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Abstract
In this paper, we study collective decision-making in a multi-population
framework, where groups of individuals represent whole populations that inter-
act by means of a regular network. Each group consists of a number of players
and every player can choose between two options. A group is characterized by
three variables, the first two denoting the fractions of individuals committed to
each option and the last one representing the fraction of players not commit-
ted to either option. The state of every population is influenced by the state of
neighboring groups. The contribution of this work is the following. First, we
find explicit expressions for all the equilibrium points of the proposed system,
and show that these represent equilibrium points where populations reach con-
sensus, namely, where all populations have the same states. We also derive a
sufficient condition for local asymptotic stability as well as exponential asymp-
totic stability. Then, we study a structured model where every population is now
assumed to represent a structured complex network. We conclude the paper by
providing a set of simulations that corroborate the theoretical findings.

K E Y W O R D S

asymptotic stability, collective decision-making, complex networks, consensus, multi-agent
systems, networked systems

1 INTRODUCTION

In this paper, we take inspiration from a biologically-inspired model, where a swarm of honeybees carries out the
nest-site selection process. The aim of this process is to reach consensus on one of two available options.1-4 In the
traditional formulation of the model, it is assumed that the two options have equal value in order to show the effective-
ness of the cross-inhibitory signalling used by honeybees to reach consensus. Motivated by this problem, we develop
a multi-population framework that considers more than one group of individuals interacting through a network. In
recent years, bio-inspired collective decision-making has seen increasing interest, including cross-disciplinary research
works that shed some light on the interactions and strategic aspects through the lenses of game theory and network the-
ory.5-7 In these works, a group of individuals is considered and every player within the group can choose between two
equally-favorable options, option 1 or option 2, or can choose to remain uncommitted. Rather than studying the individ-
ual behavior of each player, we are interested in quantifying how many players choose a certain strategy. To do this, and
in accordance with the literature, we provide a mean-field approximation by taking the population size very large.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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In recent years, the principles underpinning collective decision-making in honeybees have been extensively studied
within cross-disciplinary research involving behavioral ecology, psychology and neurosciences. Two predominant behav-
ioral traits were found during the large number of experiments investigating the collective decision-making process in
honeybees: the so-called waggle dance, performed by scout bees to share information about available nest sites in order to
recruit other bees; and the cross-inhibitory stop signal, which is used to prevent other bees to advertise for the competing
options.4 In particular, the most studied case is where the swarm has to choose between options with near-equal values,
and a critical value of the stop signal was found to prevent deadlocks.4,5 While a seminal study on the decision-making
in house-hunting honeybees with more than two options was conducted in 1997 and 1998 and reported in Reference 8,
recent research,9 has extended the previous model to the best-of-N case, analysing the symmetric and asymmetric mod-
els. Recent applications of the decision-making in honeybee swarms include multi-agent decision-making and network
design.10,11

Motivated by the networked evolutionary models that arise in decision-making processes,12-17 we extend the col-
lective decision-making inspired by honeybee swarms to a multi-population setting, where groups of individuals
need to decide between two options, for example, an election where the options represent a left or right political
party, and the cross-inhibitory signals represent smear campaigns by the opposing party. Recent applications of the
proposed networked model as well as similar multi-population models include the study of virus propagation mod-
els, where a disease infects a population and spreads over different groups of individuals susceptible to the virus.18

When two viruses compete to infect a population of susceptible individuals, we are in the presence of a bi-virus
model.19

An element of novelty of this work in comparison with the existing literature is the study of evolutionary dynamics on
a multi-population, as opposed to a single population. This networked multi-population setting is captured by a graph,
where each node represents a population. Every population is characterized by three variables, the fractions of players
that are committed to option 1, those committed to option 2 and the uncommitted individuals. These fractions depend
on the state of the neighboring populations to account for individuals that are completely susceptible to opinions coming
from outside as in the popular work by Hegselmann and Krause.12 Alternatively, one can consider a different degree of
stubbornness and susceptibility in opinion dynamics, but this is not the focus of our article. We assume throughout the
paper that the graph of the networked multi-population is unweighted and regular, by which we mean that every node
has the same amount of neighbors.

Highlights of contributions. The following is a list of contributions to the preliminary version of this work that
appeared as a conference proceeding.20 First, we have generalized and improved some of the main results by finding
explicit expressions for all the equilibrium points of the proposed system as well as showing that these equilib-
ria represent consensus equilibrium points, namely, equilibrium points where all populations have the same states.
Second, we derive a sufficient condition for local and exponential asymptotic stability. Finally, we investigate the model
where the interactions of each population are captured by an additional structure that takes the form of a complex
network.

This paper is organized as in the following. In Section 2, we present the formulation of our multi-population model.
We study the existence of the equilibrium points and carry out the stability analysis. In Sections 3 and 4, we model the
interactions internal to each population via a complex network and carry out the local stability analysis for the general sys-
tem as well as in the case of a symmetric equilibrium. Section 5 presents a set of simulations to corroborate the theoretical
results. Finally, in Section 6, we draw conclusions and discuss possible future directions of research.

NOTATION
We use the following notations throughout the paper. A networked multi-population can be represented by an undirected
graph  = ( , ) in which each node i in the set  represents a population, and each edge {i, j} ∈  represents a link
between two nodes and, hence, populations. The symboli indicates the neighbor set of any node i. The set of feasible
states Δ is defined by Δ = {(x, y) ∈ Rn × Rn|xi ≥ 0, yi ≥ 0, xi + yi ≤ 1}.

