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Terrigenous dissolved organic matter
persists in the energy-limited deep ground-
waters of the Fennoscandian Shield

Helena Osterholz 1 , Stephanie Turner2,3, Linda J. Alakangas2,4,
Eva-Lena Tullborg5, ThorstenDittmar6,7, Birgitta E. Kalinowski4 &MarkDopson 2

Thedeep terrestrial biosphere encompasses the life below the photosynthesis-
fueled surface that perseveres in typically nutrient and energy depleted anoxic
groundwaters. The composition and cycling of this vast dissolved organic
matter (DOM) reservoir relevant to the global carbon cycle remains to be
deciphered. Here we show that recent Baltic Sea-influenced to ancient pre-
Holocene saline Fennoscandian Shield deep bedrock fracture waters carried
DOM with a strong terrigenous signature and varying contributions from
abiotic andbiotic processes. Removal of easily degraded carbon at the surface-
to-groundwater transition and corresponding microbial community assembly
processes likely resulted in the highly similar DOM signatures across the
notably different water types that selected for a core microbiome. In combi-
nation with the aliphatic character, depleted δ13C signatures in DOM indicated
recent microbial production in the oldest, saline groundwater. Our study
revealed the persistence of terrestrially-sourced carbon in severely energy
limited deep continental groundwaters supporting deep microbial life.

Groundwater is the earth’s largest active source of freshwater1

containing a vast store of poorly characterized dissolved organic
matter (DOM)2, an actively cycled key component in the global
carbon cycle. As the water moves into deeper layers, nutrients and
available organic carbon are removed, severely limiting the energy
supply to the deep biosphere life estimated to contain 2–6 × 1029

cells3 that is approximately one quarter of the global microbial
biomass4. Key processes in deep subsurface carbon cycling depend
on the recalcitrance of the organic matter to microbial utilization5,
input of metabolic oxidants and reductants, and aquifer
permeability6. While acting as a nutrient and energy source for
heterotrophic life7, the composition and concentration of the DOM
also impacts trace element and contaminant transport8,9, especially
in anthropogenically impacted groundwater systems. Climate

change and increasing urbanization exert pressures on the deep
groundwater systems affecting DOM input, storage, and
turnover2,10. Yet to date, few studies have addressed DOM compo-
sition and its associated bioavailability in deep terrestrial
groundwaters.

Plant litter and soil comprise the main sources of DOM in shallow
groundwaters11. Plant-derived molecular constituents and a high
overlap with riverine fulvic acids, carrying a large number of pre-
ferentially biodegraded nitrogen- and sulfur-containing compounds,
were attributed to groundwater DOM at depths <3m12,13. Sulfur-
containing organic matter can be a dominant component of
rainwater14, but can also be released by microbes or abiotically pro-
duced in anoxic settings, enhancing the recalcitrance of the organic
matter15–17. Permeating through soils and sediments, selective
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interactions of the organic matter occur with microbes, minerals, and
water that integrated in the “regional chromatography” effect shape a
homogenized DOM signature in the saturated zone18,19. Nevertheless,
the source and history of groundwater DOM remain imprinted in its
composition, with bulk organic carbon and isotopic compositions
similar to surface soils indicating a surface origin and vertical transport
into aquifer systems20 that varies seasonally21,22. The proximity and
connectivity to organic-rich layers drive microbial abundance and
activity as well as microbial community composition23,24 and DOM
from chemolithoautotrophic communities in deep basaltic or granitic
intrusions may be important as the long timescales increase the pro-
portion of microbial-derived and transformed DOM over allochtho-
nous, terrigenous material in the oligotrophic systems25–27.

The Äspö Hard Rock Laboratory (HRL) on the Swedish Baltic Sea
coast facilitates access to deep continental groundwaters in the Fen-
noscandian Shield. Its 3.6 km long tunnel partially extends below the
Baltic Sea at depths down to 460 meters below sea level (mbsl). The
groundwater components consist of old saline water, brackish water
from the overlying Baltic Sea and its predecessors such as the Littorina
Sea, and fresh waters from temperate and cold climate (glacial melt-
waters) of the Pleistocene28–30. The present groundwaters broadly fall
into four main types according to water chemistry signatures: marine,
meteoric, old saline, and glacial30.While the brackishBaltic Seawater is

classified as a marine source, its DOM is of predominantly terrestrial
origin, i.e., comprising about 75% in the Baltic Proper31. During the 30
years since the Äspö HRL tunnels were constructed, complex mixing
has occurred where some fracture zones facilitate downward perco-
lation of Baltic Seawater whereas other fractures promote upwardflux
of deep saline waters. The Fennoscandian Shieldmicrobial community
has a coremicrobiome between the different groundwater types often
comprised of small cells with streamlined genome sizes that likely
represent adaptations to an oligotrophic lifestyle32–34. While iso-
topically light carbon indicates slow, but persistent microbial trans-
formation of surface-derived DOM35, the link between the DOM
reservoir and the microbial community is largely unknown.

In this study, DOM concentration and molecular composition in
conjunction with stable and radiogenic carbon and water isotopic
investigations, water chemistry, andmicrobial community structure in
ÄspöHRL fracturewaters (Fig. 1) of different depths, ages, and sources
were analyzed to disentangle mechanisms behind organic matter
cycling in the deep biosphere. We include a saline pre-Holocene
groundwater, potentially representative of often overlooked natural
saline groundwaters worldwide36. We hypothesized that terrestrial
surface DOM fuels microbial life in the deep continental bedrock
fractures. In addition, we suggest that abiotic transformations occur-
ring on long timescales and microbial reworking of the aged DOM is
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Fig. 1 | The Äspö HRL tunnel system and sampled boreholes. Location of the
Äspö HRL in Kalmar County, Sweden, is shown in the schematic map; depth,
location and water type of samples included in this study are indicated on the

tunnel system reproduction. A portion of the tunnel (including boreholes
SA1229A_1, KA2051A01_5, and KA3105A_03) extends below the Baltic Sea. Figure
reprinted and modified from ref. 94 with permission from Elsevier.
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likely in the low carbon and energy groundwaterswith cycling of sulfur
compounds playing an important role.

