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Abstract 

Soil bacteria promote plant growth and protect against environmental stresses, but the mechanisms involved remain 
poorly characterized, particularly when there is no direct contact between the roots and bacteria. Here, we explored 
the effects of Pseudomonas oryzihabitans PGP01 on the root system architecture (RSA) in Arabidopsis thaliana seed-
lings. Significant increases in lateral root (LR) density were observed when seedlings were grown in the presence 
of P. oryzihabitans, as well as an increased abundance of transcripts associated with altered nutrient transport and 
phytohormone responses. However, no bacterial transcripts were detected on the root samples by RNAseq analysis, 
demonstrating that the bacteria do not colonize the roots. Separating the agar containing bacteria from the seedlings 
prevented the bacteria-induced changes in RSA. Bacteria-induced changes in RSA were absent from mutants defec-
tive in ethylene response factor (ERF109), glutathione synthesis (pad2-1, cad2-1, and rax1-1) and in strigolactone syn-
thesis (max3-9 and max4-1) or signalling (max2-3). However, the P. oryzihabitans-induced changes in RSA were similar 
in the low ascorbate mutants (vtc2-1and vtc2-2) to the wild-type controls. Taken together, these results demonstrate 
the importance of non-volatile signals and redox mechanisms in the root architecture regulation that occurs following 
long-distance perception of P. oryzihabitans.

Keywords:   Ascorbate, ethylene-responsive transcription factor 109, glutathione, plant growth-promoting rhizobacteria, 
Pseudomonas oryzihabitans, reactive oxygen species, root system architecture.

Introduction

Plants live in harmony with soil microbiome communities, 
with whom they are in constant chemical communication. 
Soil bacteria and fungi can influence plant growth and perfor-
mance, particularly through effects exerted at the seedling stage 

(Zhang et al., 2022). Plant growth-promoting rhizobacteria 
(PGPR) are comprised of different orders of bacterial species. 
They not only modulate plant growth and root system archi-
tecture (RSA) but they also trigger host immune responses 
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(Poitout et al., 2017; Shekhar et al., 2019). Soil-borne plant 
pathogens can be controlled by the status of the soil micro-
biome, in what is known as ‘disease-suppressive soil effects’, 
which rely heavily on competition for plant nutrients between 
the different microorganisms (Schlatter et al., 2017). PGPR also 
produce compounds such as cyclic lipopeptides, polyketides, 
and bacteriocins that can have a direct negative effect on soil 
pathogens (Andric et al., 2021).

PGPR modulate RSA by regulating the production of phy-
tohormones such as gibberellic acid (GA), auxin [indole acetic 
acid (IAA)], abscisic acid, and salicylic acid (SA) (Yuhashi et al., 
2000; Poitout et al., 2017; Niu et al., 2018). Some PGPR species 
such as Pseudomonas aeruginosa, Klebsiella spp., Rhizobium spp., 
and Mesorhizobium spp. secrete IAA and so directly regulate 
RSA (Ahemad and Kibret, 2014). Such mutualistic interac-
tions enhance the capacity of roots to take up nutrients (Glick, 
2012). PGPR also improve the solubilization of minerals such 
as phosphorus, zinc, and potassium, and increase iron seques-
tration by siderophore production. Several Rhizobium species 
secrete nitrogenases that improve the fixation of nitrogen in 
anaerobic soils, as well as releasing organic acids to increase 
phosphorus uptake (Yanni et al. 2001).

The control of lateral root (LR) development involves a net-
work of phytohormones that includes auxin and strigolactones 
(SLs; Sharma et al., 2020). SLs inhibit branching (Kapulnik 
et al., 2011; Rasmussen et al., 2012) and interact with other 
phytohormones, particularly auxins, to control overall root 
morphology (Agusti et al., 2011; Ruyter-Spira et al., 2011; 
De Jong et al., 2014). SLs also participate in the regulation of 
plant stress responses (Foo and Reid, 2013; De Jong et al., 2014; 
Quain et al., 2014; Cooper et al., 2018). Crucially, they are im-
portant regulators of plant–microbe interactions. For example, 
the SLs present in root exudates attract arbuscular mycorrhizal 
fungi and they also stimulate the nodulation process in legumes 
(López-Ráez et al., 2017).