2 THE UNSTRUCTURED NETWORKED MODEL

In this section, we develop and study a collective decision-making model on a networked multi-population. To do so, we
first formalize a networked multi-population as follows.
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Definition 1 (Networked multi-population). A networked multi-population is a set of populations that
interact by means of a network topology.

In a networked multi-population, the dynamics of a population are influenced by neighboring populations. The model
where there is no structure on a single population i is henceforth referred to as unstructured networked model. Con-
sider a multi-population that consists of multiple groups of players, where it is assumed that players within a group
can all interact with one another. The evolutionary dynamics are as follows. Every player can spontaneously decide to
commit to an option (parametrized by 𝛾), or can decide to commit to an option by means of imitation (parametrized
by r), because we assume the individuals exhibit crowd-seeking behaviors, and thus are attracted to the option that
has the most committed players. Players can also decide to withdraw from their chosen state, either by spontaneously
giving up their commitment (parametrized by 𝛼), or by being lured to become uncommitted by other players. We
then also talk about cross-inhibitory signals that are sent to opposing players to attract them to become uncommit-
ted (parametrized by 𝜎). Finally, when modeling the dynamics of such systems, let the states of the model be x, y, z,
denoting the fraction of individuals committed to option 1, the fraction of individuals committed to option 2 and the
fraction of uncommitted individuals, respectively. We introduce a subscript i to denote the ith population. Note that we
have xi + yi + zi = 1 at all times, or equivalently, zi = 1 − xi − yi. This enables us to describe the dynamics solely in terms
of xi and yi:

ẋi =
⎛
⎜
⎜
⎝

𝛾 + r
∑

j∈i

xj

⎞
⎟
⎟
⎠

(1 − xi − yi) − xi

⎛
⎜
⎜
⎝

𝛼 + 𝜎
∑

j∈i

yj

⎞
⎟
⎟
⎠

,

ẏi =
⎛
⎜
⎜
⎝

𝛾 + r
∑

j∈i

yj

⎞
⎟
⎟
⎠

(1 − xi − yi) − yi

⎛
⎜
⎜
⎝

𝛼 + 𝜎
∑

j∈i

xj

⎞
⎟
⎟
⎠

, (1)

and of course żi = −ẋi − ẏi. These dynamics and the role of the parameters are summarized in Figure 1. It is worth
noting that the imitation parameter r and the cross-inhibitory parameter 𝜎 determine the influence of the neigh-
boring populations on the dynamics. The dynamics in population i thus depend on neighboring populations j ∈
i, where i is the set of neighbor nodes to i, that is, i = {j ∈ |{i, j} ∈ }. Throughout, it is assumed that
we consider a regular and unweighted graph, so the cardinality of the neighbor set, namely, d ∶= |i|, is the
same for every node and is denoted by parameter d. The motivation for this choice can be found in relevant lit-
erature on decision-making processes via evolutionary dynamics.17,21,22 But it also serves the purposes of making
the problem more tractable, allowing us to derive analytic expressions for the equilibria of the system. The fol-
lowing result ensures the well-posedness of our problem, by proving that the set of feasible states Δ is positively
invariant.

Lemma 1. For any initial condition (x(0), y(0)) ∈ Δ, the system state remains in this set, (x(t), y(t)) ∈ Δ,
for all t > 0.

Proof. This is a corollary from Nagumo’s Theorem.23 To see this, we compute the direction of the vector field of
the points on the boundary ofΔ, and show that they point inwards. Consider any node i. Recall that parameters
𝛾, r, 𝛼, 𝜎 are all positive-valued, and assume that xj, yj ≥ 0 for all j ≠ i. We now show that Δi = {(xi, yi)|xi ≥

0, yi ≥ 0, xi + yi ≤ 1} is a positively invariant set. The boundary of Δi is

𝜕Δi = {(xi, yi) ∈ Δi | yi = 0} ∪ {(xi, yi) ∈ Δi|xi = 0}
∪ {(xi, yi) ∈ Δi | xi + yi = 1}

=∶ 𝜕Δ1
i ∪ 𝜕Δ

2
i ∪ 𝜕Δ

3
i .

F I G U R E 1 The evolutionary dynamics at the node level.
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For the points in 𝜕Δ1
i , we have that

ẏi =
⎛
⎜
⎜
⎝

𝛾 + r
∑

j∈i

aijyj

⎞
⎟
⎟
⎠

(1 − xi) ≥ 0,

so these points are moving upwards insideΔi. For points in 𝜕Δ2
i we have that they point insideΔi as well, since

ẋi =
⎛
⎜
⎜
⎝

𝛾 + r
∑

j∈i

aijxj

⎞
⎟
⎟
⎠

(1 − yi) ≥ 0.

And finally, for points in 𝜕Δ3
i we have that

ẋi = −xi

⎛
⎜
⎜
⎝

𝛼 + 𝜎
∑

j∈i

aijyj

⎞
⎟
⎟
⎠

≤ 0,

ẏi = −yi

⎛
⎜
⎜
⎝

𝛼 + 𝜎
∑

j∈i

aijxj

⎞
⎟
⎟
⎠

≤ 0,

which points inward Δi as well. To conclude, we see that for any point on the boundary of Δ, the vector
field points inward Δ. As a consequence of Nagumo’s Theorem, we can conclude that the set Δ is positively
invariant. ▪

We are now ready to establish the following result.

