffman condition is not being used.

4. Weak formulation of the coupled problem

In this section we couple the Biot system (2.1)–(2.3) with the reduced model for the flow in the fracture,
derived in the previous sections with the suitable closure conditions. We remind the reader that after averaging
across the aperture of the fracture Ωf , the governing equations of the reduced model are set on the fluid
domain midline γ, and depend only on the arc length along this curve, denoted by s. The coupled model is
defined in domain Ω, with the fracture domain Ωf collapsed to its midline γ, which is in contrast with the
approach in [28]. In this case the fracture edges, denoted by Γi, i = 1, 2 in Figure 1, coincide with γ and Ωp

becomes a domain with a slit. Combining (2.1)–(2.3), (3.13), (3.59) and (3.58) we obtain the following coupled
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problem: find η, q, p, Un, Uτ and P such that

−∇ · σp(η, p) = fp in Ωp × (0, T ], (4.1)

K−1q = −∇p in Ωp × (0, T ], (4.2)
∂

∂t
(s0p+ α∇ · η) + ∇ · q = g in Ωp × (0, T ], (4.3)

δ

(
M(n,n)Un +M(n, τ )Uτ − μf

∂2Un

∂s2
− F f

n

)
= p1

∣∣∗
Γ1

− p2

∣∣∗
Γ2

on γ × (0, T ], (4.4)

δ

(
M(τ ,n)Un +M(τ , τ )Uτ − μf

∂2Uτ

∂s2
+
∂P

∂s
+

2
δ
CηUτ − F f

τ

)
=

Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
on γ × (0, T ], (4.5)

δ

(
∂Uτ

∂s
+

1
μf
P

)
= δH +

δ

2μf
p1|∗Γ1

+
δ

2μf
p2|∗Γ2

on γ × (0, T ], (4.6)

with the following coupling conditions from (3.23)–(3.24), (3.51)–(3.52), and (3.47)–(3.48) for i = 1, 2,

(ni · σpni)|∗Γi
= −pi|∗Γi

, (4.7)

(τ 1 · σpn1)|∗Γ1
= (Cτθτ (5θτ − 3) − Cη)

∂η1

∂t
· τ 1

∣∣∗
Γ1

+ Cτθτ (5θτ − 3)
∂η2

∂t
· τ 2

∣∣∗
Γ2

+ CηUτ , (4.8)

(τ 2 · σpn2)|∗Γ2
= (Cτθτ (5θτ − 3) − Cη)

∂η2

∂t
· τ 2

∣∣∗
Γ2

+ Cτθτ (5θτ − 3)
∂η1

∂t
· τ 1

∣∣∗
Γ1

− CηUτ , (4.9)

δθnp1|∗Γ1
− 2μf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= δθnP − 2μfUn + δ(1 − θn)(P − p2|∗Γ2
), (4.10)

δθnp2|∗Γ2
− 2μf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= δθnP + 2μfUn + δ(1 − θn)(P − p1|∗Γ1
), (4.11)

boundary conditions

η = 0 on ΓD
p ,

σpn = sN
p on ΓN

p ,

p = pD on Γ p
p ,

q · n = 0 on Γ q
p ,

Un = UD
n , Uτ = UD

τ , on γD,

μf
∂Un

∂s
= 0, μf

∂Uτ

∂s
− P = 0 on γN ,

and initial conditions
p(0) = p0, η(0) = η0 in Ωp.

We note that in the case when δ → 0, we lose the equation for flow in the fracture and recover the continuity
of Biot pressure, tangential component of displacement and the continuity of the normal flux.

Remark 4.1. In the following, for simplicity, we use notation corresponding to the case of a connected domain
Ωp. If Ωp is split into two parts, spaces and integrals in Ωp should be understood as defined in a piecewise
fashion in Ωp,i, i = 1, 2.
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Throughout the paper we use standard notation for Sobolev spaces, see e.g. [7, 11, 14]. To write the weak
formulation, we start by introducing the test function spaces related to the Biot problem:

Vη = {ξ ∈ (H1(Ωp))2 : ξ = 0 on ΓD
p },

Vp = {r ∈ H(div;Ωp) : r · n
∣∣∗
Γi

∈ L2(Γi), r · n = 0 on Γ q
p },

Qp = {ϕ ∈ L2(Ωp) : ϕ
∣∣∗
Γi

∈ L2(Γi)}.

Then, the weak formulation of the Biot system (4.1)–(4.3) reads as follows: find (η(t), q(t), p(t)) ∈ Vη ×Vp×Qp

such that for all (ξ, r, ϕ) ∈ Vη × Vp ×Qp∫
Ωp

σE : ∇ξdx − α

∫
Ωp

p∇ · ξdx +
∫

Ωp

K−1q · rdx −
∫

Ωp

p∇ · rdx +
∫

Ωp

s0
∂p

∂t
ϕdx

+α
∫

Ωp

∇ · ∂η

∂t
ϕdx +

∫
Ωp

∇ · qϕdx =

I︷ ︸︸ ︷∫
∂Ωp\Γp

σpnp · ξdx

II︷ ︸︸ ︷
−
∫

∂Ωp\Γp

pr · npdx

+
∫

Ωp

fp · ξdx +
∫

Ωp

gϕdx +
∫

Γ N
p

sp
N · ξdx−

∫
Γ p

p

pDr · npdx. (4.12)

Let us define U = [Un, Uτ ]T , V = [Vn, Vτ ]T , UD = [UD
n , U

D
τ ]T and the following test function spaces related

to the flow in the fracture,

Vf = {V ∈ (H1(γ))2 : V = 0 on γD},
Vf

D = {V ∈ (H1(γ))2 : V = UD on γD},
Qf = L2(γ).

The weak formulation of the flow in the fracture (4.4)–(4.6) is given as follows: find (U(t), P (t)) ∈ Vf
D × Qf ,

such that for all (V , R) ∈ Vf ×Qf∫
γ

δ
∂Uτ

∂s
Rds+

∫
γ

δ

μf
PRds+

∫
γ

δ

(
M(n,n)Un +M(n, τ )Uτ − μf

∂2Un

∂s2

)
Vnds

+
∫

γ

δ

(
M(τ ,n)Un +M(τ , τ )Uτ − μf

∂2Uτ

∂s2
+
∂P

∂s
+

2
δ
CηUτ

)
Vτds =

∫
γ

δHRds

+
∫

γ

δ

2μf

(
p1

∣∣∗
Γ1

+ p2

∣∣∗
Γ2

)
Rds+

∫
γ

(
p1

∣∣∗
Γ1

− p2

∣∣∗
Γ2

)
Vnds+

∫
γ

δF f
nVnds+

∫
γ

δF f
τ Vτds

+
∫

γ

Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
Vτds. (4.13)

Introduce the matrix M and the vector F defined as

M =
[
M(n,n) M(n, τ )
M(τ ,n) M(τ , τ )

]
, F =

[
F f

n

F f
τ

]
.

Then, we can write the equation (4.13) as∫
γ

δ
∂Uτ

∂s
Rds+

∫
γ

δ

μf
PRds+

∫
γ

δMU · V ds−
∫

γ

δμf
∂2U

∂s2
· V ds+

∫
γ

δ
∂P

∂s
Vτds

+
∫

γ

2CηUτVτds =
∫

γ

δ

2μf

(
p1

∣∣∗
Γ1

+ p2

∣∣∗
Γ2

)
Rds+

∫
γ

(
p1

∣∣∗
Γ1

− p2

∣∣∗
Γ2

)
Vnds

+
∫

γ

δF · V ds+
∫

γ

δHRds+
∫

γ

Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
Vτds. (4.14)
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Integration by parts yields, using the boundary conditions on γD and γN ,∫
γ

δ
∂Uτ

∂s
Rds+

∫
γ

δ

μf
PRds+

∫
γ

δMU · V ds+
∫

γ

δμf
∂U

∂s
· ∂V

∂s
ds−

∫
γ

δ
∂Vτ

∂s
Pds

+
∫

γ

2CηUτVτds =
∫

γ

δ

2μf

(
p1

∣∣∗
Γ1

+ p2

∣∣∗
Γ2

)
Rds

III︷ ︸︸ ︷
+
∫

γ

(
p1

∣∣∗
Γ1

− p2

∣∣∗
Γ2

)
Vnds

+
∫

γ

δF · V ds+
∫

γ

δHRds+
∫

γ

Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
Vτds. (4.15)

We observe, however, that sub-problems (4.12) and (4.15) are not fully coupled yet. More precisely (4.12)
affects (4.15), but the latter does not induce any feedback on (4.12). For this reason, we need to plug equa-
tions (4.7)−(4.11) into (4.12). Decomposing the first two terms on the right hand side of (4.12), denoted as
I, II respectively, into the normal and tangential components, employing condition (4.7), and combining it with
term III from (4.15), we obtain

I + II + III =
∫

γ

(n1 · σpn1)|∗Γ1
(ξ1 · n1)|∗Γ1

dx+
∫

γ

(n2 · σpn2)|∗Γ2
(ξ2 · n2)|∗Γ2

dx

+
∫

γ

(τ 1 · σpn1)|∗Γ1
(ξ1 · τ 1)|∗Γ1

dx+
∫

γ

(τ 2 · σpn2)|∗Γ2
(ξ2 · τ 2)|∗Γ2

dx

−
∫

γ

p1|∗Γ1
(r1 · n1)|∗Γ1

dx−
∫

γ

p2|∗Γ2
(r2 · n2)|∗Γ2

dx+
∫

γ

(
p1

∣∣∗
Γ1

− p2

∣∣∗
Γ2

)
Vnds

=
∫

γ

(τ 1 · σpn1)
∣∣∗
Γ1

(ξ1 · τ 1)
∣∣∗
Γ1

ds+
∫

γ

(τ 2 · σpn2)
∣∣∗
Γ2

(ξ2 · τ 2)
∣∣∗
Γ2

ds

+
∫

γ

p1

∣∣∗
Γ1

(
Vn − (ξ1 · n1)

∣∣∗
Γ1

− (r1 · n1)
∣∣∗
Γ1

)
ds−

∫
γ

p2

∣∣∗
Γ2

(
Vn + (ξ2 · n2)

∣∣∗
Γ2

+ (r2 · n2)
∣∣∗
Γ2

)
ds.

(4.16)

Employing conditions (4.8)−(4.9), the first two terms on the right hand side of equation (4.16) are given as
follows ∫

γ

(τ 1 · σpn1)|∗Γ1
(ξ1 · τ 1)|∗Γ1

ds+
∫

γ

(τ 2 · σpn2)|∗Γ2
(ξ2 · τ 2)|∗Γ2

ds

= −
∫

γ

Cτθτ (3 − 5θτ )

[(
∂η1

∂t
· τ 1

) ∣∣∣∣∗
Γ1

+
(
∂η2

∂t
· τ 2

) ∣∣∣∣∗
Γ2

] [
(ξ1 · τ 1)

∣∣∗
Γ1

+ (ξ2 · τ 2)
∣∣∗
Γ2

]
ds

−
∫

γ

Cη

[(
∂η1

∂t
· τ 1

) ∣∣∣∣∗
Γ1

(ξ1 · τ 1)
∣∣∗
Γ1

+
(
∂η2

∂t
· τ 2

) ∣∣∣∣∗
Γ2

(ξ2 · τ 2)
∣∣∗
Γ2

]
ds

+
∫

γ

CηUτ

(
(ξ1 · τ 1)

∣∣∗
Γ1

− (ξ2 · τ 2)
∣∣∗
Γ2

)
ds.