Reactive oxygen species (ROS) are important components 
of the phytohormone signalling pathways that control RSA 
(Manzano et al., 2014; Kong et al., 2018; Yamada et al., 2020; 
Eljebbawi et al., 2021). For example, the control of ROS ac-
cumulation is an important factor in the emergence of LR 
primordia and it also influences the number of pre-branch sites 
(Orman-Ligeza et al., 2016). Transcription factors such as eth-
ylene response factor (ERF)109 (also called redox-responsive 
transcription factor 1) are crucial regulators of the responses of 
RSA to environmental cues through modulation of jasmonate 
(JA), ethylene, and ROS signalling (Cai et al., 2014; Matsuo 
et al., 2015). While the effects of PGPR on plant morphology 
have been extensively studied, little attention has as yet been 
paid to the roles of ROS and redox signalling in plant–bacteria 
interactions, particularly when there is no direct contact be-
tween the roots and bacteria.

The non-fermenting yellow-pigmented, Gram-negative, 
lactose- and oxidase-negative rod-shaped bacterium, Pseu-
domonas oryzihabitans PGP01 (also known as Chromobacterium  

typhiflavum and Flavimonas oryzihabitans), is an opportunistic 
human pathogen. This saprophytic bacterium has been isolated 
from a range of human wound and soft tissue infections, leading 
to septicaemia, prosthetic valve endocarditis, and peritonitis. It 
also lives freely in soils as well as on medical and other equip-
ment (Keikha et al., 2019). In plants, P. oryzihabitans has been 
linked to panicle blight in rice (Hou et al., 2020) and to stem 
and leaf rot in muskmelon (Li et al., 2021). However, other 
studies have shown that P. oryzihabitans PGP01 can exert a posi-
tive effect on root growth (Belimov et al., 2015; Cantabella et al., 
2020). The aims of the present study were firstly to determine 
the effects of P. oryzihabitans on RSA in A. thaliana, secondly to 
characterize how perception of P. oryzihabitans alters the root 
transcriptome profile, and thirdly to determine whether ROS-
related mechanisms were involved in the responses of RSA to 
perception of the presence of the bacterium.

Materials and methods

Plant material and growth conditions
Seeds of the A. thaliana Columbia-0 (Col-0) wild-type (WT), the SL-defi-
cient mutants (max2-3, max3-9, and max4-1), the ascorbate-deficient (vtc2-
1 and vtc2-2) mutants, the glutathione (GSH)-deficient (pad2-1, cad2-1, and 
rax1-1) mutants, a transformed line overexpressing ERF109 (ov32), and a 
mutant line lacking a functional transcription factor (erf109) were surface 
sterilized with 50% ethanol during 5 min, followed by three rinses with 
sterile distilled water. Sterile seeds were cultured on 10 cm square Petri 
dishes containing half-strength Murashige and Skoog medium (1/2 MS, 
pH 5.7), supplemented with 0.01% myo-inositol, 0.05% MES, 1% sucrose, 
and 1% plant agar. Plates were stored at 4 °C in a dark room for 2–4 d to 
synchronize germination. Seedlings were grown vertically in a controlled-
environment cabinet at 22 °C with a 16 h photoperiod for 6 d.

Inoculation of bacteria onto plates containing Arabidopsis 
seedlings
The growth-promoting bacterium P. oryzihabitans strain PGP01 was 
obtained from the IRTA Postharvest Plant Growth Promoter Micro-
organism (PGPM) Collection (Lleida, Catalonia, Spain). Bacteria were 
grown in nutrient yeast dextrose agar (NYDA: nutrient broth, 8  g l–1; 
yeast extract, 5 g l–1; dextrose, 10 g l–1; and agar, 20 g l–1) media for 48 h. 
Bacteria were applied to plates containing 6-day-old Arabidopsis seed-
lings according to the method of Zamioudis et al. (2013). Bacteria were 
collected in 10 mM MgSO4, and washed by centrifugation at 5000 g for 
5 min. After resuspension in 10 mM MgSO4, the bacterial concentra-
tion was adjusted to 1 × 106 by measuring turbidity at 600 nm. Aliquots 
(50 µl) of bacteria were applied at a distance of 5 cm from the root tip 
of 6-day-old Arabidopsis Col-0 seedlings. A concentration of 1 × 106 
colony-forming units (CFU) ml–1 was used to examine the effects of the 
presence of bacteria on root architecture.