Theorem 1. The equilibrium points for (1) are (x∗, y∗, z∗) = (𝜉1n, 𝜇1n, 𝜁1n), with the equilibrium values 𝜉, 𝜇, 𝜁
given by

• Case 1. If 𝜉 = 𝜇,

𝜉 = 𝜇 =
−(2𝛾 − rd + 𝛼) +

√
(2𝛾 − rd + 𝛼)2 + 4𝛾(2rd + 𝜎d)

2(2rd + 𝜎d)
, 𝜁 = 1 − 2𝜉. (2)

• Case 2. If 𝜁 = 𝛼

dr
, let 𝜌 =

−
(
𝛼

r
−d
)

+
√
(
𝛼

r
−d
)2
− 4𝛾𝛼

r𝜎

2d
and 𝜏 =

−
(
𝛼

r
−d
)

−
√
(
𝛼

r
−d
)2
− 4𝛾𝛼

r𝜎

2d
. Then we have two

equilibria,

either 𝜉 = 𝜌, 𝜇 = 𝜏, 𝜁 = 𝛼

rd
,

or 𝜉 = 𝜏, 𝜇 = 𝜌, 𝜁 = 𝛼

rd
.

Proof. The system dynamics for node i are described by Equation (1). We remark that the equations for ẋi and
ẏi are the same for any node i, and hence we limit ourselves to investigate the dynamics of a generic node i.
The analytical result that we obtain for the generic node i holds true for all the other nodes. In particular,
the converging value for the dynamics of node i is the same for all nodes. Then, we can drop the index i and
denote the common value for xi by 𝜉, the common value for yi by 𝜇, and the value for zi by 𝜁 = 1 − 𝜉 − 𝜇.
The equilibrium is thus given by (x∗, y∗, z∗) = (𝜉1n, 𝜇1n, 𝜁1n), with 𝜁 = 1 − 𝜉 − 𝜇. We will now find explicit
expressions for the equilibrium values. To this purpose, we set ẋi = 0 and ẏi = 0, and the equations in (1)
reduce to

0 = ẋi = (𝛾 + rd𝜉)𝜁 − 𝜉(𝛼 + 𝜎d𝜇),
0 = ẏi = (𝛾 + rd𝜇)𝜁 − 𝜇(𝛼 + 𝜎d𝜉). (3)
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From (3), it follows that

0 = ẋi − ẏi = rd(𝜉 − 𝜇)𝜁 − 𝜉𝛼 + 𝜇𝛼 = (rd𝜁 − 𝛼)(𝜉 − 𝜇).

From this expression we obtain that either 𝜉 = 𝜇 or 𝜁 = 𝛼

rd
, hence, the need to distinguish two cases. Note that

the two cases are not mutually exclusive. In Case 1, if 𝜉 = 𝜇, the first equation of (3) reduces to

0 = ẋi = (𝛾 + rd𝜉)(1 − 2𝜉) − 𝜉(𝛼 + 𝜎d𝜉)
= 𝛾 − 2𝛾𝜉 + rd𝜉 − 2rd𝜉2 − 𝛼𝜉 − 𝜎d𝜉2

= (2rd + 𝜎d)𝜉2 + (2𝛾 − rd + 𝛼)𝜉 − 𝛾.

This is a quadratic equation in 𝜉 and the solution is

𝜉 =
−(2𝛾 − rd + 𝛼) ±

√
(2𝛾 − rd + 𝛼)2 + 4𝛾(2rd + 𝜎d)

2(2rd + 𝜎d)
.

In general, one obtains two solutions to a quadratic equation, but the solution with a minus sign in front of the
square root cannot be an equilibrium since the value of 𝜉 would be negative. This equilibrium is not in the set
of feasible states Δ, and because of Lemma 1, the system dynamics can never converge to it. This completes
Case 1 since 𝜇 = 𝜉 and 𝜁 = 1 − 2𝜉. We now turn our attention to Case 2. If 𝜁 = 𝛼

rd
, given that 𝜇 = 1 − 𝜉 − 𝛼

rd
,

we obtain

0 = ẋi = (𝛾 + rd𝜉) 𝛼
rd
− 𝜉

(

𝛼 + 𝜎d
(

1 − 𝜉 − 𝛼

rd

))

= d𝜉2 +
(
𝛼

r
− d

)

𝜉 + 𝛾𝛼

rd𝜎
.

This is a quadratic equation in 𝜉 and has two solutions, 𝜉 = 𝜌 and 𝜉 = 𝜏, where 𝜌 and 𝜏 are given by

𝜌 =
−
(
𝛼

r
− d

)

+
√
(
𝛼

r
− d

)2
− 4𝛾𝛼

r𝜎

2d
, 𝜏 =

−
(
𝛼

r
− d

)

−
√
(
𝛼

r
− d

)2
− 4𝛾𝛼

r𝜎

2d
.

Contrary to Case 1, now both solutions are feasible solutions since they can be within the interval [0, 1].
This means that we have found two equilibria, either 𝜉 = 𝜌 and 𝜇 = 1 − 𝜉 − 𝛼

rd
= 1 − 𝜌 − 𝛼

rd
, or 𝜉 = 𝜏 and 𝜇 =

1 − 𝜏 − 𝛼

rd
. It should be noted that

𝜌 =
−
(
𝛼

r
− d

)

+
√
(
𝛼

r
− d

)2
− 4𝛾𝛼

r𝜎

2d
= − 𝛼

2rd
+ 1

2
+

√
(
𝛼

r
− d

)2
− 4𝛾𝛼

r𝜎

2d

= 1 − 1
2
+

√
(
𝛼

r
− d

)2
− 4𝛾𝛼

r𝜎

2d
+ 𝛼

2rd
− 𝛼

rd
= 1 −

⎛
⎜
⎜
⎜
⎜
⎝

−
(
𝛼

r
− d

)

−
√
(
𝛼

r
− d

)2
− 4𝛾𝛼

r𝜎

2d

⎞
⎟
⎟
⎟
⎟
⎠

− 𝛼

rd

= 1 − 𝜏 − 𝛼

rd
.

