
A Multi-Class Intrusion Detection System Based on
Continual Learning

Chrysoula Oikonomou
Information Technologies Institute

Thessaloniki, Greece
chrisaoikon@iti.gr

Ilias Iliopoulos
Information Technologies Institute

Thessaloniki, Greece
ilias nbp@iti.gr

Dimosthenis Ioannidis
Information Technologies Institute

Thessaloniki, Greece
djoannid@iti.gr

Dimitrios Tzovaras
Information Technologies Institute

Thessaloniki, Greece
Dimitrios.Tzovaras@iti.gr

Abstract—With the proliferation of smart devices, network
security has become crucial to protect systems and data. In order
to identify and categorise different network threats, this study
introduces a flow-based Network Intrusion Detection System
(NIDS) based on continual learning with a CNN backbone.
Using the LYCOS-IDS2017 dataset, the study explores several
continuous learning techniques for identifying threats including
denial-of-service and SQL injection. Unlike previous approaches,
this work treats intrusion detection as a multi-class classification
problem, rather than anomaly detection. The findings show how
continuously learning models may identify network intrusions
with high recall rates and accuracy while generating few false
alarms. This study contributes to the development of an adaptive
NIDS that can handle attack classification simultaneously with
detection, and that can be trained online without periodic
offline training. Additionally, utilising the improved version of
the dataset adds value to the research on LYCOS-IDS2017 by
presenting results for untested models.

Index Terms—Continual Learning, Intrusion Detection, Multi-
class Classification, Network Security, Supervised Learning, On-
line learning

I. INTRODUCTION

During the last few years there is a rapid increase in the
number of smart and embedded devices, and this growth is
projected to continue due to the ongoing development of
the Internet of Things (IoT) ecosystem [1]. Such devices are
a basic component in multiple environments, such as smart
homes, industries, and even e-Health systems. The information
exchanged is often private and its breach may result in
violation of individual rights, as well as in increased economic
risks in industrial environments. The breach of such infor-
mation becomes a great risk for organisations, as malicious
users develop sophisticated cyber attacks to take advantage of
possible network security vulnerabilities. In order to ensure the
CIA triad (Confidentiality, Integrity, and Availability) of the
data, security policies and mechanisms should be deployed.
NIDSs are regarded as one of the most crucial elements of a
company’s network security, since they act as the first line of
defence against cyber threats and are in charge of discovering
potential network intrusions. They also have an important
role in industrial environments, as they prevent the potential

consequences of a security threat that have an impact on both
economic and legal level.

NIDSs based on continual learning algorithms receive a lot
of research attention, as they give the opportunity to be kept
updated with the continuously evolving cyber attacks. Contin-
ual Learning (CL) provides the ability to learn, maintain, and
fine-tune progressively obtained information. Furthermore, CL
based NIDSs significantly reduce the costs of required periodic
retraining as they can recognise new patterns given only a
small batch of network data. During the retraining process,
is important that the data serving as an input are different
from the previous inputs, so that there is no chance of over-
fitting. A CL based NIDS also offers the ability to adapt to new
patterns of benign traffic. As stated in the Longitudinal Study
presented in [2], apart from the continuously evolving attack
vectors, normal traffic patterns also present multiple variations
through time. Hence, a CL based NIDS can adapt to these
changes as well, and can reduce false alarms significantly,
progressively. In this paper a NIDS trained with CL techniques
is presented. The authors tested twelve different CL algorithms
to compare their performance, in terms of their efficiency
in correctly detecting and classifying malicious traffic. The
algorithms are trained and tested with the use of the LYCOS-
IDS2017 dataset[3]. The contribution of this paper is two-fold:

1) The authors fairly compare state-of-the-art methods in
CL and determine which works best at a specific mem-
ory and architecture setting.

2) It is argued that Multi-Class NIDS on the LYCOS-
IDS2017 dataset has promising results and is worth of
further experimenting.