Results
Type and origin of the groundwaters
Using chloride concentrations, δ18O values, and Cl/Mgplus Br/Cl ratios
to distinguish water origin in the aquifer at Äspö HRL28,30 grouped the
samples (Table 1&Fig. 2) into: (i) ‘Baltic Sea’waterwith typical salinities
and δ18O values for these brackish waters30,37; (ii) ‘BrMarine1’ recent
brackish-marine waters intruded into the boreholes; (iii) ‘BrMarine2’
Holocene marine waters older than present day Baltic Sea; (iv) ‘Tran-
sition’ waters that carry signatures from both BrMarine and old saline
waters; and (v) brine-type old ‘Saline’ water of unknown origin with
residence times in the bedrock of ≥100,000 years38 mixed to various
degrees with old meteoric water of cold climate origin, likely glacial
and pre-Holocene. The origin of the brine component is complex and
may involve leaching ofmarine sediments (e.g., Palaeozoic evaporites)
later influenced by water rock interaction through time38. The Baltic
Sea samples clusteredwith BrMarine1 borehole SA1229A that accessed
a large section with high connectivity to the Baltic Sea. All other
BrMarine1 and BrMarine2 groundwaters grouped within the area of
mixed water origin, with one borehole sample (KA2051A01_5, BrMar-
ine1) moved toward meteoric characteristics. KA2865A01_1 and
KA3385A_1 waters associated closest with KA3510A_2 classified as
Transition-type waters of intermediate Cl/Mg ratios.

Dissolved organic matter in fracture waters
DOC concentrations decreased with increasing conductivity and were
below 1.15mg L−1 in all Saline waters while the Linnaeus Microbial
Observatory (LMO) and near Äspö Island Baltic Sea values framed the
BrMarine samples (Table 1). Dissolved organic nitrogen (DON) con-
centrations were higher in waters of lower conductivity. With the
exception of borehole SA1229A_1 that had >5mg L−1 total dissolved
nitrogen (TDN)mostly as ammoniumof an unknown source, dissolved
C/N ratios were not significantly different between water types at an
average of 19.4 ± 6.1.

Solid-phase carbon extraction efficiencies were 81 ± 4% and
66 ± 4% across all deep fracture waters and the two Baltic Sea samples,
respectively (Table 1). The DOM composition comprised 12,728
monoisotopic molecular formulas (MFs) assignments between
35 samples (average 7961 ± 464; Table S1) in the 96–1000Da mass
range from FT-ICR-MS analysis. Of these, 3772 MFs were found in all
samples and accounted for on average 47 ± 3%of theMFs by count and
85 ± 2% of the relative intensities per sample. 309 MFs (0.23 ± 0.13% of
relative intensities) were unique to the Saline-typeDOM that plotted at
high H/C and low O/C ratios in van Krevelen space used to visualize
tentative structural characteristics of MFs39, including few O-poor
aromatics and mostly highly unsaturated O-poor or unsaturated MFs,
some containing N (Supplementary Fig. S1). 110 MFs (0.21 ± 0.04% of
relative intensities) were unique to the two Baltic Sea samples that
plotted in the region of tannin-like and condensed aromatic MFs of
terrigenous origin. The unique MFs of the BrMarine samples (n = 438;
0.26 ± 0.11% relative intensity) were widely spread across van Krevelen
space besides the area ofO-rich aromatics andhighly unsaturatedMFs.

A gradient from Baltic Sea, through Transition, to Saline
groundwater origins was partially reflected by the distribution of DOM
compositions along the first axis of NMDS ordination (Fig. 3). Hydro-
chemical composition based on eight main parameters (Na, K, Ca, Mg,
δ18O, δ2H, SO4

2−, D, and Cl−) similar to those used previously for water
type classification at Äspö HRL29 and DOM composition were sig-
nificantly related (distance-based redundancy analysis, db-RDA), 9999
permutations, n = 15, F = 3.6, p < 0.01). Overall, hydrochemistry
explained about 83% of DOM variability with some differences in
classifications remaining. BrMarine1 samples KA2511A_5 and SA1229A_1
grouped closest with the Baltic Sea waters, while KA2051A01_5

associated with BrMarine2 and Transition boreholes KA3105A_3 and
KA2865A01_1. The Transition DOM formed a tight group in the
hydrochemical classification, but their mixed origin stood out in DOM
molecular space. The Transition-type waters KA3510A_2 and
KA3385A_1 grouped closest to Saline KA1755A_3 and HA2780A_1,
respectively, while KA2865A01_1more closely affiliatedwith BrMarine2
borehole KA3105A_3.

The Baltic and BrMarine1 waters showed similar H/CMF and P/CMF

ratios (weighted means from MF assignments) that were low com-
pared to older groundwater samples (Fig. 4). Although the BrMarine
groupDOMcomposition was not coherent, its averagemass tended to
be higher than that of Transition- and Saline-type DOM. The N/CMF

ratio varied across all water types while the O/CMF ratio and S/CMF

ratios were most different for Baltic Sea DOM. Sulfate and sulfide
concentrations negatively related in BrMarine1, BrMarine2, and
KA2865A01_1, denoting ongoing sulfate reduction in the most recent
waters. The DOM S/CMF ratio strongly correlated with the relative
contribution of AbioS40 peaks, indicative of abiotic sulfurization under
anoxic conditions, of which 13 (out of 15) were detected in this dataset
(R =0.94, p < 0.001). The AbioS peaks were not present in Baltic Sea
water and barely present in KA2051A01_5 (BrMarine1) and KA3105A_3
(BrMarine2). In addition, the S/CMF ratio was highly correlated to the
number of S-containing MFs (R =0.95, p <0.001), implying the pro-
duction of new S-containing MFs rather than addition to already
existing ones. The presumed lability of the DOM based on the lability
indexMLBwwashighest in the oldest, Saline- and someTransition-type
waters (Fig. 5). The aromaticity, assessed via the modified aromaticity
index AImod, covered a wide range between the Baltic Sea samples
closest to the coast that decreased toward Transition and Saline DOM.