For the experiments designed to determine whether volatile signals 
were involved in root responses to P. oryzihabitans, 1 cm sections of the 
agar were removed from plates so as to physically separate the agar con-
taining seedlings from the agar containing bacteria, as illustrated in Sup-
plementary Fig. S1.

Measurements of root architecture
After 7 d of co-culture with bacteria, pictures of control and bacteria-
treated plates were taken, and different parameters such as primary root 
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(PR) length, number of visible LRs, and length of LRs were measured 
using ImageJ software. LR density was calculated by dividing the number 
of LRs by the PR length for each root analysed, as described previ-
ously (Dubrovsky and Forde, 2012). The LR density method provides a 
measure of the number of LRs per unit length of PR and allows a com-
parison of LR formation in PRs with different elongation rates.

RNAseq analysis
The roots of Arabidopsis seedlings were harvested after 7 d growth in 
the absence or presence of bacteria and immediately frozen in liquid ni-
trogen. Each biological replicate contained roots from at least three plates, 
each of them with six seedlings. RNA was extracted from frozen root 
samples using TRIreagent® (SigmaAldrich). RNA quality was checked 
by Nanodrop, and RNA integrity was confirmed using a 0.8% agarose 
gel. RNAseq data were analysed as described previously (De Simone 
et al., 2017).

Statistical analysis
All of the experiments were repeated at least three times. Data represent 
the mean ±SE of the mean. Data from the experiments using Col-0 and 
bacteria were analysed by one-way ANOVA and also by a pairwise t-test. 
A two-way ANOVA was also performed on the data from studies on SL, 
ascorbate, and GSH mutants. Statistical significance was judged at the 
level P<0.05, and Duncan’s post-hoc test was used for the means separa-
tion when the differences were significant using the IBM SPSS statistics 
25 program.

Results

Previous studies have shown that the presence of P. oryzihabi-
tans PGP01 induces modifications in Pyrus and Prunus root-
stocks (Cantabella et al., 2020, 2021). The data presented in 
Fig. 1 demonstrate that perception of P. oryzihabitans PGP01 
also induces changes in RSA in Arabidopsis. In these studies, 
P. oryzihabitans was placed on the same plates but not touching 
the roots of the Arabidopsis seedlings (Fig. 1). Transcriptome 
profile comparisons of the roots of seedlings grown on plates 
in the absence or presence of bacteria were measured 7 d after 
plating (Fig. 2A; Supplementary Table S1). The RNAseq anal-
ysis revealed the absence of bacterial transcripts from the roots 
of Arabidopsis plants (Supplementary Table S1). In total, 409 
transcripts were increased in abundance in the roots grown in 
the presence of P. oryzihabitans compared with those grown in 
the absence of bacteria, and 201 transcripts were less abundant 
(Fig. 2B).

Root transcriptome responses to bacteria

A functional analysis of differentially expressed genes (DEGs) 
in response to P. oryzihabitans PGP01 (Fig. 3A) reveals Gene 
Ontology (GO) terms included are response to absence of light 
(GO:0009646), xyloglucan metabolism (GO:0010411), cellular 
amino acid metabolism (GO:00009063), carboxylic acid catab-
olism (GO:0046395), organic acid catabolism (GO:0016054), 
and several terms related to hypoxia and decreased ox-
ygen availability (GO:0036294, GO:0070482, GO:0001666, 

GO:00771456, GO:0036293, and GO:0071453). Other terms 
such as cellular response to chemical stimulus (GO:0051716, 
GO:00770887, GO:0042221, and GO:0050896) and re-
sponse to abiotic stress (GO:0033554, GO:0009628, and 
GO:0006950) were present, as were terms related to the apo-
plast (GO:0048046) and xyloglucan/xylotransferase activity 
(GO:0016762).

The genes that were highly expressed in response to P. 
oryzihabitans (Fig. 4A) include those encoding a guard cell-
enriched lipase called GGL28 (GDSL-like), heat shock factor 
(HSF) A6b, high affinity K+ transporter HAK5, and the MYB 
transcription factor MYBL2 (Fig. 2A). Transcripts encoding 
ethylene response factor 2 (ERF2), ANACO29, and the re-
lated ERF/AP2 transcription factor family protein (RAP2.9) 
were also increased in roots exposed to P. oryzihabitans (Fig. 
4A).