We impose (4.10)–(4.11) weakly as follows: for all ϕ ∈ Qp,∫
γ

ϕ1

∣∣∗
Γ1

(
δθn

2μf
p1|∗Γ1

+
δ(1 − θn)

2μf
p2|∗Γ2

− δ

2μf
P −

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

+ Un

)
ds

+
∫

γ

ϕ2

∣∣∗
Γ2

(
δθn

2μf
p2|∗Γ2

+
δ(1 − θn)

2μf
p1|∗Γ1

− δ

2μf
P −

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

− Un

)
ds = 0.
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When θn <
1
2 , a stabilization term is needed, which enforces weakly the condition p1

∣∣∗
Γ1

= p2

∣∣∗
Γ2

= P through
the following equation, for all ϕ ∈ Qp and R ∈ Qf ,

χ0

∑
i=1,2

δ

2μf

∫
γ

(
p
∣∣∗
Γi

− P
)(
ϕ
∣∣∗
Γi

−R
)
ds = 0,

where χ0 is a function of θn such that

χ0 =

{
1 − 2θn if θn ∈ [0, 1/2),
0 if θn ∈ [1/2, 1].

Adding this equation guarantees the stability of the scheme, as shown in Theorem 4.5.
We define the following bilinear forms:

ae(η, ξ) = 2μ
∫

Ωp

D(η) : D(ξ)dx + λ

∫
Ωp

(∇ · η)(∇ · ξ)dx,

aτ
e(η, ξ) =

∫
γ

Cτθτ (3 − 5θτ )
[
(η1 · τ 1) |∗Γ1

+ (η2 · τ 2) |∗Γ2

] [
(ξ1 · τ 1)

∣∣∗
Γ1

+ (ξ2 · τ 2)
∣∣∗
Γ2

]
ds,

aη
e(η, ξ) =

∫
γ

Cη
[
(η1 · τ 1) |∗Γ1

(ξ1 · τ 1) |∗Γ1
+ (η2 · τ 2) |∗Γ2

(ξ2 · τ 2) |∗Γ2

]
ds,

aq(q, r) =
∫

Ωp

K−1q · rdx,

af (U ,V ) =
∫

γ

δMU · V ds+
∫

γ

δμf
∂U

∂s
· ∂V

∂s
ds,

aη
f (U ,V ) =

∫
γ

2CηUτVτds,

bp(r, ϕ) =
∫

Ωp

ϕ∇ · rdx,

bf (V , R) =
∫

γ

δ
∂Vτ

∂s
Rds,

bηγ(ξ,V ) =
∫

γ

CηVτ

(
(ξ1 · τ 1)

∣∣∗
Γ1

− (ξ2 · τ 2)
∣∣∗
Γ2

)
ds,

cp(p, ϕ) =
∫

γ

[
(1 − θn)δ

2μf

(
p1

∣∣∗
Γ1

+ p2

∣∣∗
Γ2

)(
ϕ1

∣∣∗
Γ1

+ ϕ2

∣∣∗
Γ2

)
+ (2θn − 1 + χ0)

δ

2μf

(
(p1ϕ1)

∣∣∗
Γ1

+ (p2ϕ2)
∣∣∗
Γ2

)]
ds

cP (P,R) =
∫

γ

(1 + χ0)
δ

μf
PR ds,

cγ(R,ϕ) =
∑

i=1,2

∫
γ

(1 + χ0)
δ

2μf
ϕ
∣∣∗
Γi
R ds,

mγ(ζ, ϕ) =
∑

i=1,2

∫
γ

ϕ
∣∣∗
Γi

(ζ · ni)|∗Γi
ds,

mγ(V , ϕ) =
∫

γ

(
ϕ1

∣∣∗
Γ1

− ϕ2

∣∣∗
Γ2

)
Vn ds

s0(p, ϕ) =
∫

Ωp

s0pϕdx.
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Note that the bilinear form mγ has a different definition depending on the type of its first component. Before
proceeding, we substitute into aτ

e(η, ξ), aη
e(η, ξ), aη

f (U ,V ) and bηγ(ξ,U) the asymptotic expressions (3.55) for
Cτ and Cη. It is straightforward to verify that all these bilinear forms are fully robust in the limit cBJS , δ → 0.

The variational form of equations (4.1)−(4.11) is given as follows: given initial conditions p(0) = p0 and
η(0) = η0, for any t ∈ (0, T ], find (η(t), q(t),U(t), P (t), p(t)) ∈ WD = Vη ×Vp ×Vf

D ×Qf ×Qp (displacement,
Darcy velocity, fracture velocity, fracture pressure, and reservoir pressure, respectively) such that

ae(η, ξ) + aτ
e(∂tη, ξ) + aη

e(∂tη, ξ) − bηγ(ξ,U) − αbp(ξ, p) +mγ(ξ, p) = Lηξ, ∀ ξ ∈ Vη,

aq(q, r) − bp(r, p) +mγ(r, p) = Lqr, ∀ r ∈ Vp,

af (U ,V ) + aη
f (U ,V ) − bf(V , P ) − bηγ(∂tη,V ) −mγ(V , p) = LUV , ∀V ∈ Vf ,

bf (U , R) + cP (P,R) − cγ(R, p) = LPR, ∀R ∈ Qf ,

s0(∂tp, ϕ) + cp(p, ϕ) + αbp(∂tη, ϕ) + bp(q, ϕ) − cγ(P, ϕ) −mγ(∂tη + q − U , ϕ) = Lpϕ, ∀ϕ ∈ Qp,

where

Lηξ =
∫

Ωp

fp · ξdx +
∫

Γ N
p

sN
p · ξdx, Lqr = −

∫
Γ p

p

pDr · npdx,

LUV =
∫

γ

δF · V ds, LPR =
∫

γ

δHRds, Lpϕ =
∫

Ωp

gϕdx.

With a little abuse of notation the bilinear form mγ(∂tη + q − U , ϕ) has been combined, which prescribes the
weak enforcement of normal flux continuity across the fracture interface. The coupled variational problem in
the operator form is equivalent to the following equation,

⎡⎢⎢⎢⎣
0
0
0
0

s0∂tp

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣
Ae + (Aτ

e + Aη
e)∂t 0 −

(
Bη

γ

)T 0 −
(
αBp −Mγ

)T
0 Aq 0 0 −

(
Bp −Mγ

)T
−Bη

γ∂t 0 Af + Aη
f −

(
Bf

)T −
(
Mγ

)T
0 0 Bf CP −

(
Cγ

)T(
αBp −Mγ

)
∂t Bp −Mγ Mγ −Cγ Cp

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

operator A

⎡⎢⎢⎢⎣
η
q
U
P
p

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Lη

Lq

LU

LP

Lp

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

L

, (4.17)

where the matrix entries are the operators corresponding to the bilinear forms. For the terms containing time
derivatives we have adopted the notation aη

e(∂tη, ξ) ≡ Aη
e∂tη · ξ (also equivalent to ∂tAη

eη · ξ since all the
bilinear forms have constant coefficients in time).

Now, we can write the coupled problem (4.12) and (4.15) as follows: given initial conditions p(0) = p0 and
η(0) = η0, for any t ∈ (0, T ], find X(t) = (η, q,U , P, p) ∈ WD such that

s0(∂tp, ϕ) + A(X(t),Y) = L(Y), ∀Y ∈ W = Vη × Vp × Vf ×Qf ×Qp, (4.18)

where A(·, ·) is the bilinear form corresponding to the operator A in (4.17).

4.1. The semi-discrete formulation

We focus only on the spatial discretization of the coupled problem, since the presence of different regions with
different spatial discretizations and interface conditions requires careful stability and convergence analysis. The
extension of the analysis to the fully-discrete formulation with Backward Euler time discretization is relatively
straightforward. To discretize the problem in space, we use the finite element method. Let Th be a shape-regular
finite element partition [11] of Ωp with maximum element diameter h such that the traces of the partition on Γ1

and Γ2 coincide. These traces define a one dimensional mesh on γ. To simplify the notation, assume that UD = 0.
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We introduce conforming finite element spaces Vη
h ⊂ Vη,Vp

h ⊂ Vp,Qp
h ⊂ Qp,Vf

h ⊂ Vf , and Qf
h ⊂ Qf based

on Th. Let Wh = Vη
h×Vp

h×Vf
h×Qf

h×Qp
h. More precisely, let Vη

h consists of continuous Lagrangian elements of
polynomial order r1 ≥ 1, let Vp

h ×Qp
h be an inf-sup stable pair of Darcy mixed finite element spaces containing

polynomials of degree r2 ≥ 0 and l2 ≥ 0, respectively, and let Vf
h×Qf

h be an inf-sup stable pair of Stokes elements
containing at least polynomials of degree r3 ≥ 1 and r3−1, respectively. Examples of admissible Darcy elements
include the Raviart−Thomas and the Brezzi−Douglas−Marini spaces, and examples of Stokes elements include
the Taylor−Hood elements, the MINI elements, and the Crouzeix−Raviart elements, see, e.g. [7].

Since the finite element spaces Vf
h×Qf

h are inf-sup stable, they satisfy the Fortin criterion, see [14] (Lem. 4.19),
i.e., there exists an interpolation operator Πf

h : (H1(γ))2 → Vf
h such that for all V ∈ Vf ,

bf (V −Πf
hV , Rh) = 0 ∀Rh ∈ Qf

h, ‖Πf
hV ‖H1(γ) � ‖V ‖H1(γ), (4.19)

where a � b denotes a ≤ Cb with the positive constant C being unspecified, but uniformly independent on
the characteristic mesh size h. Similarly, for inf-sup stable Darcy mixed finite elements Vp

h × Qp
h, it is known

e.g. [7], that there exists an interpolation operator Πp
h : H(div;Ωp) ∩ (Hs(Ωp))2 → Vp

h, s > 0, such that for all
r ∈ H(div;Ωp) ∩ (Hs(Ωp))2,

bp(r −Πp
hr, ϕh) = 0,

∫
∂Ωp

(r −Πp
hr) · np ϕh dx = 0 ∀ϕh ∈ Qp

h, ‖Πp
hr‖L2(Ωp) � ‖r‖Hs(Ωp) + ‖∇ · r‖L2(Ωp).

(4.20)
The semi-discrete problem is given as follows: given initial conditions ph(0) and ηh(0), find Xh(t) =

(ηh, qh,Uh, Ph, ph) ∈ Wh such that for any t ∈ (0, T ],

s0(∂tph(t), ϕh) + A(Xh(t),Yh) = L(Yh), ∀Yh ∈ Wh. (4.21)

Since (4.21) is based on a conforming approximation, namely Wh ⊂ W , the discrete problem is strongly
consistent with the continuous problem (4.18), i.e., (4.21) is also satisfied by X(t), the solution of (4.18).

Let us group the unknowns as Xh = [Uh,Ph], Uh = [ηh, qh,Uh] ∈ Vh := Vη
h × Vp

h × Vf
h, Ph = [Ph, ph] ∈

Qh = Qf
h ×Qp

h, as well as the test functions Yh = [Vh,Qh], Vh = [ξh, rh,V h] ∈ Vh, Qh = [Rh, ϕh] ∈ Qh. It is
convenient to rewrite the operator A in the compact matrix form

A =

⎡⎣Ã + Ãη∂η
t −

(
B̃
)T

B̃∂η
t C̃

⎤⎦ ,
where the matrix blocks are defined as

Ã :=

⎡⎢⎢⎢⎣
Ae 0 0

0 Aq 0

0 0 Af

⎤⎥⎥⎥⎦ , Ãη :=

⎡⎢⎢⎢⎣
Aτ

e + Aη
e 0 −

(
Bη

γ

)T
0 0 0

−Bη
γ 0 Aη

f

⎤⎥⎥⎥⎦ ,

B̃ :=

[
0 0 Bf

αBp −Mγ Bp −Mγ Mγ

]
, C̃ :=

[ CP −CT
γ

−Cγ Cp

]
,

and the operator ∂η
t denotes the time derivative applied only to the variable η, i.e.

Ãη∂η
t ≡ Ãη

⎡⎣∂t 0 0
0 1 0
0 0 1

⎤⎦ =

⎡⎢⎢⎢⎣
(
Aτ

e + Aη
e

)
∂t 0 −

(
Bη

γ

)T
0 0 0

−Bη
γ∂t 0 Aη

f

⎤⎥⎥⎥⎦ .
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In what follows, we utilize notational equivalence between matrices and discrete bilinear forms, for example
VT

h ÃUh = Ã(Uh,Vh).
We pursue the analysis of problem (4.21) in the general case where the parameter s0 ≥ 0. We make the

restrictive assumption pD = 0, because bounding the term Lqr = −
∫

Γ p
p
pDr · npdx requires control of ‖∇ ·

q‖L2(Ωp). This can be done by establishing a bound on ‖∂tp‖L2(Ωp) (see for example [36]), but we choose not to
consider it here in order to keep the paper focused.

