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ABSTRACT Planning flight paths for unmanned aerial vehicles in urban areas requires consideration of
safety, legal, and economic aspects as well as attention to social factors for gaining public acceptance.
To solve this many-objective path planning problem in the three-dimensional space, we propose a hybrid
framework combining an exact Dijkstra search and a metaheuristic evolutionary optimization. Given a
start and an endpoint, we optimize a path regarding the risk in case of a system failure, the radio signal
disturbance between the aerial vehicle and a ground station, the energy consumption, and the noise
immission on city residents. The optimization includes constraints for static obstacle collision avoidance
and compliance with the minimum flight altitude. The result is a set of smooth and three-dimensional
paths that realize different trade-offs between the defined objectives. As an example, we consider an
urban transportation application for aerial vehicles in San Francisco. For all tests, we use real-world data
from OpenStreetMap. In a statistical evaluation, we test the efficiency of our framework against different
state-of-the-art optimizers. Moreover, we extend the framework with two features that allow the user to
integrate arbitrary objectives and unknown scenarios into the path planning framework.

INDEX TERMS Dijkstra, evolutionary algorithm, hybrid algorithm, many-objective, optimization, path
planning, three-dimensional, transportation, UAM, unmanned aerial vehicle (UAV), urban, urban air
mobility.

I. INTRODUCTION

SCIENTISTS have identified last-mile delivery as
a bottleneck in modern transportation systems [1].

Especially in congested urban areas, delivering packages or
passengers from an intermediate stop to their final desti-
nation (i.e., last-mile problem) is resource intensive, and
costly. Therefore, the problem has spawned a variety of dif-
ferent optimization approaches [2] and ideas for new modes
of transportation like cargo bikes [3], and driverless shut-
tles [4]. Unmanned Aerial Vehicles (UAVs) have sparked
the interest of companies in logistics [5] and mobility [6] as
so-called Unmanned Aircraft Systems (UAS) [7], [8] open
a whole new dimension of local transportation possibilities.
Start-ups like Wingcopter [9] are already utilizing UAVs
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to carry out important or urgent deliveries. The market for
UAV deliveries is expected to increase with a growth rate
of approximately 20% in the next 12 years to a market
value of 4 billion U.S.$ and the number of delivery UAVs
is rising rapidly from 7 thousand in 2020 to assumed 125
thousand in 2035 [6]. Today, the prevalent modes of opera-
tion for aircraft are airspace-based operations in controlled
airspace and free flight operations within the visual line
of sight in uncontrolled airspace [10]. However, with the
anticipated densities of UAV flights in urban airspaces, both
concepts are likely to become inefficient, unsafe, or even
infeasible [11]. Alternative approaches propose some form of
structural traffic regulation for aerial near-ground operations
in urban areas, e.g., flight corridors [12], [13]. This moti-
vates the question about optimal flight corridor placement
throughout the city. Especially in cities, where many differ-
ent interest groups meet, the design of a new transportation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 639

HTTPS://ORCID.ORG/0000-0001-7434-4621
HTTPS://ORCID.ORG/0000-0002-9710-6877
HTTPS://ORCID.ORG/0000-0001-5612-4932
HTTPS://ORCID.ORG/0000-0002-3062-3829


HOHMANN et al.: Three-Dimensional URBAN PATH PLANNING

system has to satisfy many demands, e.g., the legal and
safety requirements of the aviation authority, the economic
interests of logistics companies, and the social factors among
the city residents. Bauranov and Rakas [11] point out that the
consideration of social factors like noise pollution has been
neglected in many recent approaches to urban air mobility,
even though it is one of the most crucial factors for scaling
an urban air mobility application. Quite often, the different
demands on a transportation system conflict, which calls for
some kind of trade-off solutions.
We propose a path planning framework that is capable

to optimize three-dimensional smooth paths regarding all
given objectives. Exemplarily, we optimize the paths regard-
ing radio signal connection, the energy consumption of the
UAVs, as well as the risk and noise that residents are exposed
to. Though, arbitrary objectives can be included. We improve
the optimization in our framework with a hybrid approach
that uses the Dijkstra algorithm [14] and an evolutionary
optimization algorithm [15].
The Dijkstra algorithm efficiently finds the guaranteed-

optimal path regarding one single objective but is designed
to search in graphs (e.g., grids), which limits the size of the
search space and possible path representations. Evolutionary
algorithms allow any kind of path representation and are
particularly suitable to identify good trade-off solutions
in many-objective optimization problems, but need high
computational resources.
In this work, we show the advantages of the combina-

tion of both approaches. The Dijkstra algorithm computes
solutions for all objectives that can be expressed as a grid
or a graph respectively. Those solutions are smoothed and
approximated and serve as good initial solutions in the many-
objective evolutionary optimization. Moreover, we introduce
two features that improve the search for good trade-off paths
in a city. We test the framework’s functionality using San
Francisco as an example, but we can apply the approach to
any area.
The distinctiveness of our framework compared to other

approaches, presented in Section II, lies in the efficient plan-
ning of three-dimensional smooth paths for UAVs. For an
arbitrary region, the user can define criteria, which could
come from different stakeholders, and obtain a set of paths
with different weighting for the criteria.
The remainder of this article is structured as follows. In

Section II, we give an overview of current research in the
field of many-objective path planning for UAVs and how
our work differs from it. We describe the system model
in Section III before introducing our proposed framework in
Section IV. Then, we evaluate and discuss the framework in
Section V before concluding in Section VI.

II. RELATED WORK
We have identified five criteria (C1 - C5) by which
many-objective path planning approaches for UAVs can
be classified. First, there is the UAV’s environment (C1),
which can be rough terrain with few to no people being

present, or an urban environment. Second, the spatial dimen-
sion (C2) for the UAV path planning is either simplified
to a two-dimensional space of representation or set to a
complete three-dimensional path representation. Third, the
chosen path representations (C3) can be defined differently.
Adjacent line segments are commonly used, as are grid-
based representations. Alternatively, researchers use spline
or polynomial functions. Fourth, each approach presents
different formulated objectives and constraints (C4) rang-
ing from path length, energy consumption, and travel time
to safety and risk-related objectives and turning angle
or flight height optimization. Fifth, the strategy to han-
dle multiple objectives (C5) can differ. Many approaches
either propose a weighted aggregation of multiple objec-
tives to obtain a single-objective optimization problem, or
they choose a Pareto-based approach. In the latter, a set
of solutions is evaluated regarding all objectives. Solutions
that are not dominated by other solutions build the so-called
Pareto set, which approximates the Pareto front. We refer
the interested reader to an introduction on multi-objective
optimization [16].