The radiocarbon age of the bulk inorganic and organic carbon
fractions was assessed as percent modern carbon (pMC_DOC,
pMC_DIC; Fig. 6) with pMC values around 100 corresponding to recent
carbon and 60 corresponding to a mean residence time of around
4200 years. pMC_DOC ranged from 105.7 in borehole KA2051A01_5
(BrMarine2) to 58.2 inborehole KA1755A_3 (Saline), butmost old Saline
waters had a DOC radiocarbon age of around 69 pMC corresponding
to ~3000 years. pMC_DIC also strongly decreased from Baltic Sea
(105.6 near Äspö Island) and BrMarine groundwaters compared to
values of 40–50 in most Saline waters, a Transition-type water
(KA3510_2), and the BrMarine2 water from borehole KA2511A_5.
pMC_DOC and pMC_DIC were significantly positively correlated
(R =0.66, p < 0.001) but the organic fraction showed a higher pMC
value than the inorganic fraction, except for the Baltic Sea waters, that
was mainly attributed to dissolution of calcite within the overburden
or in the uppermost fractures. The relatively young age of the inor-
ganic and organic carbon in the Saline-type fracture waters was sur-
prising regarding their implicit origin. The saline component
endmember (45,000mgCl L−1) has a long residence timemanifested in
Mg/Cl, Br/Cl ratios, He content, and δ18O/δH ratio38. However, the Cl−

concentrations were below 15,000mg L−1 with the dilute components
being of glacial origin or possibly an older meteoric water. Introduc-
tion of modern water portions or contamination through e.g., biofilm
formation in the sampling system is unlikely as sampling section and
tubingwere flushedwith several volumes of fracturewater before each
sample was taken, similar carbon extraction efficiencies were found
over all section and tubing lengths, and FT-ICR-MS spectra showed no
obvious contaminants. The detected trends between water types thus
likely hold true but nevertheless, these potential caveats need to be
considered especially for the low-DOC Saline-type water.

δ13C-DIC values ranged from −0.7‰ in Baltic Sea water to −18.5‰
in Saline groundwaters while δ13C-DOC values ranged from −24.0 to
−28.7, ‰ respectively (Fig. 6) except for one sample from borehole
SA2600A_1 that showed very different values between batch 1 (δ13C-
DOC= −28.6‰) and batch 2 (δ13C = −23.70‰). As all other samples
were consistent between the years and the second sampling of
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SA2600A_1was not otherwise conspicuous, this value was disregarded
during further interpretations. δ13C values of organic and inorganic
carbon were positively related (R = 0.70, p <0.01) with Δ13CDIC−DOC

values of −16.6 ± 4.1‰ for all samples and −14.1 ± 3.3‰ for old saline
waters. The solid-phase extractedDOC stable carbon isotope signature
(δ13C-SPE-DOC) did not mirror the full extent of δ13C-DOC and ranged
from −26.1 to −28.4‰ (R = 0.42, p < 0.05). The agreement between
δ13C-SPE-DOC and δ13C-DOC values was good, but deviation was

highest for Baltic Sea water with the lowest extraction efficiencies
(Supplementary Fig. S2). OnDOMmolecular level, the δ13C values were
most strongly correlated to the MF fraction assigned to the aromatic,
oxygen-rich molecular class (R =0.70, p <0.01) that comprised
between 4 and 9% of the relative intensity.

Microbial communities and DOM
The microbial communities in Äspö HRL groundwaters were domi-
nated by 16 S rRNA gene amplicon sequence variants (ASVs) that
aligned within the Proteobacteria (28% mean relative abundance)
including classes Gamma- and Alphaproteobacteria, Patescibacteria
(24%), Campylobacterota (13%), and Desulfobacterota (8%) (Supple-
mentary Fig. S3). Microbial communities partly clustered according to
thewater typesBrMarine, Transition, andSaline although theBrMarine
boreholes KA3105A_3 and KA2051A01_5 communities clustered with
Saline samples (Supplementary Fig. S4). A db-RDA using only unique
samples and the same eight water chemistry parameters as for DOM
revealed that the water chemistry explained almost 92% of the varia-
bility (9999 permutations, F = 1.40, n = 10) of themicrobial community
composition. However, this relationship was not statistically sig-
nificant, likely due to the low number of samples used in this study
(p = 0.134, n = 10). Comparison of the DOM composition and the Äspö
HRL groundwater microbial community compositions via Procrustes
analysis resulted in an intermediate m2 of 0.65 (9999 permutations,
p =0.097) that indicated the datasets were not significantly related
along main gradients of variability. Therefore, individual associations
between microbial ASVs and DOM MFs were analyzed via network
analysis based on proportionality. The MFs retained in the network
were centered in van Krevelen space (Supplementary Fig. S5) but only
comprised around 2% of the total relative sample intensities. Network
MFs were overall of higher molecular weight and had higher
heteroelements-to-carbon ratios than the original dataset (Table S2).
In addition, the presumed lability of the MFs was higher as they con-
tained less unsaturated hydrocarbon-type, more tannin-type, and less
lignin-type MFs than the original dataset (Table S3). The composition
of the ASVs found to be related to MFs also differed from the total
community composition. DOM-related ASVs were dominated by
Patescibacteria (12% mean relative abundance), Proteobacteria (9%),
‘unclassified’ taxon (5%), Desulfobacterota (4%), and Chloroflexota
(3%). The resulting network consisted of 1617 nodes (1388MFs and 229
ASVs), 2506 edges, 67modules (Supplementary Data 1), and a network
modularity of 0.89. Ten out of the 67modules containedmore than 50
nodes (3–23 ASV nodes and 54–259 MF nodes; Fig. 7, Tables S4, S5)
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that accounted for 63% of the whole network. The ten largestmodules
were comprised of MFs with distinct characteristics as reflected by
varying H/CMF and O/CMF ratios ranging from 0.91 to 1.48 and 0.35 to
0.55 that formed clusters in specific areas of the van Krevelen diagram
(Supplementary Fig. S5). Accordingly, the proportion of MFs assigned
to specific compound classes differed between themodules (Table S4)
with most MFs classified as lignin-like (ranging from 38 to 74% of the
nodes per module).