For any Yh = [ξh, rh,V h, Rh, ϕh] ∈ Wh we define the following norms,

|||Yh|||2A := ‖ξh‖2
H1(Ωp) + ‖rh‖2

L2(Ωp) + ‖
√
δV h‖2

H1(γ) + ‖
√
δRh‖2

L2(γ) + ‖ϕh‖2
L2(Ωp) + ‖ϕh‖2

L2(γ),

where ‖ϕh‖2
L2(γ) is a shorthand notation for

∑
i=1,2 ‖ϕh

∣∣∗
Γi
‖2

L2(γ). Given the decomposition Yh = [Vh,Qh], we
split the norm |||Yh|||A into its velocity and pressure parts,

|||Vh|||2V := ‖ξh‖2
H1(Ωp) + ‖rh‖2

L2(Ωp) + ‖
√
δV h‖2

H1(γ),

|||Qh|||2Q := ‖
√
δRh‖2

L2(γ) + ‖ϕh‖2
L2(Ωp) + ‖ϕh‖2

L2(γ).

It is convenient to introduce the time dependent versions of the above norms, for any t ∈ [0, T ],

|||Vh|||2V,t := ‖ξh(t)‖2
H1(Ωp) +

∫ t

0

(
‖rh‖2

L2(Ωp) + ‖
√
δV h‖2

H1(γ)

)
dτ,

|||Qh|||2Q,t :=
∫ t

0

(
‖
√
δRh‖2

L2(γ) + ‖ϕh‖2
L2(Ωp) + ‖ϕh‖2

L2(γ)

)
dτ,

|||Yh|||2A,t := |||Vh|||2V,t + |||Qh|||2Q,t.

We also set the following norms on [0, T ]× Υ (where Υ stands for Ωp or γ and the usual notation for Bochner
spaces is adopted)

‖ · ‖2
L2(L2(Υ )) :=

∫ T

0

‖ · ‖2
L2(Υ ); ‖ · ‖2

L2(H1(Υ )) :=
∫ T

0

‖ · ‖2
H1(Υ ); ‖ · ‖2

L∞(H1(Υ )) := sup
t∈[0,T ]

‖ · ‖2
H1(Υ ),

and define

|||Yh|||2A,T := ‖ξh‖2
L∞(H1(Ωp)) + ‖rh‖2

L2(L2(Ωp)) + ‖
√
δV h‖2

L2(H1(γ))

+ ‖
√
δRh‖2

L2(L2(γ)) + ‖ϕh‖2
L2(L2(Ωp)) + ‖ϕh‖2

L2(L2(γ)).

In the analysis we will employ the Young’s inequality

∀ a, b ∈ R, ∀ ε > 0, ab ≤ ε

2
a2 +

1
2ε
b2· (4.22)

Lemma 4.2. The following properties hold with constants independent of h for all t ∈ (0, T ]:

(i) Positivity of Ã : ∃a > 0, a0 > 0 such that ∀Vh(t) ∈ Vh,∫ t

0

Ã(Vh, ∂
η
t Vh)dτ ≥ a|||Vh|||2V,t − a0‖ξh(0)‖2

H1(Ωp). (4.23)

(ii) Non-negativity of C̃: C̃(Qh,Qh) ≥ 0, ∀Qh ∈ Qh.
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(iii) Continuity of Ã : ∃A > 0 such that ∀Uh(t),Vh(t) ∈ Vh,

Ã(Uh,Vh) ≤A|||Uh|||V |||Vh|||V , (4.24)∫ t

0

Ã(Uh, ∂
η
t Vh)dτ ≤A

(
|||Uh|||V,t |||Vh|||V,t +

∫ t

0

‖∂tηh‖H1(Ωp)‖ξh‖H1(Ωp)dτ

+‖ηh(0)‖H1(Ωp)‖ξh(0)‖H1(Ωp)

)
. (4.25)

(iv) Continuity of L : ∃CL ≥ 0 such that ∀Yh(t) ∈ Wh,∫ t

0

L(∂η
t Yh)dτ ≤ CL

(
|||Yh|||A,t +

(∫ t

0

‖ξh‖2
H1(Ωp)dτ

)1/2

+ ‖ξh(0)‖L2(Ωp)

)
, (4.26)

where

CL = CL(‖∂tfp‖L2(L2(Ωp)), ‖fp‖L∞(L2(Ωp)), ‖∂ts
N
p ‖L2(L2(Γ N

p )), ‖sN
p ‖L∞(L2(Γ N

p )),

‖
√
δF ‖L2(L2(γ)), ‖

√
δH‖L2(L2(γ)), ‖g‖L2(L2(Ωp))).

Proof.

(i) For any Vh ∈ Vh we have, using (2.4) and (2.7),

Ã(Vh, ∂
η
t Vh) = ae(ξh, ∂tξh) + aq(rh, rh) + af (V h,V h)

≥ 1
2
∂tae(ξh, ξh) + k−1

1 ‖rh‖2
L2(Ωp) + k−1

f,1‖
√
δV h‖2

L2(γ) + μf

∥∥∥∥√δ ∂V h

∂s

∥∥∥∥2

L2(γ)

. (4.27)

Property (i) follows by integrating over [0, t] and employing the Poincaré−Friedrichs and Korn inequalities,
see for example [14]. These hold since |ΓD

p | > 0 (or |∂Ωp,i ∩ΓD
p | > 0) and imply the existence of a constant

CPFK > 0 such that
‖D(ξh)‖2

L2(Ωp) ≥ CPFK‖ξh‖2
H1(Ωp).

(ii) Consider first the case θn ∈ [1/2, 1]. For any Qh ∈ Qh, C̃(Qh,Qh) = cP (Rh, Rh)+ cp(ϕh, ϕh)−2cγ(Rh, ϕh).
In this case χ0 = 0 and we have

cP (Rh, Rh) + cp(ϕh, ϕh) =
1
μf

‖
√
δRh‖2

L2(γ) +
(1 − θn)

2μf
‖
√
δ(ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ2

)‖2
L2(γ)

+
(2θn − 1)

2μf

(
‖
√
δϕ1,h|∗Γ1

‖2
L2(γ) + ‖

√
δϕ2,h|∗Γ2

‖2
L2(γ)

)
. (4.28)

Furthermore, using the Cauchy−Schwarz and Young’s inequalities with ε = 1/2 we have

2cγ(Rh, ϕh) =
∫

γ

δ

μf

(
ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ2

)
Rhds

≤ 1
4μf

∥∥∥√δ(ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ2

)
∥∥∥2

L2(γ)
+

1
μf

‖
√
δRh‖2

L2(γ). (4.29)

Combining equation (4.28) with (4.29), we get

C̃(Qh,Qh) ≥ 1
4μf

(1 − 2θn)‖
√
δ(ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ2

)‖2
L2(γ)

+
(2θn − 1)

2μf

(
‖
√
δϕ1,h|∗Γ1

‖2
L2(γ) + ‖

√
δϕ2,h|∗Γ2

‖2
L2(γ)

)
. (4.30)
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Now using the triangle inequality, it is easy to check that

C̃(Qh,Qh) ≥ (2θn − 1)
4μf

(
‖
√
δϕ1,h

∣∣∗
Γ1
‖L2(γ) − ‖

√
δϕ2,h

∣∣∗
Γ1
‖L2(γ)

)2

≥ 0.

We next consider the case θn ∈ [0, 1/2), where χ0 = 1 − 2θn. A direct calculation shows that

C̃(Qh,Qh) =
(1 − 2θn)

4μf
‖
√
δ(ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ1

− 2Rh)‖2
L2(γ) ≥ 0.

(iii) Inequality (4.24) follows easily from the Cauchy−Schwarz inequality. To prove (4.25), we note that∫ t

0

Ã(Uh, ∂
η
t Vh)dτ =

∫ t

0

(ae(ηh, ∂tξh) + aq(qh, rh) + af (Uh,V h)) dτ (4.31)

and focus on the first term on the right. Integration by parts gives∫ t

0

ae(ηh, ∂tξh)dτ = −
∫ t

0

ae(∂tηh, ξh)dτ + ae(ηh, ξh)
∣∣∣t
0
. (4.32)

Bound (4.25) follows from applying the Cauchy−Schwarz inequality to the terms on the right in (4.32) and
the last two terms on the right in (4.31).

(iv) Assuming sufficient smoothness of the data, the continuity bound (4.26) follows by integration by parts in
time in the terms

∫
Ωp

fp · ∂tξh and
∫

Γ N
p

sN
p · ∂tξh, and then applying the Cauchy−Schwarz inequality for

all terms, using also the trace inequality [14]

‖ξ‖L2(∂Ωp) � ‖ξ‖H1(Ωp), ∀ ξ ∈ H1(Ωp). (4.33)

�

In the following we use the shorthand notation

‖ξh · τ‖2
L2(γ) :=

∑
i=1,2

‖(ξi,h · τ i)∗Γi
‖2

L2(γ),

as well as the jump notation [ξh · τ ] = (ξ1,h · τ 1)
∣∣∗
Γ1

+ (ξ2,h · τ 2)
∣∣∗
Γ2

Lemma 4.3. The following properties of Ãη are satisfied. When θτ = 0, Ãη = 0. When θτ = 1/2,

Ãη(Vh,Vh) =
Cτ

4
‖[ξh · τ ]‖2

L2(γ), (4.34)

Ãη(Uh,Vh) ≤ Cτ

4
‖[ηh · τ ]‖L2(γ)‖[ξh · τ ]‖L2(γ). (4.35)

When θτ = 2/3, provided that δ > 0, there exist a positive constant Aη such that

Ãη(Vh,Vh) + 10δ−1cBJS‖
√
δV h‖2

L2(γ) ≥
1
6
Cη‖ξh · τ‖2

L2(γ), (4.36)

Ãη(Uh,Vh) ≤ Aη
(
Cη‖ηh · τ‖L2(γ)‖ξh · τ‖L2(γ) + δ−1cBJS‖

√
δUh‖L2(γ)‖

√
δV h‖L2(γ)

+δ−
1
2
√
cBJS

√
Cη

(
‖
√
δUh‖L2(γ)‖ξh · τ‖L2(γ) + ‖

√
δV h‖L2(γ)‖ηh · τ‖L2(γ)

))
. (4.37)
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Proof. When θτ = 0, 1/2 only the term Aτ
e of Ãη is active, i.e. Ãη(Vh,Vh) = aτ

e(ξh, ξh), and (4.34) follows
directly from the definition of aτ

e (ξh, ξh), since it is non-negative. The upper bound (4.35) follows from the
Cauchy−Schwarz inequality.