A small number of transcripts were decreased in abundance 
in response to P. oryzihabitans (Fig. 4B). These include mRNAs 
encoding UDP-glycosyltransferases (UGT91A1, UGT78D4, 
UGT84A1, and UGT78D1), as well as transcripts encoding 
transparent testa (TT) 7, glutathione S-transferase (GST) 26, 
and gibberellin 3-β-dioxygenase (GA3OX2; Fig. 4B).

Further analysis of the most enriched GO terms revealed 
that transcripts encoding some hormone-related proteins were 
more expressed in roots exposed to P. oryzihabitans (Fig. 5C). 
These include ERF2, ERF107, DORMANCY/AUXIN AS-
SOCIATED FAMILY PROTEIN 2 (DRM2), and KISS ME 
DEADLY 4 (KMD4) (Fig. 5A). Several transcripts associated 
with hypoxia responses (Fig. 5B) and nutrient acquisition and 
transport (Fig. 5C) were also increased in roots exposed to  
P. oryzihabitans.

Fig. 1.  Representative images of wild-type Arabidopsis seedlings that had 
been grown for 6 d in the absence of P. oryzihabitans and then for a further 
7 d in either the absence (control) or the presence of bacteria (PGP01).
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Root responses to bacteria in lines with modified 
expression of ERF109

To analyse the role of ERF109 in root responses to P. oryzihabi-
tans, RSA was compared in WT Arabidopsis seedlings, a trans-
formed line overexpressing ERF109 (ov32), and a mutant line 
lacking a functional transcription factor (erf109; Fig. 6). The 
presence of bacteria increased LR density only in the WT (Fig. 
7). LR density was not changed by perception of the bacteria 
in the ov32 plants or the erf109 mutants (Fig. 7).

Root responses to bacteria in ascorbate-deficient 
mutants

Two independent lines of ascorbate-deficient, vitamin C (vtc2) 
mutants were used to analyse the role of this low molecular 
weight antioxidant buffer in root responses to P. oryzihabitans 
(Fig. 8). LR densities were similar in all genotypes in the ab-
sence of bacteria (Fig. 8B). Moreover, the presence of P. ory-
zihabitans significantly increased LR density in all genotypes 
(Fig. 8).

A B

Fig. 2.  Differentially expressed transcripts in the roots of the wild type (A) and number of transcripts significantly increased and decreased (B). Seedlings 
had been grown for 6 d in the absence of P. oryzihabitans and then for a further 7 d in either the absence or presence of bacteria.

Fig. 3.  Gene Ontology (GO) analysis showing the biological processes involved in root responses to P. oryzihabitans.
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Root responses to bacteria in glutathione-deficient 
mutants

Three independent lines of GSH-deficient mutants [phyto-
alexin-deficient 2 (pad2-1), the cadmium-sensitive 2 (cad2-1), and 
the regulator of APX2-1 (rax1-1)], which accumulate less gluta-
thione (~30%) than the WT (Schnaubelt et al., 2015) were used 
to analyse the role of the low molecular weight antioxidant 
in root responses to P. oryzihabitans. The PRs of all genotypes 
were not significantly changed by the presence of P. oryzihabi-
tans (Fig. 9A). Moreover, the presence of P. oryzihabitans signif-
icantly increased LR density in the WT roots but not in those 
of the cad2-1, pad2-1, and rax1-1 mutants (Fig. 9B).

Root responses to bacteria in SL-deficient mutants

The presence of bacteria increased LR density only in the WT. 
LR density was not changed by perception of the bacteria in 
mutants defective in SL synthesis or SL signalling (Fig. 10B). 
LR density was decreased in the WT in the presence of the 
synthetic SL GR24 but increased in the presence of GR24 
and bacteria (Fig. 10D). In contrast, LR density was not signif-
icantly increased in the presence of GR24 and bacteria in any 
of the SL mutant lines (Fig. 10D). Moreover, bacteria-induced 
decreases in LR density were observed in the presence of 
GR24 in the roots of the max 4-1 mutants (Fig. 10D).