One early approach for many-objective path planning was
proposed by Nikolos et al. [17], who optimize UAV paths for
flights over rough terrain (C1). They use a three-dimensional
(C2) B-spline path representation (C3) and optimize the
paths concerning four optimization goals (C4), which are
collision avoidance, path length minimization, safety dis-
tance assurance, and compliance with a minimum curvature
radius. However, during the evolutionary optimization, the
function values for all objectives are aggregated to simplify
the problem to a single-objective optimization (C5). This
means that the approach is dependent on the weighting of the
objectives and therefore limited to finding only one solution
within the Pareto set of possible solutions. In our approach,
we want to avoid this problem by using a meta-heuristic
optimization approach known for its effective sampling of a
Pareto set.
In a later approach, Rubio-Hervas et al. [18] adopt an

urban setting in Singapore (C1) to plan 3D (C2) paths for
UAVs. They propose a special path representation (C3) that
is composed of the distance and the angle between waypoints
and a straight line connecting the start and the goal point
of the path. To optimize a path regarding its length and risk
(C4), they make us of the NSGA-II algorithm [19], which is
a state-of-the-art evolutionary algorithm for multi-objective
optimization capable of calculating a Pareto set (C5). We
adopt the approach of using a meta-heuristic optimizer for
path planning. However, at the same time, we are aware of its
need for large computational resources and want to address
this problem with the hybrid approach presented below.
For an urban setting (C1), Ghambari et al. [20] propose a

3D path planning (C2) approach that adopts a cell-based path
representation (C3) on a grid. The objectives are to minimize
the UAV’s energy consumption and to maximize the distance
to obstacles (C4). They propose a detailed energy model
that assumes a larger energy consumption for higher flight
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altitudes due to the decreasing atmospheric density. To solve
the many-objective path planning problem, Ghambari et al.
utilize different evolutionary algorithms (C5). The use of a
grid-based path representation can result in sharp turns and
inefficient jagged paths, which is one reason why we decided
on a smooth spline curve representation for our approach.
In a recent study, Sadallah et al. [21] present an urban

environment (C1) to do path planning of two-dimensional
(C2) paths concerning travel time and obstacle avoidance
(C4). In their approach, a cost distribution map is computed
by applying a fast marching method on an obstacle map
two times. Then, a gradient descent operation calculates the
path (C3). The variation of the saturation weight for the
input map assures the calculation of different Pareto solu-
tions (C5). Nevertheless, changing the weights of a weighted
grid map does not necessarily result in non-dominated solu-
tions in the objective space, as we showed in another
study [22]. Moreover, the utilized path representation is
two-dimensional, which may lead to unsolvable problems
in complex and highly occluded urban environments, so we
decided to use a three-dimensional path representation.
The conclusions that we have drawn from the presented

studies are all incorporated into the design of our framework
for solving a many-objective path planning problem in a
city environment (C1). The utilized three-dimensional (C2)
spline representation (C3) provides suitable smooth paths
for UAVs, which therefore do not require post-smoothing.
The urban setting not only requires attention to energy
minimization and radio link optimization but also to risk
and noise minimization (C4). A many-objective evolutionary
algorithm (C5) generates a Pareto set of differently balanced
paths. The evolutionary search is initialized with solutions
from a pre-processing step (C5) that is supposed to increase
the chances of finding a global optimum in the multi-
modal optimization landscape. To our knowledge, we are
the first to present a direct-search-accelerated, evolutionary,
many-objective 3D path planning framework for arbitrary
objectives to address the needs of different stakeholders.

III. SYSTEM MODEL
In this section, we define the tackled optimization problem
in Section III-A, and present the composition of the
optimization vector in Section III-B. After that, we introduce
the objectives of the optimization problem in Section III-C
and the established constraints in Section III-D.

A. PROBLEM DEFINITION
Let us assume a continuous and cubic space D = [xmin xmax]
× [ymin ymax] × [zmin zmax]. Given a start point xs ∈ D and
a goal point xg ∈ D, we define a path to be a sequence of
three-dimensional points � = [π0 = xs,π1, . . . ,πg = xg].
Our goal is to find a set of paths that approximate the
Pareto Front of a many-objective optimization problem,
which consists of E = 4 objectives and F = 3 inequality
constraints.

B. REPRESENTATION
To represent the introduced path � in our optimization
problem, we utilize parametrized curves called Non-Uniform
Rational B-Splines (NURBS). Adopting the notion of
Piegl and Tiller [23], we denote the curve parameter u and
the curve C(u). We set the curve’s degree to a fixed value
of p = 2 and also use a fixed knot vector. The curve’s
shape is then solely affected by so-called control points
Pi = [

xi yi zi
]T and their weights wi with i ∈ {0, . . . , np−1}.

The number of control points np is a hyperparameter that is
either set by the user or automatically determined by an algo-
rithm, which we present in Section IV-B. The weights are
fixed to wi = 1 with an exception that we describe together
with the constraint formulation in Section III-D. We use a
clamped uniform knot vector [24] ensuring that the curve
is clamped to the first and last control point, which equal
the start P0 = xs and the endpoint Pnp−1 = xg of the path.
The remaining np − 2 control points Pi = [

xi yi zi
]
are the

variables

z =
[
x1 y1 z1 . . . xnp−2 ynp−2 znp−2

]T
(1)

of our optimization problem. Descriptively, the optimizer
changes the positions of control points and thus the curve’s
shape. Finally, we obtain the path � by evaluating the
curve C(u)

�(z) = C(u)|[
P1 ... Pnp−2

]
=z

, (2)

in such a way that the resulting path points π ∈ � ⊂ D are
spatially equidistant. The used NURBS curve representation
allows paths of different shapes and lengths without changing
the size of the optimization vector and thus the complexity
of the optimization problem.