In the case θτ = 2
3 , the coefficient in aτ

e (·, ·) is negative and all entries of Ãη are active. Using Young’s
inequality (4.22) for bηγ(V h, ξh), we obtain

Ãη(Vh,Vh) = aη
e(ξh, ξh) + aη

f (V h,V h) + aτ
e(ξh, ξh) − 2bηγ(V h, ξh)

≥ 2
(
ε− 1
ε

)
Cη‖Vτ,h‖2

L2(γ) + (1 − ε)Cη
∑

i=1,2

‖ξi,h · τ i‖2
L2(γ) −

4
9
Cτ

∑
i=1,2

‖ξi,h · τ i‖2
L2(γ)

≥ 2
(
ε− 1
ε

)
Cη‖Vτ,h‖2

L2(γ) + (
1
3
− ε)Cη

∑
i=1,2

‖ξi,h · τ i‖2
L2(γ),

where we have used (3.56) and the fact that 1− 2δcBJS

3cBJSδ+6μf
≥ 1

3 in the last inequality. Inequality (4.36) follows
by taking ε = 1/6 and using (3.57) and the assumption δ > 0. The continuity bound (4.37) is obtained using
the Cauchy−Schwarz inequality. �
Lemma 4.4. The operator (B̃)T is inf-sup stable, that is: there exists β > 0 independent of h such that ∀Qh =
[Rh, ϕh] ∈ Qh, there exists Vh = [0, rh,V h] ∈ Vh such that

(B̃)T (Qh,Vh) ≥ |||Qh|||2Q, |||Vh|||V ≤ β|||Qh|||Q. (4.38)

Proof. We first note that for any Rh ∈ Qf
h, there exists V = (0, Vτ ) ∈ Vf such that

bf(V , Rh) ≥ ‖
√
δRh‖2

L2(γ), ‖
√
δV ‖H1(γ) � ‖

√
δRh‖L2(γ),

which can be achieved by noting that bf (V , Rh) =
∫

γ
δ ∂Vτ

∂s Rh ds, and choosing Vτ =
∫ s

0
Rh(ζ)dζ. Taking

V h = Πf
hV and using the properties (4.19) of Πf

h , we conclude that

bf(V h, Rh) ≥ ‖
√
δRh‖2

L2(γ), ‖
√
δV h‖H1(γ) � ‖

√
δRh‖L2(γ). (4.39)

Next, for any ϕh ∈ Qp
h, there exists r ∈ Vp such that, for some s > 0,

bp(r, ϕh)−mγ(r, ϕh) ≥ ‖ϕh‖2
L2(Ωp) +‖ϕh‖2

L2(γ), ‖r‖Hs(Ωp) +‖∇·r‖L2(Ωp) � ‖ϕh‖L2(Ωp) +‖ϕh‖L2(γ), (4.40)

which can be achieved by taking r = ∇ψ, where ψ is the solution to the problem

Δψ = ϕh in Ωp,

∇ψ · ni = −ϕi,h on Γi, i = 1, 2,

ψ = 0 on Γ p
p ,

∇ψ · np = 0 on Γ q
p .

(4.41)

The above problem is well posed, since |Γ p
p | > 0 (or |∂Ωp,i ∩ Γ p

p | > 0). The first part of (4.40) is satisfied by
construction, while the second part is guaranteed by the elliptic regularity of problem (4.41) [23, 29]. We now
choose rh = Πp

hr and, using the properties (4.20) of Πp
h, we conclude that

bp(rh, ϕh) −mγ(rh, ϕh) ≥ ‖ϕh‖2
L2(Ωp) + ‖ϕh‖2

L2(γ), ‖rh‖L2(Ωp) � ‖ϕh‖L2(Ωp) + ‖ϕh‖L2(γ). (4.42)

Finally, we note that Vn,h = 0 implies that mγ(V h, ϕh) = 0. Combining (4.39) and (4.42) we obtain

(B̃)T (Qh,Vh) = bf (V h, Rh) + bp(rh, ϕh)−mγ(rh − V h, ϕh)

≥ ‖
√
δRh‖2

L2(γ) + ‖ϕh‖2
L2(Ωp) + ‖ϕh‖2

L2(γ) = |||Qh|||2Q
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and
|||Vh|||2V = ‖

√
δV h‖2

H1(γ) + ‖rh‖2
L2(Ωp) � ‖

√
δRh‖2

L2(γ) + ‖ϕh‖2
L2(Ωp) + ‖ϕh‖2

L2(γ) = |||Qh|||2Q.
�

We are now ready to prove the following stability result.

Theorem 4.5. Under the assumptions of Lemma 4.3 and under the additional condition that when θτ = 2/3,
cBJS is small enough such that a− 10δ−1cBJS ≥ α1 > 0, then the solution of (4.21) satisfies

s0‖ph‖2
L∞(L2(Ωp)) + |||Xh|||2A,T + χθτ,1C

τ‖[∂tηh · τ ]‖2
L2(L2(γ)) + χθτ,2C

η‖∂tηh · τ‖2
L2(L2(γ))

� (CL)2 + ‖ηh(0)‖2
H1(Ωp) + ‖ph(0)‖2

L2(Ωp), (4.43)

where χθτ,1 = 1 when θτ = 1/2, χθτ,1 = 0 otherwise, and χθτ,2 = 1 when θτ = 2/3, χθτ,2 = 0 otherwise.

Proof. Let us take in (4.21) YP,h = [∂η
t Uh − ε1VP,h,Ph], where VP,h ∈ Vh is the velocity field constructed in

Lemma 4.4 with data Ph and ε1 > 0 is a small parameter to be determined. Integration in time gives∫ t

0

(s0(∂tph, ph) + A(Xh,YP,h)) dτ =
∫ t

0

L(YP,h)dτ. (4.44)

We have

A(Xh,YP,h) = Ã(Uh, ∂
η
t Uh − ε1VP,h) + Ãη∂η

t (Uh, ∂
η
t Uh − ε1VP,h)

− (B̃)T (Ph, ∂
η
t Uh − ε1VP,h) + B̃∂η

t (Uh,Ph) + C̃(Ph,Ph)

= Ã(Uh, ∂
η
t Uh) − ε1Ã(Uh,VP,h) + Ãη(∂η

t Uh, ∂
η
t Uh) − ε1Ãη(∂η

t Uh,VP,h)

+ ε1(B̃)T (Ph,VP,h) + C̃(Ph,Ph). (4.45)

We next estimate each of the terms on the right in the above equality. Lemma 4.2 (i), (ii), and Lemma 4.4
imply, respectively, ∫ t

0

Ã(Uh, ∂
η
t Uh)dτ ≥ a|||Uh|||2V,t − a0‖ηh(0)‖2

H1(Ωp), (4.46)

∫ t

0

C̃(Ph,Ph)dτ ≥ 0, (4.47)

and ∫ t

0

(B̃)T (Ph,VP,h)dτ ≥ |||Ph|||2Q,t. (4.48)

Recalling that VP,h = [0, rh,V h], we have∫ t

0

Ã(Uh,VP,h)dτ =
∫ t

0

(aq(qh, rh) + af (Uh,V )) dτ ≤ A|||Uh|||V,t |||VP,h|||V,t

≤ (4ε′1)
−1A|||Uh|||2V,t + ε′1Aβ

2|||Ph|||2Q,t, (4.49)

where A is the constant from (4.24) and we have used (4.38) and Young’s inequality (4.22) with ε = 2ε′1.
We next estimate the terms involving Ãη. These terms are zero when θτ = 0. Let us consider the case

θτ = 1/2. Thanks to Lemma 4.3 and using that VP,h = [0, rh,V h], the following properties hold true,

Ãη(∂η
t Uh, ∂

η
t Uh) =

Cτ

4
‖[∂tηh]‖2

L2(γ), (4.50)

Ãη(∂η
t Uh,VP,h) = aτ

e(∂tηh,0) = 0. (4.51)
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Combining (4.45)–(4.51), we obtain∫ t

0

(s0(∂tph, ph) + A(Xh,YP,h)) dτ + a0‖ηh(0)‖2
H1(Ωp) +

s0
2
‖ph(0)‖2

L2(Ωp)

≥
(
a− ε1(4ε′1)

−1A
)
|||Uh|||2V,t + ε1

(
1 − ε′1Aβ

2
)
|||Ph|||2Q,t +

s0
2
‖ph(t)‖2

L2(Ωp)

+ χθτ,1

Cτ

4

∫ t

0

‖[∂tηh · τ ]‖2
L2(γ)dτ. (4.52)

We next consider the case θτ = 2/3. Owing to Lemma 4.3 and in particular (4.36), we have∫ t

0

Ãη(∂η
t Uh, ∂

η
t Uh)dτ ≥

∫ t

0

(
1
6
Cη‖∂tηh · τ‖2

L2(γ) − 10δ−1cBJS‖
√
δUh‖2

L2(γ)

)
dτ

≥
∫ t

0

1
6
Cη‖∂tηh · τ‖2

L2(γ)dτ − 10δ−1cBJS |||Uh|||2V,t. (4.53)

We note that the last term in the previous inequality does not involve ∂η
t , because this operator is the identity

for variables on Ωf . Using (4.37) and recalling that VP,h = [0, rh,V h] the upper bound of Ãη(∂η
t Uh,VP,h) reads

as follows,∫ t

0

Ãη(∂η
t Uh,VP,h)dτ

≤ Aη

∫ t

0

(
δ−1cBJS‖

√
δUh‖L2(γ)‖

√
δV h‖L2(γ) + δ−1/2√cBJS

√
Cη‖

√
δV h‖L2(γ)‖∂tηh · τ‖L2(γ)

)
dτ

≤ Aη

(
δ−1/2√cBJS |||Uh|||V,t +

(∫ t

0

√
Cη‖∂tηh · τ‖2

L2(γ)dτ
)1/2

)
δ−1/2√cBJS |||VP,h|||V,t

≤ Aηδ−1cBJS(4ε′1)
−1|||Uh|||2V,t +Aη(4ε′1)

−1

∫ t

0

√
Cη‖∂tηh · τ‖2

L2(γ)dτ + 2Aηε′1δ
−1cBJSβ

2|||Ph|||2Q,t, (4.54)

where we have used (4.38) and Young’s inequality (4.22) with ε = 2ε′1. Combining (4.45)–(4.49) and (4.53)–
(4.54), we obtain ∫ t

0

(s0(∂tph, ph) + A(Xh,YP,h)) dτ + a0‖ηh(0)‖2
H1(Ωp) +

s0
2
‖ph(0)‖2

L2(Ωp)

≥
(
a− 10δ−1cBJS − ε1(4ε′1)

−1(A+Aηδ−1cBJS)
)
|||Uh|||2V,t

+
(

1
6
− ε1(4ε′1)

−1Aη

)∫ t

0

Cη‖∂tηh · τ‖2
L2(γ)dτ

+ ε1
(
1 − ε′1

(
A+ 2Aηδ−1cBJS

)
β2
)
|||Ph|||2Q,t +

s0
2
‖ph(t)‖2

L2(Ωp). (4.55)

We now consider (4.52) for θτ = 0, 1/2 and (4.55) for θτ = 2/3. First we fix ε′1 sufficiently small so that the
coefficient of |||Ph|||2Q,t is strictly positive. Then we take ε1 small enough so that the rest of the coefficients on
the right hand sides are strictly positive. To be able to do this in the case of θτ = 2/3, we need to assume that
a− 10δ−1cBJS ≥ α1 > 0. Then in both cases we conclude that

s0‖ph‖2
L2(Ωp) + |||Xh|||2A,t + χθτ,1

∫ t

0

Cτ‖[∂tηh · τ ]‖2
L2(γ)dτ + χθτ,2

∫ t

0

Cη‖∂tηh · τ‖2
L2(γ)dτ

�
∫ t

0

(s0(∂tph(t), ph) + A(Xh,YP,h)) dτ + ‖ηh(0)‖2
H1(Ωp) + ‖ph(0)‖2

L2(Ωp), (4.56)
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which provides a coercivity bound for the left hand side in (4.44). The upper bound on the right hand side
in (4.44) follows from Lemma 4.2 (iv):∫ t

0

L(YP,h)dτ =
∫ t

0

L([∂η
t Uh − ε1VP,h,Ph])dτ

≤ (1 + ε1β)CL
(
|||Xh|||A,t +

(∫ t

0

‖ηh‖2
H1(Ωp)dτ

)1/2

+ ‖ηh(0)‖L2(Ωp)

)
, (4.57)

where we have also used (4.38). The statement of the theorem follows from combining (4.44), (4.56), and (4.57),
and employing Young’s inequality (4.22) with sufficiently small ε for the first term on the right in (4.57) and
Gronwall’s inequality for the second term. �

4.2. Error analysis

The error introduced in the approximation of (4.18) with (4.21) requires particular attention because we
are dealing with a coupled problem on dimensionally heterogeneous domains. More precisely, the transmission
conditions between the fracture and the reservoir involve traces of the reservoir pressure p on the fracture edges.
As a result the natural pressure space on Ωp, namely Qp, requires additional regularity for the traces on the
interface between the reservoir and the fracture. Moreover, the discrete space Qp

h ⊂ Qp can not provide optimal
approximation properties on Ωp and Γi, i = 1, 2 simultaneously. As a result, some degree of suboptimality is
expected in the approximation properties of the scheme.