The rest of the paper is organised as followed. Section II
includes a brief analysis of the Continual Learning concept
and methods. Section III presents the related work on network-
based IDSs based on CL techniques. In Section IV, there is a
description of the dataset used, as well as all the prepossessing
applied on it. Section VI includes a detailed analysis of the
methodology followed for the training and testing procedures,
and discusses the results of the implementation, in terms of

86

2023 IEEE International Conference on Cyber Security and Resilience (CSR)
20

23
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
yb

er
 S

ec
ur

ity
 a

nd
 R

es
ili

en
ce

 (C
SR

) |
 9

79
-8

-3
50

3-
11

70
-9

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
R5

75
06

.2
02

3.
10

22
49

74

Authorized licensed use limited to: Centre for Research and Technology (C.E.R.T.H.). Downloaded on September 21,2023 at 10:08:57 UTC from IEEE Xplore. Restrictions apply.

efficiency. Finally, the conclusions of this work as well as
discussion on future work are presented in Section VII.

II. CONTINUAL LEARNING

Since the nature of normal traffic in an underlying network
change over time, the need for a continually evolving NIDS
becomes apparent. Continual Learning (CL), also known as
Incremental Learning or Life-long Learning, describes the
ability of a model to learn continually from a stream of
data without forgetting previously obtained knowledge. The
learning process of a CL based framework is the following :
the model is trained incrementally on task (xTi

, yTi
) where x

is the feature vector and y the target vector of task Ti,for
i = 1, 2, ..N and N the number of tasks in the scenario.
The grand goal of CL is to strike a balance between learning
stability and plasticity. Some of the most important challenges
involved in CL are:

• Catastrophic Forgetting (CF): NNs have the tendency
to drastically forget previously acquired knowledge upon
learning new information.

• Class Imbalance (CI) : Real life data, especially network
data sets, have a lot of under-represented classes which
makes unbiased training a challenge. For example, the
amount of normal traffic that passes through a network
is usually much bigger than the malicious attacks.

CL methods have typically been taxonomized into three major
categories based on the techniques they use to tackle the afore-
mentioned problems: regularisation-based, memory-based and
parameter-isolation based.[4] Regularisation based methods
impose constraints on the parameters of the model to avoid
a considerable shift in their values during the novel input.
Memory-based techniques store a subset of samples from
previous tasks for either replay while training on a new task
or for regularisation purposes. When storing samples is not
possible due to privacy or storage concerns, an alternative
is Generative Replay which trains a deep generative model
such as GAN to generate pseudo-data that mimic past data
for replay. The main disadvantages here are that it takes a
long time to train generative models. Knowledge Distillation
methods which present an effective way for knowledge transfer
between networks. For the online incremental learning setting,
most existing methods rely on the rehearsal strategy and
focus on better utilisation of the memory. In addition to the
aforementioned CL challenges, the existing literature has fo-
cused on anomaly detection, treating the problem of intrusion
detection as binary, and not as a multi-class classification
of attacks. It’s important to note here that, to the best of
the authors’ knowledge, this is the first attempt to create
an online CL framework capable of performing multi-class
network intrusion detection.

III. RELATED WORK

While the use of Machine Learning techniques is very
common in the development of NIDSs, the majority of the
works published focus on offline models. This section in-
cludes a literature review of the papers that introduced NIDSs

using CL algorithms. All of the papers examined concern
anomaly-based detection. Intrusion detection using anomaly-
based NIDSs does not require signatures, namely pre-defined
patterns to detect the attacks. The theory behind anomaly-
based detection is to discover malicious instances by modelling
normal traffic. Hence, any divergence from this pattern is seen
as suspicious[5].

In[6], the authors investigated the possibility for continu-
ous learning algorithms to maintain prior knowledge while
gradually learning new data patterns. Using the NSL-KDD
and the CICIDS 2017 datasets, they conduct an experimental
and analytical evaluation of advanced intrusion detection sys-
tems employing three important continual learning approaches:
learning without forgetting, experience replay, and dark ex-
perience replay. Their models outperformed state-of-the-art
works in terms of accuracy and FPR while they were able
to progressively learn newer data patterns. They concluded by
highlighting the shortcomings of conventional statistical and
machine learning methods that do not use gradients to solve
the covariate shift problem.

Authors of [7] explored the application of generative replay
(GR), initially introduced in [8], for continuous learning to
the issue of variational autoencoder (VAE) based anomaly
detection. They suggested a straightforward yet effective tech-
nique to reduce catastrophic forgetting. Their method takes
advantage of the VAE’s generating capabilities, which is not
often employed for anomaly detection.