Root system architecture responses to P. oryzihabitans 
do not appear to be triggered by volatile signals

To test whether volatile signals were involved in the interac-
tions between P. oryzihabitans and Arabidopsis roots, 1 cm sec-
tions of the agar were removed from the plates. Thus, the agar 
containing seedlings was physically separated from the agar 
containing bacteria (Supplementary Fig. S1). PR lengths (Fig. 
11A) and LR densities (Fig. 11B) were similar in seedlings 
separated by a 1 cm gap in the agar (Control), separated from 
seedlings grown in the presence of P. oryzihabitans (Plants and 
bacteria), or separated from agar on which P. oryzihabitans was 
grown (Plants/bacteria).

Discussion

RSA undergoes fine tuning in response to cues from the soil 
microbiome (Hodge et al., 2009; Ruiz Herrera et al., 2015). 
For example, the presence of PGPR modifies RSA and primes 
plant defences against pathogens and herbivores through in-
duced systemic resistance responses (Pieterse et al., 2014; 
Rashid et al., 2017; Veselova et al., 2019). The data presented 
here demonstrate that remodelling of the root transcriptome 
and RSA occurs upon perception of P. oryzihabitans, without 
direct contact between the bacteria and the roots. However, 
root cap-derived signals from the soil microbiome were found 

Fig. 4.  Transcripts that were most increased (A) or decreased in abundance (B) in response to the presence of P. oryzihabitans PGP01. (A) AT5G45950 
(GGL28, GDSL-motif esterase/acetyltransferase/lipase); AT3G22830 (HSFA6B, heat stress transcription factor A-6b), AT4G13420 (HAK5, potassium 
channel); AT2G39980 (HP, hypotetical unknown protein); AT5G28610 (DRS1-like, ATP-dependent RNA helicase); AT5G47220 (ERF2, ethylene 
response factor 2); AT1G71030 (MYBL2, myb family transcription factor); AT1G19530 (RGAT1, RGA target 1); AT4G28850 (XTH26, xyloglucan 
endotransglucosylase 26); AT2G42250 (CYP12A1, cytochrome P450); AT3G26740 (CCL, circadian control of mRNA stability); AT2G33830 (DRM2, 
dormancy/auxin associated protein 2); AT4G06746 (RAP2.9, ERF/AP2 transcription factor family); AT1G69490 (NAC-TF, transcription factor); 
AT5G02020 (SIS, salt-induced serine rich). (B) AT2G22590 (UGT91A1, UDP-glucosyltransferase 91A1); AT5G17040 (UGT78D4, UDP-glucosyltransferase 
78D4); AT4G15480 (UGT84A1, UDP-glucosyltransferase 84A19); AT5G07990 (TT7, flavonoid 3ʹ hydroxylase activity); AT5G17220 (GSTF12, glutathione 
S-transferase 12); AT1G65060 (4CL, 4-coumarate:CoA ligase); AT3G22840 (ELIP1, early light inducible 1); AT2G23910 [NAD(P) binding, Rossmann-
fold superfamily]; AT3G12900 (S8H, scopoletin 8 hydrolase); AT5G08640 (FLS1, flavonol synthase 1); AT1G80340 (GA3OX2, gibberellin 3-oxidase 2); 
AT1G30530 (UGT78D1, UDP-glucosyl transferase 78D1); AT4G17680 (EBS1, exclusivly sensitive to bicarbonate 1); AT5G62210 (ATS3, embryo-specific 
protein 3); AT3G51240 (F3H, flavanone 3-hydroxylase).
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to be important in the regulation of RSA (Crombez et al., 
2020). The root responses to P. oryzihabitans reported here in-
volve subtle transcriptome remodelling and require SLs and 
redox signalling through GSH and ERF109, but not ascorbate. 
The RSA response was lost once the agar containing the seed-
lings was physically separated from that containing the bacteria, 
suggesting that volatile signals are not important drivers of root 
remodelling.