In addition to the velocity mixed finite element interpolants Πp
h and Πf

h defined in the previous section, let
Iη
h and If

h be the Scott–Zhang interpolants for H1 functions into the finite element spaces Vη
h and Qf

h, respec-
tively [43], and let Ip

h be the L2-projection into Qp
h. The interpolants satisfy the approximation bounds [7, 43]

‖η − Iη
hη‖H1(Ωp) � hr1 |η|Hr1+1(Ωp), (4.58)

‖q −Πp
hq‖L2(Ωp) � hr2+1|q|Hr2+1(Ωp), (4.59)

‖p− Ip
hp‖L2(Ωp) + h1/2‖p− Ip

hp‖L2(γ) � hl2+1|p|Hl2+1(Ωp), (4.60)

‖U −Πf
hU‖H1(Ωf ) � hr3 |U |Hr3+1(γ), (4.61)

‖P − If
hP‖L2(Ωf ) � hr3 |P |Hr3 (γ). (4.62)

The bound on ‖p− Ip
hp‖L2(γ) in (4.60) follows from the local trace inequality [14], for all E ∈ Th,

‖ξ‖L2(∂E) � h
−1/2
E ‖ξ‖L2(E) + h

1/2
E |ξ|H1(E), ∀ ξ ∈ H1(E) (4.63)

as follows. Letting Ĩp
h be the Scott–Zhang interpolant into Qp

h, we have, for all E ∈ Th,

‖p− Ip
hp‖L2(∂E) � h

−1/2
E ‖p− Ip

hp‖L2(E) + h
1/2
E |p− Ip

hp|H1(E)

� h
−1/2
E ‖p− Ip

hp‖L2(E) + h
1/2
E (|p− Ĩp

hp|H1(E) + |Ĩp
h − Ip

hp|H1(E))

� h
−1/2
E (‖p− Ip

hp‖L2(E) + ‖Ĩp
h − Ip

hp‖L2(E)) + h
1/2
E |p− Ĩp

hp|H1(E)

� h
l2+1/2
E |p|Hl2+1(Ẽ),

where we have also used a local inverse inequality for finite element functions [11] and Ẽ is the neighborhood
of E used in the definition of Ĩp

h.
Let us denote the global error as E(t) = X(t)−Xh(t) = [eη, eq, eU , eP , ep]. We next state and prove the main

convergence result.
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Theorem 4.6. Let ph(0) = Ip
hp0 and ηh(0) = Iη

hη0. Under the assumptions of Theorem 4.5, assuming that
δ > 0 and that the solution X(t) of (4.18) is sufficient regular, the solution Xh(t) of (4.21) satisfies

√
s0‖ep‖L∞(L2(Ωp)) + |||E|||A,T � hr1

(
‖∂tη‖L2(Hr1+1(Ωp)) + ‖η‖L∞(Hr1+1(Ωp)) + ‖∂tη‖L∞(Hr1+1(Ωp))

)
+ hr2+1‖q‖L2(Hr2+1(Ωp))+h

l2+1
(
‖p‖L2(Hl2+1(Ωp)) + ‖∂tp‖L2(Hl2+1(Ωp)) + ‖p‖L∞(Hl2+1(Ωp))

)
+ hl2+1/2

(
δ−1/2‖p‖L2(Hl2+1(Ωp)) + ‖∂tp‖L2(Hl2+1(Ωp)) + ‖p‖L∞(Hl2+1(Ωp))

)
+ hl2‖p‖L2(Hl2+1(Ωp))

+ hr3‖P‖L2(Hr3 (γ)) + hr3‖U‖L2(Hr3+1(γ)). (4.64)

Proof. To study the space discretization error, we first derive the error equation for (4.21) and combine it with
the stability properties of the scheme. In this way, we bound the total error in terms of the finite element
approximation error. Problem (4.21) is strongly consistent with (4.18), so the error equation follows from
testing (4.18) with the test functions from the finite element space Wh and subtracting it from the semi-discrete
problem (4.21):

s0(∂tep(t), ϕh) + A(E(t),Yh) = 0, ∀Yh ∈ Wh. (4.65)

Let Πh denote a collection of projectors, such that ΠhX = [Iη
hη, Πp

hq, Πf
hU , If

hP, I
p
hp], one for each component

of X. We define the approximation error as

F = X −ΠhX = [fη,fq,fU , fP , fp]

and we exploit the decomposition of the global error into approximation error and error residual,

E = F + Gh where Gh = ΠhX − Xh = [gη,h, gq,h, gU,h, gP,h, gp,h].

As a result, the error equation can be easily rewritten in the following form, more suitable for pursuing the error
analysis

s0(∂tgp,h(t), ϕh) + A(Gh(t),Yh) = −s0(∂tfp(t), ϕh) −A(F(t),Yh) ∀Yh ∈ Wh. (4.66)

The error estimate (4.64) is obtained following the approach in the stability Theorem 4.5. Let us denote

Gh = [GUh
,GPh

], GUh
= [gη,h, gq,h, gU,h], GPh

= [gP,h, gp,h]; F = [FU,FP], FU = [fη,fq,fU ], FP = [fP , fp].

Similarly to Theorem 4.5, we take in (4.66) Yh = Wh := [∂η
t GUh

− ε2Vh,GPh
], where Vh = [0, rh,V h] is the

velocity field constructed in Lemma 4.4 associated to GPh
and satisfying for all t ∈ (0, T ]∫ t

0

(B̃)T (GPh
,Vh) dτ ≥ |||GPh

|||2Q,t, |||Vh|||V,t ≤ β|||GPh
|||Q,t. (4.67)

The above inequalities follow from time integration in (4.38). The second inequality is true, since the first
component of Vh is zero. Integration in time on [0, T ] in (4.66) with the choice Yh = Wh gives∫ T

0

(s0(∂tgp,h, gp,h) + A(Gh,Wh)) dτ =
∫ T

0

(−s0(∂tfp, gp,h) −A(F,Wh)) dτ. (4.68)

As in Theorem 4.5, the error estimate (4.64) is obtained through two fundamental steps. The first is a lower
bound of the left hand side of (4.68). The second is an upper bound of the right hand side, featuring terms that
can be either hidden into the left hand side or depend on the approximation error.

The argument in Theorem 4.5 leading to (4.56) implies that for sufficiently small ε2, we obtain

s0‖gp,h‖2
L∞(L2(Ωp)) + |||Gh|||2A,T + χθτ,1C

τ‖[∂tgη,h · τ ]‖2
L2(L2(γ)) + χθτ,2C

η‖∂tgη,h · τ‖2
L2(L2(γ))

�
∫ T

0

(s0(∂tgp,h, gp,h) + A(Gh,Wh)) dτ, (4.69)

using that gp,h(0) = 0 and gη,h(0) = 0.
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We continue with the second step, derivation of an upper bound for the right hand side of (4.68). For each
term we will be employing the Cauchy−Schwarz and Young’s inequalities, placing a small weight ε3 in the terms
that will be absorbed by the left hand side of (4.69). Some of the bounds will involve ‖gη,h‖L2(H1(Ωp)), which
will be controlled via Gronwall’s inequality.

For the first term on the right in (4.68) we have∫ T

0

s0(∂tfp, gp,h)dτ � ε3‖gp,h‖2
L2(L2(Ωp)) + ε−1

3 ‖∂tfp‖2
L2(L2(Ωp)). (4.70)

Using the definition (4.17) of A we have

A(F,Wh) = Ã(FU, ∂
η
t GUh

− ε2Vh) + Ãη(∂η
t FU, ∂

η
t GUh

− ε2Vh)

− (B̃)T (FP, ∂
η
t GUh

− ε2Vh) + B̃(∂η
t FU,GPh

) + C̃(FP,GPh
) (4.71)

We next bound each of the terms in (4.71). Using (4.25), we have∫ T

0

Ã(FU, ∂
η
t GUh

) dτ ≤ A

(
|||FU|||V,T |||GUh

|||V,T +
∫ T

0

‖∂tfη‖H1(Ωp)‖gη,h‖H1(Ωp)dτ

)
� ε3|||GUh

|||2V,T + ε−1
3 |||FU|||2V,T + ‖gη,h‖2

L2(H1(Ωp)) + ‖∂tfη‖2
L2(H1(Ωp)). (4.72)

Recalling that Vh = [0, rh,V h], similarly to (4.49) we obtain∫ T

0

Ã(FU,Vh)dτ ≤ A|||FU|||V,T |||Vh|||V,T � ε3|||GPh
|||2Q,T + ε−1

3 |||FU|||2V,T , (4.73)

where we have also used (4.67). We continue with the bounds on the terms involving Ãη. These terms are zero
when θτ = 0. Let us consider θτ = 1/2. Using (4.35) we have∫ T

0

Ãη(∂η
t FU, ∂

η
t GUh

) dτ ≤ 1
4

∫ T

0

Cτ‖[∂tfη · τ ]‖L2(γ)‖[∂tgη,h · τ ]‖L2(γ)dτ

� ε3C
τ‖[∂tgη,h · τ ]‖2

L2(L2(γ)) + ε−1
3 Cτ‖[∂tfη · τ ]‖2

L2(L2(γ)). (4.74)

Since Vh = [0, rh,V h],
Ãη(∂η

t FU,Vh) = aτ
e (∂tfη,0) = 0. (4.75)

Next consider θτ = 2/3, in which case all terms of Ãη are active. Using (4.37), we have

∫ T

0

Ãη(∂η
t FU, ∂

η
t GUh

− ε2Vh) dτ � ε3(|||GUh
|||2V,T + Cη‖∂tgη,h · τ‖2

L2(L2(γ)) + |||GPh
|||2Q,T )

+ ε−1
3

(
|||∂η

t FU|||2V,T +Cη‖∂tfη · τ‖2
L2(L2(γ))

)
, (4.76)

where we have also used (4.67). Using the definition of C̃, we obtain∫ T

0

C̃(FP,GPh
)dτ � ε3|||GPh

|||2Q,T + ε−1
3 |||FP|||2Q,T . (4.77)

We proceed with the off-diagonal terms. We consider −(B̃)T (FP, ∂
η
t GUh

) + B̃(∂η
t FU,GPh

) and bound its various
components.
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• Estimate on
(
αBp −Mγ

)
∂t −

(
αBp −Mγ

)T :

∫ T

0

((
αBp −Mγ

)
(∂tfη, gp,h) −

(
αBp −Mγ

)T (fp, ∂tgη,h)
)

dτ

= α

∫ T

0

∫
Ωp

gp,h∇ · ∂tfηdxdt− α

∫ T

0

∫
Ωp

fp∇ · ∂tgη,hdx dt

−
∑

i

( ∫ T

0

∫
γ

gp,h,i

∣∣∗
Γi

(∂tfη · ni)|∗Γi
ds dt−

∫ T

0

∫
γ

fp,i

∣∣∗
Γi

(∂tgη,h · ni)|∗Γi
ds dt

)
.