Class Imbalance (CI) is a challenging issue in CL. In order
to reduce CI in a Class Incremental Setting, the authors of
[9] investigated algorithmic level solutions to the CI issue
that arises when using network data and the CL framework,
and proposed a CL-based A-NIDS (CIS). Their approach
provided positive outcomes, and they also investigated how
the buffer size affected the performance indicators, which calls
for careful consideration. The same research team introduced
also a CL-based anomaly-based NIDS (A-NIDS) framework
in [10]to recognise malicious traffic with new attack patterns.
The suggested architecture is among the most scalable options
since it never uses the outdated training data whenever a
new threat emerges. They discovered that Domain Incremental
Learning (DIL) configuration is more similar to actual traffic
patterns than Class Incremental Learning (CIL), which is
more vulnerable to Task Execution Order Sensitivity (TEOS).
Hence, DIL paired with sophisticated memory population
techniques is a suitable option for creating practical CL-based
A-NIDS.

IV. LYCOS-IDS2017 DATASET AND DATA
PREPROCESSING

A. LYCOS-IDS2017 Description

A lot of researchers have focused on designing IDSs for
network attacks based on machine learning techniques. One
of the main challenges faced when developing such systems
is the use of a suitable dataset. A dataset should meet a number
of criteria to contribute to the effectiveness of the IDS. One
of the most important characteristics to be considered is the

87
Authorized licensed use limited to: Centre for Research and Technology (C.E.R.T.H.). Downloaded on September 21,2023 at 10:08:57 UTC from IEEE Xplore. Restrictions apply.

size of the dataset. There should be enough data in order to
efficiently form patterns and hence increase the classification
performance. In addition, the quality of the data should also
be assessed. In other words, the feature describing each entry
of the dataset should be adequate to successfully characterise
the entry. This is achieved both by having a sufficient amount
of features and at the same time by minimizing the noise on
it like missing values. Last but not least, a dataset should
be also evaluated, in terms of up-to-dateness. Taking into
consideration that cyber attacks are continuously adapting
according to the technological advancements of systems and
networks, as well as new, more sophisticated attacks are
introduced, it is crucial that the dataset that an IDS is trained
on, is capable of describing as much of the possible current
threats as possible.

The authors of [3] were based on CIC-IDS2017, a dataset
previously introduced by [11]. The initial dataset, which was
captured on a real network, comes with 50 GB of raw data in
PCAP format and 84 flow-based characteristics stored in CSV
files. The program that divides packets into flows and retrieves
their properties is called CICFlowMeter [12]. According to
[13] a network flow is defined as A network flow is defined as
an unidirectional sequence of packets between given source
and destination endpoints. Flow records include details such
as IP ad- dresses, packet and byte counts, timestamps, Type of
Service (ToS), application ports, input and output interfaces,
etc.. They proposed an updated version of that dataset, by
applying several improvements. In detail, their contribution
was divided into four sections. First, they highlighted certain
fundamental issues with the intial CSV files, and -as there was
no labeling tool available for this dataset- they suggested a
flow extractor called LycoST, to resolve the issues uncovered.
Their tools were used to create a new dataset named LYCOS-
IDS2017. Both the tools and the dataset they produced are
openly accessible.

LYCOS-IDS2017 includes network traffic that is normal,
meaning it may not cause damage to the network and/or the
system, while also it contains 14 different types of known
network attack types. In total 1837498 entries are included
and every entry in the dataset is described by 83 features
(including the label). The labels were created by a labelling
process included in the LycoSTand tool. In Table I there is a
class distribution of the dataset.

B. Data preprocessing

Data preprocessing is a crucial step when designing an
IDS based on machine learning algorithms. The four main
refinements performed in the dataset are listed below.

1) Handle missing values: Eliminated rows including
missing values, as they were coming from classes rep-
resented by numerous of instances, so the deletion did
not cause any problem to the training process.

2) Handle features with irrational values: There were
three features, that described packet length and time
duration, occasionally represented by negative values.
Those indexes were eliminated from the dataset.

TABLE I
LYCOS-IDS2017 CLASS DISTRIBUTION

Label Number of Instances
Initial After Remediation

Benign 1395675 1140804
Bot 735 735
DDoS 95683 95180
DoS GoldenEye 6765 6765
Dos Hulk 158988 157996
DoS Slowhttptest 4866 4674
Dos Slowloris 5674 4725
FTP-Patator 4003 3998
Heartbleed 11 11
PortScan 160106 67217
SSH-Patator 2959 2957
Web Attacks-Brute Force 1360 (merged class)
Web Attacks-SQL Injection 12 (merged class)
Web Attacks-Sql Injection 661 2031
Total 1837498 1487093

3) Handle features with zero variance: Features that were
represented by the same value across all samples of the
dataset were completely removed, as they could not offer
any statistical information, in the model training phase.