On the basis of within- and between- module connectivity, 12
connectors, 45 module hubs, and 1560 peripheral nodes were identi-
fied in the whole network (Supplementary Fig. S6). While most con-
nectors were MFs except for ASV165 (‘unclassified’ taxon), all but one
module hubs were ASVs. All connector MFs contained the heteroele-
ments N, S, or P (CHON, CHOS, CHOP, and CHONS) and were mostly
lignin-like of varying lability and molecular weight. Most connectors
were positively and negatively related to several microbial ASVs from
different phyla such as Patescibacteria, Desulfobacterota, and Chlor-
oflexota. Of the microbial module hubs, 16 (36%) were classified as
Patescibacteria and seven (16%) as Desulfobacterota (Fig. 7).

Discussion
Regional chromatography shapes the fracture water signatures
Selective interactions of organic substances, especially N-rich
materials, with water, microbes, and mineral surfaces during ground-
water transport was reported by Aiken41 and termed “regional

chromatography”19. This concept has been applied to describe
groundwater DOM compositions18,42 and explains the refractory signal
(i.e., low MLBw, low C/NMF) and relatively low variability in the Äspö
HRL fracture system where lignin-like MFs contributed >50% of the
relative intensities in all water types. In addition, that the sixfold
change of bulk DOC concentrations between Baltic Sea and the dee-
pest groundwaters plus the increased DON in the Baltic Sea were not
mirrored in the narrow variation in DOMmolecular characteristics can
partially be attributed to the analytical window inherent to the applied
methods43. However, the higher deep groundwater solid-phase
extraction efficiencies suggested they contained a lower proportion
of poorly captured high molecular weight material, colloidal organic
matter, or small monomeric compounds compared to the Baltic Sea
water. Despite a considerable terrestrial fingerprint31, the Baltic Sea
DOMcarries freshly producedmatter comprising e.g., proteins, amino
acids, and carbohydrates44. These compounds are preferentially
respired in the subsurface water column and may adsorb to sediment
grains leading to the strongly terrigenous DOM signature entering the
deep fractures. In line with the changes in DOM composition with
depth and groundwater type from the Baltic Sea downwards, Äspö
HRL groundwater microbial communities supported by the available
DOM also considerably differ from the overlying Baltic Sea water,
suggesting species sorting occurred prior to the infiltrated waters
reaching the Äspö HRL boreholes45. Thus, the existence of a Fennos-
candian Shield core microbial community adapted to the oligotrophic
subsurface32 may be at least partially due to the low variability
and recalcitrant nature of the DOM in the different Äspö HRL
groundwaters.

Mixing dominates DOM signatures of waters from different
origins
Groundwaters carrying >1mgL−1 organic carbon are commonly loca-
ted close to organic-rich sediments or receive organic-rich recharge46.
The shallow BrMarine1 and BrMarine2 groundwaters with high surface
connectivity exhibited large contributions of lignin- and tannin-like
MFs of high aromaticity, similar to the high humic and fulvic acid
concentrations from soil carbon of aromatic and (highly) unsaturated
molecular classes detected in shallow soil-derived DOM12,20,21 and the
Baltic Sea31. Toward the old Saline-type waters, DOC concentration,
molecular mass and aromaticity, as well as O/CMF and P/CMF ratios
consistently followed the dominant mixing process. The intrusion of
terrigenous DOM into deep aquifers may confound previous inter-
pretations of a largely chemolithoautotrophic origin of DOC in other
systems26,47.

The ÄspöHRL is built in Paleoproterozoic granitoids with fracture
surfaces carrying calcite, chlorite, pyrite, and clay minerals48,49.
Adsorption on surfaces or formation of insoluble complexes with
hydrolyzing metals, especially Fe and Al, preferentially removes aro-
matic and lignin-like DOM moieties from solution50,51. The relatively
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high aromaticity of the BrMarine and partially the Transition-type
DOM together with the high DOC concentrations indicated saturated
surfaces and/or sufficient recharge29. Overall, that more than two
thirds of the variability in DOM composition was explained by water
chemistry parameters confirmed mixing of different source waters as
the main driver of water compositions in the deep bedrock. The
remaining variability points toward additional abiotic or biotic pro-
cesses including sulfurization, sorption, condensation, or microbial
uptake and reworking6 shaping DOM composition in Fennoscandian
Shield groundwaters.

Evidence for abiotic and biotic sulfurization of DOM
The high sulfate concentration in Saline waters and two Transition-
type boreholes originated from Baltic Sea input and gypsum dissolu-
tion and were consistent with previous investigations in a nearby
fracture system52,53. Microbial community data indicate the presence

(Supplementary Fig. S3) and activity of autotrophic and heterotrophic
sulfate reducing bacteria in Äspö HRL groundwaters34,54 that is not
reflected in the alkalinity due to subsequent CO2 uptake in reciprocal
microbial partnerships with acetogens, methanogens and
fermenters32,55,56. In sulfidic sediments, organic matter reacts with
reduced sulfur species potentially from sulfate reduction forming
organic sulfur compounds as recently shown for DOM experimentally
and in anoxic porewaters15,16, increasing organicmatter preservation at
low temperatures17. At Äspö HRL, the DOM S/CMF ratio was elevated in
all anoxic groundwaters (S/CMF = 0.007; Supplementary Table S1) in
comparison to Baltic Sea water (S/CMF = 0.003). The S-content of the
SPE-DOM (count of S-containing MFs or S/CMF ratio) correlated to the
relative contribution of the AbioS index indicative of abiotic
sulfurization40, while thedouble bondequivalent (DBE) of S-containing
MFs of the groundwaters was on average one unit lower than that of
CHO-only MFs. Together with a negative relationship of S-containing
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Fig. 7 | Network showing the links betweenMFs andmicrobial ASVs. Bar plot of
taxonomic affiliation (phylum level) of ASV nodes of the ten modules (a). Network
of networkASVs andMFswith positive and negative links representedby green and

red edges, respectively (b). Node colors illustrate ASVs (gray) and compound
classes for the MFs. Numbers represent modules. Details on ASVs can be found in
Supplementary Data 1.
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and CHO-only contributions to sample compositions, this could indi-
cate the formation of new DOC compounds through bisulfide
addition16. However, the deviation in DBE was even higher at around
two DBE for the oxic Baltic Sea samples, where a different mechanism
must take place.