Or equivalently, 𝜏 = 1 − 𝜌 − 𝛼

rd
. The two equilibria are thus simply given by

𝜉 = 𝜌, 𝜇 = 𝜏, 𝜁 = 𝛼

rd
,

𝜉 = 𝜏, 𝜇 = 𝜌, 𝜁 = 𝛼

rd
.

The two equilibria in Case 2 are thus symmetric in the sense that the values for option 1 and option 2 are
simply swapped. This completes the proof. ▪
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We refer to the equilibria established in Theorem 1 as consensus equilibria. Our notion of consensus refers to the fact
that the fractions of committed and uncommitted players, 𝜉, 𝜇 and 𝜁 , are the same in every population. In the following
remarks we provide insight into the asymptotic cases in which either the spontaneous uncommitment or the spontaneous
commitment are dominant.

Remark 1. Note that the equilibria in Case 2 can be disregarded if 𝛼 > rd, since the equilibrium values would
then be outside the set of feasible statesΔ. Indeed, if the effect of the spontaneous uncommitment is dominant,
that is, 𝛼 is significantly larger than the other system parameters 𝛾 , r and 𝜎, we reach a symmetric equilibrium
in which the values of committing to an option, 𝜉 and 𝜇, are close to zero. To see this, consider the following

lim
𝛼→∞

𝜉 = lim
𝛼→∞

−(2𝛾 − rd + 𝛼) +
√
(2𝛾 − rd + 𝛼)2 + 4𝛾(2rd + 𝜎d)

2(2rd + 𝜎d)
.

Multiplying the latter expression by −(2𝛾−rd+𝛼)−
√
(2𝛾−rd+𝛼)2+4𝛾(2rd+𝜎d)

−(2𝛾−rd+𝛼)−
√
(2𝛾−rd+𝛼)2+4𝛾(2rd+𝜎d)

, one obtains

lim
𝛼→∞

𝜉 = lim
𝛼→∞

(2𝛾 − rd + 𝛼)2 − ((2𝛾 − rd + 𝛼)2 + 4𝛾(2rd + 𝜎d))2

−2(2rd + 𝜎d) ⋅
(

(2𝛾 − rd + 𝛼) +
√
(2𝛾 − rd + 𝛼)2 + 4𝛾(2rd + 𝜎d)

)

(∗)
= lim

𝛼→∞

4𝛾(2rd + 𝜎d)2

−2(2rd + 𝜎d) ⋅
(

(2𝛾 − rd + 𝛼) +
√
(2𝛾 − rd + 𝛼)2 + 4𝛾(2rd + 𝜎d)

) = 0.

This result is also intuitive if one considers the dynamics as represented in Figure 1. If 𝛼 is the dominating
factor, committed players have a very strong tendency to become uncommitted, and as a result the fractions
of committed individuals xi(t) and yi(t) tend to go to zero.

Similarly to the previous remark, we can also investigate the effect of parameter 𝛾 on the dynamics.

Remark 2. From Figure 1 it is intuitive that if the spontaneous commitment is dominant, every agent will
commit to an option. As both options are equally favourable, as it is the case in most literature on collective
decision-making in honeybee swarms,24 we expect that the final distribution of the agents is xi = 0.5, yi =
0.5, zi = 0. This intuitive line of reasoning can be corroborated by the following analytical derivation. Starting
from the expression indicated by (*) in the previous remark, and dividing both numerator and denominator
by 𝛾 , we obtain:

lim
𝛾→∞

𝜉 = lim
𝛾→∞

4(2rd + 𝜎d)2

−2(2rd + 𝜎d) ⋅

(
(

2 − rd
𝛾

+ 𝛼

𝛾

)

+
√
(

2 − rd
𝛾

+ 𝛼

𝛾

)2
+ 4

𝛾

(2rd + 𝜎d)

) = 1
2
.

For the consensus equilibrium established in Theorem 1, we have the following sufficient condition for exponential
stability. We show that two inequalities must hold on the strength of the cross-inhibitory signals, and these conditions
can be checked a priori.

Theorem 2. The consensus equilibrium x∗ = (𝜉1n, 𝜇1n, 𝜁1n) that is reached under dynamics (1) is locally
exponentially stable if the following inequalities on the cross-inhibitory signal 𝜎 hold:

𝜎 >

𝛼 − rd(1 − 𝜉 − 𝜇)
d(1 − 𝜇)

and 𝜎 > 𝛼 − rd(1 − 𝜉 − 𝜇)
d(1 − 𝜉)

.

Proof. We compute the Jacobian and evaluate it at the equilibrium x∗ = (𝜉1n, 𝜇1n, 𝜁1n). Consider the
dynamics described by (1), then the partial derivatives of ẋi are given by the following expressions

𝜕ẋi

𝜕xi
= −𝛾 − r

∑

j∈i

xj

−𝛼 − 𝜎
∑

j∈i

yj,

𝜕ẋi

𝜕yi
= −𝛾 − r

∑

j∈i

xj,

𝜕ẋi

𝜕xj
=

{
0 if j ∉i,

rzi if j ∈i,

𝜕ẋi

𝜕yj
=

{
0 if j ∉i,

−𝜎xi if j ∈i.
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The partial derivatives of ẏi are obtained in a similar fashion. We evaluate the expressions of the partial deriva-
tives at the equilibrium x∗ = (𝜉1n, 𝜇1n, 𝜁1n) and we make use of the fact that 1 − 𝜉 − 𝜇 = 𝜁 . This gives the
following Jacobian

J =
[
𝜕(ẋ1,… , ẋn, ẏ1,… , ẏn)
𝜕(x1,… , xn, y1,… , yn)