C. OBJECTIVES
The objectives for evaluating flight paths may change over
time or depend on a city’s specific requirements. Therefore,
we have designed our framework to incorporate additional
objectives in the future. Below, we specify exemplary
evaluation procedures for four objectives to demonstrate
and evaluate the presented framework. These procedures
are realistic but simplified. Sophisticated commercial tools
are available for all objectives, which can be integrated
into the overall framework as block-box simulations if
necessary. We distinguish between grid-based and non-grid-
based objectives. Grid-based objectives are calculated on a
three-dimensional discrete version Dd of D having a reso-
lution of

[
xres yres zres

]
. As a grid map, we define a scalar

function Fd :Dd → R
+ that maps each cell of the discretized

operation space Dd to a positive real value. Note that for
optimizing paths on grids, only positive grid values are
useful, otherwise, the optimization would converge to an
infinite number of undesired path cycles over non-positive
cells. Therefore, the objective grid maps Fd (risk, noise,
and radio disturbance) presented in the following are always
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mapped to positive values without the restriction of gen-
erality F̃d = Fd + | min(0, min(Fd) − 1)|. The grid-based
objective function f (z) sums up grid values along the path
�(z). This is formalized as trapezoidal integral

f (�(z)) =
|�|−1∑

i=1

F(π i−1) + F(π i)

2
|π i − π i−1|, (3)

along the path � over the linear interpolation F of the grid
map F̃d, with |π | being the Euclidean norm of π .
Every objective that can not be described by (3) belongs

to the category of non-grid-based objectives.
Before we continue with the exemplary definition of dif-

ferent objectives, we introduce a distance map operator δ on
a two-dimensional binary grid map F2D

d :Nm×n → {0, 1} by

δ : F2D
d → (

aij
) ∈ R

m×n with (4)

aij =
⎧
⎨

⎩

0, if F2D
d (i, j) = 1

mink,l
√

(i− k)2 + (j− l)2
∣∣∣
F2Dd (k,l)=1

, else.

The distance map operator δ calculates the distance from
every cell in F2D

d to its nearest cell containing the value ‘1’.
In Section V-A1, we provide examples for all grid maps that
we introduce formally in the following sections.

1) STATIC RISK

The three-dimensional space Dd where we want to plan
paths consists of cells with different risk values assigned.
Following the static risk objective, the UAV is supposed to
fly through low-risk spaces. We define spaces with little
risk as those over buildings (excluding buildings of educa-
tion, hospitals, military and railway buildings, and places
of worship) and water surfaces, but other definitions can
equally be used. For deriving the risk grid map, we start
with a two-dimensional, binary building grid map F2D

d,B that
consists of ‘1’-valued cells, where a building is located in
the cell’s spatial position, and of ‘0’-valued cells, where no
building is located. Then, we calculate the two-dimensional
risk grid map F2D

d,R by applying the distance operator (4)
F2D
d,R = δ(F2D

d,B). Thus, the risk map obtains a gradient
towards low-risk cells. Furthermore, we set cells of the risk
grid map that are located in areas of water to a low-risk
value. When calculating risk values for the z-dimension of
the grid map, we assume that the potential risk increases
with the flight altitude of the UAV. Therefore, we derive
the three-dimensional risk grid map Fd,R by applying a
two-dimensional maximum filter with a 3 × 3-window to
F2D
d,R layer by layer. By calculating the line integral (3)

over Fd,R along the path �(z), we obtain the risk objective
function fR(z).

2) ENERGY

We now want to approximate the energy consumption of
a UAV following a path �. We assume that the UAV
flies at a reduced speed during climb compared to level

flight. Furthermore, the aerial vehicle flies even slower dur-
ing descent to avoid air turbulence underneath the rotors,
which leads to an unstable flight. Thus, for our energy con-
sumption model, we set the horizontal cruise velocity to
vxy = 14m/s, the ascending velocity to vz,↑ = 2m/s, and the
descending velocity to vz,↓ = 1m/s. The UAV’s flight path is
described by smooth NURBS curves in the three-dimensional
space, but for the calculation of the UAV’s energy con-
sumption, we project the path � in the xy-plane and obtain
the two-dimensional path �xy. Furthermore, we distinguish
between the path’s z-components that point upwards �z,↑
and those that point downwards �z,↓. Following the energy
models for hovering, climbing, and forward motion by
Reid [25], we derive our energy consumption model for
the given parameters

fE(z) = 1

2
mv2

xy + cE
(|�xy| + 10|�z,↑| + 15|�z,↓|), (5)

where |·| is the Euclidean length of the path projections, m
is the UAV mass, and cE denotes a vehicle-specific energy
parameter.

3) STATIC NOISE VIOLATION

Torija et al. [26] show that city residents perceive noise
generated by aerial vehicles as less annoying if the flight
paths lead over the streets as the flight noise vanishes in
the traffic noise. Therefore, we model our noise violation
objective to favor paths that lead over streets. We begin
with a street grid map F2D

d,S that consists of ‘1’-valued cells,
where a street is located at the cell’s spatial position, and
of ‘0’-valued cells, where no street is located. Then, we
apply the distance map operator (4) to generate a gradient
towards streets. Additionally, we set the cells of the noise
grid map that are located in areas of water or industrial
regions to a minimum noise value. In the same way, we set
the cells of the noise grid map that are located in parks or
residential areas to a maximum noise value. We obtain a
two-dimensional noise grid map F2D

d,N.
We assume F2D

d,N to be a layer of the three-dimensional
noise grid Fd,N :Dd → R at the UAV’s minimal flight height
zf,min. Perceived noise decreases quadratically with distance.
To derive the remaining layers of Fd,N, we apply the inverse
square law

Fd,N(z) =
⎧
⎨

⎩

F2D
d,N, if �z ≤ 0
F2Dd,N

(�z+1)2 , else
(6)

with �z = z − zf,min. Finally, we use (3) to integrate over
the noise grid map Fd,N along the path �(z) and obtain the
noise objective function fN(z).