Sulfurization, manifested in increased S/CMF ratios, of organic
matter is thought to enhance preservation17. It may therefore seem
counterintuitive that a higher S/CMF ratio characterizedDOM in theold
Saline-type DOM that overall also comprised DOM of higher lability as
indicated by the MLBw. Notably, on average, MFs in the dataset car-
rying at least one S (N) atom contributed approximately 13% (17%) of
the total sample intensities. Separating relative contributions included
in theMLBw (H/CMF > 1.5), CHOMFs contributed 65 ± 5% followed by S-
(29 ± 4%) and N-containing (5 ± 2%) MFs. S-containing MFs thus con-
tributed disproportionally highly to the labile DOM pool, especially
compared to the often bioavailable N-containing compounds. The
abiotic sulfurization process is not selective in regard to saturation,
aromaticity, degree of oxidation, or heteroelement content of the
precursor compound, and bisulfide nucleophilic addition shifts theMF
toward higher H/CMF ratios15,16. Furthermore, sulfur-containing meta-
bolites produced though bacterial assimilatory S-reduction likely
contributed to the DOS pool57. Hence, abiotic sulfurization of the
subsurface DOM was an important process in the Äspö HRL fracture
waters, but sulfur integration in DOM not only acted as a stabilizer but
also increased the assumed lability of the DOM (% MLBw), an ambig-
uous role that needs further investigation in this system.

Microbial imprint in old saline fracture waters
Microbial remineralization, transformation, and production affected
the deep groundwater DOM compositions in addition to the dominant
mixing signature. The microbial imprint was not only reflected in the
old Saline DOM fingerprints, but also in the carbon isotopic compo-
sition. δ13C-DIC carbon isotopic values of −0.7 to −18.5‰ decreased
with conductivity and represented recharging groundwaters with
BrMarine influence, terrigenous organic matter oxidation and dis-
solution of calcite from different generations with only minor con-
tributions of extremely depleted DIC derived from anaerobic
oxidation of thermogenic (δ13C −30 to −50‰) or biogenic methane
(δ13C −60 to −90‰) present at low concentrations in the fracture
waters38,53. δ13C-DOC correlated with δ13C-DIC, but isotopic composi-
tions were in a narrow range from −23.7 to −28.7‰ that were close the
values reported for boreal forest soil (−24 to −29‰58), the dominant
river DOM source in the region. In addition, the Δ13C(DIC-DOC) values
were mostly higher than the range of measured fractionation factors
for the reverse tricarboxylic acid cycle (−2 to −12‰), emphasizing that
CO2 fixation was not the main driver of DOC production as suggested
for the hot Costa Rican backarc system47. Degradation by microbes
typically lowers the δ13C of the remaining DOC pool59 and the most
depleted δ13C-DOC value of −28.6‰ were found for the old saline
DOM, indicating a stronger imprint in these waters to which a minor
contribution of higher-plant derived material was previously
attributed60. Usually, higher H/CMF ratios or lower aromaticity of DOM
are associatedwith youngerDOMthat is potentiallymore accessible to
microbial utilization61–63, opposite to what was observed at the Äspö
HRL. Here, in conjunction with the lowAImod, lowmolecular mass, and
high H/CMF ratios, permanent reworking and release of an aged but
apparently labile organic matter fraction through the resident
microbes was likely in the Saline-type waters10. In addition, the MFs
unique to the deep Saline DOM were enriched in low-O/CMF and high-
H/CMF MFs (Supplementary Fig. S1). These contrasting trends with
ageingwere recently attributed to the different oxygen availability and
photochemical processing in oxic aquatic versus anoxic, deep systems
where photodegradable compounds and aerobically biolabile for-
mulas can accumulate10. In agreementwith this and theDOMsignature
of microbial reworking at Äspö HRL, ref. 26 describe a deep

groundwater DOM comprised of aliphatics, unsaturated, and lignin-
like compounds also containing low molecular weight organic acids
andminor contribution aromatic compounds likely ofmicrobial origin
in a deep South African fracture zone. These MFs were presumably
either released by the resident microbial community through meta-
bolic activity or after senescence, or indicated that allochthonous
DOM transported in the aquifer had undergonemethylation processes
under anoxic conditions64. Possible methylation was supported by the
higher average molecular weight of the MFs unique to Saline-type
DOM (475 ± 26Da) compared to the average molecular weight of all
samples (397 ± 5Da). Methane in the deep crystalline bedrock can
originate from abiotic (e.g., Fischer-Tropsch) or biotic processes via
methanogenesis65, but methanotrophic contribution to the DOM pool
was low at Äspö according to the stable isotopic composition of DOC.

With ongoing microbial degradation of the DOM, N- and
P-containing molecules are often preferentially utilized by hetero-
trophic bacteria13,66. However, these studies deal with DOMoriginating
at least partially from recent primary production, whereas the DOM
examined in the anoxic Fennoscandian Shield fractures had a terrige-
nous signature and had cycled through the subsurface bedrock frac-
tures for long timescales. The fundamentally different source DOM
quality and environment can entail that the opposite trend was found
for the P/CMF ratiowith increasing age in the ÄspöHRL fracturewaters,
and no consistent change in N/CMF ratio was observed. Although ter-
restrial organic matter is generally depleted in nitrogen compared to
marine organics, both the DON and DOC concentrations were lower in
Transition- and Saline-type waters compared to the more recent
BrMarine with no significant differences in bulk C/N ratios. The
nitrogen-containing DOM may still be rapidly cycled in the environ-
ment limited in soluble nitrogen and phosphorus67, keeping the con-
centrations measured at discrete time points low. The increase in P/
CMF ratio was not easily explained and literature including DOP on MF
level analysis is scarce. Phosphate was depleted in BrMarine2, Transi-
tion, and Saline waters, such that DOP comprises a potential P-source
formicrobial life rather thanbeing released to the DOMpool. Yet, with
the increase in P/CMF ratio from Baltic Sea to Saline waters, also the
number of P-containingMFs increased fromaround50 to 150, pointing
toward new production and no P-limitation of the subsurface
microbes.