Then, proceeding term by term, we get∣∣∣∣∣
∫ T

0

∫
Ωp

gp,h∇ · ∂tfηdxdt

∣∣∣∣∣ � ε3‖gp,h‖2
L2(L2(Ωp)) + ε−1

3 ‖∂tfη‖2
L2(H1(Ωp)),

∣∣∣∣∣
∫ T

0

∫
Ωp

fp∇ · ∂tgη,hdx dt

∣∣∣∣∣ =

∣∣∣∣∣−
∫ T

0

∫
Ωp

∂tfp∇ · gη,hdx dt+
∫

Ωp

fp∇ · gη,hdx

∣∣∣∣T
0

∣∣∣∣∣
� ε3‖gη,h‖2

L∞(H1(Ωp)) + ε−1
3 ‖fp‖2

L∞(L2(Ωp)) + ‖gη,h‖2
L2(H1(Ωp)) + ‖∂tfp‖2

L2(L2(Ωp)),

∣∣∣∣∣∑
i

∫ T

0

∫
γ

gp,h,i

∣∣∗
Γi

(∂tfη · ni)|∗Γi
ds dt

∣∣∣∣∣ � ε3‖gp,h‖2
L2(L2(γ)) + ε−1

3 ‖∂tfη‖2
L2(H1(Ωp)),

∣∣∣∣∣∑
i

∫ T

0

∫
γ

fp,i

∣∣∗
Γi

(∂tgη,h · ni)|∗Γi
ds dt

∣∣∣∣∣
=

∣∣∣∣∣−∑
i

∫ T

0

∫
γ

∂tfp,i

∣∣∗
Γi

(gη,h · ni)|∗Γi
ds dt+

∫
γ

fp,i

∣∣∗
Γi

(gη,h · ni)|∗Γi
ds
∣∣∣∣T
0

∣∣∣∣∣
� ε3‖gη,h‖2

L∞(H1(Ωp)) + ε−1
3 ‖fp‖2

L∞(L2(γ)) + ‖gη,h‖2
L2(H1(Ωp)) + ‖∂tfp‖2

L2(L2(γ)).

As a result we obtain

|
∫ T

0

((
αBp −Mγ

)
(∂tfη, gp,h) −

(
αBp −Mγ

)T (fp, ∂tgη,h)
)

dτ |

� ε3
(
‖gη,h‖2

L∞(H1(Ωp)) + ‖gp,h‖2
L2(L2(Ωp)) + ‖gp,h‖2

L2(L2(γ))

)
+ ε−1

3

(
‖∂tfη‖2

L2(H1(Ωp)) + ‖fp‖2
L∞(L2(Ωp)) + ‖fp‖2

L∞(L2(γ))

)
+ ‖gη,h‖2

L2(H1(Ωp)) + ‖∂tfp‖2
L2(L2(Ωp)) + ‖∂tfp‖2

L2(L2(γ)) (4.78)

• Estimate on
(
Bp −Mγ

)
−
(
Bp −Mγ

)T :

∫ T

0

((
Bp −Mγ

)
(fq, gp,h) −

(
Bp −Mγ

)T (fp, gq,h)
)

dτ =
∫ T

0

∫
Ωp

gp,h∇ · f qdx dt−
∫ T

0

∫
Ωp

fp∇ · gq,hdxdt

−
∑

i

(∫ T

0

∫
γ

gp,h,i

∣∣∗
Γi

(f q,i · ni)|∗Γi
ds dt−

∫ T

0

∫
γ

fp,i

∣∣∗
Γi

(gq,h,i · ni)|∗Γi
ds dt

)
.
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Using the property (4.20) of Πp
h, we have that∫ T

0

∫
Ωp

gp,h∇ · fqdxdt = 0,
∑

i

∫ T

0

∫
γ

gp,h,i

∣∣∗
Γi

(f q,i · ni)|∗Γi
ds dt = 0.

The orthogonality of the L2-projection Ip
h and the property ∇ · Vp

h = Qp
h of the Darcy mixed finite element

spaces implies that ∫ T

0

∫
Ωp

fp∇ · gq,hdxdt = 0.

For the remaining term we have∣∣∣∣∣∑
i

∫ T

0

∫
γ

fp,i

∣∣∗
Γi

(gq,h,i · ni)|∗Γi
ds dt

∣∣∣∣∣ � ε3‖gq,h‖2
L2(L2(Ωp)) + ε−1

3 h−1‖fp‖2
L2(L2(γ)),

where we used the discrete trace inequality (4.63). In conclusion, we obtain that∣∣∣∣∣
∫ T

0

((
Bp −Mγ

)
(fq, gp,h) −

(
Bp −Mγ

)T (fp, gq,h)
)

dτ

∣∣∣∣∣ � ε3‖gq,h‖2
L2(L2(Ωp)) + ε−1

3 h−1‖fp‖2
L2(L2(γ)). (4.79)

• Estimate on Mγ −
(
Mγ

)T :∣∣∣∣∣
∫ T

0

(
Mγ(fU , gp,h) −MT

γ (fp, gU,h)
)
dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
γ

(gp,h,1

∣∣∗
Γ1

− gp,h,2

∣∣∗
Γ2

)(fU )nds dt−
∫ T

0

∫
γ

(fp,1

∣∣∗
Γ1

− fp,2

∣∣∗
Γ2

)(gU,h)nds dt

∣∣∣∣∣
� ε3

(
‖gp,h‖2

L2(L2(γ)) + ‖
√
δgU,h‖2

L2(L2(γ))

)
+ ε−1

3

(
‖δ−1/2fp‖2

L2(L2(γ)) + ‖fU‖2
L2(L2(γ))

)
. (4.80)

• Estimate on Bf −
(
Bf

)T :∣∣∣∣∣
∫ T

0

((
Bf (fU , gP,h) − BT

f (fP , gU,h)
)
dτ

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
γ

δ ∂s(gU,h)τfP ds dt−
∫ T

0

∫
γ

δ ∂s(fU )τgP,h ds dt

∣∣∣∣∣
� ε3

(
‖
√
δgU,h‖2

L2(H1(γ)) + ‖
√
δgP,h‖2

L2(L2(γ))

)
+ ε−1

3

(
‖
√
δfU‖2

L2(H1(γ)) + ‖
√
δfP ‖2

L2(L2(γ))

)
. (4.81)

Combining (4.78)–(4.81), we obtain∣∣∣∣∣
∫ T

0

(
−(B̃)T (FP, ∂

η
t GUh

) + B̃(∂η
t FU,GPh

)
)

dτ

∣∣∣∣∣ � ε3|||Gh|||2A,T + ‖gη,h‖2
L2(H1(Ωp))

+ ε−1
3

(
‖∂tfη‖2

L2(H1(Ωp)) + ‖fp‖2
L∞(L2(Ωp)) + ‖fp‖2

L∞(L2(γ)) + h−1‖fp‖2
L2(L2(γ))

+ ‖δ−1/2fp‖2
L2(L2(γ)) + ‖fU‖2

L2(H1(γ)) + ‖fP‖2
L2(L2(γ))

)
+ ‖∂tfp‖2

L2(L2(Ωp)) + ‖∂tfp‖2
L2(L2(γ)). (4.82)

where a factor proportional to 1 + δ has been absorbed in the generic constant, without loss of generality.
Recalling that Vh = [0, rh,V h], we obtain in a similar way∣∣∣∣∣

∫ T

0

(B̃)T (FP,Vh)dτ

∣∣∣∣∣ � ε3|||GPh
|||2Q,T + ε−1

3

(
h−1‖fp‖2

L2(L2(γ)) + ‖δ−1/2fp‖2
L2(L2(γ)) + ‖fP ‖2

L2(L2(γ))

)
, (4.83)
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where we have also used (4.67). Combining (4.68)–(4.83), taking ε3 sufficiently small, and employing Gronwall’s
inequality, we obtain

s0‖gp,h‖2
L∞(L2(Ωp)) + |||Gh|||2A,T � H(F)2, (4.84)

where H(F)2 = Hfη
(F)2 + Hfq

(F)2 + Hfp(F)2 + HfU
(F)2 + HfP (F)2,

Hfη
(F)2 := ‖∂tfη‖2

L2(H1(Ωp)) + ‖fη‖2
L∞(H1(Ωp)) + ‖∂tfη‖2

L∞(H1(Ωp)),

Hfq
(F)2 := ‖fq‖2

L2(L2(Ωp)),

Hfp(F)2 := ‖∂tfp‖2
L2(L2(Ωp)) + ‖fp‖2

L∞(L2(Ωp)) + ‖∂tfp‖2
L2(L2(γ))

+ ‖fp‖2
L∞(L2(γ)) + ‖fp‖2

L2(L2(Ωp)) +
(
1 + h−1 + δ−1

)
‖fp‖2

L2(L2(γ)),

HfU
(F)2 := ‖fU‖2

L2(H1(γ)),

HfP (F)2 := ‖fP ‖2
L2(L2(γ)).

Using the approximation bounds (4.58)–(4.62) and observing that 1 + δ−1 � δ−1, we obtain

Hfη
(F) � hr1

(
‖∂tη‖L2(Hr1+1(Ωp)) + ‖η‖L∞(Hr1+1(Ωp)) + ‖∂tη‖L∞(Hr1+1(Ωp))

)
,

Hfq
(F) � hr2+1‖q‖L2(Hr2+1(Ωp)),

Hfp(F) � hl2+1
(
‖p‖L2(Hl2+1(Ωp)) + ‖∂tp‖L2(Hl2+1(Ωp)) + ‖p‖L∞(Hl2+1(Ωp))

)
+hl2+1/2

(
δ−1/2‖p‖L2(Hl2+1(Ωp)) + ‖∂tp‖L2(Hl2+1(Ωp)) + ‖p‖L∞(Hl2+1(Ωp))

)
+ hl2‖p‖L2(Hl2+1(Ωp)),

HfU
(F) � hr3‖U‖L2(Hr3+1(γ)),

HfP (F) � hr3‖P‖L2(Hr3 (γ)).

The proof of the theorem is completed by combining (4.84) with the above approximation bounds and employing
triangle inequality. �

Remark 4.7. The lowest order term of (4.64) is hl2‖p‖L2(Hl2+1(Ωp)). It entails that the convergence rate of
the proposed scheme is one order lower than the optimal one. This is due to the term h−1/2‖fp‖L2(L2(γ)),
which results from the bound on

∫
γ
fp,i

∣∣∗
Γi

(gq,h,i ·ni)|∗Γi
ds, where half order is lost for each of the two terms. An

improved estimate can be obtained by employing a Lagrange multiplier space for the trace of the Darcy pressure
p on γ to enforce the continuity of flux. This space can be chosen to be of higher order and an optimal interpolant
on the interface can be utilized, see, e.g. [3]. This approach is a subject of forthcoming work. We also note that
the term involving δ−1/2 results from bounding

∫
γ(fp,1

∣∣∗
Γ1

− fp,2

∣∣∗
Γ2

)(gU,h)nds, since only ‖
√
δgU,h‖L2(H1(γ)) is

controlled by the method. We note that the use of a Lagrange multiplier space and an interface interpolant
would result in this term depending on the norm of p1

∣∣∗
Γ1

− p2

∣∣∗
Γ2

on γ, which goes to zero with δ, due to (4.4).

5. Numerical results

In this section we focus on the numerical verification of the theoretical results and on the application of
the proposed scheme to solving a representative problem in geomechanics. For this purpose, we consider four
examples. The first one is an academic benchmark problem proposed in [28]. In the second example we consider
the same configuration, but we use more realistic physical parameters taken from [18]. The third and fourth
examples concern numerical experiments for curved fracture configurations. In all examples we take θn = θτ

and consider only the discrete values 0, 1
2 ,

2
3 . The numerical solver for problem (4.21) was implemented in

FreeFem++ [24]. To discretize the problem in time we have adopted the Backward Euler scheme on a uniform
partition of the time interval (0, T ] in time steps tn := nΔt for n = 1, . . . , N, where T = NΔt is the final
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time. The time derivative of the displacement is discretized using the first order approximation ∂tη
n+1
h ≈

Δt−1(ηn+1
h − ηn

h). For the space discretization we have used continuous piecewise linears for Vη
h with r1 = 1,

the Raviart−Thomas elements RT1 for Vp
h ×Qp

h with r2 = l2 = 1, and the P2 − P1 Taylor−Hood elements for
Vf

h×Qf
h with r3 = 2. The discrete problem is solved using GMRES with a preconditioner consisting of diagonal

blocks of the system matrix given in (4.17).