After eliminating the rows and columns mentioned in the
previous steps, the process continued by identifying features
which present high correlation. High correlation features are
more linearly dependant and therefore nearly equally affect
the dependent variable. As a result, when two features have
a significant correlation, one of the is excluded. To detect
such features Pearson Correlation Coefficient was calculated
[14]. The correlation coefficient’s value ranges from +1 to -
1 depending on the strength of the association. The degree
of absolute correlation between the two variables is indicated
by a value of 1. As the correlation coefficient value gets
closer to zero, the relationship between the two variables will
get weaker. For the purposes of this implementation, features
that presented a coefficient value than |0.97| were removed.
Following the methodology suggested by [3], the input set was
sized down to 10 features, using recursive feature elimination
(RFE). The final step for the data remediation was to check
for duplicate indexes and remove them too. After completing
all data remediation procedures, the final dataset contained
1633101 entries, described by 10 features each (including the
label).

Another challenging characteristic of the dataset, as it can
also be observed in I, is the large unevenness in the distribution
of instances between the classes. To address this, two more
modifications were implemented. At first,three different web-
attack classes were merged into one as they have a high value
of similarity concerning, their behaviour network-wise [15]
and finally up-sampling and down-sampling was performed.

V. COMPARED METHODS

A. Regularization-based methods

Elastic Weight Consolidation (EWC): imposes a quadratic
penalty to regularise the update of model parameters that were
important to previous tasks. The importance of parameters

88
Authorized licensed use limited to: Centre for Research and Technology (C.E.R.T.H.). Downloaded on September 21,2023 at 10:08:57 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE PERFORMANCE RESULTS OF THE DIFFERENT AGENTS USED FOR THE NIDS

Model Accuracy Recall Rate False Alarms Precision F1-Score
GDUMB 97,11% 93,32% 8.3% 93,77% 91,29%
ICARL 90,21% 80,10% 24.72% 83,40% 73,11%
GSS 87,12% 89,79% 9.34% 91,05% 87,27%
ER 84,64% 95,57% 5.12% 95,52% 94,48%
ASER 84,18% 59,39% 51.79% 74,40% 50,11%
MIR 82,85% 94,45% 6.4% 94,66% 92,88%
AGEM 56,69% 93,35% 6.4% 95,04% 91,94%
SSR 51,16% 37,82% 65,74% 69,25% 22,47%
NCM 49,09% 66,36% 28.01% 67,52% 60,43%
STREAMINGLDA 44,37% 62,04% 30.79% 61,07% 54,86%
EWC 49,07% 59,21% 23.08% 81,61% 60,19%
LWF 8,32% 76,68% 0.05% 99,91% 86,76%
OFFLINE 99,23% 96,01% 5.11% 96,20% 94,66%

is approximated by the diagonal of the Fisher Information
Matrix.[16]

B. Knowledge Distillation methods

Learn without Forgetting (LwF: . incorporates a teacher
model which is the model after learning the last task, and a
student model which is the model trained with the current task.
It’s worth noting that LwF is heavily reliant on the relatedness
between the new and old tasks. Thus, it may not perform well
on tasks with different distributions.[17]

C. Memory-based methods

The basic concept behind memory-based methods is the
following: For every incoming batch of samples, the method
retrieves another batch from a memory buffer, updates the
model using both the incoming and memory batches and then
updates the buffer with the incoming batch. What differenti-
ate various memory-based methods are the memory retrieval
strategy, model update and memory update strategy.[4]

Averaged GEM (AGEM): prevents CF by penalising the
parameter update with the samples on the memory buffer. At
every training step, GEM ensures that the loss of the memory
samples for each individual preceding task does not increase,
while A-GEM ensures that the average loss for all past tasks
does not increase.[18][4]

Incremental Classifier and Representation Learning
(iCaRL): incorporates a loss function which includes a clas-
sification loss to encourage the model to predict the correct
labels for new classes and a Knowledge Distillation loss to
prompt the model to reproduce the outputs from the previous
model for old classes.[19][4]

Experience Replay (ER): is a very effective replay-based
method which applies reservoir sampling for memory update
and random sampling for memory retrieval. Reservoir sam-
pling ensures that all data points have the same probability to
be selected for storage in the memory buffer. ER trains the
model with the incoming and memory batches together using
the cross-entropy loss. Despite its simplicity, recent research
has shown that ER outperforms many specifically designed
CL approaches with and without a memory buffer[20][4].