]|
|
|
|
|x=x∗

=
⎡
⎢
⎢
⎢
⎣

𝜕(ẋ1,… , ẋn)
𝜕(x1,… , xn)

𝜕(ẋ1,… , ẋn)
𝜕(y1,… , yn)

𝜕(ẏ1,… , ẏn)
𝜕(x1,… , xn)

𝜕(ẏ1,… , ẏn)
𝜕(y1,… , yn)

⎤
⎥
⎥
⎥
⎦

|
|
|
|
|
|
|
|x=x∗

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(r − r𝜉 − r𝜇)A− −𝜎A − (𝛾 + rd𝜉)In

(𝛾 + rd𝜉 + 𝛼 + 𝜎d𝜇)In

(r − r𝜉 − r𝜇)A−
−𝜎A − (𝛾 + rd𝜇)In (𝛾 + rd𝜇 + 𝛼 + 𝜎d𝜉)In

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where A denotes the adjacency matrix of the network. To prove exponential stability the eigenvalues of the
above matrix should be contained in the open left half of the complex plane. Computing the eigenvalues of
the above 2n × 2n Jacobian matrix is rather difficult, however, we can find an estimate using the Gershgorin
circle theorem. Gershgorin circle theorem states that each eigenvalue 𝜆i is contained in a circle around Jii
with radius

∑
i≠j |Jij|. Indeed, we note that all diagonal entries Jii are strictly negative, so if we require that the

radius of the circle does not cross the imaginary axis we know that the eigenvalue has a strictly negative real
part. Using this, we find a sufficient condition for stability. So for i = 1, … ,n we require

−Jii >
∑

j≠i
|Jij|

𝛾 + rd𝜉 + 𝛼 + 𝜎d𝜇 > rd𝜁 + 𝜎d + 𝛾 + rd𝜉
𝛼 + 𝜎d𝜇 > rd𝜁 + 𝜎d

𝜎 >

rd𝜁 − 𝛼
d𝜇 − d

= 𝛼 − rd𝜁
d(1 − 𝜇)

.

Analogously, for i = n + 1, … , 2n we must have −Jii >
∑

j≠i |Jij|, and similar computations show that this
gives the second constraint. This completes the proof. ▪

3 A STRUCTURED NETWORKED MULTI-POPULATION

In the previous section, the internal structure of the population was not considered. In the remainder of this paper we
assume that every population is characterized by a structured environment,24,25 in accordance with the definition that
follows. The structured environment is given by a complex network. A complex network is a network on a large number
of nodes, where the node degree distribution follows a power law.

Definition 2 (Structured networked multi-population). A structured networked multi-population is a
networked multi-population in which each population possesses an internal structure given by a complex
network.

More precisely, each node i of the networked multi-population now represents a structured population given by a
complex network. Here, the key idea is that individuals from a population with a high number of connections with other
players (within the same population) can have different inclinations to commit to option 1 or 2 from a player with a low
connectivity.

Formally, we let P(k) be the distribution of the node degrees, for k = 1, 2, … , kmax. Then we denote xk
i as the portion

of the ith population with k connections, that are committed to the first option. Similarly, for yk
i and zk

i , and we have
zk

i = 1 − xk
i − yk

i . We also refer to the pair (xk
i , y

k
i ) (or the triple (xk

i , y
k
i , z

k
i )) as the kth cluster of the ith population. It is
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noteworthy that the full state of the networked population has as state vectors

(

x1
1 , x2

1 , … , xkmax
1 , … , x1

n, x2
n, … , xkmax

n

)T
,

(

y1
1, y2

1, … , ykmax
1 , … , y1

n, y2
n, … , ykmax

n

)T
,

where we assumed that for every complex network, the degree distribution P(k) is the same, and hence the maximal
node degree kmax is also equal for every population. Let us now consider the dynamics for a single cluster k within a
single complex network i of the multi-population. In other words, we will now come up with dynamics for xk

i and yk
i . We

introduce 𝜓k = k
kmax

as a parameter that captures the connectivity of a cluster. We have that 𝜓k is close to zero if k is very
small (no connectivity) and 𝜓k is close to one if k is close to kmax (full connectivity). For the discrete random variable k,
with probabilities P(k), we denote the mean by ⟨k⟩ with

⟨k⟩ =
kmax∑

k=1
kP(k).

Let us introduce 𝜃x
i and 𝜃y

i as the probabilities that a randomly chosen link will point to a player that uses strategy x or y
in group i, respectively.26 These new variables capture the first moment. They are defined as

𝜃

x
i =

1
⟨k⟩

kmax∑

k=1
kP(k)xk

i , 𝜃

y
i =

1
⟨k⟩

kmax∑

k=1
kP(k)yk

i .

The dynamics of cluster k in group i are now given by

ẋk
i = (1 − xk

i − yk
i )
⎛
⎜
⎜
⎝

r𝜓k
∑

j∈i

𝜃

x
j + 𝛾

⎞
⎟
⎟
⎠

− xk
i

⎛
⎜
⎜
⎝

𝛼 + 𝜎𝜓k
∑

j∈i

𝜃

y
j

⎞
⎟
⎟
⎠

,

ẏk
i = (1 − xk

i − yk
i )
⎛
⎜
⎜
⎝

r𝜓k
∑

j∈i

𝜃

y
j + 𝛾

⎞
⎟
⎟
⎠

− yk
i

⎛
⎜
⎜
⎝

𝛼 + 𝜎𝜓k
∑

j∈i

𝜃

x
j

⎞
⎟
⎟
⎠

. (4)