5.1. Example 1: Numerical validation

To validate our numerical scheme, we consider a benchmark problem investigated by Lesinigo et al in [28],
Section 7.2. The computational domain consists of two unitary squares separated by a fracture of width δ,
with midline γ. The squares represent the poroelastic domains Ω1 and Ω2 (see Fig. 2). We assume that there
are no external forces or mass sources. On the left and right boundaries, namely Γ 4

1 and Γ 2
2 in Figure 2,

we impose homogeneous Dirichlet pressure and homogeneous Dirichlet displacement conditions, while on the
remaining external boundaries we impose zero normal flux and zero normal poroelastic stress. In the fracture,
on the bottom boundary Γ 1

1 ∩Γ 1
2 we impose the Dirichlet boundary condition (3.15) for the tangential velocity,

UD
τ = 10 (m/s), and the homogeneous Neumann boundary condition (3.16) for the normal velocity, μf

∂Un

∂s = 0.
On the top boundary Γ 3

1 ∩ Γ 3
2 , we impose the homogeneous Neumann conditions (3.16) for the normal stress.

Values of parameters used in this example are given in Table 2. The problem is solved over the time interval
[0, 1](s) with time step Δt = 0.01(s). The space discretization step is h = 0.05 (m).

We compare the results obtained by the reduced model with θn = θτ = 1/2 to the ones obtained using a
non-reduced model, where the flow in the fracture is fully resolved on Ωf using the Brinkman equation. The
full model was solved using a scheme based on Nitsche’s approach presented in [8]. Figure 3 shows a comparison
of the average pressure P (left) along the fracture midline γ and the average tangential velocity Uτ (right)
obtained using the two models at time T=1 (s). In particular, for the full model pressure and velocity profiles

Ω1 Ω2

Γ1
1 Γ1

2

Γ3
1

Γ4
1

Γ3
2

Γ2
2γ

Figure 2. Example 1: Reference domain for the test problem.

Table 2. Example 1: Poroelasticity and fluid parameters.

Parameter Symbol Units Values
Young’s modulus E (KPa) 103

Poisson’s ratio σ 0.3
Hydraulic conductivity K (m2/KPa s) I
Mass storativity coeff. s0 (KPa−1) 1
Biot–Willis constant α 1
Friction coefficient cBJS 10−4

Hydraulic conductivity Kf (m2/KPa s) 0.1I
Fracture width δ (m) 0.1

Brinkman viscosity μf (KPa s) 1
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Figure 3. Example 1. Top left panel: Average pressure P along the midline γ. Top right panel:
Average tangential velocity Uτ along the fracture midline γ. The values of the reduced model
in the top panel are obtained with θn = θτ = 1

2 . Bottom panel: Pressure profiles for the full and
reduced model (calculated using different values of θn = θτ =: θ) along a transversal section of
the domain at height y = 0.25 (m). The results are shown at T = 1 (s).

are plotted along the meanline of the fluid domain Ωf . In the bottom panel of Figure 3 we show the pressure
in the transversal direction, visualized along the line y = 0.25 (m). We observe a significant jump between the
pressure in the fracture and pressure in the reservoir. For all values of θn = θτ , a good comparison with the full
model is achieved. Figure 4 shows a comparison of the pressure and displacement of the porous medium. The
pressure is superimposed to the Darcy velocity vector field, while the displacement modulus is superimposed to
the displacement vector field. In both figures we observe an excellent agreement between the results obtained
using the reduced model and the results obtained using a full model. Furthermore, the computed pressure and
velocity are in agreement with the results in [28].

On the same benchmark problem we test the spatial convergence of the scheme. Table 3 shows the convergence
in space for the Darcy pressure and velocity, the displacement, and the fracture fluid velocity, where we have
used the numerical solution with h = 1/80 (m) as a reference solution. According to (4.64), the convergence
rate with r1 = 1, r2 = l2 = 1, and r3 = 2 should be at least linear. Higher orders of convergence are actually
observed in some cases. All the convergence tests have been performed for the three admissible values of
θn = θτ = 0, 1/2, 2/3 and no significant differences have been detected among these variants of the model.

Finally, we study the accuracy of the reduced model with in the approximation of the interface conditions.
We focus in particular on the flow balance in the direction orthogonal to the interface, i.e. equation (2.8). In
the case of the full model, we define the following residual on each side of the fracture Γi = Ωf ∩Ωp,i , i = 1, 2,
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Figure 4. Example 1. Left: Pressure p in the pores obtained using the reduced model (top)
and the full model (bottom). The Darcy velocity field q is superimposed to the pressure. Right:
Magnitude of the displacement η obtained using the reduced model with θn = θτ = 1/2 (top)
and the full model (bottom). The displacement vector field is superimposed to the displacement
magnitude. The results are shown at T = 1 (s).

Table 3. Example 1: Convergence in space for different values of the parameters θn = θτ .

Test case δ = 0.1, θn = θτ = 0, 1
2
, 2

3
.

h ‖ep‖l∞(L2(Ωp)) Rate ‖eη‖l∞(H1(Ωp)) Rate ‖eq‖l2(L2(Ωp)) Rate ‖eU ‖l2(H1(γ)) Rate

1/10 3.4e − 2 – 1.0e − 1 – 2.6e − 2 – 9.2e − 4 –
1/20 8.9e − 3 1.9 5.3e − 2 0.9 9.8e − 3 1.4 3.2e − 4 1.5
1/40 2.2e − 3 2.0 2.7e − 2 1.0 3.3e − 3 1.6 1.7e − 4 0.9

for i, j = 1, 2, i �= j:

RΓi(ui,ηi, qi) :=
∫

Γi

(
ui · ni −

(
∂ηi

∂t
+ qi

)
· ni

)
,

while for the reduced model the previous definition must be modified as

Rγ,i(U i,ηi, qi) :=
∫

γ

(
δθn

2μf
pi|∗Γi

+
δ(1 − θn)

2μf
pj |∗Γj

− δ

2μf
P −

(
∂ηi

∂t
· ni + qi · ni − U · ni

)∣∣∣∣∗
Γi

)
·

The results of Table 4 show that the reduced model asymptotically satisfies the kinematic conditions, however
it is less accurate than the full model. We have calculated the residuals for all values θn = θτ = 0, 1/2, 2/3 and
for two values of δ = 0.1, 0.2 (m). It appears that the accuracy of the model is insensitive to θn, θτ , while it
is affected by δ. More precisely, Table 4 confirms that the reduced model is more accurate for fractures with
smaller aperture.
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Table 4. Example 1: The behavior of the indicators RΓi and Rγ,i when varying the charac-
teristic mesh size at time T = 1 (s).

Full model Reduced model

h, δ = 0.1, θn = θτ = 0, 1
2
, 2

3
RΓ1 RΓ2 rate Rγ,1 Rγ,2 rate

1/10 5.63e − 3 5.63e − 3 − 1.98e − 2 1.98e − 2 −
1/20 1.44e − 3 1.44e − 3 1.97 1.13e − 2 1.13e − 2 0.81

1/40 3.63e − 4 3.63e − 4 1.99 6.08e − 3 6.08e − 3 0.89

h, δ = 0.2, θn = θτ = 0, 1
2
, 2

3
RΓ1 RΓ2 rate Rγ,1 Rγ,2 rate

1/10 3.78e − 2 3.78e − 2 − 3.95e − 2 3.95e − 2 −
1/20 1.22e − 2 1.22e − 2 1.63 2.25e − 2 2.25e − 2 0.81

1/40 3.07e − 3 3.07e − 3 1.99 1.21e − 2 1.21e − 2 0.89

5.2. Example 2: Model response to parameters

In this section we investigate the behavior of the reduced model with θn = θτ = 1/2 when the parameters
are modified, moving towards the values that resemble the characteristic ones for flow in a fractured reservoir.
In particular, we progressively update the parameters δ, K, s0, p|t=0 and the Young’s modulus E, starting
from the reference values considered in the previous section for numerical validation. The corresponding grid
of new parameters is reported in Table 5. As in the previous example, we take α = 1 and μf = 1 (KPa s).
The reservoir boundary conditions are modified to be suitable for a typical case of hydraulic fracturing. In
particular, we enforce no flow on the entire reservoir boundary, while we prescribe zero displacement on Γ 4

1 , Γ
2
2

and zero normal stresses on Γ 1
1 , Γ

3
1 , Γ

1
2 , Γ

3
2 . As in the previous example, on the bottom boundary of the

fracture Γ 1
1 ∩Γ 1

2 we impose the Dirichlet boundary condition (3.15) for the tangential velocity, UD
τ = 10 (m/s),

and the homogeneous Neumann boundary condition (3.16) for the normal velocity, μf
∂Un

∂s = 0. On the top
boundary of the fracture Γ 3

1 ∩Γ 3
2 , we impose the homogeneous Neumann conditions (3.16) for mean stress. The

final simulation time is T = 100 (s).
The results of cases A, B, C, D, E in Table 5 are reported in Figure 5 at the final time. On the left panels

we show pressure, flow and displacement fields in the reservoir, on the right panel we show the pressure and
velocity profile in the fracture. These results confirm that the scheme responds correctly to large changes in the
parameter values as discussed below. We observe that in all cases, the flow and deformations are generated by
injection of Q = δUτ = 10−3 (m3/s) of fluid into the fracture.

Flow analysis:

Case A. Due to the large value of hydraulic conductivity in equation (2.2), the pressure gradient is small,
as confirmed by the pressure surface plot. Under the assumption of the uniform pressure field and small
displacements, the mass balance equation (2.3) reduces to Q = |Ω|s0∂tp, which entails that ∂tp = 5× 10−4.

Table 5. Example 2: Grid of parameters used in the numerical simulations of cases A,B,C,D,E.

δ (m) K (m2/KPa s) s0 (KPa−1) p(0) (KPa) E (KPa)

A 10−4 1 1 0 103

B 10−4 10−3 1 0 103

C 10−4 10−3 10−2 0 103

D 10−4 10−3 10−2 103 103

E 10−4 10−3 10−2 103 1010
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5.48 1

Figure 5. Example 2: Response of the model to variations of its parameters. Cases A, B, C,
D, E of Table 5 are shown at the final time T = 100 (s) from top to bottom. Contour and
vector plots on the left show the pressure p superimposed to the reservoir flow q depicted in
Ω1 combined with displacement magnitude and orientation in Ω2. On the right we show the
pressure and flow profile along the fracture γ.
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As a result, at the final time T = 100 (s) we expect that p � 5× 10−2, which is confirmed by the numerical
simulation.

Case B. Since the permeability decreases by three orders of magnitude, we expect to observe larger pressure
gradients. From a visual inspection of the results, we notice that (max p − min p) = 0.3 for case B, while
(max p− min p) = 0.4 × 10−3 in case A, which is consistent with the prescribed perturbation.

Case C. We superimpose to the previous effects a small mass storativity, which increases the pressure rate of
change due to injection, according to equation (2.3). Proceeding as in case A we conclude that ∂tp = 5×10−2

and after 100 s we expect to see p(T ) − p(0) � 5, which is indeed the case.
Case D, E. We analyze here the sensitivity of the model to the pressure initial conditions, which are increased

to the level of 1000 (KPa) (i.e. 1 (MPa)) to mimic the high pressure conditions of a real reservoir. For
a very stiff material, as in case E, we notice that the pressure field turns out to be the superposition of
pressure fields B,C on top of a baseline pressure equal to 1000 (KPa), giving rise to max p � 1005.3.
The linear superposition of pressure fields is not exactly satisfied for case D, which corresponds to a soft
material. We believe that this effect depends on the interaction of the pressure and displacement governed
by equation (2.3). More precisely, the pressure time derivative is not only affected by flow ∇ · q, but also by
the volumetric deformation rates α∇ · ∂tη.

Mechanical analysis:

Cases A, B, C. We notice that the displacement directly increases with the magnitude of the pressure. The
displacement field of case B is different from A and C. We attribute this effect to the relative pressure gradient
(i.e. the pressure gradient normalized with respect to the pressure magnitude), which is non negligible only
for case B, leading to a non-symmetric distribution of stresses and deformations with respect to the layout
of the boundary conditions. In all these cases, the displacement to pressure ratio is almost equivalent to the
Young’s modulus. As a result, we infer that for low pressure values, the poroelastic effects are governed by
the coupling of the flow with the pressure time derivative, namely by equation (2.3), as illustrated in case
C, while the mechanical deformations are mostly determined by the elastic stresses, namely σE .