4) RADIO DISTURBANCE

To ensure safe UAV operations, we assume the need for a
permanent radio connection between the aerial vehicle and
a ground station. Therefore, a stable connection to a cell
tower is essential. We assume the radio signal disturbance
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at the position of a cell tower to attain an arbitrarily chosen
best value of D0 = −100. The signal disturbance increases
following the inverse square law. Dependent on the position
of a single radio cell tower xR ∈ D, we calculate the radio
signal disturbance at a point x ∈ D qualitatively by

D(x) = D0

(μr + 1)2
, (7)

with r = |xR − x| being the Euclidean distance between
the point x and the radio cell tower position, and μ ∈ R

+
being a scaling factor. We now have a three-dimensional
grid map for a single cell tower. Next, we calculate a super-
position (minimum operator) for all cell towers and obtain
a three-dimensional radio disturbance map Fd,D :Dd → R.
To summarize, when planning a path through the radio dis-
turbance map, we want to preferably fly through cells with
lower signal disturbance. Thus, we compute the radio distur-
bance objective function fD(z) by calculating the trapezoidal
integral (3) over Fd,D along the path �(z).

D. CONSTRAINTS
We include constraints gf (z) as soft constraints into our
optimization problem by adding them to every objective
function f (z) yielding the constrained objective functions

f{·},C(z) = f{·}(z) + ξ
∑

i

√
H

(−g f ,i(z)
)
g f ,i(z)2, (8)

with {·} being a wildcard for {R,E,N,D}, the Heaviside
function H and a parameter ξ that we choose arbitrarily
large to ensure that f{·},C(z) � f{·}(z) if the constraint is
violated.

1) MINIMUM FLIGHT HEIGHT

Except for the take-off and landing phase, we want the
UAV’s path to stay above a minimum flight height zf,min.

Introducing the inequality constraint

g1,i(z) = zi − zf,min ≥ 0, ∀i ∈ {
1, . . . , np − 2

}
(9)

we make sure that the control points’ z-components of the
curve will not decrease below zf,min. Note that the convex
hull property [23] of NURBS curves guarantees that no path
point π will fall below zf,min if there is no control point
Pi = [

xi yi zi
]T below zf,min.

If the path’s fixed start control point P0 = [
x0 y0 z0

]
or

endpoint Pnp−1 = [
xnp−1 ynp−1 znp−1

]
lie below zf,min, we

also lock the second and second last control points in posi-
tion and set their components to P1 = [

x0 y0 zf,min
]
with

weight w1 = 100, as well as Pnp−2 = [
xnp−1 ynp−1 zf,min

]

with weight wnp−2 = 100. This ensures a vertical flight
beneath the minimal flight height during the takeoff and
landing phases of the aerial vehicle.

2) STATIC OBSTACLE COLLISION AVOIDANCE

The UAV’s path must not go through static obstacles like
buildings. We use a twofold approach that allows us to com-
pute the inequality constraint with two two-dimensional grid

maps instead of a three-dimensional grid map. In the first
step, we make use of a two-dimensional height grid map
F2D
d,H. Each grid map’s cell contains the height value of the

tallest building that is located in the respective cell. If a
waypoint π i = [

πi,x πi,y πi,z
]
of the path � lies below the

height of the respective height map value, we save it in a list
of unsafe waypoints �×. The path � is punished following
the inequality constraint for all i ∈ {0, . . . , |�| − 1}

g2,i(z) = πi,z − F2D
d,H

(
πi,x, πi,y

) ≥ 0. (10)

As a consequence, the unsafe waypoints are pushed out of
static obstacles in the direction of the z-axis.

In the second step, we also want to create a drift that moves
unsafe waypoints out of static obstacles in the xy-plane.
Therefore, we use the building grid map F2D

d,B, which we
already introduced in Section III-C1. By applying the dis-
tance map operator (4) to the inverted building grid map,
we obtain an obstacle grid map

F2D
d,O = δ

(
F̄2D
d,B

)
(11)

with gradients that point away from the centers of buildings
in the direction of the nearest free-space cells. We use this
obstacle grid map and obtain the second part of the constraint
for all i ∈ {0, . . . , |�×| − 1}

g3,i(z) = −F2D
d,O

(
π×
i,x, π

×
i,y

)
> 0, (12)

which ensures that during optimization unsafe waypoints
π×
i =

[
π×
i,x π×

i,y π×
i,z

]
∈ �× are pushed on the obstacle grid

map towards cells that equal zero.

IV. PROPOSED FRAMEWORK
In the following Section IV-A, we introduce the differ-
ent modules of our hybrid framework to solve many-
objective path planning problems. Furthermore, we go into
more detail about two features, which are the adaptive-
number-of-control-points-feature in Section IV-B and the
niching-feature in Section IV-C.

A. HYBRID APPROACH
We propose a hybrid many-objective path planning approach
in which, in the first step, an efficient Dijkstra algorithm is
applied, which provides optimal solutions for separate single-
objective problems. In the second step, by utilizing many-
objective evolutionary computation, we obtain solutions in
a more suitable path representation and a set of trade-off
solutions called the Pareto set. This set allows the user to
select an optimal solution depending on preferences. For
example, the user can adjust the priority of risk avoidance
depending on the payload or the priority of noise avoidance
depending on the daytime.
We show the structure of the framework in Fig. 1. The

start point xs and goal point xg of the path, as well as the
grid maps that we use to calculate the four objectives and
three constraints are input into the framework. Note that
before the optimization starts,
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FIGURE 1. Diagram of the proposed hybrid optimization framework. Depending on the objective class (grid-based or non-grid-based), the corresponding grids are
pre-processed before the Dijkstra algorithm finds an optimal solution for every objective separately. Then, the obtained solutions are smoothed and approximated by NURBS
curves. Finally, the different smooth paths serve as initial solutions for the many-objective evolutionary algorithm, which generates a Pareto set of trade-off paths.

1) the grids of all grid-based objectives are scaled to a
scenario size dependent resolution of

[
x̃res ỹres z̃res

]
,

which is a trade-off. A finer resolution would increase
the solution quality of the following Dijkstra algo-
rithm. A coarser resolution would make the Dijkstra
algorithm need less computational time.