Note that these dynamics are normalized, in the sense that xk
i + yk

i + zk
i = 1 for every k ∈ {1, 2, … , kmax} and for every

i ∈ {1, 2, … ,n}. We made this normalization because zk
i = 1 − xk

i − yk
i holds true, and, as a result this variable became

redundant. These dynamics are similar to the model in (1) except that we now sum over the multiple 𝜃 parameters, and
the connectivity parameter 𝜓k now plays a role as well, since we are looking at a multi-population of complex networks.
By aggregating over the differential equations of ẋk

i and ẏk
i using 1

⟨k⟩

∑
k kP(k), we obtain dynamics for ̇𝜃x

i and ̇
𝜃

y
i , which are

given by

̇
𝜃

x
i = (−𝛾 − 𝛼)𝜃x

i − 𝛾𝜃
y
i +

rΨz
i

kmax

∑

j∈i

𝜃

x
j −

𝜎Ψx
i

kmax

∑

j∈i

𝜃

y
j + 𝛾,

̇
𝜃

y
i = −𝛾𝜃

x
i + (−𝛾 − 𝛼)𝜃

y
i −

𝜎Ψy
i

kmax

∑

j∈i

𝜃

x
j +

rΨz
i

kmax

∑

j∈i

𝜃

y
j + 𝛾,

where we have simplified our notation by introducing

V =
∑

k k2P(k), Ψx
i =

1
⟨k⟩

∑
k k2P(k)xk

i ,

Ψy
i =

1
⟨k⟩

∑
k k2P(k)yk

i , Ψz
i =

1
⟨k⟩

∑
k k2P(k)zk

i .

Note that we have V = ⟨k⟩
(
Ψx

i + Ψ
y
i + Ψ

z
i

)
. These variables capture the second moment. We can write the dynamics for

𝜃

x
i and 𝜃y

i for i = 1, 2, … ,n in vector form, by introducing
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𝜃

x =
(
𝜃

x
1 , 𝜃

x
2 , … , 𝜃

x
n
)
, 𝜃

y =
(
𝜃

y
1, 𝜃

y
2, … , 𝜃

y
n
)
.

We then have

(
̇
𝜃

x

̇
𝜃

y

)

=
⎡
⎢
⎢
⎣

(−𝛾 − 𝛼)I + r
kmax

ΨzA −𝛾I − 𝜎

kmax
ΨxA

−𝛾I − 𝜎

kmax
ΨyA (−𝛾 − 𝛼)I + r

kmax
ΨzA

⎤
⎥
⎥
⎦

(
𝜃

x

𝜃

y

)

+

(
𝛾1

𝛾1

)

, (5)

where we use A to denote the adjacency matrix of the multi-population, and where we use Ψx, Ψy and Ψz to denote

Ψx = diag(Ψx
1,Ψ

x
2, … ,Ψx

n),
Ψy = diag(Ψy

1,Ψ
y
2, … ,Ψy

n),
Ψz = diag(Ψz

1,Ψ
z
2, … ,Ψz

n).

The equilibria of the above model are in general hard to find, but the equilibrium (𝜃x∗
, 𝜃

y∗) satisfies at least the following
expression

(
𝜃

x∗

𝜃

y∗

)

=
⎡
⎢
⎢
⎣

(𝛾 + 𝛼)I − r
kmax

ΨzA 𝛾I + 𝜎

kmax
ΨxA

𝛾I + 𝜎

kmax
ΨyA (𝛾 + 𝛼)I − r

kmax
ΨzA

⎤
⎥
⎥
⎦

−1(
𝛾1

𝛾1

)

,

where the matrix is nonsingular if it is diagonally dominant. Computation of an equilibrium analytically is a difficult
task, and is beyond the scope of this paper. Suppose for now, an equilibrium (𝜃x∗

, 𝜃

y∗) is found. Then we can conclude the
following result on stability.

Theorem 3. Let the structured networked multi-population be characterized by a regular and unweighted
graph with node degree d and with adjacency matrix A = (aij). Then, an equilibrium (𝜃x∗

, 𝜃

y∗) of (5) is locally
asymptotically stable if the following pair of inequalities is satisfied:

𝛼 >

r
kmax

Ψz
∗d + 𝜎

kmax
Ψx
∗d,

𝛼 >

𝜎

kmax
Ψy
∗d + r

kmax
Ψz
∗d,

where Ψx
∗,Ψy

∗,Ψz
∗ denote the second moments Ψx

i ,Ψ
y
i ,Ψ

z
i , since the latter are the same for every population i.

It should be noted that the equilibrium values play a role in the computation of Ψx
∗,Ψy

∗ and Ψz
∗.

Proof. The result follows directly from applying Greshgorin’s circle theorem to the affine system of (5). Com-
puting the eigenvalues of the system matrix explicitly is difficult, however, they can be estimated by using
Gershgorin’s circle theorem. For every row of the system, we consider the following point: requiring that it is
larger in magnitude than the sum of the off-diagonal entries entails that the eigenvalues are contained in the
open left-half complex plane. This is true since the diagonal entry is strictly negative. So for i = 1, 2, … ,n we
have that

| − 𝛾 − 𝛼| >
|
|
|
|
|
|

r
kmax

Ψz
i

n∑

j=1
aij

|
|
|
|
|
|

+ | − 𝛾| +
|
|
|
|
|
|

− 𝜎

kmax
Ψx

i

n∑

j=1
aij

|
|
|
|
|
|

𝛼 >

r
kmax

Ψz
i

n∑

j=1
aij +

𝜎

kmax
Ψx

i

n∑

j=1
aij

𝛼 >

r
kmax

Ψz
i d + 𝜎

kmax
Ψx

i d,

since
∑n

j=1aij = |i| = d for all i. Similarly, for rows i = n + 1, … , 2n we require that

