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Abstract. Internet of Things (IoT) is one of the next big concepts to
support societal changes and economic growth, with the help of Artifi-
cial Intelligence and edge computing. A whole new range of applications
that leverage data and metadata from connected IoT devices provide
novel human-centric services in areas such as smart agriculture. In this
paper, we investigate the efficiency of executing ML-based crop disease
prediction on a commercial drone device and demonstrate its potential
in vineyards. We conduct inference of the trained models on several IoT
and edge devices’ processors and demonstrate the potential for real-time
decision-making and therefore enabling targeted treatment for affected
areas for optimizing crop protection strategies.

Keywords: IoT · Machine Learning · Crop disease prediction · Esca ·
Smart Agriculture.

1 Introduction

The Internet of Things (IoT) has gained great penetration in both business and
everyday lives, with numerous distributed and highly diversified “things” sensing
different aspects of their environment. Different combinations of devices, sensors
and business scope across domains provide breeding grounds for numerous appli-
cations, leaving room for both inspiration and innovation. The connected things
are continuously increasing in volume, and capabilities, collecting huge amounts
of data. IDC predicted in 2020 that by 2025 there will be 55.7 B connected
devices worldwide, 75% of which will be connected to an IoT platform [1]. More-
over, Gartner estimated in 2020 that 47% of organizations intend to increase
investments in IoT [2]. The same survey reveals that IoT adoption is primarily
driven by the Digital Twin and Artificial Intelligence (AI) technologies.

AI provides the intelligence to an IoT platform that enables translating raw
information into useful forecasts and insights that allow triggering actions in
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business-specific defined workflows. Together, IoT and AI have revolutionized
the perception of smartness in connected systems, providing insights to digital
pioneers both in real time and in great detail.

The cloud computing revolution has democratized the development of use
of technology, offering both business and end-users the illusion of unlimited re-
sources availability and always-on experience of mobile and web services. Cloud
computing has enabled the emergence of wide range of applications, supported by
the Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) or Infrastructure-
as-a-Service (IaaS) model, delivering complex functionality to the end user, with-
out necessarily requiring powerful end devices.

Fig. 1: Convolutional Neural Network model architecture.

Driven by these developments, the future of agriculture is undoubtedly dig-
ital, with smart agriculture and precision farming taking off, further supported
by the rise of the latest technologies, which have great potential in enhancing
the efficiency of irrigation, spraying and harvesting processes. However, the fol-
lowing challenges are still to be addressed for the Smart Agricultural use cases.
First, on-device intelligence has already experienced implementations to run AI
models directly on resource constrained devices. However, effective integration of
intelligence closer to the field as an integral part of the IoT device to achieve data
sovereignty has not yet been fully realized. Second, transparent IoT, edge and
cloud communication is still missing in real implementations, although efforts
are ongoing for coherent data communication and service delivery across these
resources, both in the standardization part through the activities of ISO/IEC
JTC 1 AG 8 and through research efforts [3–5].

In this paper, we investigate the efficiency of executing ML-based crop dis-
ease prediction on a commercial drone device and demonstrate its potential in
vineyards. Crop diseases can be in many cases predicted or early detected using
micro-climate measurements (mainly temperature and humidity at the air, the
leaves and the soil), crop image processing and visual analytics [6,7]. We exper-
iment on crop diseases prediction, using deep learning (DL) which runs locally
on the drone equipment, with images of the crop and the leaves captured from
drone cameras. The rest of the paper is structured as follows. Section 2 presents
both the case of Smart Agriculture in which Deep Learning (DL) for crop dis-
ease prediction is applied, as well as the experimental results. Section 3 draws
conclusions over the obtained results.
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2 AI-based Crop Disease Prediction

The case study refers to smart monitoring of vineyards with the help of Un-
manned Aerial Vehicles (UAVs). Our study is focused on the detection of the
Esca disease, which is a trunk disease of grapevines that concentrates worldwide
concerns due to its increasing prevalence in most grapevine growing areas [8].
First symptoms of esca appear as dark red (for red cultivars) or yellow (on
white cultivars) stripes on leaves, which eventually dry and become necrotic.
Computer vision techniques have been proposed to detect the disease at an
early stage [9, 10], while the authors in [11] combine Raman spectroscopy and
chemometrics to detect Esca in asymptomatic grapevines. Our experiments sug-
gest training of an ML crop disease prediction model at the edge and execution
of it on the UAV.

2.1 Deep Learning for Crop Disease Prediction

The objective of our ML crop disease prediction model is image classification
and thus we use Convolutional Neural Networks (CNNs). Our network consists
of 5 Convolutional layers, each followed by a ReLU activation function and a
MaxPooling operation, which can recognize successfully if the grapevine leaves
are unhealthy, i.e., are affected by esca disease, or healthy. The architecture of
our model is illustrated in Fig. 1. The classification model is trained on the
Esca dataset [12], a publicly available dataset provided by the Department of
Information Engineering, Polytechnic University of Marche, Ancona, Italy which
contains 882 images of healthy grapevine leaves and 888 images of grapevine
leaves affected by esca. Fig. 2 displays one random image per class of the dataset.