Considerable genetic variation in the ability of Arabidop-
sis accessions to benefit from root associations with P. simiae 
has been reported (Wintermans et al., 2016). Pseudomonas 
species deploy a range of signals that modulate root develop-
ment, including the secretion of phytohormones such as IAA 
and other small molecules, and the release of volatile organic 
compounds (VOCs; Zamioudis et al., 2013). For example, P. 
fluorescens SS101 promotes plant growth through the release of 
13-tetradecadien-1-ol, 2-butanone, and 2-methyl-n-1-tride-
cene (Park et al., 2015) while P. putida and P. fluorescens produce 
cyclodipeptides such as cyclo(l-Pro-l-Val), cyclo(l-Pro-l-
Phe), and cyclo(l-Pro-l-Tyr), which modulate the expression 

of auxin-responsive genes in roots (Ortiz-Castro et al., 2020). 
Pseudomonas oryzihabitans PGP01 is able to produce IAA, when 
supplied with appropriate substrates (Cantabella et al., 2021). 
Like other Pseudomonas strains, P. oryzihabitans PGP01 triggers 
auxin-dependent root developmental programmes including 
abundant LR formation (Ortiz-Castro et al., 2011, 2020; 
Zamioudis et al., 2013). The data presented here suggest that 
non-volatile signals are essential for the control root responses 
to P. oryzihabitans PGP01.

While volatile signals do not appear to be important in 
the control of RSA by P. oryzihabitans PGP01, the transcrip-
tome signature reveals a role for ethylene signalling, which 
regulates auxin transport and the frequency of LR formation 
(Xu et al., 2020). Transcripts encoding ERF2 and the related 
ERF/AP2 transcription factor family protein (RAP2.9) 
were more abundant in roots exposed to P. oryzihabitans. 
These transcription factors play crucial roles in immunity, 
regulating multiple SA, JA, and ROS signalling pathways 
(Yang et al., 2021). Ethylene also stimulates the expression of 
senescence-associated genes such as ANACO29 (Kim et al., 

Fig. 5.  Subsets of transcripts involved in (A) phytohormone signalling, (B) hypoxia, and (C) nutrient status that were increased in abundance in the 
presence of P. oryzihabitans PGP01. (A) Responses to hormones: AT5G47220 (ERF2, ethylene-responsive transcription factor 2); AT2G33830 (DRM2, 
dormancy/auxin associated protein 2); AT4G06746 (RAP2.9, ethylene responsive RAP2.9); AT3G23150 (ETR2, ethylene response 2); AT5G61590 
(ETR107, ethylene responsive transcription factor 107); AT3G59940 (KMD4, kiss me deadly 4, controls cytokinin signalling); AT1G21130 (IGMT4, 
indole glucosinolate-O-methyltransferase 4); AT4G39780 (ERF060, ethylene responsive factor 1); AT1G48690 (GH3-type, auxin responsive GH3-type 
protein); AT1G56220 (DRMH3, dormancy-associated protein homologue 3), AT4G30270 (SEN4, senescence 4, brassinosteroid response); AT1G43160 
(RAP2.6, ethylene responsive factor RAP2.6). (B) Responses to hypoxia: AT1G19530 (RGAT1, RGA Target 1); AT3G23150 (ETR2; ethylene response 
2); AT2G15890 (MEE14, maternal effect embryo arrest 14); AT1G33055 (HUP32, hypoxia response protein 32); AT5G65207 (HP, hypothetical protein 
responsive to hypoxia); AT3G10020 (HUP26, hypoxia response protein 26); AT1G10140 (UP, uncharacterized protein responsive to hypoxia); AT2G40000 
(HSPRO2, orthologue sugar beet HSPRO2); AT4G38470 (STY46, serine/threonine kinase); AT4G27450 (HUP54, hypoxia response protein 54); 
AT1G26800 (MPSR1, misfolded protein sensing ring E3 ligase); AT5G66650 (CMCU, chloroplast-localized mitochondrial calcium uniporter); AT4G24230 
(ACBP3, acyl-CoA-binding domain 3). (C) Transport facilitation and root growth: AT4G13420 (HAK5, potassium channel transporter 5); AT1G54970 
(RHS7, root hair specific 7, ethylene regulated); AT4G36670 (PMT6, POLYOL/monosaccharide transporter 6); AT5G17860 (CCX4, cation/calcium 
exchanger); AT1G08430 (ALMT1, aluminium activated malate transporter); AT5G66650 (CMCU, chloroplast-localized mitochondrial calcium uniporter 
3); AT2G47160 (BOR1, boron transporter 1); AT5G22410 (RHS18, root hair specific 18); AT4G38390 (RHS17, root hair specific 17); AT1G22710 (SUC2, 
sucrose protein symporter 2); AT2G32270 (ZIP3, zinc transporter 3 precursor).
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2015), which is also highly expressed in roots exposed to P. 
oryzihabitans. Ethylene promotes the homeostasis of Na+/K+, 
nutrients, and ROS to enhance plant tolerance to salinity 
(Tao et al., 2015).