The possible reasons why the microbial imprint was primarily
observed in the deep Saline-type DOM were threefold: (i) the DOC
concentration was the lowest such that minor removal or dilution of
terrigenous organics resulted in a visible microbial imprint in the rela-
tive abundance spectra; (ii) microbial adaptation to the refractory C
sources takes time and thus only occurs in the oldest waters; or (iii)
more accessible energy sources were available in other fracture waters.
Previous studies show that the deep biosphere microbial community is
viable and active, rapidly recycling dead cells as substrate68. Reworking
of DOM due to microbial reuse of necromass adds to the labile char-
acteristics of Saline-type DOM. In addition, carbon dioxide and hydro-
gen geogas-driven microbial metabolismmay leave little imprint in the
DOM and the fast uptake of products of this metabolism by other
microbes further diminishes the detectable imprint34. However, all
DOM fingerprints included in this study shared more than 85% of the
MFs relative intensity, so that the proportion of the DOM responsible
for the labile signature in the deep Saline waters was small in compar-
ison to the recalcitrant, terrigenous signature common to all ground-
waters. This potentially explains the slow growth rates and “stop-and-
start” cell replication processes that are suggested to be activated or
deactivated as and when carbon and energy sources are intermittently
available to the deep fracture water microbial community32.

Links between specific molecules and microbes
While both DOM and microbial community composition were to cer-
tain degrees linked to water type, overall compositions were not
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significantly related to each other. Nevertheless, network analysis
revealed potential connections betweenDOMMFs andmicrobial ASVs
in the form of correlations that require experimental evidence for
confirmation. While microbial network ASVs accounted for around
37% of the total relative abundance, the network MFs only comprised
around 2% of the total relative intensities. Considering that MFs in the
network presumably represented compounds that were either pro-
duced or consumed by microorganisms, a low cumulative relative
intensity of the respective MFs would be expected. In contrast, highly
abundant MFs were more likely compounds of low bioavailability that
accumulate in the groundwaters. This was mirrored in the higher
lability (MLBw) of the network MFs and in line with previous studies
reporting major proportions of refractory DOM in aquatic systems18.
Most ASV nodes were affiliated with the phylum Patescibacteria that
also constituted more than one-third of the module hubs that were
highly connected and proposed to be keystone taxa69. These module
hub Patescibacteria belonged to the classes Paceibacteria, ABY1, and
Gracilibacteria, which were also present in a shallow groundwater
system70 and are suggested to be prevalent in deep groundwaters by
their ease of mobilization from soil coupled to their adaptation to low
energy conditions71. Patescibacteria were not linked with specific DOM
MFs, but withMFs of varying characteristics and all compound classes.
In addition, they mostly co-occurred with either other Patescibacteria
ASVs or ASVs affiliated with Chloroflexota, Dusulfobacterota, and
‘Unclassified’ phyla in the samemodule. This indicated coupling of the
production and consumption of DOM compounds via a symbiotic
host-associated lifestyle72. The coupled breakdown of complex DOM
compoundswas also supportedbyconnectorMFs, representingnodes
that connect different modules (e.g., modules 3, 9, and 11) and
thereforemight reflect key intermediate compounds duringmicrobial
DOM degradation69. These connector MFs were positively and
negatively linked to various microbial taxa, which might represent
potential producers and consumers, respectively. Members of the
phylum Desulfobacterota were also abundant in the network with
module hub ASVs belonging to Desulfocapsa, Desulfatiglans, Desul-
fobacula, and unclassified genera of the order Syntrophales. Char-
acterized members of the Desulfatiglans and Desulfobacula are
heterotrophs and able to degrade aromatic compounds like phenol73,
thus potentially being capable of degrading complex aromatic com-
pounds like tannins and lignins in line with links between these two
genera and mostly lignin-like MFs in the network (e.g., ASVs 218, 232,
and 233; Fig. 7).

The small percentage of retained MFs suggested that although
DOM was present, the large majority was resistant to microbial
degradation. This supported the extremely long cell turnover times
that have been calculated in the 100–1000 s of years for the deep
marine biosphere74 and that the microbial community in terrestrial
deep Saline waters in particular have been described as in “metabolic
standby”56.

Organic carbon has a range of reactivities that are determined by
the nature of the organic compounds, along with the biological, geo-
chemical, and physical attributes of the environment75. The carbon
advectively transported from Baltic Sea, meteoric, and soil sources
into the deep continental bedrock fractures was mainly of terrigenous
origin. The terrigenousDOMsignaturewas retained and recalcitrant to
degradation, potentially leading to the assembly of a core deep bio-
sphere microbial community composition, supported by the low
percentage of MFs associated to the community with Patescibacteria
and Desulfobacterota as possible keystone taxa. Thus, deep Fennos-
candian Shield microbes likely survive on the small pool of available
molecules, such as the geogases carbon dioxide andmethane plus the
consumption of necromass as imprinted in the oldest, saline waters.
This further supports the suggested “metabolic standby” of the com-
munities, extremely long cell turnover rates, and “stop-and-start”
replication processes. Future degradation experiments of the deep

groundwater DOM under in situ conditions will aid to precisely dis-
entangle mechanisms of subsurface DOM processing and its rates.

Methods
Sampling and water chemistry
In total, 13 packed-off borehole sections at depths ranging from 170m
to 507mbsl were sampled for groundwater chemical components and
isotopes (Fig. 176) at the Äspö HRL on Äspö Island in the Misterhult
archipelago in Kalmar County, Sweden. Since the tunnels were con-
structed between 1990 and 1995, contamination from excavation has
been minimized although the boreholes have been instrumented for
varying times that has introduced materials into the deep ground-
waters. Samples from boreholes SA1229A_1, KA3105A_3, SA1730A_1,
KA3600F_2, and SA2600A_1 were taken in November 2018 (batch 1)
followed by all other samples in May 2019 (batch 2; Tables 1 and S1).
The boreholes were chosen to cover relatively recent brackish-marine
to pre-Holocene, saline waters. In addition, two surface Baltic Sea
locations were sampled: one coastal site from Borholmsfjärden in the
vicinity of the ÄspöHRL (surface water, N 57°25.296’, E 16°39.583’) and
one offshore sample at the LMO located 11 km offshore Kårehamn,
Öland (2m water depth, N 56°55.854’, E 17°3.642’).