2) Following a previous work [27], all non-grid-based
objectives are converted into a 3D grid representation
to make the following Dijkstra algorithm applicable to
them.

In the first step of our hybrid approach, we apply the single-
objective Dijkstra solver to every objective separately. For
every objective, this results in a three-dimensional polygonal
path, which is guaranteed to be optimal in the used grid struc-
ture. Next, we smooth and approximate the polygonal paths
and obtain three-dimensional NURBS curves. Those splines
are the initial solutions in a many-objective evolutionary
optimization problem calculating an E-dimensional Pareto
Front. Note that the evolutionary algorithm has versatile
purposes as it

1) considers the grid-based objectives with their original
resolution

[
xres yres zres

]
and the non-grid objectives in

its original formulation (e.g., the energy consumption
model (5)),

2) corrects constraint violations that may be induced by
using the original grid resolution or the smoothing and
approximation step, and

3) has its advantage over other optimization techniques in
finding non-dominated solutions and building a Pareto
set with highly diversified solutions.

B. ADAPTIVE-NUMBER-OF-CONTROL-POINTS (ANCP)
FEATURE
This feature is involved in the smoothing and approximation
step during the transition from the Dijkstra algorithm to the
evolutionary algorithm. Here, the path representation changes
from a polygonal path definition to a NURBS definition.
Therefore, we first smooth the polygonal path by apply-
ing a Gaussian filter with kernel K = [

1 2 1
]
three times.

Then, we approximate the smoothed path with a NURBS
curve [28]. For this operation, the crucial parameter is the
number of control points np of the resulting NURBS curve.
If np is too small, the approximation error becomes too large.
The resulting path has nothing in common with the original
Dijkstra path, which makes the Dijkstra calculation obso-
lete. Whereas, if np is too large, this will increase the size
of the optimization vector z and therefore the search space
in the many-objective optimization step. A suitable num-
ber of control points depends on the Dijkstra path’s length
and curviness, which is why it would be pointless to set
np as a hyperparameter before the optimization. Instead, we
determine the best number of control points for a respec-
tive scenario adaptively. For that, we increase the number of
control points beginning with the minimum value of np = 3
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in an iterative process. The process includes 1) the approxi-
mation of the NURBS curve with the current np and 2) the
calculation of the error ε between the Dijkstra path �d and
its NURBS approximation �. If the error falls below a given
threshold τANCP, we have found a suitable number of control
points for the approximation.
Note that this process is carried out for each objec-

tive and therefore for each Dijkstra path �d separately
producing potentially different optimal numbers of control
points. By picking the maximum value, we finally obtain
our parameter np.
As error term ε, we use an adjusted Chamfer distance

metric

ε(�,�d)

= max

⎛

⎝
∑

π∈�

min
πd∈�d

|π − πd|2,
∑

πd∈�d

min
π∈�

|π − πd|2
⎞

⎠, (13)

using the maximum operator to ensure that the approximation
does not exceed a threshold at any point.

C. NICHING FEATURE
The second feature has a crucial role in the population
building of the metaheuristic algorithm. Let us consider an
example where one of E = 4 different pre-processed paths
slightly violates a constraint due to the spline approximation
step. This solution would then be dominated by the remain-
ing three pre-processed solutions and thus not be considered
anymore in the evolutionary algorithm. This means that the
Dijkstra calculation of this one poor path would have no
purpose although after only some minor adaptations to the
path’s shape, it would satisfy the constraints and become a
good quality solution.
We want to solve this problem by introducing niches.

Niching is the generic term for a class of techniques com-
monly used in evolutionary multimodal optimization [29].
By dividing the set of solutions into sub-populations, nich-
ing aims for the preservation of the solution diversity during
optimization to find multiple (local) optima. The similarity
of the different state-of-the-art approaches lies in the utiliza-
tion of some kind of distance metric to assign solutions to
different sub-populations [30]. Our niching approach differs
from the niching strategy of other constrained optimization
solvers [31], [32], [33] in that we neither need any additional
computations nor extra parameters to build sub-populations.
Instead, we can directly use the pre-processed candidate solu-
tions as the origin of a sub-population. A separate niche
exists for every objective that only holds the candidate
solutions related to one of the objectives. The evolution-
ary algorithm applies the reproduction and selection process
within the niches until at least one candidate solution in
every sub-population satisfies all constraints. When this con-
straint satisfaction condition is met, the niches are dissolved
into a complete population and the evolutionary process
continues.

FIGURE 2. The map extract of San Francisco [36] that was used to derive the grid
maps. The overlying lines denote the start and endpoints of the scenarios that we
used for the evaluation. For the red path, we provide more detailed information on the
calculated paths further below. The blue circles denote the positions of radio masts.

V. EVALUATION
In the following, we describe the evaluation of the proposed
framework. Therefore, in Section V-A, we explain the exper-
imental setup. In Section V-B, we then present and discuss
the results of the experiments.

A. SETUP
In order to evaluate the proposed framework, we describe
our experiment’s setup consisting of an exemplary city where
the paths are planned, different metaheuristic solvers, which
were utilized in our framework, all hyperparameters, and
parameters of the framework, and the metrics that we apply
for the evaluation.

1) SCENARIO

As an example city for our evaluation, we choose a section
of San Francisco that is visualized in Fig. 2. The rendered
map shows lines, which indicate the 100 random start and
end positions for the statistical path planning evaluation.
Moreover, we extract the positions of 4G radio masts, indi-
cated by blue circles in Fig. 2, from OCID [34]. We use
them for the calculation of the radio disturbance map. With
the help of OpenStreetMap [35], we can access data like the
height of the buildings, the course of the streets, or semantic
data containing information about, for example, the positions
of industrial areas or water areas. With this information,
we derive the different grid maps that were introduced in
Section III-C that are 1) the risk grid map Fd,R, which
we visualize as a cross-section at height z = 0m in Fig. 3,
2) the noise grid map Fd,N, whose cross-section at height
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FIGURE 3. The risk information of the San Francisco scenario at height z = 0 m that
we derived from OpenStreetMap data. Light-colored areas indicate low-risk values
over normal buildings and water surfaces, gray areas indicate medium-risk areas over
streets, and red areas indicate high-risk values over educational, medical, railway,
military, and worship buildings.