Adversarial Shapley Value Experience Replay (ASER):
is a very interesting variation of ER which uses the efficient
KNN Shapley Value (KNN-SV) computation for it’s memory
retrieval and update stratiegies. ASER scores memory data
samples according to their ability to preserve latent decision
boundaries for previously observed classes while interfer-
ing with latent decision boundaries of current classes being
learned. [21][4].

Maximally Interfered Retrieval (MIR): focuses on im-
proving the aforementioned ER by applying a different mem-
ory retrieval strategy. It selects memory samples that are max-
imally interfered (the largest loss increases) by the parameter
update with the incoming batch and applies reservoir sampling
for memory update. [22][4]

Gradient based Sample Selection (GSS): focuses on a new
memory update strategy. Specifically, it tries to diversify the
gradient directions of the samples in the memory buffer. To this
end, GSS maintains a score for each sample in the buffer, and
the score is calculated by the maximal cosine similarity in the
gradient space between the sample and a random subset from
the buffer. When a new sample arrives and the memory buffer
is full, a randomly selected subset is used as the candidate set
for replacement. The score of a sample in the candidate set
is compared to the score of the new sample, and the sample
with a lower score is more likely to be stored in the memory
buffer.[23][4]

Greedy Sampler and Dumb Learner (GDUMB): greedily
updates the memory buffer from the data stream with the
constraint to keep a balanced class distribution. At inference, it
trains a model from scratch using the balanced memory buffer
only.[24][4]

D. Classifier Replacements

The authors also compared four online continual learn-
ing methods for updating the classifier F using pre-trained
universal image features from backbone B. These methods
were chosen due to their ability to learn one sample at a
time in a single pass over a dataset without task labels (i.e.,
online continual learning) with low memory and compute
requirements.

89
Authorized licensed use limited to: Centre for Research and Technology (C.E.R.T.H.). Downloaded on September 21,2023 at 10:08:57 UTC from IEEE Xplore. Restrictions apply.

TABLE III
DETAILS OF THE CNN ARHITECTURE.

Layer Type Output Shape Param
Convd1 - 1 [BS, 64, 10] 256
MaxPool1 - 2 [BS, 64, 5] -
ReLu - 3 [BS 64, 5] -
Flatten - 4 [BS, 320] -
Linear1 - 5 [BS, 128] 41088
Dropout1 - 6 [BS, 128] -
Linear2 - 7 [BS, 12] 1548

Nearest Class Mean (NCM): maintains one running mean
vector per class each with an associated counter denoting
the number of samples represented in each mean. During
inference, it assigns the label of the nearest class mean to
a new example (Euclidean distance is used).[25]

Streaming Linear Discriminant Analysis (SLDA): main-
tains one running mean vector per class with an associated
counter, which are updated in the same way as NCM, and one
shared running covariance matrix among classes. Intuitively,
SLDA makes predictions by assigning a new example the label
of the closest Gaussian in feature space defined using the
running class means and shared covariance matrix. NCM is
a special case of SLDA where the covariance matrix is equal
to the identity matrix.[25][26]

Streaming Softmax Replay: maintains a memory buffer
which equally distributes examples among classes seen so
far. When the buffer is full, it randomly replaces an example
from the most represented class with a new example. During
training, it randomly defines a number of examples from the
replay buffer, combines them with the new example, and
makes a single update using stochastic gradient descent with a
cross-entropy loss. While effective, streaming softmax replay
can be memory intensive due to the storage of its memory
buffer. [25]

VI. SYSTEM ARCHITECTURE AND EXPERIMENTAL
RESULTS

A. The proposed NIDS Architecture

The same backbone CNN architecture was used for the
comparison of the different online CL methods. Details on
the layers and number of parameters used can be found at
III. For the sake of fair comparison across agents, the same
basic training settings we re used: learning rate lr = 10e− 5,
memory size M = 10000 samples and optimiser Adam.
The online incremental training scenario has twelve tasks
Ti, i = 1, ...12 and one class per task Ti.