𝛼 >

r
kmax

Ψz
i d + 𝜎

kmax
Ψy

i d.
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Furthermore, we note that since we consider a regular graph, we reach a consensus equilibrium, that is, the
values for xk

i and yk
i are the same for every 1 ≤ i ≤ n, as in Theorem 1. Finally, we have

Ψx
i =

1
⟨k⟩

∑

k
k2P(k)xk

i =
1
⟨k⟩

∑

k
k2P(k)𝜉k = Ψx

∗,

Ψy
i =

1
⟨k⟩

∑

k
k2P(k)yk

i =
1
⟨k⟩

∑

k
k2P(k)𝜇k = Ψy

∗,

Ψz
i =

1
⟨k⟩

∑

k
k2P(k)zk

i =
1
⟨k⟩

∑

k
k2P(K)𝜁k = Ψz

∗.

This completes the proof. ▪

In the special case of reaching a symmetric equilibrium as in Case 1 of Theorem 1, we have the following
corollary.

Corollary 1. Let the underlying network of the multi-population be a regular and unweighted graph, with node
degree d. Then, any symmetric equilibrium of (5) is locally asymptotically stable if the following condition on the
cross-inhibitory signal holds

𝜎 < 2r − rV
< k > Ψ∗

+ 𝛼kmax

Ψ∗d
, (6)

where Ψ∗ ∶= Ψx
∗ = Ψy

∗.

Proof. Since we have a symmetric equilibrium, Ψx
∗ = Ψy

∗ =∶ Ψ∗. Furthermore this means Ψz
∗ =

V
<k>

− Ψx
∗ −

Ψy
∗ =

V
<k>

− 2Ψ∗. Starting from Theorem 3 and performing some algebraic manipulations, we have

𝛼 >

r
kmax

Ψz
∗d + 𝜎

kmax
Ψx
∗d

𝛼 >

r
kmax

( V
< k >

− 2Ψ∗
)

d + 𝜎

kmax
Ψ∗d

−𝜎
kmax

Ψ∗d > r
kmax

( V
< k >

− 2Ψ∗
)

d − 𝛼

𝜎 <

−r
Ψ∗

( V
< k >

− 2Ψ∗
)

+ 𝛼kmax

Ψ∗d
= 2r − rV

< k > Ψ∗
+ 𝛼kmax

Ψ∗d
,

and the proof is completed. ▪

It should be stressed that this result is in agreement with Theorem 3.6 Interestingly enough, it is worth pointing out
that our result comes from applying Greshgorin’s circle theorem, while the work by Stella and Bauso6 analyses a 2 × 2
matrix via its trace and determinant. We have thus derived a similar result using a different methodology.

4 SYMMETRIC EQUILIBRIUM IN STRUCTURED ENVIRONMENT

Throughout this section, we assume that the equilibrium we reached is a symmetric equilibrium, cf. Case 1 in Theorem 2.
In such case, we have that xk

i = yk
i = 𝜉

k
i = 𝜇

k
i . Since this is a consensus equilibrium as described before, this value is in

fact equal to 𝜉k, where the equilibrium point can still depend on the complex network node degree k. We remark that for
these symmetric consensus equilibria, 𝜃x

i = 𝜃
y
i = 𝜃. Hence,

∑

j∈i

𝜃

x
j =

∑

j∈i

𝜃

y
j = d𝜃,
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where d denotes the degree of the regular network. The dynamics for xk
i and yk

i are now described by

ẋk
i = (1 − xk

i − yk
i )(r𝜓kd𝜃 + 𝛾) − xk

i (𝛼 + 𝜎𝜓kd𝜃),
ẏk

i = (1 − xk
i − yk

i )(r𝜓kd𝜃 + 𝛾) − yk
i (𝛼 + 𝜎𝜓kd𝜃).

Equivalently, we can write these dynamics in matrix form as

(
ẋk

i

ẏk
i

)

=

[
−(r + 𝜎)𝜓kd𝜃 − 𝛼 − 𝛾 −r𝜓kd𝜃 − 𝛾

−r𝜓kd𝜃 − 𝛾 −(r + 𝜎)𝜓kd𝜃 − 𝛼 − 𝛾

](
xk

i

yk
i

)

+

(
r𝜓kd𝜃 + 𝛾
r𝜓kd𝜃 + 𝛾

)

. (7)

The remainder of this section focuses on the study of the above system. By direct computation, one can show that the
above affine system is stable by computing the eigenvalues of the system matrix.

Theorem 4. The above system has eigenvalues 𝜆1 = −𝜎𝜓kd𝜃 − 𝛼 and 𝜆2 = −(2r + 𝜎)𝜓kd𝜃 − 2𝛾 − 𝛼, which are
strictly negative and, therefore, the system is asymptotically stable. Furthermore, convergence is faster as 𝜓k
increases.

Next, we study the equilibrium of system (7).

Theorem 5. For system (7), a symmetric equilibrium is given by

xk∗
i = yk∗

i = x∗ = r𝜓kd𝜃 + 𝛾
(2r + 𝜎)𝜓kd𝜃 + 2𝛾 + 𝛼

.