FIGURE 4. The noise sensitivity information of the San Francisco scenario at height
z = 0 m that we derived from OpenStreetMap data. Light-colored areas indicate low
noise values over streets, industrial areas and water surfaces, gray areas indicate
medium-noise values over normal buildings, and red areas indicate high-noise values
over residential areas, and parks.

z = 0m we display in Fig. 4, and 3) the radio disturbance
map Fd,D, whose cross-section at height z = zR we show in
Fig. 5. In the visualizations, low values are shown in white
and high values in red. In the radio disturbance map, for
example, one can derive the positions of the radio masts
from the white-colored spots.

2) SOLVERS

For the metaheuristic optimization step in our framework,
we can utilize an arbitrary many-objective evolutionary
algorithm. In our experiments, we choose three

FIGURE 5. The radio disturbance information of the San Francisco scenario at
height z = zR that we derived from OCID [34] data. White areas indicate low radio
disturbance values around radio masts, and red areas indicate high radio disturbance
values.

TABLE 1. Parameters and specifications.

state-of-the-art implementations that are the Non-dominated
Sorting Genetic Algorithm (NSGA-3) [37], the Reference
Vector guided Evolutionary Algorithm (RVEA) [38],
and the S-Metric Selection Evolutionary Multiobjective
Optimization Algorithm (SMS-EMOA) [39] with their
default parameter settings. The three algorithms differ
primarily in their selection operator, which affects the
result’s quality (i.e., the Pareto set’s convergence and
diversity) significantly.

3) PARAMETERS

For the sake of completeness, we summarize important
parameters in Table 1. The gray highlighted parameters
are default parameters of the used state-of-the-art
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algorithms [37]. The rest of the parameters were introduced
in Sections III and IV and were either determined empirically
or arbitrarily but realistically.

4) METRICS

We utilize different metrics to evaluate our framework.
The Hypervolume (HV) metric measures the

E-dimensional volume between the E-dimensional Pareto
set and a user-defined reference point in the objective
space. If one set of non-dominated solutions has a higher
hypervolume than another for the same reference point, this
is an indicator of a better convergence towards the optimal
Pareto front.
The Generational Distance (GD) of a solution front mea-

sures the distance of an examined set of non-dominated
solutions to a reference set of solutions. The lower the GD
value of a front, the better its convergence to the reference
front.
The Inverted Generational Distance (IGD) of a front mea-

sures the distance of a reference set of solutions to the
examined set of non-dominated solutions. The lower the IGD
value of a front, the better its convergence and its diversity
compared to the reference front.
We discuss the determination of the reference front in

Section V-B1. For the metrics’ equations, we refer the
interested reader to another study [22].

B. RESULTS & DISCUSSION
In the following Section V-B1, we examine the behavior of
the proposed framework and compare it to different meta-
heuristic solvers. Then, we evaluate the effectiveness of the
two introduced features in Sections V-B2 and V-B3 respec-
tively. We show exemplary optimized paths in Section V-B4.
For our statistical analysis, we conduct all tests on 100 differ-
ent start and endpoint configurations (i.e., scenarios), which
are visualized as lines in Fig. 2.

1) HYBRID VS. STANDARD

In the first experiment, we compare the performance of the
standard metaheuristic solvers NSGA3, RVEA, and SMS-
EMOA with their respective performance in our hybrid
framework (H. NSGA3, H. RVEA, H. SMS-EMOA). The
standard solvers are initialized with straight-line paths.
For every scenario, we normalize the obtained Pareto sets’

HVs to the best and worst HV over all iterations. In Fig. 6,
we plot the mean of the normalized HVs for all scenarios
over the number of cost function evaluations. Note that a cost
function evaluation is the evaluation of one candidate solu-
tion regarding all four objective functions. The optimization
terminates after 5000 function evaluations. We can observe
the large initial performance difference of 0.986 between
hybrid and standard solvers. In the further course, the mean
values of the three standard approaches increase and con-
verge towards values in the range between 0.76 and 0.8, but
do not reach the initial performance of the hybrid approaches.

FIGURE 6. Performance of the hybrid and standard algorithms indicated by the
obtained hypervolumes that are normalized to the best highest hypervolume per
scenario and averaged over 100 scenarios.

TABLE 2. Performance comparison of the 6 optimizers.

The best hybrid approach is H. NSGA3, which achieves a
mean normalized HV of 0.998.
Furthermore, over all scenarios, we compute the mean and

the standard deviation of the normalized HV, GD, and IGD
values of the final obtained sets of non-dominated solutions
for all six solvers. The numeric values can be taken from
Table 2. Note that the HV is normalized to the worst and
best HV of the last iteration. We choose the set of non-
dominated solutions with the highest HV as a reference set
for the calculation of GD and IGD metrics. The best GD
and IGD values are achieved by the H. SMS-EMOA method,
which are 77% and 89% better than those of the best standard
method RVEA. For a statistical comparison of each hybrid
approach with its state-of-the-art counterpart respectively,
we use the two-tailed Mann-Whitney U test with n1 = 100,
n2 = 100, and p < 0.05. The results indicate that the samples
of the normalized HV, the GD, and the IGD metric differ
significantly between hybrid and standard approaches.
We show the influence of our hybrid initialization

step compared to the standard straight-line initialization.
Therefore, in Fig. 7, we visualize the 4-dimensional Pareto
sets that the NSGA3 and the H. NSGA3 solvers obtain after
optimizing the path that is indicated by the red line in Fig. 2.
For both solvers, we plot the space that is spanned by the
dominated solutions of all generations in dark yellow and
the non-dominated solutions of the last iteration in gray. In
particular, we highlight the extreme points of the Pareto sets
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FIGURE 7. Pareto set comparison for a selected scenario (colored in red in Fig. 2).