As the total number of images is not enough for training a ML model, fol-
lowing [12] we perform data augmentation and thus a large amount of images is
acquired. Particularly, we perform the following augmentations: (a) Horizontal
flip, (b) Vertical flip, (c) Rotation, (d) Width shifting, (e) Height shifting, (f)
Zoom, (g) Blur and (h) Brightness.

That said, the resulting number of images is 23010, of which 11544 are un-
healthy and the other 11466 are healthy grapevine leaves. In addition, we split
the images randomly into 13806 train, 5752 test and 3452 validation images.
Table 1 shows the number of images per class for each of the train, validation
and test phase of the model.

Table 1: Number of images per class for each phase of the model.

Num. Images

Train Images Validation Images Test Images

Unhealthy healthy Unhealthy healthy Unhealthy healthy

6926 6880 1732 1720 2886 2866
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Metrics.The metrics used for performance evaluation for our classification
model are the Accuracy, Recall, Precision and F1− Score. These metrics are
derived from the following four categories:

– True Positive (TP): refers to a correct prediction of the positive class.
– False Positive (FP): refers to an incorrect prediction of the positive class.
– True Negative (TN): refers to a correct prediction of the negative class.
– False Negative (FN): refers to an incorrect prediction of the negative

class.

That said, having 2 classes in our classification problem, we can now define
the above metrics as:

– Accuracy. Number of samples correctly identified as either truly positive
or truly negative out of the total number of samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

– Precision. Number of samples correctly identified as positive out of the
total samples identified as positive.

Precision =
TP

TP + FP
(2)

– Recall. Number of samples correctly identified as positive out of the total
actual positives.

Recall =
TP

(TP + FN)
(3)

– F1-Score. The harmonic average of the precision and recall, it measures
the effectiveness of identification when just as much importance is given to
recall as to precision.

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall
(4)

2.2 Experimental Results

Our classification model is trained for 5 epochs in both NVIDIA RTX A4500 and
NVIDIA GeForce GTX TITAN X independently, and achieves 94.94% accuracy
and 94.93% precision, recall and f1-score. The training and the validation loss
curves during training are shown in Fig. 3. We can observe that our model is
able to learn our binary classification problem within a short period of time as
both of our training and validation losses are decreased sharply. Table 2 shows
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(a) Healthy grapevine leaves. (b) Grapevine leaves affected by esca dis-
ease.

Fig. 2: Samples from esca dataset [12].

a summary of the evaluation metrics for our model’s training procedure. As
expected, the training results in both NVIDIA RTX A4500 and NVIDIA GeForce
GTX TITAN X GPU are identical as the ML model architectures are the same
and the weight initialization of the models was performed with a specific seed
number. Table 2 shows the training and test duration of the ML model with
respect to the GPUs. NVIDIA RTX A4500 performs the best as it has a larger
memory with a size of 20GB in contrast to NVIDIA GeForce GTX TITAN X
that has 12GB memory.
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Fig. 3: Training and Validation loss during the training procedure.
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Table 2: Evaluation metrics for crop disease prediction model.

Model Performance (%)

Crop disease Accuracy Precision Recall F1-Score
Prediction 94.94 94.03 94.03 94.03

2.3 Inference Results

The above trained model is tested on 4 different devices, namely Nvidia Jetson
Xavier NX 16GB, Nvidia Jetson Nano 4GB, NVIDIA RTX A4500 and NVIDIA
GeForce GTX TITAN X. We perform inference of the model in each device and
we measure the inference time across these devices, i.e., the time the model needs
to process a single image with its trained weights and classify the image. The
results are shown in Table 3. As expected, the least inference time was observed
in NVIDIA RTX A4500 with a value of 0.038 seconds. However, it is worth
mentioning that NVIDIA Jetson Xavier NX 16GB performs better than the other
devices with inference time of 0.1878 seconds outperforming even the NVIDIA
GeForce GTX TITAN X GPU with a high difference of approximately 0.19
seconds, i.e., half of the time, emphasizing that way its powerful performance.

Table 3: Inference time of the ML model across all devices.

Device
Nvidia Nvidia Nvidia Nvidia
Jetson Jetson GeForce RTX

Nano 4GB NX 16GB GTX TITAN X A4500

Inference
0.4224 0.1878 0.2972 0.0380

Time (s)

3 Conclusion

In this paper, we aim to address the problem of crop disease prediction using
deep learning techniques. Particularly, we trained a CNN image classifier to
classify grapevine leaves as either healthy or unhealthy, i.e., affected by esca
disease. Our model’s performance evaluation shows the effectiveness of employing
a deep learning classification network for this task, achieving high accuracy in
distinguishing between healthy and diseased leaves. We conducted inference of
the trained models on several IoT and edge devices’ processors and measured
the respective times indicating the potential for real-time decision-making. The
results validate that our model can support real-time esca disease prediction on
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the drone, thus enabling targeted treatment for affected areas for optimizing
crop protection strategies.
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