Hydrochemical variables were determined in the ISO 17025 rated
Äspö HRL chemical laboratory as follows: pH was determined poten-
tiometrically (±0.10 pH units), Cl− concentrations were determined by
potentiometric titration (0.1M AgNO3) with an analytical uncertainty
of 6% (Swedish Standard 028136 edition 1), and SO4

2− concentrations
were determined using ion chromatography (DIN EN ISO 10 304-1:
2009) with an analytical uncertainty of 12% (4.5–70mgL−1) and 31%
(0.5–4.5mgL−1). Dissolved Fe2+ and total iron (Fetotal) concentrations
were determined immediately after sampling using a spectro-
photometer (UVPC2401; Shimadzu, Kyoto Japan) and a modified fer-
rozine method77 with an analytical uncertainly of ±0.005%
(0.02–0.05mg L−1), 8% (0.05–1mg L−1), and 13% (1–3mg L−1) depending
on concentration range. Oxygen concentrations could not be reliably
measured due to the setup installed to obtain water from the bore-
holes, but Fe2+ concentrations equal to the Fetotal indicated anoxic
conditions in all samples except those from the Baltic Sea. HS− con-
centrations were determined with a spectrophotometer (as above)
with an analytical uncertainty of 32% (Swedish Standard SIS 02 81 15).
Concentrations of Ca, K, Mg, and Na cations were determined with
inductively coupled plasma atomic emission spectroscopy at ALS
Scandinavia AB in Luleå (Sweden) with an analytical uncertainty of 12%.
Analysis of the water 18O/16O and 2H/1H ratio (per mil deviation from
Standard Mean Ocean Water, SMOW) were determined by laser
spectrometry (Los Gatos Research; Triple-Liquid Water Isotope Ana-
lyzer) with an analytical uncertainly of ±0.25 and ±1.5 unit, respectively.
δ13C- and pMC-DIC and DOCwere determined onwholewater samples
at the Ångström Laboratory in Uppsala (Sweden) using Accelerator
Mass Spectrometry, with an analytical uncertainty of 0.3‰ PDB for
δ13C and 0.2–0.5 pMC.

Dissolved organic matter
All glassware used for sampling was pre-combusted (4 h, 400 °C) or
thoroughly soaked in ultrapure water at pH 2 and rinsed with sample
before use. Samples for DOM quantification and molecular char-
acterization werefiltered (Durapore PVDF0.22 µm) and acidified to pH
2 with HCl before shipping to the University of Oldenburg (Germany).
DOC and TDN were quantified from duplicate subsamples using a
Shimadzu TOC-L with an ASI-L autosampler with concentrations
determined via an L-arginine standard curve. Then, ~1 L of each sample
was extracted onto 1 g solid-phase extraction columns (Bond Elut PPL,
Agilent) and eluted with 6mL methanol (ULC grade). DON was calcu-
lated from TDN − (nitrate + nitrite + ammonium). Extract DOC con-
centrationsweredeterminedby drying an aliquot of the extract and re-
dissolving it in ultrapure water at pH 2. The extracts were then stored
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in the dark at −20 °C until further analysis. Stable carbon isotope
composition of solid-phase extracted DOM (δ13C-SPE-DOC) was ana-
lyzed to better characterize the analytical window of the SPE method.
Aliquots containing ~10 µmol C were dried in doubled Sn caps (IVA,
Germany) and analyzed using an Elemental Analyzer (Thermo Scien-
tific Flash) coupled to a continuous‐flow isotope ratio mass spectro-
meter (Thermo Scientific Delta V) via an Advantage Conflo IV interface.
Values were correctedwith procedural blanks, using the dried extracts
from ultrapure water processing in doubled Sn caps. Technical repli-
cates deviated <0.3‰, accuracy was better than 0.2‰.

Fourier-transform ion cyclotron resonancemass spectrometry (FT-
ICR-MS) analysis was performed on a 15 T Solarix (Bruker Daltonics,
Billerica, MA, USA, equipped with a ParaCell). Samples were diluted to
yield a concentration of ~5 ppm in ultrapure water and methanol 50:50
(vol/vol). This dilution was filtered through pre-cleaned 0.2 µm poly-
carbonate syringe filters before analysis performed in random order.
Electrospray ionization in negativemode (Bruker Apollo II) was done at
200 °C and the capillary voltage was set to 4.5 kV. The sample was
injected at a flow rate of 120 µL h−1, the accumulation time was set to
0.05 s, and 300 scans were co-added for each spectrum in amass range
of 92–2000Da. Batch 1 samples were analyzed once while batch
2 samples were run once when replicate extractions existed and twice
from the same extract if only one extraction existed. Each spectrumwas
internally calibrated with lists of known masses. Mass spectra were
exported from the Bruker Data Analysis software at a signal-to-noise
ratio of 0 and MFs were assigned using the ICBM Ocean tool78. All
analyses (batch 1 and 2) were processed together. The method detec-
tion limitwas set to 3. Junctionofmass lists alongm/zwasperformedvia
fast join at a tolerance of 0.5 ppmwhile standard smooth and additional
isotope tolerance was 10‰. Singlet peaks occurring only once in
the dataset were removed, then MF attribution was done with a toler-
ance of 0.5 ppm in the range m/z 0–1000 within the limits
C1–100H1–100O0–70N0–4S0–2P0–1. For isotopic verification of MF attribu-
tions, up to one 13C, 15N, and 34S isotopologue was allowed. Additional
tolerance using quantile-based isotope ratio tolerances was set to
1000‰ and isotope ratio mismatches for peaks below the method
detection limit <5 were permitted. MF suggestions with >3 heteroele-
ments (except N4) and four common contaminant MFs were removed
(C16H32O2, C12H26O4S, C17H28O3S, C10H15NO2S; likely NBBS from tubing)
were removed from all samples. Before statistical analysis, relative
intensitieswere normalized to the sumof intensities per sample and the
highest minimum between all samples was set as detection limit and all
peaks with lower normalized relative abundance were set to 0 to
improve comparability between spectra. Furthermore, MFs were only
retained in the dataset if they occurred at least three times across all
samples. Molecular indices indicating lability through relative con-
tribution of MFs above the molecular lability boundary of H/CMF = 1.5,
MLBw