for all objectives as well as the knee point. The knee point
is the solution that has the smallest Euclidean distance to
the origin of the objective space. It often realizes a suit-
able compromise between the objectives, which we examine
in more detail later. In Fig. 7b, we also see the solutions
derived from Dijkstra pre-processing in black, which serve
as initial values in the H. NSGA3. It is noticeable that these
are very close to the extreme points finally reached.
Comparing the Pareto sets of the standard and the hybrid

approach, the differences in the extreme values in Fig. 7a
and Fig. 7b are in order 0.284, 0.008, 0.002, and 0.022.
We observe a comparatively larger difference in the noise
immission and radio loss objectives, and we will take a closer
look at these two objectives in the following.
Let us first consider the noise immission objective. The

corresponding initial solution in Fig. 7b (black line with a
dot in the lower right corner) differs only slightly from the
noise immission extreme point of the standard method in
Fig. 7a concerning the noise immission fitness. Regarding
the other objectives, this solution even achieves a signifi-
cantly worse fitness than the standard method. For the user,
this solution may not be useful because of the high-risk value.
But during the optimization, this solution is responsible for
finding other non-dominated solutions that the standard algo-
rithm does not find (gray lines with fE(z) ≈ 0.4 in Fig. 7b)
although they could be interesting for the user. Thus, the
hybrid approach creates more diversity in the computed
Pareto set, giving the user more flexibility in deciding on
an appropriate path.
Second, let us consider the radio signal loss objective. In

this case, the Dijkstra pre-processing provides a much better
solution (black line in the lower left corner of Fig. 7b) than
the standard approach. Around this solution, the evolutionary
algorithm subsequently provides a high density of non-
dominated solutions in the objective space, as can be seen
from the many gray lines in the immediate neighborhood.

Among these is the knee point solution (violet line), which
is a good trade-off for a user.
Discussion: We could observe that our hybrid framework

achieves significantly better results than the standard meth-
ods. The reason for this lies in the pre-processing step, where
the Dijkstra algorithm finds good approximations for the
final Pareto set’s extreme points. This can be seen from
the fact that the initial solutions’ objective values (black
points) of the evolutionary algorithm in Fig. 7b, which come
from the Dijkstra solutions, almost correspond to the final
extreme points. The important insight is that pre-processing
increases the quality of the final extreme points, although
the Dijkstra algorithm in the first stage of our framework
searches on a different grid scaling (i.e., another represen-
tation) than the evolutionary algorithm in the second stage.
By knowing good initial extreme points, the second-stage
evolutionary algorithm does not need to excessively search
in unknown areas of the search space (exploration) but rather
finds non-dominated solutions that compromise the already
pre-computed extreme point solutions (exploitation).
We could observe from Fig. 6 that without those pre-

computed extreme point solutions, the standard metaheuristic
algorithms need considerably more iterations to explore the
search space and find comparably good solutions. During
this exploration, the evolutionary algorithm can most likely
get stuck in local optima due to the highly multimodal char-
acter of the optimization problem, and therefore achieves a
worse convergence to the true Pareto Front, as the higher
(i.e., worse) GD values in Table 2 suggest. Moreover, the
higher (i.e., worse) IGD values in the same table show
that the standard evolutionary algorithms fail to achieve a
comparably good diversity of the Pareto set.
To sum up, our hybrid approach for many-objective path

planning problems shows several advantages in comparison
to standard many-objective optimization approaches, which
are the quality of the obtained Pareto sets and the number
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FIGURE 8. Examination results of the adaptive-number-of-control-points feature.

of iterations (i.e., the computation time) needed to calculate
them. The user obtains more diversified paths that satisfy the
needs of multiple stakeholders differently. Briefly, this means
that the hybrid framework efficiently produces a set of UAV
flight paths that are better regarding at least one objective
and not worse regarding the other objectives in comparison
to the standard approaches. On the downside, we can state
that the efficient pre-computation of initial solutions with
the Dijkstra algorithm depends on the size of the grid maps
and thus on map dimensions and discretization resolution.
Thus, for larger scenarios either the grid resolution has to
be reduced or the scenario has to be decomposed into sub-
problems. Furthermore, the framework requires the user to
formulate the objectives in a grid-based or at least in a grid-
transformable form, which means additional programming
effort. However, if an objective is not grid-transformable in a
meaningful way, it can still be integrated into the framework
by bypassing the Dijkstra stage.
We note that assuming grid maps of the same size and

resolution, it is also possible to sum the grid maps of all
objective functions in a weighted fashion to generate more
initial solutions. Questions about the design of the weights
and the effectiveness of this approach are beyond the scope
of this paper and will be investigated and answered in a
future publication.

2) ADAPTIVE-NUMBER-OF-CONTROL-POINTS FEATURE

In the second test, we evaluate the ANCP feature. For
the 100 scenarios separately, we run the optimization with
an adaptively determined parameter np. Then, we run the
optimization again for all 100 scenarios separately for
a number of control points reaching from np = 5 to
np = 30 control points. We plot the mean and the standard
deviation (as symmetric errorbar) of the obtained normal-
ized hypervolumes over the difference between the respective
number of control points and the adaptively determined num-
ber of control points in Fig. 8. If np lies in the range around
the adaptively determined ones (i.e., x = 0 on the x-axis), the

HV reaches its maximum value of 0.96. Apart from there, the
mean HV values decrease visibly, while their standard devi-
ations increase. If ten more control points are used for the
approximation, the HV decreases by 4.2%. If np is reduced
by ten control points, the HV even decreases by 10.4%.
Discussion: The test of the ANCP feature results in two

insights. First, the number of control points parameter np has
a strong influence on the HVs and therefore the quality of
the obtained Pareto sets, as we can deduce from the curve’s
incline in Fig. 8. If np is too small, the NURBS curve no
longer approximates the pre-processed Dijkstra path well
enough and the resulting path is very likely to have a worse
fitness, resulting in a smaller HV. Thus, the advantage of pre-
processing is lost. If np is too large, the better approximation
quality adds no benefit to the optimization, because it only
increments the sampling rate for the very same path. Instead,
the optimization vector becomes unnecessarily large, which
increases the complexity of the optimization problem and
thus the chances of a stagnating optimizer.
Second, using the adaptively computed parameter np, we

obtain high hypervolumes persistently and independently of
the chosen scenario. The reason for this is that the Dijkstra
path solutions computed in the pre-processing step for all
grid-based objectives of a scenario can already give a good
estimate for the characteristic (i.e., curviness) of the final
path solutions on the scenario. The curviness of the path
correlates directly with the number of control points np in
the NURBS representation of the path as the representa-
tion of a curved path requires more control points. From
this correlation and the first insight described above, the
better quality of the results with the ANCP feature can be
explained. In summary, we find that the advantage of the
ANCP feature lies in the applicability of the hybrid path
planning framework to unknown scenarios without hyperpa-
rameter tuning as the crucial parameter np is automatically
determined. However, we achieve this generalization by mak-
ing the size of the optimization vector dim(z) = 3(np − 2)

(if the first and last control point is fixed) and thus the
complexity of the optimization problem dependent on the
curviness of the path.