Proof. As the dynamics of system (7) are of the form ẋ = Ax + c, the equilibrium is simply given by x∗ = −A−1c.
We remark that the determinant of A is given by

det(A) = Δ = 2(r𝜓kd𝜃 + 𝛾)(𝜎𝜓kd𝜃 + 𝛼) + (𝜎𝜓kd𝜃 + 𝛼)2,

which is nonzero as the system parameters are all positive. So matrix A is always nonsingular. Performing
straightforward computations to obtain −A−1c yields the desired result. ▪

One can show that if 𝛼

𝛾

>

𝜎

r
, we have that 𝜕xk∗

i
𝜕𝜓k
(𝜓k) > 0 for all 𝜓k, thus the equilibrium xk∗

i has a higher value in its
x component, since the connectivity 𝜓k is increasing. In such case, the fraction of uncommitted individuals (within a
cluster) is decreasing.

5 NUMERICAL STUDIES

In this section, we provide two sets of simulations to support our results. The first set of simulations is carried out to show
an application of Theorem 1. We look at a regular and unweighted network given by the Buckminster Fuller geodesic
dome, which is a regular graph on 60 nodes where each node has degree 3, see the top-right corner of Figure 2. The
outcome of this set of simulations is shown in Figure 2. The values of the parameters are set as follows: 𝛾 = 0.2, 𝛼 = 0.4, r =
0.3 and 𝜎 = 0.4.

The trajectories of xi are depicted in dashed blue lines, while the trajectories of yi are shown in solid red lines. We
observe that we reach a consensus equilibrium with xi = 𝜉 = 0.222 and yi = 𝜇 = 0.333. We note that 𝜁 = 1 − 𝜉 − 𝜇 = 0.444.
This is equal to 𝛼

rd
. Computing the values of 𝜉 and 𝜇 using the formulas in Case 2 of Theorem 1 yields the same values as

the results obtained from the simulation.
Next, we perform a second set of simulations on the networked multi-population where the interactions within

each population are modeled by means of a structured environment. We assume that every node of the networked
multi-population is a complex network, and this complex network is clustered based on the connectivity. As every popula-
tion i is now a complex network, cluster k in population i is simply the portion of nodes with k connections. We have thus
kmax clusters, where the final cluster has maximum connectivity equal to kmax. We assume that every population of the
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F I G U R E 2 Dynamics on the regular networked Buckminster dome.

F I G U R E 3 Evolutionary dynamics for different clusters of a population, with connectivity k = 1 (red), k = 10 (green) and k = 40
(blue), respectively (top). Dynamics of 𝜃x

i and 𝜃y
i for all i = 1, 2, … , 60 (bottom).

networked multi-population has the same probability distribution of the complex network, and this discrete distribution
follows a power law distribution.

This complex network was constructed using the Barabási-Albert model, and thus the complex network is scale-free.
We consider the networked multi-population where the overall network is given by the regular graph of the Buckminster
dome as before. So, we have in fact an interconnected network of 60 complex networks, where each complex network is
scale free and follows the degree distribution of the Barabási-Albert model.
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We set the system parameters to 𝛾 = 0.5, 𝛼 = 0.6, r = 0.4 and 𝜎 = 0.3. Then, we simulate the normalized dynamics
of each cluster according to Equation (4). At every iteration, for every population, we compute the 𝜃x

i and 𝜃y
i . We have

plotted the dynamics for different clusters k = 1, k = 10, and k = 40 of an arbitrary population of the multi-population.
The results are given in Figure 3 (top). Here, the normalized fractions x1

i and y1
i are plotted in red, x10

i and y10
i are plotted

in green, and x40
i and y40

i are plotted in blue. We note that the six trajectories converge to three values: x1
i and y1

i converge
to 0.3126, x10

i and y10
i converge to 0.3145 and x40

i and y40
i converge to 0.3194. We remark that for every cluster, we reach

a symmetric equilibrium since xk
i and yk

i converge to the same value. We note that the value of the components of this
equilibrium increases as the connectivity increases, which is in accordance with Theorem 6.

Finally, we perform a simulation on the model described by (5). We consider again the multi-population of the Buck-
minster dome, using the same values of 𝜎, r, 𝛼 and 𝛾 as in the previous simulation. As starting condition, we take the
steady state values of xk∗

i and yk∗
i from the previous simulation, so that we can compute the second moments Ψx

i ,Ψ
y
i and

Ψz
i . Having fixed these, we now consider the dynamics given by (5). The time evolution of 𝜃x

i and 𝜃y
i is given in Figure 3

(bottom), where 𝜃x
i is plotted in red and 𝜃y

i is plotted in blue.
We observe that the 𝜃x

i and 𝜃y
i reach a consensus equilibrium. It is worth to highlight that for these values of the system,

condition (6) is satisfied and we have reached asymptotic stability, in accordance with Corollary 5.

6 CONCLUSION

In this paper, we have studied bio-inspired evolutionary dynamics on a multi-population, where the structure is captured
by a regular network. The dynamics of an individual of each group not only change as a result of the interactions within its
own group, but they also take into account the states of neighboring populations. First, we have given a description of the
average behavior of each population, where the states of the system represent the fractions of the population committed
to each option. We have shown that the steady state is a consensus equilibrium, and a sufficient condition for stability of
this equilibrium in terms of a lower bound on the cross-inhibitory signals has been given. Secondly, we have studied the
situation where a structured environment is considered. The individuals in each population now interact by means of a
complex network. Within a group, it is then possible to cluster the group based on the internal connectivity of a player,
and we have developed a model for the dynamics of each cluster of each population. By aggregating the equations over
all clusters of a single population, we have found a description in terms of second moments. We have analyzed this model
and we have presented the results in terms of stability of the equilibria. The paper is concluded by carrying out two sets
of simulations to validate our theoretical results. In our future research, we plan to study the impact of a general network
of a multi-population, where the condition that the underlying network is regular is dropped. We also want to investigate
the heterogeneous case, where the system parameters are different for each group. Finally, we find the case of asymmetric
parameters of interest as well.
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