B. Evaluation metrics

In order to compare the performance of the models tested,
the evaluation of their performance was based on the following
metrics:

• Accuracy: Accuracy is defined as the proportion of
correct predictions produced by an algorithm out of all
predictions made by the algorithm.

• Recall Rate: The percentage of successfully predicted
outcomes to all forecasts is known as recall. It is some-
times referred to as sensitivity or specificity.

• Precision: The percentage of positive identifications that
was actually correct.

• F1-Score: A metric that combines recall and accuracy. It
is referred to as the harmonic mean of the two.

• False Alarms: Number of alerts that falsely indicates that
malicious activity is detected.

Table II includes the evaluation metrics for all models tested.
Besides the aforementioned evaluation metrics, an offline
training scenario, with a higher learning rate lr = 10e − 3,
was added for the evaluation of the online CL methods’
performance, which is included in TableII.

C. Performance Results

Upon observing the performance results of the different
agents used for comparison shown at Table II, the authors
extract the following conclusions:

• GDUMB has the best multi-classification performance
(which is excellent compared to the offline training sce-
nario) but it lags behind in regard to false alarms which
is a very important metric for a NIDS.

• LwF has the lowest false alarm rate but the worst
classification performance. The main reason behind this
is the aforementioned CI issue between normal traffic and
attacks. Upon training on task 9 which contains the vastly
over-represented benign class, the model fails to preserve
knowledge from previous classes leading to extremely
low false alarms and classification performance.

• ER seems to be the best performing method (generally)
since it has the finest trade-off between multi class
accuracy and false alarm predictions. It also has the best
Precision, Recall and F1-Score than all other methods.

• All classifier replacements had a worse performance than
memory-based methods, which can be attributed to the
fact that the CNN architecture that was used, although
not deep, it was not pre-trained and weight initialisation
plays a very important role to the feature extraction.
It is important to note that the classifier replacements
could have a much better performance with a different
backbone.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the authors tested twelve different CL based
algorithms to develop a network IDS. This is the first published
work that deals with intrusion detection as a multi-class
classification problem using CL. In detail, the authors built a
multi-class classifier that is able to classify a network flow in
one of 12 different categories, one representing normal traffic
and 11 representing different network attack types. These
algorithms were trained and tested using the LYCOS-IDS2017
dataset. All algorithms were compared using the following
metrics; accuracy, recall, precision, f1-score and false alarm
rates. The results induced show that memory based methods
(GDUMB,ER) perform better in terms of accuracy and false

90
Authorized licensed use limited to: Centre for Research and Technology (C.E.R.T.H.). Downloaded on September 21,2023 at 10:08:57 UTC from IEEE Xplore. Restrictions apply.

alarm predictions and that multi - class prediction of network
attacks in an online incremental learning scenario is possible
and future scientific work should be pointed towards that
direction.

As a next step the authors plan to test different backbone
models, to investigate how they affect the performance of the
models. In addition, it is intended to further explore continual
learning algorithms, to implement a NIDS that handles the
classification as an unsupervised problem.

ACKNOWLEDGMENT

This work is co-funded by the European Union (EU)
within the RECLAIM project under grant agreement number
869884. The RECLAIM project is part of the EU Framework
Programme for Research and Innovation Horizon 2020.

REFERENCES

[1] E. Perspectives and C. Report, “Cisco annual internet report - cisco
annual internet report (2018–2023) white paper,” 2022. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[2] B. Anderson and D. McGrew, “Machine learning for encrypted
malware traffic classification: Accounting for noisy labels and non-
stationarity,” ser. KDD ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 1723–1732. [Online]. Available:
https://doi.org/10.1145/3097983.3098163

[3] A. ROSAY, F. CARLIER, E. CHEVAL, and P. LEROUX, “From cic-
ids2017 to lycos-ids2017: A corrected dataset for better performance,”
in IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, ser. WI-IAT ’21. New York, NY, USA:
Association for Computing Machinery, 2022, p. 570–575. [Online].
Available: https://doi.org/10.1145/3486622.3493973

[4] “Online continual learning in image classification: An empirical survey,”
Neurocomputing, vol. 469, pp. 28–51, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231221014995

[5] T. Hamed, R. Dara, and S. C. Kremer, “Chapter 6 - intrusion
detection in contemporary environments,” in Computer and Information
Security Handbook (Third Edition), third edition ed., J. R. Vacca, Ed.
Boston: Morgan Kaufmann, 2017, pp. 109–130. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128038437000065

[6] S. Prasath, K. Sethi, D. Mohanty, P. Bera, and S. R. Samantaray,
“Analysis of continual learning models for intrusion detection system,”
IEEE Access, vol. 10, pp. 121 444–121 464, 2022.