The perception of P. oryzihabitans caused changes to the root 
transcriptome even though there was no direct colonization 
or physical contact between the organisms except through the 

agar. The genes that were most highly expressed in response 
to P. oryzihabitans include mRNAs encoding GDSL28 and 
HSFA6b. HSFA6b plays a pivotal role in pant responses to ab-
scisic acid and in thermotolerance (Huang et al., 2016) as well 
as ROS accumulation and the expression of antioxidant genes 
(Wenjing et al., 2020). Other transcripts that were increased 
in abundance include DRM2, which is important in plant  

Fig. 6.  Representative images of wild-type Arabidopsis seedlings, seedlings overexpressing ERF109 (ov32), and erf109 mutants. Seedlings had been 
grown for 6 d in the absence of P. oryzihabitans and then for a further 7 d in either the absence (control) or the presence of bacteria (PGP01).
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Fig. 7.  The effect of the presence of P. oryzihabitans PGP01 on primary root length (A) and lateral root density (B) in wild-type A. thaliana, a transgenic 
line overexpressing redox-responsive transcription factor 1 (ov32), and a erf109 mutant line. Samples of bacterial inoculum was placed 5 cm away for the 
tips of the primary roots of 6-day-old seedlings that had been grown on agar plates. Root parameters were measured 7 d after inoculation. Data show 
the mean ±SE of three independent biological samples. Asterisks indicate significant differences according to t-test (P<0.05).
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defence responses (Roy et al., 2020), and KMD4, which targets 
type-B ARR proteins for degradation and is required for cy-
tokinin responses through control of transcription factors (Kim 
et al., 2013).

Transcripts encoding enzymes and proteins involved in plant 
responses to hypoxia, such as unknown proteins 26 and 32, 
were increased in roots exposed to P. oryzihabitans (Fig. 5B). 
Severe oxygen depletion can suppress LR formation (Shukla 
et al., 2019; Pedersen et al., 2021). The uptake of oxygen in 
respiration by the bacteria may contribute to some of the 
observed metabolic adaptations in the transcriptome signature 
(Pucciariello and Perata, 2021). Other genes that were highly 
expressed in the presence of bacteria encode proteins that are 
involved in nutrient acquisition and transport. For example, the 
levels of transcripts encoding several root hair-specific proteins 
including RHS7, RH17, and RH18, and a number of trans-
porters such as the sucrose transporter SUC2, the POLYOL/
monosaccharide transporter PMT6, the boron transporter 1 
BOR1, the aluminium-activated malate transporter ALMT1, 
and the zinc transporter 3 precursor ZIP3 were higher in roots 
in the presence of P. oryzihabitans. Similarly, the levels of tran-
scripts encoding HAK5 that is required for plant growth and 

K+ acquisition particularly under saline conditions (Nieves-
Cordones et al., 2010) were significantly higher in the roots 
exposed to P. oryzihabitans, as were transcripts encoding the 
MYB transcription factor MYBL2, which is a key negative 
regulator of anthocyanin biosynthesis in response to changes 
in sucrose availability (Dubos et al., 2008).

The expression of genes encoding UDP-glycosyltransferases 
UGT91A1, UGT78D4, UGT84A1, and UGT78D1, as well as 
those encoding transparent testa TT7 and GST26, which play 
an important role in regulating the availability of secondary 
metabolites, was lower in bacteria-exposed roots. Similarly, 
transcripts encoding GA3OX, which catalyses the conversion 
of precursor GAs to their bioactive forms during vegetative 
growth (Mitchum et al. 2006), were significantly lower in the 
roots exposed to P. oryzihabitans.

Targeted ROS production is crucial to the hormone-depen-
dent regulation of RSA (Eljebbawi et al., 2021). For example, 
hyrdogen peroxide is required for brassinosteroid-mediated 
cell division in the root quiescent centre and for seedling de-
velopment (Tian et al., 2018). The data presented here provide 
evidence that ROS signalling is important in RSA responses 
to P. oryzihabitans. For example, while levels of ERF109  
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transcripts were not changed in the roots exposed to bacteria, 
the P. oryzihabitans-induced changes in RSA were absent from 
the erf109 mutants. ERF109 is involved in the amplification 
of ROS signalling and systemic transmission of ROS signals in 
response to biotic and abiotic stresses (Bahieldin et al., 2016), 
as well as in the JA-dependent regulation of RSA (Xu et al., 
2020).