79, and aromaticity as modified aromaticity index, AImod
80, were

calculated. MFs were assigned to molecular categories within the
boundaries described by ref. 81 as unsaturated oxygen-poor (0 <O/
C≤0.29, 1.6 ≤H/C≤ 2.5), unsaturated (0.29 <O/C ≤0.6, 1.5 ≤H/C ≤ 2.5),
amino sugar- and carbohydrate-like (0.6 ≤O/C≤ 1.2, 1.5 ≤H/C ≤ 2.5),
unsaturated hydrocarbon-like (0 <O/C ≤0.29, 1 ≤H/C≤ 1.6), condensed
aromatics (0 ≤O/C≤0.4, 0 ≤H/C≤0.7), lignin-like (0.29 <O/C ≤0.65,
0.7 <H/C< 1.5), and tannin-like (0.65 <O/C ≤ 1.2, 0.5 ≤H/C< 1.5). MFs
that could not be assigned to a class and MFs assigned to multiple
categories were designated as unclassified. Elemental ratios calculated
fromFT-ICR-MS formula assignmentswereweightedbypeak intensities
and denoted throughout the manuscript via subscript MF (e.g., S/CMF).

Microbial community composition
The Äspö HRL microbial community data used in this study was sam-
pled in spring 2017 and published by ref. 33. While the groundwaters
were sampled for microbial community analysis prior to the DOM
sampling, studies at the Äspö HRL show that the water chemistry is

relatively uniform and the microbial community’s rRNA and mRNA
based composition and activities are stable over several years55.
Microbial communities and the corresponding water chemistry data
were sampled for boreholes SA1229A_1, KA2051A01_5, KA2511A_5,
KA3105A_3, KA3600F_2, KA3385A_1, SA2600A_1, KA1755A_3,
KA2862A_1, and SA1730A_1, whereas no data was available for the
boreholes KA2865A01_1, KA3510A_2, and HA2780A_1. For a detailed
description on sampling and sample processing refer to ref. 33. Briefly,
planktonic microbial communities in Äspö HRL groundwaters were
sampled in triplicates by connecting high-pressure filter holders (Mil-
lipore) to the borehole. Cells were captured on 0.1 µm pore size
membrane filters and immediately flash frozen in liquid nitrogen. DNA
from filters was extracted (MOBIO PowerWater DNA isolation kit) and
the 16 S rRNA gene was amplified with the bacterial primers 341 F and
805R82. High-throughput sequencing was done on the Illumina MiSeq
platform at the Science for Life Laboratory (Sweden) according to
ref. 34. For this study, the sequencing data were reanalyzed using the
DADA2 software package83, 1.14.1) in R (R Core Team; version 3.6.0).
After the filter and trim step, remaining primer sequences were
removed with Cutadapt (ref. 84, version 2.3). ASVs were inferred from
denoised reads and after merging read pairs, ASVs were classified
using the GTDB database (ref. 85; release 89). Details of the Äspö HRL
DNA concentrations are provided in ref. 33. Details of the DADA2
reprocessed data are provided in Table S2. Rarefaction curves indi-
cated a sufficient sequencing depth to capture the microbial diversity
(Supplementary Fig. S7).

Statistical analyses
Threedifferent datasetswere used throughout themanuscript: (1) DOM
composition was analyzed based on all available samples including
technical and analytical replicates (n = 35). (2) Statistical analyses
includingDOMandwater chemistrywere based on adataset containing
mean spectra of DOM from the same borehole regardless of sampling
date (n = 15). (3) For statistical analyses including DOM composition,
hydrochemistry, and microbial community compositions, the number
of sampleswas further reduceddue to the availability of the sequencing
data (n = 10). Relative intensities of spectra, relative abundances of
microbial ASVs, and environmental parameters were averaged per
borehole for the analyses including more than one of these datasets.

Bray Curtis dissimilarities were used to assess the overall dissim-
ilarity of the DOM fingerprints and microbial community composition
and major gradients of variability were visualized with non-metric
multidimensional scaling (NMDS). The congruence of DOMmolecular
and microbial community composition was analyzed via Procrustes
rotation. The impact of mixing on DOM and microbial community
composition was assessed via distance-based redundancy analysis.
These statistical analyses were performed using R (Version 4.0.3) and
the vegan package86. Pairwise associations between microbial ASVs
and DOM MFs were investigated via proportionality analysis to
account for the compositional nature of both datasets87. For this, the
overlapping datasets for DOM and microbial community composition
were used (n = 10).MFs and ASVswere only considered for the analysis
if they were present in at least five samples; low-abundant ASVs were
removed (relative abundance< 0.1%); zeros were replaced by their
respective minimum value/10 to account for the fact that the range of
relative intensities and abundances covered several orders of magni-
tude; and each dataset was center log-ratio (clr) transformed sepa-
rately. Proportionality measure ρ was then calculated for the
combined ASV andMF data matrix (propr package). The selection of a
cutoff forρwas based onpermutation of the false-discovery rate (FDR)
for different ρ88. To control for a FDR < 5%, |ρ | ≥0.85 was chosen as
cutoff for network construction. The resulting network retained a
relationship between the relative abundances of 229 ASVs and relative
intensities of 1388 MFs. Network visualization was done in Gephi
(version 0.9.289). Network modularity, module separation and roles of
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nodes were determined via the interdomain ecological network ana-
lysis pipeline (IDENAP; http://mem.rcees.ac.cn:808190) with the fast
greedymodularity optimization91. Thepotential ecological role of each
node was assigned based on within-module connectivity (z) and
among-module connectivity (P)92 and nodes were classified into four
categories: peripheral nodes (z ≤ 2.5, P ≤0.62), connectors (z ≤ 2.5,
P >0.62), module hubs (z > 2.5, P ≥0.62), and network hubs (z > 2.5,
P >0.62)69.

Data availability
16 S rRNA gene reads are available at the NCBI Sequence Read Archive
(SRA) with the Bioproject accession number PRJNA434543. FT-ICR-MS
data and water chemistry generated in this study are available through
the Pangaea database93.
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