[7] F. Wiewel and B. Yang, “Continual learning for anomaly detection with
variational autoencoder,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019,
pp. 3837–3841.

[8] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep
generative replay,” Advances in neural information processing systems,
vol. 30, 2017.

[9] S. K. Amalapuram, T. T. Reddy, S. S. Channappayya, and B. R. Tamma,
“On handling class imbalance in continual learning based network
intrusion detection systems,” in The First International Conference on
AI-ML-Systems, 2021, pp. 1–7.

[10] S. K. Amalapuram, A. Tadwai, R. Vinta, S. S. Channappayya, and
B. R. Tamma, “Continual learning for anomaly based network intrusion
detection,” in 2022 14th International Conference on COMmunication
Systems & NETworkS (COMSNETS), 2022, pp. 497–505.

[11] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward gen-
erating a new intrusion detection dataset and intrusion traffic characteri-
zation,” Proceedings of the 4th International Conference on Information
Systems Security and Privacy, 2018.

[12] “Cicflowmeter, a network traffic biflow generator and
analyzer (formerly iscxflowmeter).” [Online]. Available:
https://www.unb.ca/cic/research/applications.html

[13] V. Marinov and J. Schönwälder, “Design of an ip flow record query
language,” in Resilient Networks and Services: Second International
Conference on Autonomous Infrastructure, Management and Security,
AIMS 2008 Bremen, Germany, July 1-3, 2008 Proceedings 2. Springer,
2008, pp. 205–210.

[14] G. M. Davis, Pearson Correlation Coefficient. CRC Press, 2018, p.
1–4.

[15] P. Toupas, D. Chamou, K. M. Giannoutakis, A. Drosou, and D. Tzovaras,
“An intrusion detection system for multi-class classification based on
deep neural networks,” in 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA), 2019, pp. 1253–1258.

[16] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian
walk for incremental learning: Understanding forgetting and intransi-
gence,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 532–547.

[17] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions
on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935–
2947, 2017.

[18] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient
lifelong learning with a-gem,” 12 2018.

[19] S. Rebuffi, A. Kolesnikov, and C. H. Lampert, “icarl: Incremental
classifier and representation learning,” CoRR, vol. abs/1611.07725,
2016. [Online]. Available: http://arxiv.org/abs/1611.07725

[20] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania,
P. H. S. Torr, and M. Ranzato, “Continual learning with tiny episodic
memories,” CoRR, vol. abs/1902.10486, 2019. [Online]. Available:
http://arxiv.org/abs/1902.10486

[21] Z. Mai, D. Shim, J. Jeong, S. Sanner, H. Kim, and J. Jang,
“Adversarial shapley value experience replay for task-free continual
learning,” CoRR, vol. abs/2009.00093, 2020. [Online]. Available:
https://arxiv.org/abs/2009.00093

[22] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, M. Lin, L. Charlin,
and T. Tuytelaars, Online Continual Learning with Maximally Interfered
Retrieval. Red Hook, NY, USA: Curran Associates Inc., 2019.

[23] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based sample
selection for online continual learning,” Advances in neural information
processing systems, vol. 32, 2019.

[24] A. Prabhu, P. H. Torr, and P. K. Dokania, “Gdumb: A simple approach
that questions our progress in continual learning,” in Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part II 16. Springer, 2020, pp. 524–540.

[25] T. L. Hayes and C. Kanan, “Online continual learning for embedded
devices,” 2022. [Online]. Available: https://arxiv.org/abs/2203.10681

[26] ——, “Lifelong machine learning with deep streaming linear dis-
criminant analysis,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, June
2020.

91
Authorized licensed use limited to: Centre for Research and Technology (C.E.R.T.H.). Downloaded on September 21,2023 at 10:08:57 UTC from IEEE Xplore. Restrictions apply.

		2023-08-25T14:21:11-0400
	Preflight Ticket Signature