The P. oryzihabitans-induced changes in RSA were sim-
ilar in the vtc mutants that are deficient in the low molecular 
weight antioxidant ascorbate (Foyer et al. 2020) and the WT 
plants. This finding demonstrates that changes in total anti-
oxidant capacity alone are not important in plant–bacteria 

interaction. The vtc mutants have modified phytohormone 
signalling pathways (Kerchev et al., 2013; Caviglia et al., 2018) 
but these changes do not influence the responses of RSA to P. 
oryzihabitans. In contrast, the P. oryzihabitans-induced changes 
in LR density were absent from the cad2-1, pad2-1, and rax1-
1 mutants, indicating that GSH-mediated redox regulation is 
important in root responses to the bacterium. GSH is essen-
tial for root development (Passaia et al., 2014, Ehrary et al., 
2020). The GSH-deficient rootmeristemless1 (rml1) mutant 
is unable to develop roots because of impaired root apical 
meristem functions (Vernoux et al., 2000). The glutathione 
reductase-deficient miao mutants also show poor root growth 
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Fig. 10.  The effect of the presence of P. oryzihabitans PGP01 on primary root length (A) and lateral root density (B) in wild-type A. thaliana and mutants 
that are defective in SL synthesis (max3-9 and max4-1) and signalling (max2-3). Samples of bacterial inoculum were placed 5 cm away for the tips of the 
primary roots of 6-day-old seedlings that had been grown on agar plates. Root parameters were measured 7 d after inoculation. Data show the mean 
±SE of three independent biological samples. Asterisks indicate significant differences according to t-test (P<0.05).
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(Yu et al., 2013). Mutants lacking glutathione peroxidases 
have modified root phenotypes (Passaia et al., 2014). Cru-
cially, glutaredoxins (GRXs) such as GRXS8 and GRXS17 
are involved in the regulation of RSA (Ehrary et al., 2020; 
Martins et al., 2020). GSH enhances the sensitivity of roots to 
auxin (Pasternak et al., 2020) and is required for the conver-
sion of indole butyric acid (IBA) to IAA (Trujillo-Hernandez 
et al., 2020). The data presented here demonstrate that the 
root GSH pool is essential for the facilitation of bacteria-
driven changes in RSA.

The GSH pool is involved in the SL-dependent control 
of RSA through the MAX2 protein (Marquez-Garcia et al., 
2014). SLs are important in rhizosphere communication (Bou-
wmeester et al., 2007) and are required for plant responses to 
nutrient deficiencies (Shindo et al., 2020). They are required 
for the initiation of symbiotic interactions with arbuscular my-
corrhizal fungi, when nutrients are limiting (Akiyama et al., 
2005; Aliche et al., 2020). The bacteria-induced increases in 
LR density were absent from mutants that are defective in SL 
synthesis or signalling, demonstrating the essential role of these 
phytohormones in plant–bacteria interactions.

In summary, evidence is presented showing that the root 
system of A. thaliana seedlings is changed in the presence of P. 
oryzihabitans PGP01 in a manner that suggests that this bacte-
rium functions as a PGPR. Moreover, the observed changes 
in the root transcript profile are due to increases in mRNAs 
encoding proteins involved in mineral nutrition and phyto-
hormone signalling but not defence or immune responses. 
Crucially, the data show that the long-distance perception of P. 
oryzihabitans PGP01 is sufficient to modulate RSA. ERF109, 
SLs, and GSH are key components required for the bacteria-
mediated control of RSA. These findings demonstrate that SL 
and redox signalling are important factors in root responses to 
P. oryzihabitans, but changes in antioxidant capacity alone do 
not influence this process.

Supplementary data

The following supplementary data are available at JXB online.
Fig. S1. Representative images of wild-type Arabidopsis 

seedlings that were separated by a 1 cm gap in the agar, by a 
1 cm gap from seedlings growing in the presence of P. oryzi-
habitans, or separated from agar on which P. oryzihabitans was 
grown. 

Table S1. Bacteria-induced changes in differentially 
expressed genes in Arabidopsis thaliana roots. 
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