3) NICHING FEATURE

In the third test, we evaluate the niching feature. For each
of the 100 scenarios, we do two separate H. NSGA3 runs
(enabled ANCP feature) with and without the niching fea-
ture. Each time, the obtained HVs of both Pareto sets are
normalized to the best and worst HV of both iterations.
In Fig. 9, we plot the mean of the normalized hypervol-
umes for all scenarios over the number of cost function
evaluations. Initially, the mean values of the HVs of both
strategies increase similarly. After about 100 iterations, the
curves diverge strongly and reach a difference of 0.19 after
5000 iterations. Finally, the method with niching strategy is
29% better than the one without the niching strategy. In other
words, the niching strategy requires 2300 fewer function
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FIGURE 9. Performance test results for the niching feature.

evaluations to achieve the same HV as the approach without
niching.
Discussion: The results of the described experiment

demonstrate the positive effect that niching has on our hybrid
framework. The problem solved with the niching feature
lies in the different grid scaling and path representation
in both stages of the hybrid framework. This causes good
Dijkstra solutions to potentially violate the constraints in
the second stage. The better performance of the framework
with the niching feature is due to the initial preserva-
tion of all pre-processed solutions, constraint violating or
not, knowing that within a few iterations, the constraints
are potentially resolved. To sum up, niching allows us to
integrate constraints into the hybrid optimization frame-
work while still ensuring that no pre-processed solution
will initially be rejected for constraint violation. However,
the user of the framework must ensure that the defined
constraints are satisfiable, otherwise, the niches will never
migrate into the complete population and the intended many-
objective optimization will fall back into E single-objective
optimizations.

4) ANALYSIS OF VARIOUS PATHS DISCOVERED ACROSS
THE PARETO SET

Finally, we examine some optimization results of the
H. NSGA3 algorithm for the exemplary scenario that is indi-
cated by the red line in Fig. 2. We have already seen the
Pareto set for this scenario in Fig. 7b. With corresponding
colors, we visualize the matching path representations of the
Pareto set’s extreme points and its knee point in Fig. 10.
The visible paths have different qualities. The Pareto set’s

extreme point paths are optimized regarding the respective
objective. However, they can achieve sub-optimal func-
tion values for the remaining objectives. For example, a
noise-optimal path runs at higher elevations above the city,
resulting in high energy consumption. The first four rows
of Table 3 approve this coherence. Every column shows the

FIGURE 10. For an exemplary scenario, we plotted the paths belonging to the
Pareto set’s extreme points (radio: green, risk: blue, energy: orange, noise: red) and
the knee point (violet) into the three-dimensional height map.

TABLE 3. Deviation from the best obtained fitness value.

respective path’s relative deviation to the corresponding best
solution. For example, in terms of energy, the described
noise-optimal path deviates from the energy-optimal path by
512%. A user will rarely select an extreme point as a solu-
tion. A good trade-off solution could be the knee point. The
fifth row in Table 3 depicts the relative deviations of the
knee point solution to the respective best solutions.
Discussion: Although the extreme points of a Pareto front

will likely play a minor role in most real applications, it
is advantageous to initially provide good approximations
of the same to the optimizer. This way, the limits of the
meaningful search space (i.e., the part of the search space
where one can expect to find non-dominated solutions) are
already defined. Consequently, this improves the chances of
the evolutionary algorithm finding non-dominated solutions
in highly diverse parts of the search space more efficiently.
In summary, one must be aware that our framework does not
generate one solution but a Pareto set of solutions, i.e., many
possible paths. The decision on which path the drone should
finally fly along is up to the user. For this task, preference-
based selection algorithms or simple methods like knee-point
selection can be used.

VI. CONCLUSION
We have introduced a hybrid framework that consists of a
Dijkstra optimization stage and an evolutionary optimization
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stage to tackle many-objective path planning problems for
aerial vehicles in the three-dimensional urban space.
Contrary to the idea of other hybrid optimizers that first

apply a metaheuristic or randomized search and then improve
the found solutions by a local search, we change the order
of exact and metaheuristic optimizers. Concerning many-
objective path planning for smooth three-dimensional paths,
we have shown in a broad analysis that this combination
of a first exact optimization stage and a second metaheuris-
tic optimization stage can save computational resources and
improve the quality of obtained Pareto sets.
We have identified a crucial hyperparameter and described

the problems that come along with the hybrid setup and the
associated differences in the grid scaling and the path repre-
sentation. For the stated problems, we provided solutions and
showed their effectiveness in two additional analyses. The
framework is applicable to arbitrary geographic areas and
new objectives can be included. But, it is tailored to grid-
based or at least grid-transformable objectives. There may
be objectives that do not fulfill this restriction. For these,
the preprocessing stage can be skipped. Another limitation is
the size of the operation space, which is implicitly bounded
by the Dijkstra algorithm. Thus, larger planning areas may
need to be divided into sub-areas. The result of the proposed
many-objective path planning framework is a Pareto set of
paths balancing differently between the formulated objectives
that may represent the interests of different stakeholders.
Accordingly, the user can choose an appropriate path from
the Pareto set.
With our approach, we are able to efficiently find paths

that connect a defined start and endpoint with regard to
different objectives. However, in the future we expect aerial
transportation services in a city to require more than one
single path but rather a complete network in which they
are able to move freely. In the next step, we plan to use
our framework to compute such connected aerial corridor
networks.
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