Cases D, E. The behavior of the system changes considerably for high pressures, as shown by cases D and
E. In this regime, the fluid pressure and elastic mechanical stresses are comparable and they interact by
means of the constitutive law σp = σE − αpI. This justifies why for large pressure values the displacement
to pressure ratio and the Young’s modulus are no longer directly related. In particular, we observe that the
Young modulus of cases D and E differ by seven orders of magnitude, while the displacement changes by a
factor two only, suggesting that in this case the component αpI dominates over σE . For test case D we have
run simulations with α = 0 instead of α = 1, with the purpose of investigating the impact of poroelastic
coupling on the displacement and flow fields. The results (not reported here) show that the variation of the
parameter α has a noticeable effect on the orientation of the displacement field and we also observe a small
variation in the pressure field.

5.3. Curved fracture configurations

We finally test our approach to model curved fractures. We consider two test cases. In the former we compare
the flow and displacement fields calculated using the dimensionally reduced model with the full model for a
curved fracture configuration where the fracture represents a preferential way for flow, namely its permeability
is significantly higher than the one of the surrounding reservoir. In the latter, we address a fracture featuring
a variable hydraulic conductivity and test different fracture boundary conditions, including a fracture that is
completely confined into the reservoir.

5.3.1. Example 3: Comparison of the dimensionally reduced with the full model

The model parameters are δ = 0.1 (m), K = 10−3 (m2/KPa s), s0 = 10−2 (KPa−1), p(0) = 0 (KPa),
E=1010 (KPa), σ = 0.3, Kf = I, cBJS = 10−4, α = 1 and μf = 1 (KPa s). The computational domain is
obtained from the one of Figure 2, after modifying the profile of γ to be curved. The extrema of the fracture
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Figure 6. Example 3: Comparison of simulations for dimensionally reduced fracture model
(left) and thick fracture model (right) at at T = 100 (s). Computational meshes, pressure
contour plot and velocity fields, displacement magnitude and orientation are shown from top
to bottom. Vector fields in Ω1 are visualized in black, those in Ω2 in white and those in Ωf or
γ in red. (Color online)

are however unchanged. On the boundary Γ 4
1 we enforce a uniform flow q · n = −1 (m/s), on the horizontal

sides we set q · n = 0 and on Γ 2
2 null pressure is imposed. As in the previous example, we prescribe zero

displacement on Γ 4
1 , Γ

2
2 and zero normal stress on Γ 1

1 , Γ
3
1 , Γ

1
2 , Γ

3
2 . At the fracture boundaries we impose zero

normal stress (3.16). As a result, this test case represents the flow through a reservoir that is cut by a fracture
open at both endpoints. We expect the fracture to act as a gateway for flow, by carrying out the fluid injected
from the left side of the domain. The final simulation time is T = 100 (s). We used Δt = 1 (s) and h = 0.042 (m).

The results for both the dimensionally reduced and the thick fracture models at T=100s are shown in Figure 6.
They confirm a very good qualitative agreement of the full and dimensionally reduced models. As expected, in
both cases most of the flow penetrating from the left side escapes through the fracture. Only a negligible amount
of fluid extravasates to the right side of the domain. We observe that the flow direction in the neighborhood of
the fracture deviates from the horizontal, because it is sensitive to the fracture configuration.

For a more quantitative comparison, we analyze mass conservation and the pressure variation across the
interface. A flow rate Qin =

∫
Γ 4

1
q · n = −1 (m/s) is injected into the reservoir from the left. The peak velocity

at both fracture endpoints is about |U | � 5 (m/s) in the vertical direction. Then we getQout � 2δ|U | = 1 (m2/s),
confirming that the computed velocity field along the fracture is physically reasonable. In Figure 7 we study the
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Figure 7. Example 3: Comparison of pressure profiles (top) and normal velocity (bottom)
for θn = θτ = 0, 1/2, 2/3 along a horizontal line x ∈ (−0.2, 0.2), y = 0.1 in the fracture and
reservoir at T = 100 (s).

comparison of the pressure profile (top) and the normal velocity (bottom) of the dimensionally reduced model
and the full model, along a horizontal line cutting the interface γ from left to right. For visualization purposes
only the interval x ∈ (−0.2, 0.2), y = 0.1 is considered, in order to restrict the range of variation of the pressure.
As expected, the pressure varies linearly on the left of the interface (located at x = 0), corresponding to a
uniform flow towards the fracture, while the pressure profile is flat on the right, because there is almost no
flow on the right. We observe that there is a small pressure jump across the fracture, according to the interface
conditions (4.10)–(4.11). The pressure profiles corresponding the parameters values θn = θτ = 0, 1

2 ,
2
3 , are also

compared. Small differences are observed in the values obtained using different closure conditions. In particular,
the case θn = θτ = 0 results in the smallest pressure jump, since the profiles for both pressure and velocity
across the fracture are assumed constant. Of the other two cases, the case θn = θτ = 1

2 corresponds to a linear
pressure profile and thus leads to a larger pressure jump when compared to the case θn = θτ = 2

3 , even though
the latter case assumes a quadratic velocity profile. The profile assumptions have even smaller effect on the
normal velocity. Overall, the differences between the values obtained using different closure assumptions do not
have a significant influence on the solution.

5.3.2. Example 4: Analysis of a fracture with variable conductivity.

Here we investigate how to adapt the model in order to describe multiple fractures embedded into the
reservoir. Indeed, an embedded fracture can be modeled by means of no-flow boundary conditions at the
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Figure 8. Example 4: The profile of the curved fracture where the impervious regions are
highlighted with dark bars.

endpoints (3.15) that corresponds to conditions Uτ = 0, Un = 0. Furthermore, multiple (almost independent)
embedded fracture segments can be modeled using a small hydraulic conductivity Kf at some regions of
a connected fracture. In particular, Kf is equal to the permeability K of the surrounding material in the
impervious regions, while it is higher elsewhere. As a result, away from the impervious regions, the fracture
is more permeable than the surrounding rock. In this example we consider a curved fracture with hydraulic
conductivity profile shown in Figure 8. The model parameters used in the simulation are δ = 0.1 (m), K = 10−3

(m2/KPa s), s0 = 10−2 (KPa−1), p(0) = 0 (KPa), E=1010 (KPa), σ = 0.3, cBJS = 10−4, α = 1, μf = 1 (KPa s)
Kf = K = 10−3 (m2/KPas) in the impervious regions, Kf = 10−1 (m2/KPas) elsewhere. The boundary
conditions are the same as in Example 3.

The results in Figure 9 suggest that the reduced model captures well the behavior of both open and closed (or
embedded) fractures. In particular, in all cases it can be observed that the fracture represents a preferential path
for the flow either in the longitudinal and transversal directions, in the regions of high conductivity. Conversely,
the fracture represents an obstacle in the impervious regions. The comparison of panels A and B or C and
D of Figure 9 illustrates the sensitivity of the model with respect to the fracture aperture δ. According to
mass conservation law, smaller aperture means higher velocity field in the fracture. However, the total flow rate
carried by the fracture decreases.

It is interesting to notice that for this new problem configuration, which features more complex and computa-
tionally challenging flow conditions, we observe a dependence of the numerical solution on the parameters θn, θτ

used in the model reduction technique. Panels E and F of Figure 9 show the velocity field in the fracture for
θn = θτ = 0 (color black), θn = θτ = 1/2 (color blue) and θn = θτ = 2/3 (color black). It is apparent that the first
case differs from the others, which are almost superposed. In particular, while in the cases θn = θτ = 1/2, 2/3
the flow in the fracture is mostly tangential, it seems that in the case θn = θτ = 0 the normal component
of the flow is not negligible. This interpretation is supported by the analysis of the residual of the interface
conditions, reported in Table 6. These data suggest that when θn = θτ = 0 is used, the scheme can hardly
satisfy the balance of normal components of velocities across the fracture, which is quantified by the indicator
−
∫

γ
(∂ηi

∂t ·ni+qi ·ni−U ·ni)|∗Γi
. This property is more accurately satisfied by the other values of θ, which enable

a better approximation of the flow inside the fracture. Although the flow seems to be physically reasonable and
almost equivalent for θn = θτ = 1/2 and 2/3, interestingly, among these values the one with smallest residuals
is the former.
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Figure 9. Example 4: Comparison of different model configurations for a fracture with vari-
able permeability. Impervious regions are marked with dark bars. In panel A and B the frac-
ture endpoints are open to flow, owing to boundary conditions (3.16), namely μf∂sUτ − P =
0, μf∂sUn = 0. The parameters θn, θτ have been set to θn = θτ = 2/3. For visualization pur-
poses, different scaling factors have been adopted for the vector fields in Ω1, γ, Ω2. In panel A
the fracture aperture is δ = 0.1(m) and the velocity in Ω1 has been scaled by a factor 0.1, the
one in γ by a factor 0.05 and the one in Ω2 by a unit factor. The background color represents
the pressure, namely pp. In panel B the aperture is δ = 0.001(m) and the velocity in Ω1, Ω2

has been scaled by a factor 0.1, the one in γ by a factor 0.003. In panels C and D, we modify
the boundary conditions to (3.15), namely Uτ = 0, Un = 0 (m/s) to model a fracture that is
completely contained into the reservoir. In this plot, the scaling factor used for visualization
of the vector fields is uniform and equal to 0.1. In panel D, for the same boundary conditions
as in panel C, we modify the fracture aperture to δ = 0.01 (m). Here, the scaling factor of the
velocity in the fracture has been reduced to 0.05. In panel E we fix δ = 0.1 (m) and we vary
θn, θτ . Only the fracture velocity profile is shown. Simulations performed using θn = θτ = 0
are reported in red, those using θn = θτ = 1/2 are blue and the ones with θn = θτ = 2/3 are
black. Panel F shows a zoom of these vector fields. (Color online)

Remark 5.1. In Example 4, we also analyzed the response of the model to the friction coefficient cBJS by
performing a similar set of simulations using the value cBJS = μf/

√
K, which is five orders of magnitude larger

that the former. We observed no significant differences from visual inspection of the results, thus concluding
that the model is rather insensitive to changes of the friction coefficient. Results from the simulations with
cBJS = μf/

√
K are not shown.
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Table 6. Example 4: The residuals of the interface conditions for the reduced model in the
case of different values of θn = θτ .

θn = θτ − ∫
γ
(

∂ηi
∂t

· ni + qi · ni − U · ni)|∗Γi
Rγ1

0 1.076e+00 8.672e-01
1/2 −5.314e-03 −5.456e-03
2/3 −8.542e-02 −9.919e-03

6. Conclusions

We have addressed the problem of modeling the flow into a fracture surrounded by a permeable poroelas-
tic material. The main application is the simulation of hydraulic fracturing, which is a significant challenge,
considering the extreme conditions under which this technology operates. In this work, we have shown that di-
mensional model reduction is a successful approach to account for the very heterogeneous scales of the problem
in a coupled formulation. We have addressed for the first time, to our best knowledge, the topological reduction
approach in the case of a poroelastic material coupled with a fracture flow model of Stokes/Brinkman type.
Several variants of interface conditions have been analyzed and cast into a unified formulation depending on
the parameter θn and θτ . The model has been complemented with a state of the art numerical scheme that
has been analyzed. Numerical experiments confirm the validity of the approach and highlight the importance
of using a poroelastic material formulation in hydraulic fracturing. In the three first examples, there were no
significant differences between the results obtained using different values of θn = θτ . However, in Example 4,
θn = θτ = 0 yields results that seem less accurate than θn = θτ = 1/2 and θn = θτ = 2/3. Furthermore, we
did not notice significant differences in the results for different values of the coefficient cBJS . Some considerable
difficulties are only partially addressed here, such as modeling the tips of embedded fractures, and modeling the
effect of material deformation on the aperture and on the flow into the fracture.
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